
1
2

3
6

5

4

8

7

9

1 km

WORKING PAPER SERIES IN PRODUCTION AND ENERGY

KIT – The Research University in the Helmholtz Association
www.iip.kit.edu

Assessing the potential contribution

of excess heat from biogas plants 

towards decarbonising German 

residential heating

Jann Weinand, Russell McKenna, Katharina Karner, 

Lorenz Braun, Carsten Herbes 

No. 31 | October 2018 



Assessing the potential contribution of excess heat from 

biogas plants towards decarbonising German residential 

heating

Jann Weinand, Russell McKenna*, Katharina Karner, Lorenz 

Braun, Carsten Herbes 

*Corresponding author: Russell McKenna, rkenna@dtu.dk, +45 46 77 51 59, 

DTU Management Engineering, Building 426, 2800 Kgs. Lyngby, Denmark

This paper analyses the current technical potential for utilising excess heat from 

German biogas plants, in order to supply local settlements through district heating. 

Based on a survey of around 600 biogas plant operators, the fractions of excess heat 

in these plants are analysed. A heuristic is developed to match biogas plants (heat 

sources) with local settlements (sinks) in order to determine a least-cost district heating 

supply for residential buildings. Two criteria are employed, namely the CO2 abatement 

costs and the payback period, which represent the macro- and microeconomic 

perspectives respectively. Based on the survey, a mean fraction of 40% excess heat is 

determined, which is in agreement with other empirical studies. Extrapolating this 

fraction to the German biogas plant stock leads to technically feasible CO2 savings of 

around 2.5 MtCO2/a. Employing the criteria of CO2 abatement costs and payback 

period yields about 2 MtCO2/a below CO2 abatement costs of 200 €/tCO2 and below a 

payback period of 9 years respectively. This represents about 0.25% of the total 

German CO2 emissions in 2016 or around 2.5% of all CO2 in residential buildings. If 

threshold values of 80 €/tCO2 and 5 years are employed, to reflect the German 

government’s suggested external cost of carbon and an expected payback period from 

an investor’s point of view respectively, the carbon reduction potential is about 0.5 

MtCO2 and 0.75 MtCO2 respectively. These potentials are concentrated in around 

3,500 of 11,400 municipalities, where district heating from biogas plants could reduce 

CO2 emissions per capita by an average of 250 kgCO_2/a  and cover 12% of the total 

heating demand.

mailto:rkenna@dtu.dk
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Nomenclature 

Variable / 

Parameter 

Description Unit 

𝑎  Annuity factor − 

𝑎111  Area size of a “111” area m2 

𝑎112  Area size of a “112” area m2 

𝐴𝐵𝐶  Share of brown coal in heat supply for settlement area % 

𝐴𝐸𝐿  Share of electricity in heat supply for settlement area % 

𝐴𝐺𝑎𝑠  Share of gas in heat supply for settlement area % 

𝐴𝐻𝐶  Share of hard coal in heat supply for settlement area % 

𝐴𝑂𝑖𝑙  Share of heating oil in heat supply for settlement area % 

𝐵𝑆𝐴𝑆𝐴  Total building space of a settlement area m2 

𝐶𝑂2𝑐𝑜𝑠𝑡𝑠  CO2 abatement costs €/tCO2 

𝐶𝑂2𝑠𝑎𝑣𝑒𝑑,𝑆𝐴  Saved CO2 emissions in a settlement area tCO2 

𝐶1  Construction cost parameter 1 for district heating network €/m 

𝐶2  Construction cost parameter 2 for district heating network €/m2 

𝐶𝑅  Coverage ratio % 

𝑑𝑓  Discount factor % 

𝑑𝑆𝐴  Average diameter of the district heating pipelines m 

𝐷𝐼𝑆𝑆𝐴  Distance between biogas plant and settlement area m 

𝑒  Plot ratio − 

𝐸𝐹𝐵𝐶  CO2 emission factor of brown coal kgCO2/kWh 

𝐸𝐹𝐸𝐿  CO2 emission factor of electricity kgCO2/kWh 

𝐸𝐹𝐺𝑎𝑠  CO2 emission factor of gas kgCO2/kWh 

𝐸𝐹𝐻𝐶  CO2 emission factor of hard coal kgCO2/kWh 

𝐸𝐹𝑂𝑖𝑙  CO2 emission factor of oil kgCO2/kWh 

𝐸𝐻𝐵𝐺𝑃  Share of available excess heat in a biogas plant % 

𝐸𝐻𝑢𝑠𝑒𝑑  Share of already used excess heat in a biogas plant % 

𝐸𝑋𝑃𝑆𝐴  Sum of expenses for the supply of a settlement with district heating € 

𝐹1  Number of residential buildings in a federal state / municipality with one apartment − 

𝐹2  Number of residential buildings in a federal state / municipality with two apartments − 

𝐹3  Number of residential buildings in a federal state / municipality with three or more apartments − 

𝐹𝑚𝑒𝑎𝑛  Mean living space per apartment in a federal state m2 

𝐹𝑚𝑒𝑎𝑛,𝑚  Mean living space per apartment in a municipality m2 

𝐹𝑡𝑜𝑡𝑎𝑙  Total living space in a federal state m2 

ℎ𝑑𝑚𝑒𝑎𝑛  Mean specific heat demand in a settlement area kWh/m2 
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𝐻𝐷𝑆𝐴  Adjusted total heat demand in a settlement area kWh 

𝐻𝐷𝑆𝐴𝑡𝑜𝑡𝑎𝑙
  Total heat demand in a settlement area kWh 

𝐻𝐷𝐶𝑆𝐴  Specific heat distribution costs € 

𝐼𝑐𝑜𝑛,𝑆𝐴  Investment in the pipeline for connecting the biogas plant and the settlement area € 

𝐼𝐷𝐻𝐺,𝑆𝐴  Investment for the building or the densification of the district heating grid € 

𝐼𝑆𝐴  Necessary investment to use the excess heat from the biogas plant to supply the settlement area  € 

𝐼𝑅  Investment rate for the district heating pipeline €/m 

𝐿𝐻𝐷𝑆𝐴  Linear heat density kWh/m 

𝐿𝑃𝐵𝐺𝑃  Excess heat profile of a settlement area − 

𝐿𝑃𝑆𝐴  Heat demand load profile of a settlement area − 

𝐿𝑆1  Living space in a settlement area m2 

𝐿𝑆2  Adjusted living space in a settlement area m2 

𝐿𝑆𝑡𝑜𝑡𝑎𝑙1  Calculated sum of the living space over all settlements in a municipality m2 

𝐿𝑆𝑡𝑜𝑡𝑎𝑙2  Measured total living space in a municipality m2 

𝑛𝑎  Number of apartments in a settlement area − 

𝑛𝑏  Total number of buildings in a square kilometre of the census data grid − 

𝑛𝑏111  Number of buildings in a “111” area − 

𝑛𝑏112  Number of buildings in a “112” area − 

𝑁𝑃𝑉𝑆𝐴  Net present value for the supply of a settlement with district heating € 

P Total population of a settlement area Inhabitants 

𝑃𝐷𝑆𝐴  Population density of a settlement area Inhabitants/km² 

𝑃𝑃  Payback period a 

𝑃𝑡ℎ  Thermal power of a biogas plant kW 

𝑄𝑠𝑒𝑙𝑙  Amount of excess heat that is supplied by the biogas plant to the settlement area kWh 

𝑅𝐸𝑉𝑆𝐴  Sum of revenues for the supply of a settlement with district heating € 

𝑆𝐵𝑖𝑜  Proportion of heat supplied by biomass % 

𝑆𝐷𝐻  Proportion of heat supplied by district heating % 

𝑆𝐺𝑇  Proportion of heat supplied by geothermal and other environmental heat % 

𝑆𝑆𝐸   Proportion of heat supplied by solar energy % 

𝑆𝑊𝑃  Proportion of heat supplied by wood pellets % 

𝑆𝐿𝑃𝐵𝐺𝑃  Standardised excess heat profile of a biogas plant − 

𝑆𝐿𝑃𝐻𝐷  Standardised heat load profile of a settlement area − 

𝑆𝑅  Supply ratio % 

𝑤  Effective width m 

𝑥  Average number of apartments in a residential building with more than two apartments − 
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1. Introduction 

The expansion of renewable energy technologies (RETs) in Germany is largely being driven 

by private individuals, farmers and energy cooperatives in the context of community energy 

(Klaus Novy Institut e.V. & trend:research 2011, trend:research 2017). This trend involves 

these actors investing in and/or operating RETs, including wind, solar and bioenergy plants, in 

some cases also buying the local energy infrastructure (gas, electricity, heating networks) back 

from the local utility. They are mainly motivated by a desire to ‘take control’ of their local energy 

supply (system) and thus become more independent from centralised markets and energy 

suppliers (Müller et al. 2011, Rae & Bradley 2012, McKenna et al. 2015). Many community 

energy projects declare an objective of energy autonomy, which they typically define on an 

annual basis and for electricity alone1. Examples in Germany include the 100% Renewable 

Energy Regions and the Bioenergy Villages (McKenna 2018). The costs of these RETs were 

historically higher than those of conventional technologies, meaning they relied on subsidies 

to be economical. But recent rapid reductions in costs for PV and batteries have provided a 

renewed incentive for attempts to become energy autonomous at a local scale (Nykvist & 

Nilsson 2015).  

