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I. INTRODUCTION

In the present work, we are concer
culation of correlation energies in the fra of the
adiabatic-connection fluctuation—dissipation orem in
the context of the Bethe-Salpefer equagion (BSE) and
its variants.

The Bethe-Salpeter eq éen used exten-
sively in solid-state phy;ife t0"G cul?p optical properties
d

of solids.!»? Recently, 10ds on the BSE have
also become popular OOMcomputation of atomic
and molecular electfonic'gxcitation energies. See, for ex-
mprehensive review of recent BSE
quantum chemistry.

of itssuccess, the BSE approach was
UKBOMOLE program package®® by
nd shortly thereafter, the perfor-
SE approach for the computation of sin-
itation energies of small molecules was

s, GIW computations, quasiparticle energies were
ed at various levels of sophistication for all or-
els from full spectral functions.”

In 2016, Maggio and Kresse used the Bethe-Salpeter
equation to compute the electron-correlation energy of
the homogeneous electron gas in the framework of the
adiabatic-connection fluctuation—dissipation theorem.?

set of small molecules as well as by de-

1al frequencies of the metal monoxides MO with

To avoid the occurence of imaginary eigenmodes, an ap-
proximation to the BSE kernel was proposed that was re-
ferred to as “random phase approximation with screened
exchange” (RPAsX).

These two approaches are just two examples of random
phase-approximation (RPA) methods. A series of such
methods have been proposed in recent years for the com-
putation of electron-correlation energies of atomic and
molecular systems (for a presentation of many of these
variants, see Refs. 9-14), and the purpose of the present
work is to assess the performance of Maggio and Kresse’s
BSE and RPAsX approaches in cases where these are ap-
plied to atomic or molecular systems, for example with
respect to computations of atomic total energies, atom-
ization energies of small organic molecules, or potential
curves of diatomic molecules. For this purpose, the BSE
and RPAsX approaches (and many more) were imple-
mented in the TURBOMOLE program package®® in the
course of the present work, on the basis of the BSE im-
plementation of Ref. 6 and the GW implementation of
Ref. 7.

The present paper is organized as follows: in Sec-
tion ITA, we start by recapitulating the direct random
phase approximation (dRPA), where “direct” refers to
the fact that exchange contributions are not taken into
account. In Section IIB, we introduce exchange contri-
butions by inserting antisymmetrized two-electron inte-
grals into the orbital-rotation matrices when computing
the two-particle density matrix, as done in Ref. 15. Mag-
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which is the correlation part of the two-particle density
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l s Epnd Kresse’s BSE and RPAsX approaches are ob-

tained by inserting (static) screened exchange integrals
Publig R& of pure exchange integrals. In Section IIC, we
closely 1ollow Ref. 14 for the construction of a few more
approaches by inserting exchange integrals into the inter-
action kernel. Section IID is concerned with approaches
in the framework of ring-coupled-cluster theory. Com-
putational details needed to reproduce the results of the
present work are given in Section III, and numerical re-
sults are presented in Section IV with respect to the to-
tal energies of the atoms H—Ne, the atomization ener-
gies of the HEAT (“high-accuracy extrapolated ab initio
thermochmistry”) test set,'® and the bond lengths and
harmonic vibrational frequencies of 3d transition-metal
monoxides. Conclusions are collected in Section V.

II. THEORY
A. Direct random-phase approximation

In the direct random-phase approximation (dRPA),
the correlation energy is obtained by integration over the

matrix at coupling strength A, is obtained from solving
the following non-Hermitian eigenvalue problem at cou-
pling strength A:

A, B, Xa Y3\

-B; A )\ Y, X3 )T
Xy Y\ [wr O
Y)\ X; 0 —W) ’

The two-particle density matrix Py is related to the po-
larization propag OPS  viasthe fluctuation—dissipation

theorem,

(6)

N 0" M) (w) —p(w)]dw. (7)

and B, are given by

( ‘) (Ak)ia,jb = Aia‘,jb + )\Aga,jm ) (8)
A (B)\ ia,jb = )\Bm,jba (9)

uasiparticle energies of the canonical spin orbitals

)
coupling-strength parameter A within the framework )
the adiabatic connection,!? \ where A, ji» = (€4 — €i) 8;j045- Here, the €, are orbital

1 1
E4RPA — 5/0 tr (KPy)d\, 1)

where the interaction kernel K is given by< S -

A’ B
K_<B* Al*)v

\\ (2)

with
Al i = Viagb = (iblaj) = Q
[ [ ettt i ®)
.

and
Bia,jb = Viap :%h
//wf 1)@ (x2

V.

is Hermitian while the matrix B
makes K Hermitian. Furthermore,

matrices A’ and B are only equal
in orbitals are used. These matri-
ot equal when complex-valued spin orbitals or
séd, as they for example occur in quasirela-

1 0a(x1)pp(x2)dxdxs . @

ic fields.
The Hermitian matrix

v, Y! v,xi\" /oo
P, = 2 ) - 5
A <X)\YI\ X)\XZ\ 01 ) ( )

¢p. We denote occupied spin orbitals by i,7,k,... and
irtual spin orbitals by a,b,c,....

