# Reduced surface spin disorder in ZrO<sub>2</sub> coated $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles

F. Zeb<sup>a</sup>, M. Shoaib Khan<sup>a</sup>, K. Nadeem<sup>a,\*</sup>, M. Kamran<sup>a</sup>, H. Abbas<sup>a</sup>, H. Krenn<sup>b</sup>, D.V. Szabo<sup>c,d</sup>

<sup>a</sup> Nanoscience and Technology Laboratory, International Islamic University, Islamabad 44000, Pakistan

<sup>b</sup> Institute of Physics, Karl-Franzens University, Universitätsplatz 5, A-8010 Graz, Austria

<sup>c</sup> Institute for Applied Materials, Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany

<sup>d</sup> Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany

ARTICLE INFO

ABSTRACT

Handling Editor: S. Miyashita *Keywords:* Nanoparticles Maghemite Zirconium dioxide Interparticle interactions Surface spin disorder in microwave plasma synthesized zirconium dioxide (ZrO<sub>2</sub>) coated maghemite ( $\gamma$ -Fe<sub>2</sub>O<sub>3</sub>) nanoparticles have been studied by using AC and DC magnetic measurements. The inverse spinel structure of  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> was confirmed by X-ray diffraction. The calculated average crystallite size of  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> and ZrO<sub>2</sub> phase was about 13 and 6 nm, respectively. Zero field cooled/field cooled measurements revealed average blocking temperature at 65 K. The fitted value of K<sub>eff</sub> deduced from simulation was higher than that of bulk  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> magneto-crystalline anisotropy which is mainly due to surface spin disorder. However, it was lower than the reported value for uncoated  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles, which is due to reduction in surface effects and interparticle interactions in ZrO<sub>2</sub> coated nanoparticles. Below 25 K, a sharp increase in saturation magnetization was observed which is due to extra contribution of frozen surface spins to magnetism at low temperatures. The coercivity also showed a sharp increase below 25 K, which is due to presence of strong core-surface interactions at low temperatures. For AC susceptibility, Arrhenius law fit revealed weak interactions among the nanoparticles showed reduced surface spin disorder and weak interparticle interactions which is due to non-magnetic ZrO<sub>2</sub> coating.

#### 1. Introduction

Magnetic nanoparticles exhibit different magnetic properties as compared to their bulk materials which depend upon the size, shape and preparation technique/chemistry of the materials [1]. In fine magnetic nanoparticles, large surface to volume ratio creates dis ordered surface spins, which alter their magnetic properties. The sur face spin disorder arises due to broken super exchange interactions at the nanoparticle's surface that produces magnetic disorder and ex change frustration at the nanoparticle's surface. The nanoparticle's surface with deficient oxygen also leads to the broken exchange bonds [2] that can produce a spin glass like state with high anisotropy [3 5]. A spin glass is a magnetically disordered state which exhibits high magnetic frustration in which each electron/atom spin freezes in a random direction below a spin glass freezing temperature [6,7].

Among different oxides of iron, maghemite ( $\gamma$  Fe<sub>2</sub>O<sub>3</sub>) is one of the most important oxide due to its diverse and remarable properties like high Cuire temperature, non toxity, and chemical stability which makes it promising candidate for many applications such as in ferro fluids, biomedical, data storage, and magnetic tunneling barrier [8,9]. At nano scale, the existence of surface spin disoder caused by finite size

\* Corresponding author.

effects usually influences the physical properties of the  $\gamma$  Fe<sub>2</sub>O<sub>3</sub> nano particles. Millan et al. [10] reported decreased magnetization in un coated  $\gamma$  Fe<sub>2</sub>O<sub>3</sub> nanoparticles due to the presence of magnetically dis ordered surface layer. Parker et al. [11] observed a spin glass state in uncoated  $\gamma$  Fe<sub>2</sub>O<sub>3</sub> nanoparticles and attributed it to the strong inter particle interactions. Martinez et al. [12] also reported spin glass be havior in  $\gamma$  Fe<sub>2</sub>O<sub>3</sub> nanoparticles at low temperatures and attributed it to pinning effect of the frozen spins at the nanoparticle's surface.