Many studies have techno-economically analysed the scope to achieve a local energy supply 

from renewable sources. Most conclude that a completely autonomous energy supply is only 

feasible in rural municipalities with large bioenergy resources, and even then, large storage 

capacities are required which lead to high costs (e.g. McKenna et al. 2015). In the context of 

decentralised energy supply, a related stream of research is concerned with (industrial) excess 

heat and the possibilities of utilising this as an energy input, e.g. for space heating. Several 

studies in this area have analysed the technical and/or economic potential of excess heat from 

industry, often based on emissions data from individual industrial plants. Noteworthy are the 

studies McKenna & Norman (2010), Fang et al. (2013, 2015), Brückner et al. (2014), Miró et 

al. (2015), Miró et al. (2016), Bühler et al. (2017), and the ongoing European Heat Roadmap 

project (Persson et al. 2014). Amongst other things, the European Heat Roadmap project has 

produced the European Thermal Energy Atlas, a Europe-wide map of heat demand and 

industrial excess heat potentials at a spatial resolution up to of 1 km2. One additional source 

of excess heat potential are biogas plants, which valorise organic matter into biogas through 

fermentation (cf. section 2). This biogas is typically combusted in a cogeneration unit, whereby 

the electricity is typically fed into the grid. A legal requirement was introduced with the 

Renewable Energy Sources Act (EEG) 2012, that new biogas plants must utilise at least 25% 

of their excess heat in the first year of operation and 60% thereafter (Mergner et al. 2013). 

Despite this, there are many operating plants, some of which were commissioned before this 

time, with much lower levels of heat utilisation.  

Against this background of decentralised energy systems, aspirations for local energy 

autonomy and excess heat potentials, this study analyses the technical and economic potential 

for recovering excess heat from biogas plants in Germany to supply local buildings with low 

carbon space heating. The objective is to determine the amount of heat that could technically 

                                                           
1 At the time of writing only one municipality is known to the authors that is aiming to be completely energy 
autonomous, namely Bordelum, cf. http://www.sonnenseite.com/de/energie/norddeutsche-gemeinde-stellt-
komplett-auf-erneuerbare-energien-um.html. 
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be recovered as well its associated costs, in order to give indications of promising locations. 

The paper addresses the following research questions: 

 How does the heat from biogas plants in Germany that is not used today match the 

existing heat sinks? 

 What contribution can the use of biogas excess heat make to the autonomy of 

municipalities?  

 In which locations is the utilisation of biogas plant excess heat economically interesting 

for investors? 

The employed methodology involves a combination of input from a survey of around 600 

biogas plant operators, a GIS-based analysis of sources and sinks, and a heuristic that 

matches heat sources and sinks based upon a least-cost approach. The results are therefore 

of relevance to local decision makers, biogas plant operators and researchers in the field of 

energy system analysis. In particular the quantitative results offer an indication of the costs 

and related CO2 saving potentials on a local level, in order to underpin local decisionmaking in 

the context of energy and climate plan development. 

The remainder of the paper is structured as follows. The following section (2) gives an overview 

of the state of the art relating to biogas plants in Germany and relevant literature on the subject 

of excess heat recovery for district heating. The subsequent section (3) outlines the employed 

methodology, including the plant operator survey, the approach to spatially locating the 

analysed plants, the determination of the residential building heat demand at a local level and 

the heuristic to match heat sources and sinks. Then section 4 presents and discusses the 

results, first for the survey sample and then for a tentative scale-up for the whole of Germany. 

The paper closes in section 5 with conclusions and an outlook. 

2. Current state of the art in the German biogas branch 

At the end of 2017, the number of biogas plants in Germany stood at around 10,500 plants. 

This makes Germany the country with the largest biogas plant population in Europe by far 

(European Biogas Association 2016), clearly over-fulfilling the National Renewable Energy 

Action Plan (NREAP) targets for 2015 (Pablo-Romero et al. 2017). The 10,500 plants relate to 

4.3 GWel and 25.7 𝑇𝑊ℎ𝑒𝑙 of capacity and generation respectively in 2015 (Engel 2015).  

A period of fast growth between 2009 and 2011 saw the installation of more than 1,300 new 

plants per year on average. The expansion of the sector subsequently came to a halt in 2012 

and the average number of newly built plants dropped to an average of below 150 per year for 

the period from 2014 to 2016 (German Biogas Association 2017). The main growth driver until 

2012 was the German Renewable Energy Sources Act, which guaranteed generous feed-in-

tariffs (FIT) for electricity produced in biogas plants. It especially promoted the use of energy 

crops, which is why 51% of all input material input of German biogas plants consists of energy 

crops, of which 73% is maize silage (FNR 2017). But the public as well as the political discourse 

have turned against the use of energy crops (Herbes et al. 2014). Subsequently, policy makers 

first introduced a cap on the amount of maize silage that can be used in new plants and finally 

redesigned the subsidy system in a way that only allows very few new plant projects to be 

financially viable (Markard et al. 2016; Herbes et al. 2014). Recently, the German government 

introduced a tender system for electricity from biomass, but the first tender in September 2017 

was perceived as unsuccessful, since the bids totalled to only about a third of the tender 
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volume (Bundesnetzagentur 2017). While not many new biogas plants are built at the moment, 

the outlook for the existing sites beyond the end of their 20 year FIT period is unclear, and 

without a new remuneration period, a large part of the plant population in Germany will be shut 

down (Lauer & Thrän 2017). 

The majority of German plants use the gas onsite to fuel combined heat and power (CHP) 

units, thus cogenerating heat and electricity. The electricity is fed into the electricity network to 

receive a feed-in tariff, and heat is used locally if at all feasible. A further around 200 plants (in 

2016, around 9 TWh of gas, cf. dena 2016) upgrade the biogas into biomethane or Bio-SNG 

(Synthetic Natural Gas) and inject it into the public gas grid (cf. Figure 1). Particularly where a 

local heat sink is lacking, despite additional costs this upgrading can improve the overall 

utilisation efficiency of biogas valorisation. For example, a typical CHP unit can achieve 40% 

electrical efficiency, reaching an overall efficiency of up to 80% if all the generated heat can 

be used locally (Pöschl et al. 2010). In the absence of a local heat sink, biogas upgrading and 

feed in can result in overall efficiencies of around 75-80%, based on the utilisation of Bio-SNG 

as a fuel for transport, for heating and/or power generation (Niesner et al. 2013, Köppel et al. 

2014). 

 
Figure 1: Schematic of biogas plant, showing key valorisation steps and pathways (Figure from 
Bidart (2013)) 

3. Method and approach  

This study uses different methods in a multi-stage approach. In this section, the developed 

algorithm is explained, which can also be seen in Figure 2. The boxes with numbers in Figure 2 

show in which subsection the respective part of the algorithm is explained. Firstly, the results 

of an extensive survey of biogas plant operators in Germany are taken into account with regard 

to their heat utilisation rates (cf. section 3.1, Herbes & Halbherr 2017). Secondly, 10,446 biogas 

plants as well as the 38,414 CORINE settlement areas in Germany are examined with regard 

to their technical and geographical characteristics (cf. section 3.2). Subsequently, the local 

demand for heat in buildings in all German settlement areas and the excess heat availability 

of biogas plants are calculated (cf. section 3.3). In order to provide a least cost solution, options 

to integrate the excess heat from the biogas plants into district heating networks are explored. 

In this context, the distances between the biogas plants and the settlement areas are 
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determined in particular. Based on published methods for district heating systems assessment 

and dimensioning, the possible CO2 savings and associated costs as well as the payback 

periods are determined for combinations of biogas plants and their nearest residential areas. 

By focussing on the connections with the lowest CO2-abatement costs/payback period, the 

most environmentally and economically attractive locations for a district heat network 

development are identified (cf. section 3.4).  
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Figure 2: Overview of the algorithm developed and used in this study to select biogas plants (BGP) and settlement areas for district heating supply.
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3.1. Biogas plant survey 

In the summer of 2016, an online survey of those members of the German Biogas Association 

that run a biogas plant was conducted, resulting in a gross sample of 2,724 operators (Herbes 

& Halbherr 2017). After the development of the questionnaire, which was a joint undertaking 

of Nuertingen-Geislingen University and the German Biogas Association (GBA), extensive 

cognitive pre-testing with external biogas experts, GBA staff and plant operators was carried 

out before fielding the survey. To decrease nonresponse bias after the first phase, a telephone 

campaign in those federal states that were underrepresented in the answers was conducted. 

These efforts resulted in a final data set of n=602 plant operators, which is equivalent to a 

response rate of 22% (according to response rate 2 (RR 2), cf. AAPOR (2015)). Regarding the 

distribution of federal states, the sample shows a small overrepresentation of Bavaria and 

Baden-Wuerttemberg (cf. Figure 6). Regarding size and commissioning year, the sample is 

statistically representative of the entire German biogas plant stock. Amongst other things, the 

data set includes location, plant size, percentage of the already used heat, utilisation paths 

and various data on prices and price models, which are not relevant for the present study 

(Herbes & Halbherr 2017). 

In the survey, respondents provided information on the percentage share of heat utilisation for 

different categories such as in schools, hospitals and fish farming. In 262 of the 602 plants, the 

total shares were above 100% (cf. Figure 3). The plants with a heat utilisation of more than 

100% are excluded from the analysis in this study, as it seems the survey participates 

misunderstood the questions and/or made mistakes in stipulated these shares. In total, this 

results in an average heat utilisation of 60% and an unused heat fraction of 40%.  

 

Figure 3: Number of biogas plants surveyed as a function of the specified share of heat that is 
already being used.  