The eigenvectors of Eq. (6) are normalized to
XXy -Yiv,=1, (10)
and the working equation for the dRPA integrand reads

tr (KPy) = tr (X[ BY, + Y{B'X,)

(11)
+tr (XJ;A’X,\ n YiA’*YA) —tr(A).

This trace is real-valued since the matrices K and Py are
Hermitian.

B. Exchange in the polarization propagator

Next we introduce exchange contributions by defining
matrices with “antisymmetrized” two-electron integrals.
As in Ref. 15, we indicate these matrices by an overbar,

(43)
(B»)

Based on these matrices, the RPA ezchange (RPAx) cor-
relation energy is given by?%-2!

iajb = Aia,jb + )\Uia,jb - Avij,aba (12)

i = Aiabj — AVibaj - (13)

e -
ERPAx = 3 / tr (KP,) dA, (14)
0
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‘ s Ivspz P,is obtalned from solving Eq. (6) using Ay and

L'\ in place of Ay and B,.

Pubhshl

ethe Salpeter correlation energy as defined in
Ref. 8 is given by an expression very similar to Eq. (14),
the only difference being that the exchange terms in
Egs. (12) and (13) are replaced by their static screened
counterparts. Correspondingly, the Bethe—Salpeter cor-
relation energy is obtained from

;/01 tr (KE) d, (15)

where P, is obtained from solving Eq. (6) using A, and

EBSE _

B, in place of Ay and By,
(21,\) T Aja,jb + Mia jb — AWijab (16)
ia,j
(EA) = )\Uia,bj — )\’wib@j . (17)
ia,jb
In Egs. (16) and (17), w refers to integrals over the static
screened interaction. As in Ref. 6, these integrals are

computed in the resolution-of-the-identity (RI) approxi-
mation,

Wpq,rs = E :qu,P (6

with

l—valued) auxil-
the usual three-index

the RI approximation (se

In Ref. 8, the RPA{ proximation (random-phase
approximation with e;&change) was proposed
to resolve problemg  due o instabilities originating from
In this RPAsX approximation,
6) is omitted.

ion, one can show that the screened inter-
phng strength A is given by the following

RP chk:c ,Q
(ex)pg = 0pPq — 2)\5}%2 e (20)
w;\q rs Z Rpq.p (6,\ )pQ Rq sr s (21)

71)PQ Rq.sr (b‘\\

5 s — More energy expressions can be generated by replac-
mg the matrix K in Egs. (1), (14), (15), or (24) by its

and

(ZA) s Aia,jb + Mia,jb — AWy o » (22)

ia,j

(§A> ia.ib = )\’Umyb] szb ,aj * (23)
ia,j

The corresponding correlation energy, which we denote
as extended Bethe-Salpeter (XBS) correlation energy, is

then given by
/ Lo
= N(KP A) dX. (24)
3 0

ere straighforward to implement
ram package. The previously

ata —(19) are obviously an approxima-
tion, whichsis exact at small \.

We fuiote that, the corresponding XBSsX correlation
energy, is obt?ne by omitting the term —A\w) p in

e

ij,a

C. Exchange in the interaction kernel

“antisymmetrized” counterpart K. For example, by mak-
ing this replacement in Eq. (1), the dRPA-II correlation
energy of Angyan et al. is obtained,'*'” which is closely
related to the adiabatic-connection second-order screened
exchange (AC-SOSEX) correlation energy,

R

FARPA-IL _ 5/ tr (KPy) dX. (25)
0

The AC-SOSEX correlation energy refers to the dRPA-

ITa approximation defined by equation 59 of Ref. 14.

In the spirit of Eq. (25), it seems also worthwhile to in-
vestigate the corresponding expression using the interac-
tion kernel K = K, where the antisymmetric (exchange-
like) contribution is evaluated with the static screened
exchange w at full coupling (A = 1) instead of v. The
correlation energy is then defined as

_ % /0 e (RPy) ax. (26)

We denote this new approach as IOSEX (infinite-order
screened exchange) approach.

IOSEX
Ec

Furthermore, we have also investigated correlation-
energy expressions in which only the matrix B is inserted
into Eq. (11) in antisymmetrized (and possibly screened)
form. This resembles the “sX” approximation of Ref. 8
and we therefore denote the corresponding approaches by
the ending “sX”. For example, we define the dRPA-IIsX
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[
ESRPA-IISX _ 5/ tr (KSXPA) dX, (27)
0
with
_ A’ B
KSX = (B* AI* ) . (28)

The IOSEXsX correlation energy is defined analogously
in terms of a matrix K¢ x that contains B.