Uncoated  $\gamma$  Fe<sub>2</sub>O<sub>3</sub> nanoparticles usually show agglomeration which is the effect of accumulative forces among the nanoparticles [13]. Therefore, certain specific surface protection strategies are needed to attain the stability of these nanoparticles by using suitable surface coating with specific materials either by polymers, magnetic or non magnetic material. Non magnetic coating can reduce/enhanced the magnetization or spin glass behavior and avoid agglomeration of na noparticles [14]. Therefore, it is important to coat the nanoparticles with suitable material to minimize the surface energy of the nano particles and weaken the strength of interactions among nanoparticles. Novotná et al. [15] prepared oleic acid coated  $\gamma$  Fe<sub>2</sub>O<sub>3</sub> nanoparticles and reported that oleic acid reduces the interparticle magnetic inter actions. Girija et al. [16] proposed that ZrO<sub>2</sub> coating not only protects

E-mail address: kashif.nadeem@iiu.edu.pk (K. Nadeem).

the magnetic nanoparticles from possible oxidation in surrounding environment but also reduces the interparticle dipolar interactions.

In this article, we have chosen a non magnetic material zirconium dioxide (ZrO<sub>2</sub>) for coating because it has interesting properties in cluding low toxity and high thermal stability. It also acts as a good insulating material that can reduced the agglomeration of nano particles. It can exist in three phases which are strongly temperature dependent, these phases are monoclinic, cubic and tetragonal [17 19]. Our prime emphasis was to study the surface spin disorder in ZrO<sub>2</sub> coated  $\gamma$  Fe<sub>2</sub>O<sub>3</sub> nanoparticles by using AC and DC magnetization mea surements.

# 2. Experimental

Microwave plasma synthesis technique has been used to synthesized ZrO<sub>2</sub> coated  $\gamma$  Fe<sub>2</sub>O<sub>3</sub> nanoparticles. The complete synthesis process is explained elsewhere [20]. Structural analysis of ZrO2 coated y Fe2O3 nanoparticles was studied by using X ray powder diffraction (XRD) done by Bruker D8 Advance instrument by using  $Cu - K\alpha (\lambda = 0.154 nm)$  radiation. Transmission electron microscopy (TEM) was used for the imaging of nanoparticles. Magnetic measure ments (AC and DC) were done by using superconducting quantum in terface device (SQUID from Quantum Design, MPMS XL 7) magneto metry. The percentage of non magnetic ZrO<sub>2</sub> and magnetic Y Fe<sub>2</sub>O<sub>3</sub> phase was calculated from XRD relative intensities, and the contribu tion of ZrO<sub>2</sub> phase was subtracted from all the magnetization mea surements.

### 3. Results and discussion

X ray diffraction (XRD) is an important technique for finding the phase and average crystallite size of the nanoparticles. Fig. 1 (a) shows the XRD scan of  $ZrO_2$  coated  $\gamma$  Fe<sub>2</sub>O<sub>3</sub> nanoparticles. We have used aluminum substrate for XRD measurement. The XRD peaks at (111), (220), (311), (511) and (440) correspond to  $\gamma$  Fe<sub>2</sub>O<sub>3</sub> nanoparticles

phase as confirmed by JCPDS card # 39 1346. A peak at 26.1° (211) is observed which is referred to magnetite [21]. The XRD peaks at (101), (100), (112) and (202) shows the presence of  $t \operatorname{ZrO}_2$  phase [22] as confirmed by JCPDS card # 80 0965. The miller indices (111), (200) and (220) correspond to the out of scale peaks at angles 38.5°, 45° and 65°, respectively are specific for aluminum substrate. The percentage of  $\gamma \operatorname{Fe}_2\operatorname{O}_3$  and ZrO<sub>2</sub> phase has been estimated by XRD relative intensities, which comes out 32 and 68% for  $\gamma \operatorname{Fe}_2\operatorname{O}_3$  and ZrO<sub>2</sub>, respectively. The average crystallite size was about 13 and 6 nm for  $\gamma \operatorname{Fe}_2\operatorname{O}_3$  and ZrO<sub>2</sub> phases, respectively as calculated by using Debye Scherrer's formula as given below,

$$D = \frac{0.9\,\lambda}{\beta\cos\theta} \tag{1}$$

Transmission electron microscopy (TEM) is a useful technique to study of shape and size of the nanoparticles. TEM image of ZrO<sub>2</sub> coated  $\gamma$  Fe<sub>2</sub>O<sub>3</sub> nanoparticles at the scale of 20 nm is shown in Fig. 1 (c). It shows that the nanoparticles are nearly spherical and less agglomer ated. The particle size distribution is calculated from TEM images by using a software ImagJ and fitted with Gaussian distribution function as illustrated in Fig. 1 (d). The best fit of Gaussian best fit gives the average particle size of about 10.16  $\pm$  0.16 nm.