3.2. Biogas plant register and CORINE Land Use Data  

Of the 602 biogas plants from the survey, 241 plants (40%) could be identified and mapped in 

the Energymap plant register (Engel 2015) on the basis of their year of commissioning, 

postcode and nominal power. Further and more detailed information could then be taken from 

the plant register, such as the full load hours in recent years. The data from the survey were 

used for heat utilisation (cf. section 3.1). 
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The Energymap plant register contains the coordinates of the biogas plants with a maximum 

error of 3 km. Therefore, the locations of the 10,446 plants in Germany could be mapped with 

the help of the geoinformation system QGIS. The 241 assigned plants from the survey are a 

subset of these 10,446 plants. CORINE Land Cover (CLC) data from the European 

Environment Association (EEA 2016) were used as a source for the settlement areas. The 

shapefiles of these areas for Germany are provided by the Federal Office of Cartography and 

Geodesy (Lenk et al. 2017a). Urban areas are distinguished according to the density of the 

urban fabric, into “continuous urban fabric” (denoted with the number “111”) and “discontinuous 

urban fabric” areas (denoted with the number “112”). The boundary between the 111 and 112 

areas is mainly determined by the presence and quantity of vegetation (EEA 1995). Overall, 

the German settlement areas are divided into 38,414 of these areas. The left part of Figure 4 

shows an exemplary section of these areas. 

3.3. Heat demand and generation 

The method for determining the heat demand of the settlement areas and the excess heat 

availability of the biogas plants is explained in sections 3.3.1 and 3.3.2. 

3.3.1. Heat demand 

Data on the building stock in Germany were taken from the census of the Federal Statistical 

Office to determine the heat demand in the settlement areas. For more information on 

determining the census data, see Statistisches Bundesamt (2015b). The census data include 

data on building age, building type and share of district heating, and are assigned with the help 

of the Lambert-Azimuthal-Equal Area Projection (ETRS89-LAEA) into INSPIRE-compliant 1-

km² grid cells (Statistisches Bundesamt 2016b). Therefore, the CLC settlement areas must 

also be assigned to this grid. For this purpose, the CLC settlement areas were intersected with 

the ETRS89-LAEA grid. The result can be seen on the right part of Figure 4. The black dots in 

the CLC areas represent the area centroids. The areas without centroids are industrial or 

commercial areas (denoted with the number “121”) which are excluded from this analysis due 

to the lack of data for industrial heat demand. 

 

Figure 4: Exemplary section of the “111”, “112” and “121” CORINE areas (left part) and the 
intersection with the ETRS89-LAEA grid (right part). 

After the allocation of the CLC sub-areas to the square kilometres, the census data were 

assigned to the CLC areas. The data per square kilometre must be distributed to all CLC sub-

areas in the grid. In addition to taking into account the area share, a distinction is also made 

between 111 and 112 areas (cf. section 3.2). The 111 areas represent settlement areas of 

which on average 90% are covered with buildings. For the 112 areas, the proportion of building 
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area is on average 65% (EEA 1995). These values are used as building densities. Since the 

census data is related to buildings, this information can be used to divide the census data into 

areas. The number of buildings in the 111 areas 𝑛𝑏111 and the number of buildings in the 112 

areas 𝑛𝑏112 is calculated in equation Eq. 1 and 2 using the total number of buildings in the 

square kilometre 𝑛𝑏 as well as the area sizes of the 111 areas 𝑎111 and 112 areas 𝑎112.  

𝑛𝑏111 =
∑0.9 ∗ 𝑎111

∑0.9 ∗ 𝑎111 +∑0.65 ∗ 𝑎112
∗ 𝑛𝑏 (1) 

𝑛𝑏112 =
∑0.65 ∗ 𝑎112

∑0.9 ∗ 𝑎111 +∑0.65 ∗ 𝑎112
∗ 𝑛𝑏 (2) 

The values 0.9 and 0.65 are the above-mentioned building densities. With the help of this 

procedure, the data from the census is assigned to the settlement areas. Furthermore, for 

comparison with data at the municipal level, it is necessary to assign settlement areas to 

municipalities. In QGIS, the settlement areas were also intersected with administrative 

boundaries of the German municipalities from Lenk et al. (2017b) for this purpose. 

In Landesamt für Statistik Niedersachsen (2014), the average living space per apartment can 

be found for all federal states. For federal states, districts and municipalities, Statistisches 

Bundesamt (2015a) indicates the number of residential buildings with one apartment (𝐹1), two 

apartments (𝐹2) and three or more apartments (𝐹3). In addition, the total living space is given 

in m² (𝐹𝑡𝑜𝑡𝑎𝑙). The mean living space (𝐹𝑚𝑒𝑎𝑛) could be calculated for each federal state using 

Eq. 3. 

𝐹𝑚𝑒𝑎𝑛 =
𝐹𝑡𝑜𝑡𝑎𝑙

𝐹1 + 𝐹2 ∗ 2 + 𝐹3 ∗ 𝑥
(3) 

Variable 𝑥 represents the average number of apartments in a residential building with more 

than two apartments. The variable is adjusted iteratively for each federal state until the mean 

living space corresponds to the specified value of Landesamt für Statistik 

Niedersachsen (2014) at the federal state level . Then the value of 𝑥 was adopted for all 

municipalities in the state. In this way, the average living space 𝐹𝑚𝑒𝑎𝑛,𝑚 was determined for 

each German municipality 𝑚. For 141 of the 38,414 CLC areas, the average living space of 

the federal state was adopted, since there were no values for the municipalities in the housing 

data. 

In order to calculate the living space 𝐿𝑆1 on CLC settlement area level, the number of 

apartments 𝑛𝑎 in the CLC area is required. The census data contains the categories “number 

of buildings with living space” with: 1 apartment, 2 apartments, 3-6 apartments, 7-12 

apartments and more than 13 apartments. In the last 3 categories, the average value was 

estimated so that the sum of the living space in the CLC areas is equal to the total living space 

in residential buildings in Germany (i.e. 3,670,870,000 m²). For this purpose, an average value 

of 3-6 apartments was assumed to be 5, for 7-12 apartments 9.5 and for 13 or more apartments 

16. The sum of the apartment number (40,411,000) calculated in this way is taken as the 

number of households in the settlement areas for later calculations. Compared with the actual 

number of apartments on 31.12.2010 of 40,479,000, the deviation is only -0.15% (Statistisches 

Bundesamt 2017a). Then the living space per CLC area 𝐿𝑆1 was calculated using the number 

of apartments 𝑛𝑎 and the mean living space 𝐹𝑚𝑒𝑎𝑛,𝑚 in the municipality (cf. Eq. 4).  
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𝐿𝑆1 = 𝐹𝑚𝑒𝑎𝑛,𝑚 ∗ 𝑛𝑎 (4) 

Now the sum of the CLC's living space 𝐿𝑆𝑡𝑜𝑡𝑎𝑙1 for each municipality is compared with the 

measured total living space of this municipality 𝐿𝑆𝑡𝑜𝑡𝑎𝑙2 (for which data are available). If the 

sum of the living space 𝐿𝑆𝑡𝑜𝑡𝑎𝑙1 deviates from the total living space of the municipality 𝐿𝑆𝑡𝑜𝑡𝑎𝑙2, 

the new living space of each CLC area 𝐿𝑆2 will be adjusted accordingly to Eq. 5. 

𝐿𝑆2 = 𝐿𝑆1 − (
𝐿𝑆1

𝐿𝑆𝑡𝑜𝑡𝑎𝑙1
∗ (𝐿𝑆𝑡𝑜𝑡𝑎𝑙1 − 𝐿𝑆𝑡𝑜𝑡𝑎𝑙2)) (5) 

As described above, percentages for building age are also given in the census. With the help 

of these parameters and specific heat demand per year, square meter and building type, the 

total specific heat demand per settlement area can be determined. For this purpose, the 

consumption values for single-family houses, two-family houses and multi-family houses are 

taken from Walberg et al. (2011). The calculation of consumption values in Walberg et 

al. (2011) also takes into account the modernisation rate for each age group. The building age 

classes from the census and in Walberg et al. (2011) are not completely identical, as Table 1 

shows. The data has therefore been assigned in such a way that a minimal error occurs. The 

assignment was made according to the colours in Table 1. 

Table 1: Comparison of the building age classes from Statistisches Bundesamt (2015b) and 

from Walberg et al. (2011) as well as the allocation of the classes by colour. 

Statistisches Bundesamt (2015b) Walberg et al. (2011) 

Before 1919 Before 1918 

1919-1948 1918-1948 

1949-1978 

1949-1957 

1958-1968 

1969-1978 

1979-1986 1979-1987 

1987-1990 1988-1993 

1991-1995 

1996-2000 1994-2001 

2001-2004 

2002-2008 2005-2008 

2009 and later 

The census data does not reveal the age profiles of different building types in a settlement. 

Therefore, a mean heat demand must be calculated for the different building types. The 

building stock model from McKenna et al. (2013) was used to determine how the single-family 

houses/two-family houses (SFHs) and multi-family houses (MFHs) are distributed among the 

building age classes. This was differentiated according to new and old federal states. With the 

help of the specific heat demand per age group and building type from Walberg et al. (2011), 

the total heat demand for old and new federal states can be determined for SFHs and MFHs. 
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These total heat demands divided by the number of SFHs/MFHs gives the mean specific heat 

demand per SFHs or MFHs in a settlement area. 

In order to calculate the total heat demand in a settlement area (SA), the share of SFHs or 

MFHs in the settlement must be known. For this purpose, the mean living space (differentiated 

by age group, building type and federal state from the building stock model) was multiplied by 

the number of apartments in SFHs or MFHs in the settlement. In the case of MFHs, the number 

of apartments 𝑥 from Eq. 3 was used to determine the number of apartments. The shares of 

SFHs in the living space were then multiplied by the specific heat demand of the SFHs in the 

settlement area (MFHs analogously). The two mean specific heat demands are then added 

together to form the mean specific heat demand ℎ𝑑𝑚𝑒𝑎𝑛 per settlement area. Now the total 

heat demand per settlement area 𝐻𝐷𝑆𝐴𝑡𝑜𝑡𝑎𝑙
 can be calculated according to Eq. 6. 

