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I. INTRODUCTION

In the present work, we are concerned with the cal-
culation of correlation energies in the framework of the
adiabatic-connection �uctuation�dissipation theorem in
the context of the Bethe�Salpeter equation (BSE) and
its variants.
The Bethe�Salpeter equation has been used exten-

sively in solid-state physics to calculate optical properties
of solids.1,2 Recently, methods based on the BSE have
also become popular tools for the computation of atomic
and molecular electronic excitation energies. See, for ex-
ample, Ref. 3 for a comprehensive review of recent BSE
applications in the area of quantum chemistry.
Last year, in view of its success, the BSE approach was

implemented in the Turbomole program package4,5 by
Krause and Klopper,6 and shortly thereafter, the perfor-
mance of the BSE approach for the computation of sin-
glet and triplet excitation energies of small molecules was
carefully assessed by Gui and co-workers7 with respect to
the quasiparticle energies used in the BSE calculations.
In their GW computations, quasiparticle energies were
computed at various levels of sophistication for all or-
bital levels from full spectral functions.7

In 2016, Maggio and Kresse used the Bethe�Salpeter
equation to compute the electron-correlation energy of
the homogeneous electron gas in the framework of the
adiabatic-connection �uctuation�dissipation theorem.8

To avoid the occurence of imaginary eigenmodes, an ap-
proximation to the BSE kernel was proposed that was re-
ferred to as �random phase approximation with screened
exchange� (RPAsX).
These two approaches are just two examples of random

phase-approximation (RPA) methods. A series of such
methods have been proposed in recent years for the com-
putation of electron-correlation energies of atomic and
molecular systems (for a presentation of many of these
variants, see Refs. 9�14), and the purpose of the present
work is to assess the performance of Maggio and Kresse's
BSE and RPAsX approaches in cases where these are ap-
plied to atomic or molecular systems, for example with
respect to computations of atomic total energies, atom-
ization energies of small organic molecules, or potential
curves of diatomic molecules. For this purpose, the BSE
and RPAsX approaches (and many more) were imple-
mented in the Turbomole program package4,5 in the
course of the present work, on the basis of the BSE im-
plementation of Ref. 6 and the GW implementation of
Ref. 7.
The present paper is organized as follows: in Sec-

tion IIA, we start by recapitulating the direct random
phase approximation (dRPA), where �direct� refers to
the fact that exchange contributions are not taken into
account. In Section II B, we introduce exchange contri-
butions by inserting antisymmetrized two-electron inte-
grals into the orbital-rotation matrices when computing
the two-particle density matrix, as done in Ref. 15. Mag-

http://dx.doi.org/10.1063/1.5047030


2

gio and Kresse's BSE and RPAsX approaches are ob-
tained by inserting (static) screened exchange integrals
in place of pure exchange integrals. In Section IIC, we
closely follow Ref. 14 for the construction of a few more
approaches by inserting exchange integrals into the inter-
action kernel. Section IID is concerned with approaches
in the framework of ring-coupled-cluster theory. Com-
putational details needed to reproduce the results of the
present work are given in Section III, and numerical re-
sults are presented in Section IV with respect to the to-
tal energies of the atoms H�Ne, the atomization ener-
gies of the HEAT (�high-accuracy extrapolated ab initio

thermochmistry�) test set,16 and the bond lengths and
harmonic vibrational frequencies of 3d transition-metal
monoxides. Conclusions are collected in Section V.

II. THEORY

A. Direct random-phase approximation

In the direct random-phase approximation (dRPA),
the correlation energy is obtained by integration over the
coupling-strength parameter λ within the framework of
the adiabatic connection,10

EdRPA
c =

1

2

∫ 1

0

tr (KPλ) dλ , (1)

where the interaction kernel K is given by14,17�19

K =

(
A′ B
B∗ A′∗

)
, (2)

with

A′ia,jb = via,jb = 〈ib|aj〉 =∫ ∫
ϕ∗i (x1)ϕ∗b(x2)r−112 ϕa(x1)ϕj(x2)dx1dx2 ,

(3)

and

Bia,jb = via,bj = 〈ij|ab〉 =∫ ∫
ϕ∗i (x1)ϕ∗j (x2)r−112 ϕa(x1)ϕb(x2)dx1dx2 .