Fig. 2 shows the experimental and simulated temperature depen dent zerofieldcooled (ZFC)/fieldcooled (FC) dc magnetization curves under the applied field of 50 Oe.

For measuring ZFC curve, the sample is ZFC to 5 K in zero applied field and then magnetization is measured on increasing temperature after an application of 50 Oe magnetic field. For FC curve, the sample is field cooled from 300 K under the same applied field and magnetization is measured on decreasing temperature. The ZFC curve shows a max imum around 65 K, which is the average blocking temperature ( $T_B$ ) of the nanoparticles. The magnetic nanoparticles become thermally un stable for T > T<sub>B</sub> and show superparamagnetic behavior [23]. We have done simulation of ZFC/FC curves by adopting a Néel Brown relaxation model of uniaxial anisotropy. The log normal distribution function f(V)

Fig. 1. (a) XRD scan of  $ZrO_2$  coated  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles, (b) JCPDS cards for  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> and  $ZrO_2$ , (c) TEM image of  $ZrO_2$  coated  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles at 20 nm scale and (d) particle size distribution from TEM images fitted with Gaussian distribution (red line). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)





**Fig. 2.** Black solid up triangles represent the experimental data, while red solid lines are the simulated ZFC/FC curves of  $ZrO_2$  coated  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

is used for the volume distribution and translated to the corresponding f ( $T_{\rm B}$ ) for blocking temperatures  $T_{\rm B}$  and is given by,

$$f(T_B)dT_B = \frac{1}{\sqrt{2\pi\sigma_{T_B}^2}} \frac{1}{T_B} \exp\left(-\frac{\ln^2 \frac{T_B}{\langle T_B \rangle}}{2\sigma_{T_B}^2}\right) dT_B$$
(2)

Where  $\langle T_{\rm B} \rangle$  is an average blocking temperature, and  $\sigma_{\rm TB}$  is the broad ening (standard deviation) of the  $T_{\rm B}$  distribution. The relationship be tween *V* and  $T_{\rm B}$  is  $K \cdot V = \ln (\tau_{\rm m} / \tau_0) k_{\rm B} T_{\rm B} \approx 25 k_{\rm B} T_{\rm B}$ .

The ZFC/FC curves taken by a SQUID magnetometer rely on the characteristics measuring time (per temperature step)  $\tau_m = 100 \, s$  in relation with the atomic spin precession time  $\tau_0 = 10^{-9} \, 10^{-12} \, s$ .

By using Neel Brown relaxation model, the ZFC susceptibility can be written as [24],

$$\chi_{ZFC}(T) = \frac{M_S^2}{3K_{eff}} \left[ \ln\left(\frac{\tau_m}{\tau_0}\right) \int_0^T \frac{T_B}{T} f(T_B) dT_B + \int_T^\infty f(T_B) dT_B \right]$$
(3)

For a particular temperature "T", the first and the second term correspond to unblocked superparamagnetic and blocked particles, re spectively.

FC susceptibility is given by the same model is [24],

$$\chi_{FC}(T) = \frac{M_S^2}{3K_{eff}} \ln\left(\frac{\tau_m}{\tau_0}\right) \left[\frac{1}{T} \int_0^T T_B f(T_B) dT_B + \int_T^\infty f(T_B) dT_B\right]$$
(4)