𝐻𝐷𝑆𝐴𝑡𝑜𝑡𝑎𝑙
= ℎ𝑑𝑚𝑒𝑎𝑛 ∗ 𝐿𝑆2 (6) 

In many settlement areas there are buildings whose heat demand is covered by district heating 

systems. For these settlements, the heat demand 𝐻𝐷𝑆𝐴 is deducted from the total heat demand 

𝐻𝐷𝑆𝐴𝑡𝑜𝑡𝑎𝑙
. Since it is not known which building types have district heating systems, the share 

of district heating systems 𝑆𝐷𝐻 in the settlement is deducted from the total heat demand. In 

addition, the heat demand is reduced by the share of technologies that should not be replaced 

by district heating with biogas excess heat, such as renewables (cf. Eq. 7).  

𝐻𝐷𝑆𝐴 = 𝐻𝐷𝑆𝐴𝑡𝑜𝑡𝑎𝑙
∗ (1 − 𝑆𝐷𝐻 − 𝑆𝑊𝑃 − 𝑆𝐵𝑖𝑜 − 𝑆𝑆𝐸 − 𝑆𝐺𝑇) (7) 

𝑆𝑊𝑃 stands for the proportion of heat supplied by wood pellets, 𝑆𝐵𝑖𝑜 for biomass, 𝑆𝑆𝐸 for solar 

energy and 𝑆𝐺𝑇 for geothermal and other environmental heat. These shares are not to be 

replaced because the emission factors are lower or not significantly higher than those for 

district heating from biogas plants (LfU 2016). Apart from the share of district heating 

(municipality level), all shares are based on figures at federal state level (Statistisches 

Bundesamt 2016a). Eq. 7 is based on the assumption that the heat demand of buildings which 

already have a building connection for district heating is completely covered by the existing 

district heating. With the census of 2011 as a basis, the share of district heating in settlement 

areas in Germany ranges from 0 to 95% (mean value is 2.65%). 

In the next step, a heat load profile 𝐿𝑃𝑆𝐴 is assigned to each settlement area. For this purpose, 

a standardised profile of a district heating network 𝑆𝐿𝑃𝐻𝐷 with an hourly resolution is used, 

which is adapted according to the previously determined heat demand 𝐻𝐷𝑆𝐴 (cf. Eq. 8) (for the 

standardised profile, see Karner et al. (2016)). 

𝐿𝑃𝑆𝐴 = 𝐻𝐷𝑆𝐴 ∗ 𝑆𝐿𝑃𝐻𝐷 (8) 

3.3.2. Heat generation 

For each biogas plant, the thermal capacity, the full load hours and the share of already used 

excess heat 𝐸𝐻𝑢𝑠𝑒𝑑 are known, as explained above. If the thermal power 𝑃𝑡ℎ is not given, it is 

determined with the help of the electrical power and a heat-to-power coefficient of 1 (Klein et 

al. 2014). In case no full load hours are known, these are determined on the basis of the 

electrical power and the amount of energy generated per year. On the basis of this data, an 

hourly load profile 𝑆𝐿𝑃𝐵𝐺𝑃 can now be assigned to each biogas plant. Biogas plants are 

typically operated as baseload, but recent changes to the energy-political framework (cf. 
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section 2) have led to more flexible operation. Since the maximum thermal power requirement 

is in winter, it is assumed that the biogas plant will be primarily operated during these months. 

On the basis of the full-load hours, the time window of operation during the winter is extended 

in both directions until the full load hours are reached (cf. Figure 13). Since excess heat is only 

generated during operation, the period of electricity production also corresponds to the period 

during which excess heat is generated. The excess heat profile 𝐿𝑃𝐵𝐺𝑃 is determined according 

to Eq. 9. 

𝐿𝑃𝐵𝐺𝑃 = 𝑆𝐿𝑃𝐵𝐺𝑃 ∗  𝑃𝑡ℎ ∗ (1 − 𝐸𝐻𝑢𝑠𝑒𝑑) (9) 

3.3.3. Coverage and supply ratio 

Having assigned load profiles to both the biogas plants and the settlement areas, the coverage 

ratio 𝐶𝑅 and the supply ratio 𝑆𝑅 can now be determined. The supply ratio is based on the total 

amount of available excess heat 𝐸𝐻𝐵𝐺𝑃 and puts the available excess heat in proportion to the 

heat demand 𝐻𝐷𝑆𝐴 of the settlement areas (cf. Eq. 10).  

𝑆𝑅 =  
𝐸𝐻𝐵𝐺𝑃

𝐻𝐷𝑆𝐴 
(10) 

By contrast, the coverage ratio is based on an hourly coverage and thus takes into account 

the time characteristics of supply and demand. As a result, the coverage ratio cannot be 

greater than the supply ratio. The coverage ratio 𝐶𝑅 is calculated in Eq. 11 for every hour. If 

the heat demand 𝐻𝐷𝑆𝐴 is greater than the excess heat 𝐸𝐻𝐵𝐺𝑃 in an hour 𝑡, the share that can 

be covered by the excess heat is calculated in Eq. 12. If the share of excess heat is greater, 

the heat demand can be fully covered (cf. Eq. 13). The hourly coverage ratios are then 

integrated in order to obtain the overall coverage ratio. The calculation of this indicator allows 

a statement about the autonomy of the settlement area. By integrating the temporal 

characteristics, it is not only possible to make a statement on an annual basis (energy 

autonomy), but also about the temporal characteristics (power autonomy). 

𝐶𝑅 =  
100

8760
∗ ∫ 𝐶𝑅𝑡  ∗ 𝑑𝑡

8760

𝑡=0

(11) 

𝐻𝐷𝑆𝐴,𝑡  ≥  𝐸𝐻𝐵𝐺𝑃,𝑡 ⇒  𝐶𝑅𝑡  =  
𝐸𝐻𝐵𝐺𝑃,𝑡  

𝐻𝐷𝑆𝐴,𝑡  
(12) 

𝐻𝐷𝑆𝐴,𝑡 < 𝐸𝐻𝐵𝐺𝑃,𝑡 ⇒  𝐶𝑅𝑡  =  1 (13) 

3.4. Allocation of the biogas plants to CLC areas 

As described in section 3.2, the shape files of the CLC settlement areas and the coordinates 

of the biogas plants were used in the geoinformation system QGIS. After the calculation of the 

centroids of the CLC areas, QGIS was used to calculate the distance matrices for the distances 

between biogas plants and CLC areas as well as for the distances between the CLC centroids. 

In the first case, the closest 50 CLC areas and their distances to each biogas plant were 

determined. In the latter case, due to computational restrictions, only the closest 25 CLC areas 

were determined for each of the 38,414 CLC areas. The results will show that the limitation to 

the next 25 or 50 areas is sufficient. The distances are needed to calculate the costs of the 

district heating pipelines, as will be explained in the following sections.  
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Now the loop shown in the algorithm in Figure 2 after determining the distance matrices is 

explained. In the first step, CO2 abatement costs/payback periods are calculated for each of 

the 10,446 biogas plants, which would result from the supply of district heating. This is done 

for every biogas plant for all 50 of the closest CLC areas. In the next step, the connection is 

selected from the resulting 10,446x50 connections, which results in the lowest CO2 abatement 

costs/payback period. Then the 25 closest CLC areas to the selected CLC area are added to 

the selected biogas plant because this CLC area can now be considered as the starting point 

for the heat supply. The amount of heat provided to the settlement is deducted in the next 

steps from the heat supply of the biogas plant and from the heat demand of the settlement. 

The maximum possible amount of heat is provided in each step. If there is no heat supply left 

after this step, the biogas plant will be removed from consideration, otherwise the CLC area. 

The abort criterion is then checked, and if the last CO2 abatement costs/payback period are 

above a predefined limit value, the loop is aborted. The limit values are described in more 

detail in section 4. Otherwise the loop is carried out again, but the recalculation is carried out 

only for the biogas plants and CLC areas where the heat supply or heat demand has changed 

since the last iteration, in order to reduce simulation time. In addition, all variables that change 

are recalculated, such as CR and SR from section 3.3.3. All biogas plants that have the 

selected CLC area among the nearest 50 areas will therefore be included in the new 

calculation. In each step, for economic reasons it is ensured that the total length of the district 

heating pipeline does not exceed 50 km (Arbeitsgemeinschaft QM Fernwärme 2017).  

The following sections explain the determination of the CO2 emissions saved (section 3.4.1), 

the costs for the district heating network and the CO2 abatement costs (section 3.4.2) as well 

as the payback period (section 3.4.3). 

3.4.1. Calculation of the saved CO2 emissions 

The calculation of the saved CO2 emissions is based on the allocation of used energy to 

provide heat to the settlement areas. The emission factors (EF) of the energy sources and 

their average allocation in Germany are shown in Table 2 (LfU 2016; Statistisches Bundesamt 

2016a). The allocation of the energy for the determination in the settlement areas is based on 

the average values in the respective federal state (Statistisches Bundesamt 2016a). Since the 

shares of district heating, wood pellets, biomass, solar energy and geothermal and other 

environmental heat in the total heat demand are deducted from the total heat demand (cf. 

section 3.3.1), these types of energy are not listed in Table 2. 

Table 2: The emission factors EF of the heating energy sources and their average allocation 
in Germany (LfU 2016; Statistisches Bundesamt 2016a). 

Energy carrier Allocation A [%] Emission factor EF [kg/kWh] 

Gas 62.50 0.252 

Heating oil 31.84 0.315 

Electricity (EL) 4.90 0.646 

Brown coal (BC) 0.54 0.429 

Hard coal (HC) 0.22 0.428 

The calculation of the saved CO2 emissions 𝐶𝑂2𝑠𝑎𝑣𝑒𝑑,𝑆𝐴 in Eq. 14 is based on the calculated 

coverage ratios per settlement area 𝐶𝑅𝑆𝐴. Excess heat replaces part of the fossil energy used 

to supply the settlement areas. It is assumed that excess heat replaces the existing energy 
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carriers proportionally. The usage of excess heat has an emission factor of 0 kg/kWh 

(Theissing 2012). 