D. Ring-coupled-cluster theory

At this point, we note that it is also possible to de-
fine the second-order screened exchange correlation en-
ergy in the framework of the direct ring-coupled-cluster-
doubles (drCCD) approach, which is equivalent to the
dRPA method. We refer to this drCCD-based variant
as coupled-cluster second-order screened exchange (CC-
SOSEX) correlation energy.2? It is defined as

EEOSOSEX — —r (BY, X71) .

Analogously, we define the coupled- cluster inﬁnite—o

An overview over the ab
in Table I. Here and in
bold characters to repie
in the previous secti
tr(KPy) entering the co
needs to ask the 0110 1

meptionedunethods is given
e fo Wing/we use blackboard
t any“@f the matrices given
With, respect to the integrand
ling-strength integration, one
g questions: first, how does one
and B to set up K, second,
he matrices A) and B, that
d third, whether to use Kohn-
1 energ}es or GW quampartlcle energies. For
a prime summarized in Table I, the
in the A’ and B matrices for the in-
kernel K and in the A, and By matrices for the
fopagator are calculated using GW quasi-
energies. A prime is attached to the method’s
acronyin if Kohn-Sham orbital energies are used for the
diagonal matrix A in place of GW quasiparticle energies.
When Kohn-Sham orbital energies are used everywhere,
that is, also for the screened exchange w (and w?’), then
we attach a double prime to the method’s acronym (not
shown in Table I).

(ﬁﬂ\ SsX

dor . XBSsX'

TABLE I. Overview of various models, using either orbital
energies (OE) or quasiparticle energies (QP) for A. Given is
the exchange-like contribution to the respective matrix.

Method?® K Py

A’ B A A\ B
CC-SOSEX b v OE 0 0
CC-IOSEX b w QP 0 0
CC-TOSEX’ ;/ w OE 0 0
dRPAc° 0 OE 0 0
dRPA-II \ OE 0 0
dRPA-IIsX D v OE 0 0
IOSEX w w QP 0 0
IOSEX' w OE 0 0
IOSEXs ‘) 0 w QP 0 0
OSEXSX' % 0 w OB 0 0
BSE 3 0 0 QP w w
SE’ 0 0 OE w w
QE:SX 0 0 QP 0 w
59 0 0 OE 0w

s & 0 0 QP wr wt

0 0 OE wr wt

0 0 QP 0 w?

0 0 OE 0 w?
RPAx¢ 0 0 OE v v
RPAx-II¢ v v OE v v

a) The prime indicates that quasiparticle energies are
used for w but not for A.

b) Energy computed from drCCD amplitudes and B.

c) dRPA = dRPA-L

d) RPAx = RPAx-I.

e) See Ref. 14.

A few comments are in place here. First, we have
grouped Table I into different categories. The first three
lines correspond to time-ordered perturbation theory as
realized in the coupled-cluster approach. The next seven
methods use the direct RPA to determine the polar-
ization propagator but contract over different (possibly
antisymmetrized) interaction kernels. If the polariza-
tion propagator is calculated in the direct RPA, anti-
symmetrization of the interaction kernel K seems ad-
vantageous. Inspired by the observation by Maggio and
Kresse® that instabilities can be avoided by using only
antisymmetrized B kernels, we have investigated this ap-
proximation for the interaction kernel K as well (...sX
methods). The next nine methods apply direct RPA-
like kernels for the interaction K but calculate the po-
larization propagator either in the full random-phase ap-
proximation (RPAx method) or by using the full Bethe-
Salpeter polarization propagator with antisymmetrized
A’ and By matrices. The final method (RPAx-II) uses
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minetrized matrices in both the polarization prop-

L ‘IZ ator and the interaction kernel.

Publis I.n 2 what kind of combinations are expected to be
useful, the following issues are important:

Common experience tells that orbitals and one-
electron energies obtained from density-functional the-
ory (DFT) combined with the dRPA yield reasonable
polarizabilities (for instance, DFT static dielectric con-
stants, C coefficients and symmetry-adapted perturba-
tion theory using DFT polarizabilities are often remark-
ably accurate).?? Combined with a dRPA kernel, the cor-
relation energies are too negative, but that can be allevi-
ated by contracting over an antisymmetrized interaction
kernel. Combining dRPA polarizabilities with antisym-
metrized interaction kernels restores the direct and ex-
change diagram in second order.