The simulated ZFC/FC curves showed that the values obtained for effective anisotropy constant (Keff) and average particle size are (1.5  $\pm$  1) x  $10^5\,erg/cm^3$  and 11.8  $\pm$  0.5 nm, respectively. The higher value of simulated  $K_{eff}$  as compared to bulk  $\gamma \, Fe_2O_3$  $(K_{\text{bulk}} = 4.7 \times 10^4 \text{ erg/cm}^3)$  [25] is due to the fact that the model does not takes into account the surface anisotropy:  $K_{eff} = K_{bulk} + K_{surface}/k$ <d>. The average crystallite size as obtained from simulated curve is in agreement with the TEM analysis [26]. Uncoated bare  $\gamma$  Fe<sub>2</sub>O<sub>3</sub> nano particles as prepared by the same method were reported with enhanced  $K_{eff}$  value (9.8 × 10<sup>5</sup> erg/cm<sup>3</sup>) [27]. Here ZrO<sub>2</sub> coating affects the  $K_{eff}$ but is smaller than the  $K_{\text{eff}}$  of bare  $\gamma$   $Fe_2O_3$  nanoparticles prepared by same method [27], which is attributed to weak dipolar interactions and surface effects in ZrO2 coated y Fe2O3 nanoparticles. The experimental FC curve becomes flattened just below T<sub>B</sub>, which is mainly due to the presence of interparticle interactions [28]. The discrepancy in the ex perimental and simulated FC curves is due to the fact that model con siders only non interacting particles.

Fig. 3 (a) and (b) shows the M H loop at 5 K and M H partial loops at different temperatures ranging from 5 to 250 K, respectively.

It is evident that M H loops are not completely saturated even at 5 T, which is due to presence of disordered frozen surface spins. Here the frozen and random/disordered surface spins exhibit strong interactions with each other i.e. core and surface spins. At 5 K, the higher value of coercivity (H<sub>c</sub>) is related to the onset of surface magnetic anisotropy caused by frozen disordered surface spins. Fig. 3(a) shows that  $M_s$  has maximum value of about 25.1 emu/g (after subtraction of mass per centage (g) of non magnetic  $ZrO_2$  phase) at 5 T, which is less than the bulk value of  $\gamma$  Fe<sub>2</sub>O<sub>3</sub> (80 emu/g) and is mainly due to disordered surface spin structure originated from size reduction [29,30]. Kodama et al. [31] presented a computational model on disordered spin freezing at the surface of ferrite nanoparticles and they reported that randomly arranged spins are responsible in M<sub>s</sub> reduction [32]. Such a decrease in M<sub>s</sub> value with decreasing nanoparticle's size is typical for ferrite na noparticles and is attributed to disordered surface spins [33].



Fig. 3. (a) M-H loop at 5 K with an inset which shows the H<sub>c</sub> region and (b) M-H partial loops of ZrO<sub>2</sub> coated  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles at different temperatures.



Fig. 4. (a) Variation of saturation magnetization for  $ZrO_2$  coated  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles with "Bloch's law" fit (red dashed line), and (b) variation of coercivity for  $ZrO_2$  coated  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 4 (a) shows the temperature dependent saturation magnetiza tion ( $M_s$ ) ranging from 5 to 250 K. For saturating ferromagnetic/fer romagnetic materials below  $T_C$ ,  $M_s$  follows the Bloch's law [34] as given below,

$$M_S(T) = M_S(0)(1 - BT^b)$$
(5)

Where  $M_s$  (T),  $M_s$  (0), B and b represents the temperature dependent saturation magnetization, spontaneous magnetization obtained by extra plotting to 0 K, Bloch's constant and the Bloch's exponent, respectively. The Bloch's law is usually effective for ferromagnetic/ferrimagnetic bulk materials, in which excitation of spin waves are responsible for temperature dependent magnetization [34 36].

It is observed that the  $M_{\rm s}$  increases sharply below 25 K. In fact,  $ZrO_2$ coating eases the alignment of core shell and surface spins with an external magnetic field at low temperatures especially at 5 K [37]. This kind of sharp increase in  $M_s$  is not reported for bare  $\gamma Fe_2O_3$  nano particles prepared by the same method [28]. The increase in M<sub>s</sub> sug gests the reduction in surface effects in these nanoparticles, which is probably due to non magnetic ZrO2 coating. Bloch's law fails to fit at lower temperatures due to sharp increase in M<sub>s</sub> value. The fit gives a Bloch's exponent value  $b = 0.2 \pm 0.02$  which is much lower than the bulk value (b = 1.5). Fig. 4 (b) shows the variation of coercivity  $(H_c)$ with temperature for  $ZrO_2$  coated  $\gamma$  Fe<sub>2</sub>O<sub>3</sub> nanoparticles. The H<sub>c</sub> also shows a sharp pronounced increase below 25 K, which is attributed to the strong surface anisotropy contribution of the disordered frozen surface spins because surface spins get blocked at rather low tempera tures than huge nanoparticle's core spin. Therefore strong surface ani sotropy and surface structural inhomogeneity affect the coercivity of ferrite nanoparticles. The Kneller's law was used to fit the  $H_c$  T data but it completely failed due to a sharp increase of  $H_c$  below 25 K [38].