𝐶𝑂2𝑠𝑎𝑣𝑒𝑑,𝑆𝐴  =
𝐻𝐷𝑆𝐴 ∗ 𝐶𝑅𝑆𝐴 ∗  (𝐴𝐺𝑎𝑠 ∗  𝐸𝐹𝐺𝑎𝑠 + 𝐴𝑂𝑖𝑙 ∗ 𝐸𝐹𝑂𝑖𝑙 + 𝐴𝐸𝐿 ∗ 𝐸𝐹𝐸𝐿 + 𝐴𝐵𝐶 ∗ 𝐸𝐹𝐵𝐶 + 𝐴𝐻𝐶 ∗ 𝐸𝐹𝐻𝐶)

1000
(14) 

3.4.2. Determination of the CO2 abatement costs 

The investment for the district heating grid construction, or densification in case a district 

heating network already exists, are mainly based on the length of the grid. The grid length 

cannot be determined without a detailed on-site investigation or analysis of the heat demand 

density/distribution using a geographic information system. Persson & Werner (2011) 

developed a method to determine the investment for district heating grids without the 

mentioned procedures. In this way, the investment can be estimated based on publicly 

available data such as population density, specific building space, specific heat demands and 

some cost parameters. 

First, the fraction of the excess heat that is supplied by the biogas plant to the settlement area 

𝑄𝑠𝑒𝑙𝑙 is determined using Eq. 15.  

𝑄𝑠𝑒𝑙𝑙 = 𝐻𝐷𝑆𝐴 ∗ 𝐶𝑅 (15) 

Another important parameter is the plot ratio e. The plot ratio is a city planning parameter that 

captures the building density within an area. Plot ratio values are used to categorize typical 

city districts: (A) inner city areas (e = 0.5-2.0), (B) outer city areas (e = 0.3-0.5) and (C) sparse 

areas (e = 0-0.3). Those parameter ranges are based on Statens Planverk (1985). The plot 

ratio is calculated with the population density 𝑃𝐷𝑆𝐴 and the total building space 𝐵𝑆𝐴𝑆𝐴 of the 

settlement area divided by the total population of the settlement P. By dividing the calculated 

residential area per settlement area by the residential area per person of the municipality from 

Statistische Ämter des Bundes und der Länder (2011), the number of inhabitants per 

settlement area can be estimated. All in all, Germany will then have a population of 81.711,000, 

close to the actual population of 2010 (81.750,000, Statistisches Bundesamt 2017b). By 

dividing the number of inhabitants by the settlement area, the population density can be 

determined and in the following step the plot ratio e (Eq. 16, cf.  Persson & Werner 2011). 

𝑒 = 𝑃𝐷𝑆𝐴  ∗  𝐵𝑆𝐴𝑆𝐴/𝑃 (16) 

The effective width 𝑤 is a parameter that describes the relationship between a land area and 

the length of district heat pipelines within this land area. It can also be seen as a correction 

factor to avoid the overestimation of distribution costs and is based on the plot ratio e (Persson, 

Werner 2011). The effective width is calculated by using Eq. 17. 

𝑤 = 61.8 ∗  𝑒−0.15 (17) 

In order to calculate the investment for heat distribution, the linear heat density 𝐿𝐻𝐷𝑆𝐴 is 

necessary. The linear heat density is calculated in Eq.18 based on the effective width, the plot 

ratio and the specific heat demand.  

𝐿𝐻𝐷𝑆𝐴 = 𝑒 ∗ 𝑤 ∗ 
𝐻𝐷𝑆𝐴

𝐵𝑆𝐴𝑆𝐴

(18) 
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Subsequently the average diameter of the district heating grid 𝑑𝑆𝐴 is calculated as this is one 

of the major cost influencing factors (cf. Eq.19). The determination of the diameter depends on 

the linear heat density.  

𝑑𝑆𝐴 = 0.0486 ∗ log 𝐿𝐻𝐷𝑆𝐴 + 0.007 (19) 

Finally, the determined values are used to calculate the specific heat distribution costs 𝐻𝐷𝐶𝑆𝐴 

using Eq. 20. These costs represent the investment for distributing 1 GJ of heat inside a 

settlement area. The construction cost parameters C1 and C2 vary depending on the plot ratio 

e. C1 is a base cost that solely depends on the length of the heat pipe, whereas C2 depends 

on the pipe diameter 𝑑𝑆𝐴. Three district types are considered in this study and for each type 

there are different cost parameters applied. The higher the plot ratio e, the higher are C1 and 

C2. In Table 3 the values for the construction cost parameters C1 and C2 can be found for the 

according district plot ratio and the district type. Furthermore, an annuity factor 𝑎 of 0.08 is 

integrated in the calculation.  

𝐻𝐷𝐶𝑆𝐴 =
𝑎 ∗ (𝐶1 + 𝐶2 ∗ 𝑑𝑆𝐴)

𝐿𝐻𝐷𝑆𝐴

(20) 

Table 3: Cost parameter values and district type according to plot ratio range (Persson, 
Werner 2011) 

Plot ratio (e) C1 [€/m] C2 [€/m²] District Type 

0.5 ≤ e 286 2022 Inner city area (A) 

0.3 ≤ e ≤ 0.5 214 1725 Outer city area (B) 

0 ≤ e ≤ 0.3 151 1378 Park area (C) 

The investment 𝐼𝐷𝐻𝐺,𝑆𝐴 for the building or the densification of the district heating grid (DHG) is 

determined by the specific heat distribution costs and 𝑄𝑠𝑒𝑙𝑙. Additionally, the investment in the 

pipeline for connecting the biogas plant and the settlement area 𝐼𝑐𝑜𝑛,𝑆𝐴 has to be calculated. 

There an investment rate 𝐼𝑅 of 200 €/m for the pipe is multiplied by the distance 𝐷𝐼𝑆𝑆𝐴 between 

biogas plant and settlement area (Fraunhofer UMSICHT 1998; C.A.R.M.E.N. e.V 2012; Pfnür 

et al. 2016). The relatively low value of 200 €/m is supposed to reflect the fact that biogas plant 

operators receive a subsidy in the context of the Combined Heat and Power Act (KWKG) 

amounting to 100 €/m of district heating network built (BMJV 2018). Finally, the investment 

can be summed up in Eq. 21 and results in the necessary investment 𝐼𝑆𝐴 to use the excess 

heat from the biogas plant to supply the settlement area with heat. 

𝐼𝑆𝐴 = 𝐼𝐷𝐻𝐺,𝑆𝐴 + 𝐼𝑐𝑜𝑛,𝑆𝐴 = 𝐻𝐷𝐶𝑆𝐴 ∗ 𝑄𝑠𝑒𝑙𝑙 +  𝐼𝑅 ∗  𝐷𝐼𝑆𝑆𝐴 (21) 

In the section 3.4.1, the saved CO2 emissions were determined. These are now taken into 

account to calculate the specific CO2 abatement costs 𝐶𝑂2𝑐𝑜𝑠𝑡𝑠 (cf. Eq.22). 

𝐶𝑂2𝑐𝑜𝑠𝑡𝑠 = 
𝐼𝑆𝐴

𝐶𝑂2𝑠𝑎𝑣𝑒𝑑,𝑆𝐴

(22) 

3.4.3. Determination of the net present value and payback period 

The net present value (NPV) is used as a further economic criterion. On the basis of this, the 

payback period 𝑃𝑃 of the excess heat utilisation can be determined. The present value for a 

term of 20 years is calculated using Eq.23 and results from the sum of revenues 𝑅𝐸𝑉𝑆𝐴 less 

expenses 𝐸𝑋𝑃𝑆𝐴. Discounting over this period is taken into account by the discounting factor 
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𝑑𝑓 of 0.05 (5%), which is intended to represent a compromise between social and commercial 

discount rates. Finally, the investment 𝐼𝑆𝐴 is deducted to calculate the 𝑁𝑃𝑉𝑆𝐴. Annual costs are 

caused by maintaining the district heating grid and driving the district heating pumps. As 

operating power of the pumps, a factor 𝑃𝑝 of 10 kWhel/MWhth is used (Good 2004). This 

means that 10 kWhel is required for each MWhth of district heating transported to drive the 

pump. Revenue is generated by selling heat to the customers. The used input data is shown 

in Table 4, which gives the mean heat prices from a random sample of ten district heat 

providers in Germany. 

𝑁𝑃𝑉𝑆𝐴 = ∑
𝑅𝐸𝑉𝑆𝐴 − 𝐸𝑋𝑃𝑆𝐴

(1 + 𝑑𝑓)𝑡
− 𝐼𝑆𝐴 (23) 

Table 4: Input data for economic evaluation, (Statista 2018a, BDEW 2018, SWB 2014) 

Asset Costs Units 

Maintenance cost rate of the district heating grid 0.5  % of investment 

Electricity purchase price EP 0.2324  €/kWh 

Thermal connection power Pa 

Heat selling prices HS: 
5  kW 

      Energy price 0.0664 €/kWh 

      Demand charge 30.99 €/kW 

      Base price 10.81  €/month 

4. Results and discussion 

In this section, the algorithm is validated before the results are discussed in more detail (cf. 

section 4.1). Initially, the calculations are only carried out with the 241 biogas plants included 

in the survey (cf. section 4.2). Thereafter, it will be shown in section 4.3 how the results change 

when all biogas plants in Germany are included in the analysis. In order to provide the 

algorithm with appropriate abort criteria, the limit value of the CO2 abatement costs is set in all 

calculations to 1,000 €/𝑡𝐶𝑂2, the limit value of the payback period to 20 years. The reason for 

these high values is that we wish to economically assess the technical potential, rather than to 

directly determine an economic potential based on some predefined criteria. Finally, the 

procedure is critically appraised in section 4.4. The algorithm was implemented in MATLAB 

and solved using a standard desktop PC (2x Intel Xeon 5430 Processor and 24 GB RAM). The 

solution time for the 241 plants is around ten minutes and that for the whole German biogas 

plant stock about two days. The code can be made available by the authors upon request. 