If quasiparticle energies are used to calculate the
independent-particle propagator, one needs to include
the antisymmetric terms in the A}, and By matrices of
the Bethe—Salpeter equation to obtain quantitatively re-
liable excitation spectra and polarizabilities. Specifically,
combining quasiparticle energies with the dRPA yields

obtain accurate results, the inclusion of w (or w?*) in A% i

A. Atomic total energies and HEAT test set

The calculations were performed in the aug-cc-
pwCVXZ (aug-cc-pVXZ for H) basis sets of Peterson
and Dunning,?®3% with X = T, Q and 5. When using
the ESCF module, the “MP2-fitting” basis set of Héttig
was used as auxiliary basis set for the RI approximation
(cBAs in TURBOMOLE jargon).?! When using the RIRPA
module, Weigend’s u?&ersal “Coulomb-fitting” basis was

used for the RI approximation (JBAS in TURBOMOLE
jargon).3? O\m

The complete- s%st ( ) total and atomization
energies were obtaigedéby fitting the function F,ef(00) +
aexp(—pX) tothe 1-Sham determinant expectation
values obtaingd i VXZ basis sets?® with X = Q,
5 for Li and Be) and by fitting

(0%« X 2 to the correlation energies
c-pwCVXZ (aug-cc-pVXZ for H) basis

olation

@a&par e energies were computed at the evGW
level?® with TURBOMOLE’s ESCF module using the im-
ementafion of Ref. 7. In these calculations, the rel-

nd rpaconv = 5. Numerical integration over coupling

much too small polarizabilities as shown in Ref. 24. T\g:;‘ TURBOMOLE parameters were set to eta = 0.05
s

particularly important, as this term introduces excitoni
effects via the particle-hole ladder diagrams. H
including screened (w or w™) unscreened (v) ,exch
integrals in the A’ matrix often introduces in
causing negative elgenvalues in the exc1tat‘on S
(cf. Ref. 8). As discussed in the results
methods turn out to be unstable for most s

T orbital ener-
citonic effects

it seems reasonable to te
orbital energies or GW,

orbital energies possi IS

med with the TURBOMOLE pro-
ackage? using the modules DscF (for Kohn-—

lations), ESCF (for the GW quasiparti-
g@ and Bethe-Salpeter correlation energies),

A (for dRPA and AXK). The CFOUR pro-
oupled—Cluster techniques for Computational
Chemistry)®®> was used for the coupled-cluster cal-
culations on the transition-metal monoxides at the
coupled-cluster singles-and-doubles level with perturba-
tive triples, CCSD(T).26:27

Vel lusing 32 points or more.
X

gth was done using a Gaufs-Legendre quadrature
The evGW level was cho-
sen because it was found to outperform the (linearized)
GoWy scheme with respect to electronic excitation en-
ergies, yielding an accuracy similar to that of the com-
putationally more involved quasiparticle self-consistent
approach (qsGW).”

The functionals TPSS?® and TPSSh373% were em-
ployed in the Kohn—Sham calculations, using the TUR-
BOMOLE parameters gridsize = 5, scfconv = 10, and
denconv = 1d-9.

In Ref. 39, Bates and Furche argue that the reference
determinant for RPA correlation-energy calculations is
most appropriately generated from a (non-hybrid) semi-
local DFT calculation. They recommend the TPSS func-
tional, but we decided to also test the hybrid functional
TPSSh. At this point, a comprehensive study of func-
tionals must be postponed into the future.

B. Transition-metal monoxides

The computations on the 3d transition-metal monox-
ides were all performed in the def2-QZVPP basis set of
Weigend, Ahlrichs and Furche.’® As for the atomic to-
tal energies and atomization energies, the “MP2-fitting”
basis set of Hittig was used as CBAS auxiliary basis
set for the RI approximation®' while for computations
with the RIRPA module, Weigend’s universal “Coulomb-
fitting” JBAS basis was used.’? Quasiparticle energies
were computed at the evGW level®> using the param-
eters eta = 0.05 and rpaconv = 5. The underlying
Kohn—Sham calculations were performed with the func-


http://dx.doi.org/10.1063/1.5047030

| This manuscript was accepted by J. Chem. Phys. Click here to see the version of record. |
l s ibmdls TPSS* and TPSSh373® using the TURBOMOLE The dRPA model yields only very poor total en-
.parameters gridsize = 5, scfconv = 9, and denconv ergies for the atoms H-Ne. Also the Bethe-Salpeter
Publis ng Calculations were performed for the same elec- based methods using orbital energies only (instead of

tronic states as given in Table VI of Ref. 41, and for each quasiparticle energies) do not perform very well (meth-
system the equilibrium geometry and harmonic vibra-  ods RPAsX”-IOSEXsX”). The virtually identical re-
tional frequency were determined by fitting a 6*P-degree sults for AC-SOSEX and CC-SOSEX have been ob-
polynomial to seven points about the minimum of the served for many systems in several studies. dRPA-
potential-energy curve (of the method of interest), using IIsX is also very close, and a diagrammatic analysis
an equidistant spacing of 0.02 ag. Numerical integration shows that all three include identical diagrams up to
over coupling strength was done using a Gaufs-Legendre second order in thzaoulomb interaction. In third
quadrature using 32 points or more. order, subtle differénceswexist, where AC-SOSEX in-
cludes improper diagrams. it somewhat remarkable
that the differefices Petween CC-SOSEX/AC-SOSEX
and RPAsX /XBSs C-IOSEX are also small, although
lculate the polarization propa-