For the investigation of dynamics response of the nanoparticles, AC susceptibility measurements were taken at different frequencies. These measurements give us information about the phase transitions in or dered state, spin reorientation/metamagnetic transitions, change in anisotropy energy and magnetic state of blocked nanoparticles in de pendence of the varying frequency dependent measuring time  $\tau_m = 1/f$ . Fig. 5 (a) and (b) shows the temperature dependent in phase and out of phase AC susceptibility, respectively for ZrO<sub>2</sub> coated  $\gamma$  Fe<sub>2</sub>O<sub>3</sub> nano particles at different frequencies (f) = 1, 10, 100, and 1000 Hz.

The in phase AC susceptibility shows an increase in  $T_B$  from 77 K to 102 K with varying frequency from 1 to 1000 Hz. Interparticle inter actions and surface spin disorder are mainly responsible for such a small variation in  $T_B$  with increasing frequency. The frequency shift of  $T_B$  can be due to superparamagnetic, spin glass state and interparticle interactions in these nanoparticles [39]. The out of phase part of AC susceptibility also shows a small variation in  $T_B$  with frequency as shown in Fig. 5(b). The f shift of  $T_B$  is further investigated by as Ar rhenius law as shown in Fig. 5 (c). The Arrhenius law is valid for non interacting monodispersed nanoparticles having uniaxial anisotropy energy barrier, given as [40]

$$\tau_m = \tau_0 \exp\left(\frac{E_a}{k_B T_B}\right) \tag{6}$$

Where  $\tau_m$  is the measuring spin flip time,  $\tau_0$  is the atomic spin flip time ranges from  $10^{-9}$  to  $10^{-12}$  s,  $E_a$  indicates the anisotropy energy and  $k_B T_B$  is the thermal energy [37,41]. From Arrhenius law fit, we deduced the values for activation energy and atomic spin flip time which are 2228  $\pm$  256 K and  $3 \times 10^{-13} \pm 10^{-01}$  s, respectively. It shows that these ZrO<sub>2</sub> coated nanoparticles do not completely follow thermally activated Arrhenius law but a slight lower value of  $\tau_0$  ensures the ex istence of weak interparticle interactions in these nanoparticles [42 44].

# 4. Conclusions

The crystalline  $ZrO_2$  and  $\gamma$   $Fe_2O_3$  phases were confirmed by the XRD analysis. Temperature dependent ZFC/FC curves revealed T<sub>B</sub> of the nanoparticles at 65 K under an applied field of 50 Oe. The simulation of ZFC/FC curves revealed a higher value of  $K_{\text{eff}}$  as compared to bulk  $\gamma$  $Fe_2O_3$  but lower than the reported uncoated  $\gamma \; Fe_2O_3$  nanoparticles prepared by the same method. It ensures the existence of surface spin disorder in these ZrO2 coated nanoparticles but is weaker than in the uncoated maghemite nanoparticles and it is attributed to the ZrO<sub>2</sub> coating. Saturation magnetization revealed a lower value (25.1 emu/g) as compared to that of bulk value (80 emu/g), which is attributed to disordered surface spins. The sharp increased value of Ms below 25 K is due to reduced surface spin disorder in these nanoparticles. A sharp increase in H<sub>c</sub> below 25 K is mainly due to the existence of strong core shell interactions. The Arrhenius law fitting reveals a value of spin flip time ( $\tau_o$ ) = 3 × 10<sup>-13</sup> s, which is near to atomic spin flip time (10<sup>-9</sup> to  $10^{-12}\ \text{s})$  and is attributed to weak interparticle interactions. The main influence of ZrO<sub>2</sub> coating on y Fe<sub>2</sub>O<sub>3</sub> nanoparticles is to reduce the surface spin disorder and interparticle interactions as compared to uncoated y Fe<sub>2</sub>O<sub>3</sub> nanoparticles. In conclusion, ZrO<sub>2</sub> surface coating can be beneficial in controlling the magnetism of soft magnetic nano particles and stabilizing the nano magnetic blocking behavior by avoiding agglomeration for diverse applications.