4.1. Validation of the algorithm  

Figure 5 gives an overview of the possible types of district heating connections that can be 

created by the algorithm in Figure 2. The red district heating pipelines lead from a biogas plant 

to a settlement area and the blue ones lead from one settlement area to another. The black 

lines represent municipal borders. The results shown in this figure were derived from the 

calculation with all biogas plants in Germany and the CO2 abatement costs as a selection 

criterion (cf. scenario A.1 in section 4.3).The first case shows biogas plant 7 (number in box), 

which has no connection to a settlement area. This can have several reasons. On the one 

hand, 100% of the excess heat from the biogas plant could already be used. In this case, this 

biogas plant would be one of the 241 plants from the survey, since only in these plants over 
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60% heat is used (cf. section 4.3). On the other hand, the settlement area in the vicinity could 

have no heat demand, e.g. because all buildings are already supplied with heat from alternative 

technologies. In addition, a district heating supply might not be worthwhile in this case, since 

the limit values of the target criteria are exceeded in the algorithm. The second case is the one 

in which a settlement area is supplied with district heating by only one biogas plant, and these 

biogas plants also supply only one settlement area (biogas plants 3 and 8). If a settlement area 

is supplied by several biogas plants, this is the third case (biogas plants 1, 2, 5, 6 and 9). The 

fourth case is the supply of several settlement areas by a biogas plant, as in the case of the 

biogas plants 4, 5 and 6. Finally, the connections of biogas plant 5 show that the district heating 

pipeline can also lead from one settlement area to the next, as shown by the blue-coloured 

district heating pipeline.  

The heat demand of the settlement areas from section 3.3.1 can also be validated. The sum 

for all settlement areas 𝐻𝐷𝑆𝐴𝑡𝑜𝑡𝑎𝑙
 results in a heat demand of 576 TWh (cf. Eq. 6). The heat 

demand for space heating and hot water in private households is subject to large annual 

fluctuations (mainly gas demand) and ranged from 544 to 578 TWh between 2010 and 2015 

(DIW Berlin & EEFA 2017; Umweltbundesamt 2017a; Statista 2018b). In 2010, from when the 

census data, heat consumption data and renovation data originate, the heat requirement was 

578 TWh (Deviation: -0.35%). Thus, the procedure presented in section 3.3.1 can be deemed 

to be very accurate.  
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Figure 5: Exemplary illustration of resulting district heating pipelines for the use of excess heat from biogas plants in several municipalities in Baden-
Württemberg. The background map is from OpenStreetMap contributors (2018). 
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4.2. Results from the survey 

As the left part of Figure 6 shows, the majority of the 241 biogas plants (green circles) identified 

are located in the federal state of Bavaria (143 plants ≙ 59%). This also corresponds to the 

distribution of the responses from the survey (cf. section 3.1).  

  

Figure 6: Location of the 241 biogas plants identified among the plants surveyed in Germany 
and a heat map showing the population density in the settlements (left part). Location of all 
biogas plants in Germany (right part) (Engel 2015; Statistisches Bundesamt 2017c). 

The heat map on the left side of Figure 6 shows the population density. White areas mark 

settlements with a low population density and the population density then rises to dark red. 

The heat map shows that the calculation with only 241 plants does not take into account the 

settlements with the highest population densities. A comparison of the 241 plants with all plants 

in Germany (cf. right part of Figure 6) shows that the latter are clearly more evenly distributed 

across Germany. Of the 241 biogas plants allocated, only 121 plants still have unused heat. 

The remaining 120 plants already use 100% of their excess heat. 

First of all, the results of the calculations with CO2 abatement costs as a decision criterion are 

presented in section 4.2.1, followed by the results of the calculations with payback period as a 

decision criterion in section 4.2.2. A sensitivity analysis is performed for both cases to show 

how some key parameters affect the results. The values of the parameters were changed in 

10% steps from -50% to +50%. The only exception is the distance of the biogas plant from a 

specified location. As described in section 3.2, the location of the biogas plant can have a 

maximum uncertainty of 3 km. The smallest distance between a biogas plant and the centroid 

of a settlement area is 10 metres, which lies far below this maximum uncertainty. However, it 

can also be a so-called satellite CHP unit located within the settlement area (Rutz & Güntert 

2012). After all, 17% of the biogas plant operators in Germany have a satellite CHP unit 

(Liebetrau et al. 2017). To cover this uncertainty, the distance of the plants to the settlement 

areas was varied between -3 km to +3 km. Since this parameter is shown together with the 

other parameters in Figure 7 below, - 3 km corresponds to -50% and +3 km to +50% and the 

𝐼𝑛ℎ𝑎  𝑡𝑎𝑛𝑡 

 𝑚2

Bavaria

0

4,700
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change of 10% corresponds to 600 meter steps. A further examination of over 700 plants in 

the most recent EEG biogas plant register from Bundesnetzagentur (2018) enabled them to 

be matched to their records in Energymap (Engel 2015). The average distance between the 

matched plants was 1.5 km, which corresponds to a range in Figure 7 of +/- 25%, but it is 

unclear which of these two sources is more accurate. 

4.2.1. CO2 abatement costs as decision criterion 

In the reference scenario, defined by the parameter values from section 3, the CO2 abatement 

costs range from 55 €/tCO2 to 987 €/tCO2 (mean: 120 €/tCO2) and 41,500 tCO2/a is saved. 129 

district heating pipelines are built in this case.  

Figure 7 shows the mean CO2 abatement costs resulting from the sensitivity analyses. The 

strongest deviation occurs when the coordinates of the biogas plants are changed (distance 

of biogas plant from specified location). The mean CO2 abatement costs change by -41% if 

the biogas plants are 3 km closer to the settlement areas and by +97% if the biogas plants are 

3 km further away from the settlement areas. The deviation for the 3 km closer plants is 

smaller, since some plants are already less than 3 km away from the settlement areas. The 

gradient of the curve becomes more constant the less the distance is reduced. Nevertheless, 

the curves do not have constant gradients. This is related to the abort criteria, as a result of 

which more and more connections between plants and settlements are excluded from the 

analysis or included in the analysis when parameters are changed. This will be further 

explained in section 4.2.2. If the biogas plants deviate 1.5 km from their location as described 

above, the costs could change between -31% and +52%. 

The pipe specific investment outside a settlement 𝐼𝑅 and the discount factor df have 

approximately the same effect on the mean CO2 abatement costs and reduce them by a 

maximum of 19% at -50% and increase them by a maximum of 19% at +50%. It is interesting 

to note that the pipe specific investment inside a settlement 𝐻𝐷𝐶𝑆𝐴 has a stronger effect on 

costs than 𝐼𝑅. This means that the district heating pipelines within a settlement have a greater 

influence on costs than the district heating pipelines leading to the settlement, i.e. the 

population density of a settlement is of crucial importance. The same conclusion can be drawn 

when looking at the curve of the plot ratio e. This is the only parameter that leads to a reduction 

of the average cost when it is increased. An increase of e is equivalent to an increase of the 

building density in the settlements. In this case, more heat can be delivered per settlement 

area that would otherwise remain unused. 
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Figure 7: Change in the mean CO2 abatement costs of the reference scenario when changing 
specific parameters 

As illustrated in Figure 8, the variation of the parameters does not have a large influence on 

the total CO2 abatement. The change in total CO2 abatement of the reference scenario 

(41,483 tCO2/a) varies only between -1.5% and +0.5%. The greatest influence has once again 

the variable “distance of biogas plant from specified location”. 

 

Figure 8: Change in the total CO2 abatement of the reference scenario when changing specific 
parameters 

Some of the curves in Figure 8 are not linear, which would not be directly suspected. For 

example, it has been concluded that an increase of the plot ratio e continuously reduces the 

CO2 abatement costs. It is also likely that an increase of e would increase the total CO2 

abatement. However, the curve in Figure 8 shows that, for example, with an increase of e from 

+40% to +50%, the total CO2 abatement decreases again (by 28 tCO2/a). This example is now 

explained on behalf of the other non-linearities in Figure 8. In the case of +40%, a biogas plant 

in a municipality in Bavaria will initially supply the CORINE area 8940 with 485 tCO2/a for 

108 €/tCO2 and later on a connection to the CORINE area 8876 will be installed with 65 tCO2/a 
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for 345 €/tCO2 (cf. left part of Figure 9). In the case of +50%, the CORINE area 8876 will be 

selected directly with 522 tCO2/a for 105 €/tCO2 (cf. right part of Figure 9).  

 

Figure 9: District heating network for the utilisation of the excess heat from a biogas plant in a 
municipality in Bavaria. The left part of the figure shows the connections that result in the case 
where plot ratio e is increased by 40%, in the right part e is increased by 50%. The background 
map is from Microsoft (2018). 

In the first case, CORINE area 8876 is also supplied, since approx. 14% of the excess heat in 

the biogas plant remains after supplying CORINE area 8940. In the second case, however, 

only 7.4% excess heat is left after supplying CORINE area 8876, so that the supply of area 

8940 is no longer worthwhile (CO2 abatement costs of 1,180 €/tCO2 ≥ 1,000 €/tCO2). The 

reason for the fact that settlement area 8940 is supplied before area 8876 (up to case +50%), 

although in settlement area 8876 there is more heat demand, is, among other things, the 

almost twice as high population density in settlement area 8940 (3,400 persons per km² 

compared to 1900 persons per km²). In order to avoid fluctuations in the curves of the total 

CO2 abatement costs in Figure 8, the total CO2 abatement costs would have to be used as a 

decision criterion in the algorithm. In this case, however, the CO2 abatement costs involved 

could be excessively high in some cases. 