) ] o gators usi iparticle energies instead of Kohn—
In this section, we will discuss results that were ob- :

. . . . ergies. There is no obvious reason for
tained using Kohn—-Sham orbitals obtained from DFT this go@deagreement. On the other hand, the good agree-
calculations with the TPSS functional.® All of these cal- o gtoup RPAsX /XBSsX /CC-IOSEX i ex-
culations have been repeated with TPSSh orbitals, but Swse methods use the same one-electron
the results obtained with this hybrid functional have been ergies addnclude a very similar set of diagrams (they
moved to the Supplemental Information. The results do i@ga' identical up to second order in the Coulomb
not depend too much on the Kohn-Sham orbitals, and .

teracti
it seems appropriate to focus on the TPSS results in th\tpﬁﬁing the quasiparticle energies by orbital ener-
gies

IV. RESULTS AND DISCUSSION

main text. ) o ) the diagonal matrix A increases the magnitude of

In the following, we will discuss the results obtained orrelation energies consistently by about 25-35 mEj,
atomic total energies, atomization energies, bond lehg for the atoms B-Ne. This is in line with our expec-
and harmonic vibrational frequencies. tations: the one-electron gaps are smaller using orbital

Note that we do not report results of all met
tioned in Section II because we encountered inst
(matrices that were not positive definite)
casions when applying the RPAx, RP
XBS and XBS’ methods. Thus, thes
occur in the tables with results. Note t
plagued by instabilities have in common that

d%en— energies than quasiparticle energies, so fluctuations and
iities.  correlation energies increase in magnitude. XBSxX’ and
oc- IOSEXsX’ are particularly close, and a diagrammatic

) analysis shows that they sum the same set of diagrams up
mﬂ;o\m not  to third order in the Coulomb interaction (in fourth or-
hatighe methods  der, the XBSxX’ approach includes diagrams with two
e matrix  B’s that are missing in IOSEXsX’). A more detailed

A’ of Table I contains exchangegontribytions. diagrammatic analysis is postponed to future studies,
though.

The differences between the other methods are only

A. Atomit t { energies minor, and some of the new methods perform roughly as

7( well as the approximate-exchange-kernel (AXK) method

of Bates and Furche.??

Table II shows r s forsghe total energies of the
atoms H-Ne. Computed energies are compared with
the estimates for/the exact nonrelativistic total energies
B. HEAT test set

Hartree-Fotk energy«(Hamiltonian expectation value ob- In real-world applications of electronic-structure ap-
tained with the Haftree-Fock determinant) to obtain the  proaches to chemical problems of interest, energy differ-
ic energy. In the framework of the adiabatic ences are more important than total energies. In 2008,

r, the correlation energy is added to Harding et al.'® published accurate values for the non-
1iltonian expectation value computed with the relativistic electronic atomization energies for a series of
déterminant. Such an adiabatic-connection small molecules using the “highly accurate extrapolated

ion energy can therefore not directly be compared  thermochemistry” (HEAT) protocol, and in Table III,
with%a'post-Hartree-Fock correlation energy. Thus, we we compare the results of our calculations with these
decidedyto extrapolate both the expectation values and HEAT reference values. Both our values and the HEAT
the correlation energies to the limit of a complete basis, values have been extrapolated to the complete-basis-set
such that for each system, we can compare the sum of  (CBS) limit. Deviations from the HEAT values obtained
the two extrapolated energies with the highly accurate in finite basis sets are also reported. Figure 1 visual-
total electronic energy of Ref. 42. izes the deviations from the HEAT reference values for
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AIT&BLE I. Errors in the total energies (in mEy) of the atoms H-Ne. Computed using the TPSS functional and extrapolated
Publishia gz sis-set limit (Q56,/Q5 extrapolation).

Method® H He Li Be B C N O F Ne
Reference® —500.00 —2903.7 —7478.1 —14667 —24654 —37845 —54589 —75067 —99734 —128939
TPSS 0 —6 —10 —4 —15 —22 —27 —43 —46 —42
TPSS orbital energies
dRPA*© —20 —40 —65 -81 —105 —-129 —145 ,—-169 —189 —199
AXKc¢ -2 —4 -9 —11 —10 -9 -5 —6 —6 -2
CC-SOSEX 0 1 1 6 11 13 1 \1; 20 22
AC-SOSEX 0 1 1 6 11 14 1 21 23
dRPA-II -3 —6 —16 —27 -30 —38 7 —28 —40 —14
dRPA-IIsX 1 3 5 14 21 28 33 34
RPAsX" —4 —10 —18 —25 —-29 -35 —40 -31
XBSsX"” -3 -7 —14 —18 —-20 —23 —26 —18
CC-IOSEX” —4 -9 —17 —23 —27 —32 —37 —27
IOSEX"” -7 —16 -33 —55 —63 —67 —81 —54
IOSEXsX"” -3 -8 —15 —20 23 —26 —29 —20
evGW qu@r’c’ energies