#### Acknowledgments

K. Nadeem acknowledges Higher Education Commission (HEC) of Pakistan for financial support. Authors also acknowledge International Islamic University, Islamabad for providing research funds under



Fig. 5. (a) and (b) are in-phase and out-of-phase AC susceptibility at different frequencies, respectively and (c) Arrhenius law fit for  $ZrO_2$  coated  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> nano-particles.

#### References

- S. Ayyappan, S. Mahadevan, P. Chandramohan, M. Srinivasan, J. Philip, B. Raj, Influence of Co<sup>2+</sup> ion concentration on the size, magnetic properties, and purity of CoFe<sub>2</sub>O<sub>4</sub> spinel ferrite nanoparticles, J. Phys. Chem. C 114 (2010) 6334–6341.
   R.H. Kodama, A.E. Berkowitz, E. McNiff Jr., S. Foner, Surface spin disorder in
- [2] R.H. Kodama, A.E. Berkowitz, E. McNiff Jr., S. Foner, Surface spin disorder in NiFe<sub>2</sub>O<sub>4</sub> nanoparticles, Phys. Rev. Lett. 77 (1996) 394.
- [3] R. Kodama, Magnetic nanoparticles, J. Magn. Magn. Mater. 200 (1999) 359–372.
  [4] E.M. Chudnovsky, L. Gunther, Quantum tunneling of magnetization in small fer-
- romagnetic particles, Phys. Rev. Lett. 60 (1988) 661.
- [5] D. Fiorani, A. Testa, F. Lucari, F. D'Orazio, H. Romero, Magnetic properties of maghemite nanoparticle systems: surface anisotropy and interparticle interaction effects, Phys. B Condens. Matter 320 (2002) 122–126.
- [6] V. Cannella, J. Mydosh, Magnetic ordering in gold-iron alloys, Phys. Rev. B 6 (1972) 4220.
- [7] S. Kirkpatrick, D. Sherrington, Infinite-ranged models of spin-glasses, Phys. Rev. B 17 (1978) 4384.
- [8] J.A. Wiemann, E.E. Carpenter, J. Wiggins, W. Zhou, J. Tang, S. Li, V.T. John, G.J. Long, A. Mohan, Magnetoresistance of a (γ-Fe<sub>2</sub>O<sub>3</sub>) 80 Ag 20 nanocomposite prepared in reverse micelles, J. Appl. Phys. 87 (2000) 7001–7003.
- [9] H. Yanagihara, M. Hasegawa, E. Kita, Y. Wakabayashi, H. Sawa, K. Siratori, Iron vacancy ordered γ-Fe<sub>2</sub>O<sub>3</sub> (001) epitaxial films: the crystal structure and electrical resistivity, J. Phys. Soc. Jpn. 75 (2006) 054708.
- [10] A. Millan, A. Urtizberea, N. Silva, F. Palacio, V. Amaral, E. Snoeck, V. Serin, Surface effects in maghemite nanoparticles, J. Magn. Magn. Mater. 312 (2007) L5–L9.