4.2.2. Payback period as decision criterion 

If the payback period is selected as the decision criterion, the reference scenario results in a 

mean payback period of 7.2 years (payback periods of between 2.5 and 20 years). In this case, 

122 district heating pipelines are built and 40,600  tCO2/a is saved.  

The mean payback period increases the most when HS decreases (+69%) and is the lowest 

when the distance of biogas plant from specified location decreases (-44%, cf. Figure 10). If 

HS decreases, only a lower profit can be achieved by selling the heat. Since the variation of 

District heating pump power 𝑃𝑝 has exactly the same effect on the payback period, only the 

electricity price EP is shown in the figure (cf. section 3.4.3). If EP increases, the costs for driving 

the district heating pumps and thus the payback period increase. Pa has an opposite effect on 

the payback costs, since the rate at which the heat is delivered, and hence the amount of heat 

sold, depends strongly on this parameter. The distance, e, df, 𝐻𝐷𝐶𝑆𝐴 and 𝐼𝑅 have almost the 

same effect on the mean payback period as on the mean CO2 abatement costs (cf. section 

4.2.1).  

8940 8940

88768876
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Figure 10: Change in the mean payback period of the reference scenario when changing 
specific parameters 

However, the declining mean payback period with a change from 𝐼𝑅 from +40% (8.3 years) to 

+50% (7.8 years) is remarkable. The other non-linearities in the curves in Figure 10 can also 

be explained using the following example: Figure 11 shows the change in the number of district 

heating pipelines when increasing 𝐼𝑅 from -50% to +50%. The number of connections is 

reduced from 132 at -50% to 107 at +50%. In each step, the changes are within a range of one 

to three no longer existing connections. However, in the last step from +40% (115 connections) 

to +50% (107 connections), eight connections no longer exist due to a payback period of more 

than 20 years. As a result, many of the connections with a long payback period will be 

eliminated in this step. Therefore, the mean payback period decreases in this case. This can 

be proven by repeating the calculation in the case of +50%, and this time not using the payback 

period as a criterion for aborting the algorithm, but by aborting at a number of 115 district 

heating pipelines as in case +40%. This would result in a mean payback period of 8.8 years, 

which is higher than in the case of +40%.  

 
Figure 11: Change in the number of district heating pipelines when changing 𝐼𝑅 
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4.3. Results for all German biogas plants 

The analysis with all 10,446 biogas plants assumes an average value of 40% unused heat in 

the biogas plants that were not part of the survey (cf. section 3.1). Whilst there will obviously 

be deviations in individual cases, the assumption of 40% excess heat seems reasonable and 

is verified by other studies (e.g. DBFZ 2015). Table 5 shows the various scenarios developed 

with all biogas plants. 

Table 5: Overview of the scenarios carried out with all biogas plants. 

Number Decision criterion Adjustment 

A.1 CO2 abatement costs < 1,000 €/tCO2 - 

A.2 CO2 abatement costs < 1,000 €/tCO2 Not considering Eq. 7 

A.3 CO2 abatement costs < 1,000 €/tCO2 New excess heat profile, cf. Figure 13 

B.1 Payback period < 20 years - 

B.2 Payback period < 20 years 

Considering the cogeneration bonus 

of 3 €-ct/kWh for district heat from 

biogas plants 

When using the CO2 abatement costs as a decision criterion in scenario A.1, the excess heat 

from 9,790 different biogas plants is used. A total of 10,989 district heating pipelines are built 

in this case and 2.55 MtCO2/a can be saved (cf. yellow line Figure 12). This corresponds to 

0.3% of the amount of CO2 emitted in Germany in 2015, equivalent to 792 MtCO2/a 

(Umweltbundesamt 2017c). 85% of the 2.55 MtCO2/a can be saved with CO2 abatement costs 

below 200 €/tCO2. The first 78 tCO2 are saved at a minimum cost of 13.5 €/tCO2, which is 

41.5 €/tCO2 less than the best connection in the case of the 241 plants. The reason for this is 

that this biogas plant is located only 70 metres from the settlement area centroid. In total, 

around 8 TWh of heat demand in German households are covered by the biogas plants.  

Scenario A.2 assumes that the biogas plant can replace all forms of existing heat supply (i.e. 

neglecting Eq. 7, so 𝐻𝐷𝑆𝐴 = 𝐻𝐷𝑆𝐴𝑡𝑜𝑡𝑎𝑙
). In this case, the CO2 abatement is only 5 ktCO2/a 

higher at almost the same cost. This can be explained as follows. At the beginning of the 

calculation with all plants, approx. 10 TWh of excess heat are available from all biogas plants. 

In the end of calculation A.1 above, only 0.22 TWh (2%) remain at the end. This shows that 

there is scarcely any potential for an increase and that there is a bottleneck on the supply side 

of the biogas plants, rather than on the demand side in the existing heat supply systems. For 

the second scenario (without Eq. 7) only 0.03 TWh more heat is used, due to the small amount 

of non-fossil-fuel-based existing heating that is replaced in this case. Since the CO2 abatement 

cost curve does not change significantly, the curve for A.2 is not shown in Figure 12. 
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Figure 12: Cumulative CO2 abatement in the scenarios with CO2 abatement costs or payback 
period as the decision criterion 

As explained in section 3.3.2, a constant load profile for the excess heat from the biogas plants 

was assumed. However, this profile could look different in reality, since the digester or 

residential buildings that are already supplied with heat require more heat in the colder months 

(Rutz et al. 2015). Based on the values from Rutz et al. (2015), the load profile of a biogas 

plant that supplies residential buildings and the digester with excess heat is changed in 

scenario A.3 according to Figure 13. The short period in summer, in which the load is 0 kW, is 

due to the fact that the biogas plant shown as an example has full load hours of less than 8760. 

 

Figure 13: Change in excess heat load profile, without (left) and taking into account monthly 
differences in heat utilisation (right) 

Actually, curve A.3 would be expected to differ significantly from curve A.1, as more heat is 

now available in summer, i.e. at a time when less heat is required. However, this is not the 

case due to the bottleneck in the heat supply of the biogas plants already mentioned in the 

description of scenario A.2. This means that in most cases, however, the settlement areas 

require more heat in summer than the biogas plants can provide. In total, 5 ktCO2/a or 0.2% 

less is saved than in scenario A.1, with slightly higher mean CO2 costs. 
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Compared to scenario A.1 with CO2 abatement costs as a decision criterion, if the payback 

period is used as a decision criterion in B.1, the number of biogas plants whose heat is used 

decreases by 835 to 8,955 plants and 344 district heating pipelines fewer are built (10,645 

pipelines). Overall, 0.08 MtCO2/a less than in scenario A.1 is saved (2.47 MtCO2/a). The first 

85% CO2 can be saved with a payback period of fewer than 10 years (cf. Figure 12). Only 0.53 

TWh (5%) of excess heat remains unused in this calculation.  

The scenarios discussed above do not include the cogeneration bonus from the Renewable 

Energy Sources Act 2009, so that B.2 is carried out with the cogeneration bonus in order to 

estimate its effect on the result. It is assumed that the cogeneration bonus for the heat supply 

of residential buildings in the amount of 3 €-ct/kWh will be paid to all plant operators whose 

plants were commissioned before 31.12.2011 and have a nominal power of less than 5 MW 

(Clearingstelle EEG 2009, 2012).  

Taking into account the cogeneration bonus, the amount of CO2 saved increases by 

70 ktCO2/a (3%). This means that the amount cannot be significantly increased due to the 

above mentioned heat supply bottleneck. However, the mean payback period is considerably 

shorter than for calculation B.1. Thus, 2 MtCO2/a are already saved within a payback period of 

6 years (instead of 9 years in B.1). This has to be considered as an upper limit, however, as it 

is not certain whether all biogas plants will receive the cogeneration bonus to the extent 

assumed here. This is especially the case for plants with a nominal power of more than 

500 kW, as they only receive the cogeneration bonus of 3 €-ct/kWh for 500 kW (Clearingstelle 

EEG 2009). However, the plants commissioned between 2004 and 2008 receive a 

cogeneration bonus of 2 €-ct/kWh regardless of their nominal power (Clearingstelle EEG 

2006). 

Using the criteria of CO2 abatement costs and payback period in A.1 and B.1, the yield is about 

2 MtCO2/a below 200 €/tCO2 and 9 years respectively. This corresponds to around 0.25 % of 

the total German CO2 emissions in 2015 or around 2.5% of all CO2 in residential buildings 

(Umweltbundesamt 2017b, 2017c). The CO2 reduction potential is approximately 0.5 MtCO2 

and 0.75 MtCO2, if thresholds of 80 €/tCO2 and 5 years are set to reflect the proposed external 

cost of carbon and an expected payback period from an investor’s point of view respectively 

(Schwermer 2012). However, if the current price of CO2 in the EU Emissions Trading System 

of about 7 €/tCO2 is taken as a benchmark, the economic fraction of this technical potential 

saving reduces to 0 tCO2. 