RPAsX —2 -1 —5 8 8 e 7 6 8 10 12
RPAsX’ -3 -8 —13 — — —21 —20 —25 —28 —26
XBSsX -1 1 1 14 13 16 20 22
XBSsX’ -2 —6 — —12 —12 —14 —16 —14
CC-IOSEX 9 0 W 0 10 9 g 10 12 15
CC-IOSEX' -3 =7 — —17 —18 —18 —22 —24 —22
IOSEXsX’ -2 -6 4 -9 —10 —11 —12 —14 —15 —15
a) One prime indicates that orbital ‘ies\{e used for A; a double prime indicates that

orbital energies are not only sat.]fo\ t also for w (or wh).

b) From Ref. 42.
¢) Computed with the RIRPA module.

a few selected methods in tgtms of neymalized Gaussian
distributions. The H todh set, C mprises the 26
molecules Ng, Hy, Fg,g(‘i 0, Qﬂé, CCH, CF, CH,,
CH, CHj3, CN, CO,, H30,,'H,0, HEN, HCO, HF, HNO,
HO,, NH,, NH3, , OFy.and OH. For molecules
of this size, a meangabsélute error of 31.2 kJmol~! in
the atomizationdenergies as obtained at the dRPA level
is unacceptablé,(the! standard deviation o of the error
21.9 kJmol™!, see Figure 1).
by the AXK method of Bates

shows a mean absolute error of 18.4
Jmol™1).

OSEx)variants AC-SOSEX, CC-SOSEX, dRPA-
TFand d -1sX all yield results of poorer quality than
dRPA™and thus are no improvement. Very promising,
howeyér, are the methods RPAsX’, XBSsX’, CC-IOSEX’
and IOSEXsX’. It appears that it is advantageous to
use quasiparticle energies only for the screened interac-
tion w (and/or w?), not for the energy differences of
the matrix A. Since all of these methods neglect the
particle-hole ladder diagrams in the A’ matrix, the use

The

of quasiparticle energies in the polarization propagator
would yield too small polarizabilities and fluctuations.
Using the Kohn—-Sham orbital energies rectifies this prob-
lem. All of this also applies to the results obtained with
the TPSSh functional (see Table S2 in the Supplemental
Information). Of the above mentioned methods, the CC-
IOSEX'’ method is particularly promising. Building the
matrices X; and Y is relatively straightforward and not
hampered by instabilities (it is done at the dRPA level).
Furthermore, no numerical integration over the coupling
strength is involved (see Eq. 30).

C. Transition-metal monoxides

In view of the success of the CC-IOSEX’ approach,
we found it interesting to see whether the method would
also perform well on a quite different set of molecules such
as the 3d transition-metal monoxides MO with M=Ca~—
Zn. The results of the corresponding calculations are
presented and discussed in the present section.
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AIT&BLE II. Mean absolute error (in kJmol™!) with respect

Publi®hbp gon-relativistic, electronic atomization energies of the
TR A

T Fest set. Computed using the TPSS functional.

Method ACVTZ ACVQZ ACV5Z CBS®
TPSS 151 155 156  15.6
TPSS orbital energies
dRPA® 55.2  41.1 364 31.2
AXK? 46.2  30.2 24.6 18.4

CC-SOSEX 61.0 45.7 40.5 348
AC-SOSEX 61.1 45.8 40.6 349

dRPA-II 77.6 61.5 56.2  51.8
dRPA-IIsX 75.4 60.2 55.0  49.5
RPAsX” 37.5 22.3 185 159
XBSsX” 37.1 22.0 169 13.6
CC-IOSEX” 378 22.8 186 15.6
IOSEX"” 56.6 48.8 471 454

TOSEXsX"” 40.9 25.9 20.7 16.5
evGW quasiparticle energies

RPAsX 57.6 41.0 347 278
RPAsX’ 23.5 8.1 5.3 5.8
XBSsX 62.7 46.2 40.0 331
XBSsX’ 27.7 12.3 7.1 4.0

.
N

TPSS -

L dRPA -
AXK -
AC-SOSEX -
- RPAsX’ -
CC-IOSEX’ -

Deviation (kJ mol™")

. 1. Normalized Gaussian distributions of deviations from

the HEAT benchmark values.
CC-IOSEX  59.3 428 366 Qs).zs‘i\e enchmarl values

CC-IOSEX’ 24.1 8.7 4.8
IOSEX 41.5 24.8 18.6
IOSEX' 43.2 36.1 34.5
IOSEXsX 97.1 80.4
IOSEXsX’ 26.7 11.3

a) Q56/Q5 extrapolation.