- [11] D. Parker, V. Dupuis, F. Ladieu, J.-P. Bouchaud, E. Dubois, R. Perzynski, E. Vincent, Spin-glass behavior in an interacting  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticle system, Phys. Rev. B 77 (2008) 104428.
- [12] B. Martinez, X. Obradors, L. Balcells, A. Rouanet, C. Monty, Low temperature surface spin-glass transition in  $\gamma$ -Fe\_2O\_3 nanoparticles, Phys. Rev. Lett. 80 (1998) 181.
- [13] S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, R.N. Muller, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem. Rev. 108 (2008) 2064–2110.
- [14] W. Wu, Q. He, C. Jiang, Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies, Nanoscale Res. Lett. 3 (2008) 397–415.
- [15] V. Novotná, J. Vejpravová, V. Hamplová, J. Prokleška, E. Gorecka, D. Pociecha, N. Podoliak, M. Glogarová, Nanocomposite of superparamagnetic maghemite nanoparticles and ferroelectric liquid crystal, RSC Adv. 3 (2013) 10919–10926.
- [16] G.S. Chaubey, J.-K. Kim, Structure and magnetic characterization of core-shell Fe@ ZrO<sub>2</sub> nanoparticles synthesized by sol-gel process, Bull. Kor. Chem. Soc. 28 (2007) 2279–2282.
- [17] H. Tiainen, G. Eder, O. Nilsen, H.J. Haugen, Effect of ZrO<sub>2</sub> addition on the mechanical properties of porous TiO<sub>2</sub> bone scaffolds, Mater. Sci. Eng. C 32 (2012) 1386–1393.
- [18] H. Liu, S. Li, Q. Li, Y. Li, W. Zhou, Microstructure, phase stability and thermal conductivity of plasma sprayed Yb<sub>2</sub>O<sub>3</sub>, Y<sub>2</sub>O<sub>3</sub> co-stabilized ZrO<sub>2</sub> coatings, Solid State Sci. 13 (2011) 513–519.
- [19] A. Ortiz, J. Sánchez-González, L. González-Méndez, F. Cumbrera, Determination of the thermal stability and isothermal bulk modulus of the ZrO<sub>2</sub> polymorphs at room temperature by molecular dynamics with a semi-empirical quantum-chemical model, Ceram. Int. 33 (2007) 705–709.
- [20] D. Vollath, D.V. Szabó, The Microwave plasma process–a versatile process to synthesise nanoparticulate materials, J. Nanopart. Res. 8 (2006) 417–428.
- [21] W. Kim, C.-Y. Suh, S.-W. Cho, K.-M. Roh, H. Kwon, K. Song, I.-J. Shon, A new method for the identification and quantification of magnetite–maghemite mixture using conventional X-ray diffraction technique, Talanta 94 (2012) 348–352.
- [22] J.D. Osorio, A. Lopera-Valle, A. Toro, J.P. Hernández-Ortiz, Phase transformations in air plasma-sprayed yttria-stabilized zirconia thermal barrier coatings, Dyna 81 (2014) 13–18.

- [23] M. Benitez, P. Szary, D. Mishra, M. Feyen, A. Lu, O. Petracic, H. Zabel, Templated Self-assembly of Iron Oxide Nanoparticles, arXiv preprint (2010) arXiv:1010.4166.
- [24] J. Denardin, A. Brandl, M. Knobel, P. Panissod, A. Pakhomov, H. Liu, X. Zhang, Thermoremanence and zero-field-cooled/field-cooled magnetization study of Co<sub>x</sub>(SiO<sub>2</sub>)<sub>1 x</sub> granular films, Phys. Rev. B 65 (2002) 064422.
   [25] E. Valstyn, J. Hanton, A. Morrish, Ferromagnetic resonance of single-domain par-
- [25] E. Valstyn, J. Hanton, A. Morrish, Ferromagnetic resonance of single-domain particles, Phys. Rev. 128 (1962) 2078.
- [26] J.-L. Dormann, D. Fiorani, E. Tronc, Magnetic relaxation in fine-particle systems, Adv. Chem. Phys. 98 (2007) 283–494.
- [27] K. Nadeem, H. Krenn, T. Traußnig, R. Würschum, D. Szabó, I. Letofsky-Papst, Spinglass freezing of maghemite nanoparticles prepared by microwave plasma synthesis, J. Appl. Phys. 111 (2012) 113911.
- [28] K. Nadeem, H. Krenn, T. Traussnig, R. Würschum, D. Szabó, I. Letofsky-Papst, Effect of dipolar and exchange interactions on magnetic blocking of maghemite nanoparticles, J. Magn. Magn. Mater. 323 (2011) 1998–2004.
- [29] Z. Shaterabadi, G. Nabiyouni, M. Soleymani, High impact of in situ dextran coating on biocompatibility, stability and magnetic properties of iron oxide nanoparticles, Mater. Sci. Eng. C 75 (2017) 947–956.
- [30] X. Lin, C. Sorensen, K. Klabunde, G. Hadjipanayis, Temperature dependence of morphology and magnetic properties of cobalt nanoparticles prepared by an inverse micelle technique, Langmuir 14 (1998) 7140–7146.
- [31] R.H. Kodama, A.E. Berkowitz, Atomic-scale magnetic modeling of oxide nanoparticles, Phys. Rev. B 59 (1999) 6321.
- [32] J. Smit, H.P.J. Wijn, Ferrites: Physical Properties of Ferrimagnetic Oxides in Relation to Their Technical Applications, Wiley, 1959.
- [33] C. Verdes, B. Ruiz-Diaz, S. Thompson, R. Chantrell, A. Stancu, Computational model of the magnetic and transport properties of interacting fine particles, Phys. Rev. B

65 (2002) 174417.