Figure 14 shows the share of residential heat demand in German municipalities that can be 

covered by the excess heat from biogas plants with the help of district heating. The calculation 

A.1 serves as a basis for the figure, and district heating connections where the payback period 

is longer than 20 years were not taken into account. The figure shows that especially in the 

southern (Baden-Wuerttemberg and Bavaria) and northern federal states (Schleswig-Holstein, 

Mecklenburg-Western Pomerania, Lower Saxony, Saxony-Anhalt and Brandenburg), the most 

heat demand per municipality can be covered. In total, there is a potential in 3,591 (32%) of 

the 11,400 German municipalities, in the other municipalities the value is 0%. The mean value 

in the 3,591 municipalities is 12% and the CO2 emissions per capita are reduced by an average 

of 250 kgCO2/a. Some of the municipalities can cover almost all of their heat demand with 

district heating from the biogas plant(s). More than 85% of the heat demand is met in 21 

municipalities, while a maximum value of 98% is reached in the municipality of “Bresegard bei 
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Eldena” (200 inhabitants) in Mecklenburg-Western Pomerania. These results at the municipal 

level can be found in the online supplementary material. 

 

Figure 14: Share of heat demand that can be covered by district heating from biogas in German 
municipalities. The numbers in brackets represent the number of municipalities to which the 
shares can be allocated. The background map is from OpenStreetMap contributors (2018). 

4.4. Critical appraisal of the methodology 

The sensitivity analysis considered the uncertainties in the parameters used, such as costs. 

However, the algorithm applied here also has some weaknesses that would not occur in the 

detailed planning of each individual biogas plant. This section first explains the weaknesses, 

which may lead to overestimating the calculated technical potential of district heating by excess 

heat from biogas plants. Subsequently, the weaknesses that reduce the real technical potential 

are identified. Finally, the uncertainties relating to the method are discussed.  

First of all, some assumptions are made in the algorithm used here, which can lead to a 

moderate to severe underestimation of the costs. For example, the shortest route from the 
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biogas plant to the settlements is always used for the district heating pipelines. Here, however, 

the topology and other obstacles should be considered. Whilst data on surface topology is 

available in the form of Digital Elevation Models, it was not possible in this study to consider 

other obstacles. Given the objective of the study, to determine the overall technical potential 

for excess heat utilisation, this would also have been beyond the scope. In practice, however, 

a detailed district heating network planning process would have to be carried out for individual 

municipalities.  

In addition, the profiles for heat supply and demand were assumed. On the one hand, it is not 

certain that the biogas plants will actually be operated in the periods in which the heat demand 

in the settlements is highest (winter). On the other hand, the standard load profile 𝑆𝐿𝑃𝐻𝐷 from 

Eq. 8 can only be accurately be applied in municipalities with several hundred households. In 

the smallest settlement area, there are only three households with a total of five inhabitants. 

However, the influence of this uncertainty is low, since in the calculations only 7% of the 

connected settlement areas have less than 100 households. 

In some cases the costs are overestimated, however, as the following example illustrates. 

Figure 15 shows the district heating network for using the excess heat from a biogas plant in 

the municipality of Cavertitz in Saxony. The problem lies in the fact that the algorithm iteratively 

selects the optimal connection in each step. The result is that the blue-coloured district heating 

pipeline furthest to the left is selected before the red coloured district heating pipeline furthest 

to the left. If the red district heating pipeline had been "built" first, there would have been a 

shorter distance to the settlement area in the bottom left, which is supplied by the blue district 

heating pipeline. This uncertainty has a low impact on costs, due to the fact that this 

phenomenon only occurs very rarely. In scenario A.1, for example, only 6% of district heating 

connections start in settlement areas. Of this 6%, only a few connections will show this fault, 

in Figure 15 it is only one connection of five. 

 
Figure 15: District heating network for the utilisation of the excess heat from a biogas plant in 
the municipality of Cavertitz in Saxony. The background map is from OpenStreetMap 
contributors (2018). 

Figure 15 also shows that the selection of the area centroid for distance measurement 

overestimates the length of the district heating pipelines from the biogas plants to the 

settlement areas in this case. Actually, only the distance to the border of the settlements should 

1 km
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be measured here. However, this determination was not possible since the distance calculation 

is only possible with point coordinates. This could lead to a moderate increase in costs. For 

example, the settlement area at the bottom left of Figure 15 has a width of 4.2 kilometres. In 

extreme cases, the length of the district heating pipelines could therefore be overestimated by 

around 2 km.  

Additionally, an existing district heating supply can be deducted from the heating demand of 

the settlements, but no existing district heating grid can be taken into account due to a lack of 

data. If these data were available, the length of the district heating pipelines to be built could 

be reduced, as they would no longer have to lead to the settlement, but only to the nearest 

connection point of the existing district heating grid. A further overestimation of costs results 

from the fact that only residential areas are considered and not industrial or commercial areas. 

Some promising progress in this area has been made by the Pan European Thermal Atlas 

(PETA) in the context of the Heat Roadmap Europe project2. Within the PETA urban areas are 

considered as “coherent urban areas”, including industry and commercial sector, and existing 

district heating networks are considered on a detailed level. But at the time of carrying out this 

study, this data was not publicly available. In addition, PETA uses a resolution of 1 km², the 

resolution in the study carried out here is higher in some parts (e. g. 0.05 km² for CLC data, cf. 

EEA (2017)). The impact on costs is therefore estimated to be negligible. 

Figure 16 shows the municipality of Leutenbach in Baden-Württemberg. Blue surfaces are 

used here to represent the CLC areas. Red areas are individual buildings from Geofabrik 

(2018). The figure shows that the CLC data do not cover all existing settlement areas (cf. red 

circles in the Figure 16), as there is a minimum threshold for the size of an urban area to be 

differentiated in the CLC data (0.05 km²) and the data are from 2012 (so do not consider newer 

buildings). In the example shown in Figure 16, the excluded settlement areas are relatively 

small, so the implications for the results are likely to be only marginal. 

                                                           
2 http://www.heatroadmap.eu/maps.php  

http://www.heatroadmap.eu/maps.php
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Figure 16: Settlement areas from the CLC data set and buildings in the municipality of 
Leutenbach in Baden-Württemberg (Geofabrik 2018). The background map is from 
OpenStreetMap contributors (2018). 

A further uncertainty arises from the age of biogas plants. It is impossible to estimate how the 

plants will continue to operate when the Renewable Energy Sources Act ends after twenty 

years. The age profile of the existing plants means that some of these plants will cease to 

benefit from the feed-in tariffs upon which they rely to be economical. After this time, their 

continued operation is uncertain. The plants should already have broken even after twenty 

years, as studies have shown payback periods in the region of 7-12 years depending on the 

substrate and the output (Balussou et al. 2011). Hence the plant may continue to operate, but 

the negative impact on the economics of losing the FITs could force the operators to seek 

other business models such as biomethane uprading and feed in (cf. section 2). In the absence 

of new business models, the plants might be forced to close, which would mean the excess 

heat considered here is no longer available. However, this study aimed to assess the current 

technical potential for excess heat use from biogas plants, and there are always future 

uncertainties associated with such analyses. Potential future business models for biogas plant 

operators in a post-EEG context will be the subject of a future contribution.   

5. Conclusions 

This paper has analysed the current technical potential for utilising excess heat from German 

biogas plants, in order to supply local settlements through district heating. Based on a survey 

of around 600 biogas plant operators, the fractions of excess heat in these plants have been 

analysed. The analysis was carried out for the surveyed population as well as scaled up to the 

whole German biogas plant stock. A heuristic was developed to connect biogas plants (heat 

sources) with local settlements (sinks) in order to determine a least-cost district heating supply 

for residential buildings. Thereby two criteria were employed, namely the CO2 abatement costs 

1 km
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and the payback period, which represent the macro- and microeconomic perspectives 

respectively.  

Based on the survey, a mean fraction of 40% excess heat was determined, which is in 

agreement with other empirical studies. Extrapolating this fraction to the German biogas plant 

stock leads to technically feasible CO2 savings of around 2.5 MtCO2/a. Employing the criteria 

of CO2 abatement costs and payback period yields about 2 MtCO2/a below CO2 abatement 

costs of 200 €/tCO2 and 9 years respectively. This represents about 0.25 % of the total German 

CO2 emissions in 2016 or around 2.5% of all CO2 in residential buildings. If threshold values 

of 80 €/tCO2 and 5 years are employed, to reflect the suggestion external cost of carbon and 

an expected payback period from an investor’s point of view respectively, the carbon reduction 

potential is about 0.5 MtCO2 and 0.75 MtCO2 respectively. These potentials are concentrated 

in around 3,500 municipalities, where district heating from biogas plants could reduce CO2 

emissions per capita by an average of 250 kgCO2/a  and cover 12% of the total residential 

heating demand. In some of these municipalities, large proportions of their heating demand 

could be economically met (according to the criteria employed here) by this excess heat, hence 

assisting in the transition to more decentralised autonomous energy systems. On the other 

hand, if the current price of CO2 in the EU Emissions Trading System of about 7 €/tCO2 is 

taken as a benchmark, the economic fraction of this technical potential saving reduces to 0 

tCO2. Although these results are relatively modest in the overall context of decarbonising the 

energy system, this study does provide a quantitative basis for decision makers, researchers 

and energy planners. The detailed results provided as supplementary material should offer 

useful insights for local planners and authorities when considering the sustainable energy 

options at their disposal. 

The employed methodology, whilst adequate for a national estimation of the technical potential 

and associated costs, has several uncertainties. Most importantly, the shortest birds-eye route 

from the biogas plant to the centroid of the settlement is used as the required distance for the 

pipeline. Whilst a good estimate for the order of magnitude, this obviously leads to over- and 

underestimates of the required district heating pipeline length, and therefore the costs. In 

addition, the developed heuristic does not (necessarily) determine the optimum allocation of 

heat sources to heat sinks, and may also therefore overestimate the costs. Finally, the focus 

on residential buildings and the rough consideration of existing district heating supply (but not 

infrastructure) add additional uncertainties. All of these aspects remain areas for future work.  
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