b) Computed with the RIRPA N.
. VA .
The 3d transition-me 0x1d? have been inves-
tigated by Furche and dew
S

well as by Bates and
Furche to test the 'LP 8hﬁb{&&)enal and the AXK ap-
(3941845 in Ref. 39, we use the def2-

proach, respectivel

QZVPP basis s ompare the computed results

(equilibrium bofid lengths and harmonic vibrational fre-

quencies) with imental data. Of course, a compar-

ison of nonsrelativ 'C,ere electronic-structure results
basis set of atomic orbitals with ex-

% somewhat troublesome, but we can

also with those that are obtained at

Sham EPSS/def2-QZVPP level (see Table IV). This is
remarkably accurate, in particular in comparison with
the dRPA and AXK levels, which display mean absolute
errors of 1.2 and 0.8 pm, respectively (the mean errors
are 0.7 and 0.0 pm, respectively). The dRPA and AXK

approaches do not seem to improve the underlying Kohn—
Sham results.

This behavior of the TPSS, dRPA and AXK meth-
ods is corroborated by the results obtained for the har-
monic vibrational frequencies w, (see Table V). Whereas
the mean absolute error amounts to 25 cm~! at the
TPSS/def2-QZVPP level, these errors are 43 and 33
cm~! at the dRPA and AXK levels, respectively. Also
the SOSEX variants are no improvement over Kohn—
Sham theory. For the bond lengths, we find mean abso-
lute errors of 3.1, 3.3, 1.9 and 5.8 pm, respectively, for the
methods CC-SOSEX, AC-SOSEX, dRPA-IT and dRPA-
IIsX. For the harmonic vibrational frequencies, the re-
spective mean absolute errors are 97, 103, 52 and 180
cm™L,

With respect to harmonic vibrational frequencies of
individual systems, the differences between results ob-
tained with TPSS or TPSSh orbitals seem somewhat
more pronounced than for the equilibrium distances, but
the corresponding mean absolute errors show a compara-
ble order of magnitude for the TPSS- and TPSSh-based
results.

Unfortunately, it is difficult to identify clear trends
or approaches that perform clearly better than others.
With respect to the atomization energies of the HEAT
test set, the methods RPAsX’, XBSsX’, CC-IOSEX’ and
IOSEXsX’ look promising, and indeed, these methods
also perform (reasonably) well for the transition-metal
monoxides. With respect to the bond lengths, the mean
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E IV. Errors in the equilibrium bond lengths (r. in pm) of transition-metal monoxides. Computed in the def2-QZVPP
Pub“lgahqsn,g Hartree—Fock reference for UHF-CCSD(T), TPSS reference elsewhere.

Method CaO ScO TiO VO CrO MnO FeO CoO NiO CuO 7ZnO MAE“
Expt.b 182.2 166.8 162.0 158.9 161.5 164.6 161.6 162.9 162.7 172.4 171.9°
CCSD(T)d 0.7 04 -03 -1.5 01 -03 —-12 -28 -0.1 26 —1.2 1.0
TPSS -1.0 0.0 1.1 01 -01 -17 -11 -04 02 -0.2 =20 0.7
TPSS orbital energies
dRPA® 0.0 12 20 09 1.9 —-07 03 28 2/2 -0.2 =21 1.2
AXKe® -02 -01 06 -09 02 -11 -07 06 -— N(ZS 0.3 0.8
CC-SOSEX -30 —-21 -14 -30 -25 -—-27 -32 -=-2. —“?6 2 -19 3.1
AC-SOSEX -31 -21 -15 -31 -28 -28 -33 -2 0 70 -1.7 3.3
dRPA-II 1.5 2.1 2.5 1.6 —-0.5 —-0.1 2.0 -—5. 3.6 A 1.9
dRPA-IIsX —-56 —-40 -34 -52 —-52 —-49 58 — Y 114 —-4.1 5.8
RPAsX"” 27 21 29 20 23 1.1 2. \3 6 0.5 1.6 2.1
XBSsX” 2.4 1.8 26 1.7 20 1.0 0.9 14 1.9
CC-IOSEX” 28 22 29 21 23 1.2 %%\? 0.6 1.7 2.2
IOSEXsX"” 2.4 1.8 2.6 1.7 2.0 .0~ 1.0 1.7 1.9
evGW quasipacticle rgles

RPAsX 06 —-21 —-14 =20 —0 8 2 2 —1 -0.9 -—-14 1.3 —2.8 1.6
RPAsX’ 1.6 09 1.7 0.6 %4 1.0 09 05 -04 0.8
XBSsX 0.3 -2.3 2.3 -21 -14 -17 1.7 -29 1.8
XBSsX’ 1.0 04 0.4 -0.1 0.3 -0.3 1.1 —-0.7 0.5
CC-IOSEX 0.6 —-2.1 . . 2 -19 —-09 -14 14 -238 1.6
CC-TOSEX/ 1.7 09 % 00 05 11 10 07 -04 09
IOSEXsX' 0.7 0.1 1. OL 02 -07 -05 01 -0.38 14 -1.2 0.6

a) Mean absolute error.

b) For details on experimental
¢) CCSD(T) result from Ref. 43.

d) Frozen-core (M: 152s2p+Q: 1s) U
e) Computed with the RIRPA module.
f) Computation failed.