- [34] F. Bloch, Zur theorie des ferromagnetismus, Z. Phys. 61 (1930) 206–219.
   [35] H. Zijlstra, E. Wohlfarth, Ferromagnetic Materials vol. 3, North-Holland,
- Amsterdam, 1982. [36] K. Maaz, A. Mumtaz, S. Hasanain, M. Bertino, Temperature dependent coercivity
- [36] K. Maaz, A. Mumtaz, S. Hasanain, M. Bertino, Temperature dependent coercivity and magnetization of nickel ferrite nanoparticles, J. Magn. Magn. Mater. 322 (2010) 2199–2202.
- [37] C. Bean, J. Livingston, Superparamagnetism, J. Appl. Phys. 30 (1959) S120-S129.
- [38] T. Shendruk, R. Desautels, B. Southern, J. Van Lierop, The effect of surface spin disorder on the magnetism of  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticle dispersions, Nanotechnology 18 (2007) 455704.
- [39] C. Nayek, K. Manna, G. Bhattacharjee, P. Murugavel, I. Obaidat, Investigating sizeand temperature-dependent coercivity and saturation magnetization in PEG coated Fe<sub>3</sub>O<sub>4</sub> nanoparticles, Magnetochemistry 3 (2017) 19.
- [40] J. Gonzdez, M. Montero, X. Batlle, A. Labarta, Agnetization reversal mechanisms in colloidal dispersions of magnetite particles, IEEE Trans. Magn. 34 (1998).
- [41] S. Shtrikman, E. Wohlfarth, The theory of the Vogel-Fulcher law of spin glasses, Phys. Lett. A 85 (1981) 467–470.
- [42] S.H. Masunaga, R.d.F. Jardim, P.F.P. Fichtner, J. Rivas, Role of dipolar interactions in a system of Ni nanoparticles studied by magnetic susceptibility measurements, Phys. Rev. B 80 (2009) 184428.
- [43] C. Cannas, G. Concas, D. Gatteschi, A. Falqui, A. Musinu, G. Piccaluga, C. Sangregorio, G. Spano, Superparamagnetic behaviour of γ-Fe<sub>2</sub>O<sub>3</sub> nanoparticles dispersed in a silica matrix, Phys. Chem. Chem. Phys. 3 (2001) 832–838.
- [44] F. Zeb, M. Ishaque, K. Nadeem, M. Kamran, H. Krenn, D.V. Szabo, U. Brossmann, I. Letofsky-Papst, Reduced surface effects in weakly interacting ZrO<sub>2</sub> coated MnFe<sub>2</sub>O<sub>4</sub> nanoparticles, J. Magn. Magn. Mater. 469 (2019) 580-586.





# **Repository KITopen**

Dies ist ein Postprint/begutachtetes Manuskript.

Empfohlene Zitierung:

Zeb, F.; Shoaib Khan, M.; Nadeem, K.; Kamran, M.; Abbas, H.; Krenn, H.; Szabo, D. V. <u>Reduced surface spin disorder in ZrO<sub>2</sub> coated γ-Fe<sub>2</sub>O<sub>3</sub> nanoparticles</u> 2018. Solid state communications, 284-286 <u>doi: 10.554/IR/1000086387</u>

Zitierung der Originalveröffentlichung:

Zeb, F.; Shoaib Khan, M.; Nadeem, K.; Kamran, M.; Abbas, H.; Krenn, H.; Szabo, D. V. <u>Reduced surface spin disorder in ZrO<sub>2</sub> coated γ-Fe<sub>2</sub>O<sub>3</sub> nanoparticles 2018. Solid state communications, 284-286, 69–74. <u>doi:10.1016/j.ssc.2018.09.010</u></u>

Lizenzinformationen: CC BY-NC-ND 4.0