£

absolute errors are 0.{ .5, 0. a(d 0.6 pm, respec-
tively. This is roughly.t e&ﬁqla ity as obtained in the
TPSS and AXK ca l%ns Asimilar conclusion can be
drawn from the harmgnic-vibrational-frequency results,
and in view offthe abowe, we conclude that the CC-
IOSEX' approaeh reimains a good candidate for the accu-
rate and cogt-effici cothutation of correlation energies
in the fra

dissipation
-

NI

We have implemented (in the TURBOMOLE program
package) a number of methods based on the Bethe-
Salpeter equation for the computation of correlation
energies in the framework of the adiabatic-connection
fluctuation—dissipation theorem. Inclusion of (screened)

V. CONCLUSIONS

CCSD(T)/def2-QZVPP computations with CFOUR.

exchange contributions when constructing the matrices
P, (see Table I) often leads to instabilities. The cor-
responding methods were not applicable. More use-
ful methods were obtained when invoking the direct
random-phase approximation (d{RPA) when constructing
Py,. Then, (screened) exchange contributions can be ac-
counted for in the matrix K (see Table I). The perfor-
mance of the corresponding methods has been assessed
and in particular the CC-IOSEX’ approach seemed very
promising. As we have shown, this approach performs
practically identical to XBSsX, which is a more accurate
variant than RPAsX (the method advocated originally
by Maggio and Kresse3). There is an important differ-
ence, though. In the present work, the polarization prop-
agators are evaluated using Kohn—Sham orbital energies.
This approximation was not investigated by Maggio and
Kresse for the homogeneous electron gas, since it tends
to overestimate the absolute correlation energy (which is
also the case for atoms, as demonstrated in Table IT).
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10

E V. Errors in the harmonic vibrational frequencies (w. in cm™') of transition-metal monoxides. Computed in the
Pub“(gﬁﬁ-@g‘ 'PP basis set. Hartree-Fock reference for UHF-CCSD(T), TPSS reference elsewhere.

Method CaO ScO TiO VO CrO MnO FeO CoO NiO CuO ZnO MAE®
Expt.? 732 965 1009 1011 898 840 880 853 838 640 727°
CCSD(T)4 -33 —-16 39 -83 16 14 67 145 132 -28 19 54
TPSS 43 9 6 4 15 67 43 8 15 25 36 25
TPSS orbital energies
dRPA* -37 —66 —65 —46 -—-36 —51 23 25 g 28 49 43
AXK* -12 -24 -10 18 5 39 39 71 48 —43 33
CC-SOSEX 54 30 51 89 81 84 111 217 2?? —12 15 97
AC-SOSEX 5 32 54 95 93 88 116 230 —136 12 103
dRPA-II —42 —-87 —-54 —-12 120 3 -1 -6 3 —80 S 52
dRPA-IIsX 120 89 119 167 165 137 186 32 36%,_ —169 81 180
RPAsX” —-59 —-83 -73 —-62 -—-18 15 —16 =04 12 =72 49
XBSsX” —54 —-75 —65 —-53 -—15 15 —58 3 -7l 44
CC-IOSEX” —61 -84 -74 —-63 -—-17 13 ?5 —70 10 =75 50
IOSEXsX” =55 —76 —-65 —-52 —15 4= — 3 =56 -2 -4 43
evGW quasip&cle rgies
RPAsX -12 -19 3 36 —63 X& —-201 174 24 102 66
RPAsX/ -32 —-55 —46 -—29 4 31 13 15 10 -—18 27
XBSsX —-11 -17 1 44 iﬁ\ 704 43 —67 129 25 95 51
XBSsX’ —20 —41 -29 -1 12 4 43 43 53 -9 =7 28
CC-IOSEX —-11 18 5 37 2\56 29 —202 173 13 102 64
CC-IOSEX’ —33 =55 —47 40 29 13 12 6 —17 26
IOSEXsX’ —14 —-34 _%t—i —3 19 49 50 60 74 —18 15 33
a) Mean absolute error. \N\Q\
b) For details on experiment dsgé\ f. 41.
¢) CCSD(T) result from Ref. 43.

d) Frozen-core (M: 15252p, O: 1s) UHF-CCSD(T)/def2-QZVPP computation with CFOUR.
e) Computed with th Iﬁ%odule.

f) Computation failed.

Absolute errors in the celati (éergy are, however,
often acceptable: for theNneous electron gas, the

rty 18 that the density dependence
is well reproduced, a constant
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