(4)

Note that the matrix A′ is Hermitian while the matrix B
is symmetric, which makes K Hermitian. Furthermore,
we note that the two matrices A′ and B are only equal
when real-valued spin orbitals are used. These matri-
ces are not equal when complex-valued spin orbitals or
spinors are used, as they for example occur in quasirela-
tivistic two-component calculations including spin�orbit
e�ects or in calculations on atoms and molecules in �nite
magnetic �elds.
The Hermitian matrix

Pλ =

(
YλY

†
λ YλX

†
λ

XλY
†
λ XλX

†
λ

)∗
−
(

0 0
0 1

)
, (5)

which is the correlation part of the two-particle density
matrix at coupling strength λ, is obtained from solving
the following non-Hermitian eigenvalue problem at cou-
pling strength λ:(

Aλ Bλ

−B∗λ −A∗λ

)(
Xλ Y∗λ
Yλ X∗λ

)
=(

Xλ Y∗λ
Yλ X∗λ

)(
ωλ 0
0 −ωλ

)
.

(6)

The two-particle density matrix Pλ is related to the po-
larization propagator Πλ via the �uctuation�dissipation
theorem,

Pλ = − 1

2πi

∫ ∞
−∞

eiω0
+

[Πλ(ω)−Π0(ω)] dω . (7)

In Eq. (6), the eigenvalues are (approximate) excitation
and de-excitation energies of the atom or molecule, and
the matrices Aλ and Bλ are given by

(Aλ)ia,jb = ∆ia,jb + λA′ia,jb, , (8)

(Bλ)ia,jb = λBia,jb , (9)

where ∆ia,jb = (εa − εi) δijδab. Here, the εp are orbital
or quasiparticle energies of the canonical spin orbitals
ϕp. We denote occupied spin orbitals by i, j, k, . . . and
virtual spin orbitals by a, b, c, . . . .

The eigenvectors of Eq. (6) are normalized to

X†λXλ −Y†λYλ = 1 , (10)

and the working equation for the dRPA integrand reads

tr (KPλ) = tr
(
X†λBYλ + Y†λB

∗Xλ

)
+ tr

(
X†λA

′Xλ + Y†λA
′∗Yλ

)
− tr (A′) .

(11)

This trace is real-valued since the matrices K and Pλ are
Hermitian.

B. Exchange in the polarization propagator

Next we introduce exchange contributions by de�ning
matrices with �antisymmetrized� two-electron integrals.
As in Ref. 15, we indicate these matrices by an overbar,(

Aλ
)
ia,jb

= ∆ia,jb + λvia,jb − λvij,ab , (12)(
Bλ
)
ia,jb

= λvia,bj − λvib,aj . (13)

Based on these matrices, the RPA exchange (RPAx) cor-
relation energy is given by20,21

ERPAx
c =

1

2

∫ 1

0

tr
(
KPλ

)
dλ , (14)
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where Pλ is obtained from solving Eq. (6) using Aλ and
Bλ in place of Aλ and Bλ.

The Bethe�Salpeter correlation energy as de�ned in
Ref. 8 is given by an expression very similar to Eq. (14),
the only di�erence being that the exchange terms in
Eqs. (12) and (13) are replaced by their static screened
counterparts. Correspondingly, the Bethe�Salpeter cor-
relation energy is obtained from

EBSE
c =

1

2

∫ 1

0

tr
(
KPλ

)
dλ , (15)

where Pλ is obtained from solving Eq. (6) using Aλ and

Bλ in place of Aλ and Bλ,(
Aλ

)
ia,jb

= ∆ia,jb + λvia,jb − λwij,ab , (16)(
Bλ

)
ia,jb

= λvia,bj − λwib,aj . (17)

In Eqs. (16) and (17), w refers to integrals over the static
screened interaction. As in Ref. 6, these integrals are
computed in the resolution-of-the-identity (RI) approxi-
mation,

wpq,rs =
∑
PQ

Rpq,P
(
ε−1
)
PQ

RQ,sr , (18)

with

εPQ = δPQ − 2<
∑
kc

RP,kcRkc,Q
εk − εc

, (19)

where < denotes the real part. Here, the indices
p, q, r, . . . refer to arbitrary spin orbitals while the indices
P,Q,R, . . . refer to functions of the (real-valued) auxil-
iary basis set. The integrals R are the usual three-index
intermediate quantities that occur in methods based on
the RI approximation (see Ref. 6 for details).

In Ref. 8, the RPAsX approximation (random-phase
approximation with screened exchange) was proposed
to resolve problems due to instabilities originating from
particle�hole diagrams. In this RPAsX approximation,
the term −λwij,ab in Eq. (16) is omitted.

Furthermore, we note that instead of multiplying the �-
nal integral w with the coupling-strength parameter λ, as
done in Ref. 8, the concept of coupling-strength integra-
tion implies that at coupling strength λ, the two-electron
integrals need to be scaled by λ. After some straightfor-
ward manipulation, one can show that the screened inter-
action w at coupling strength λ is given by the following
equations:

(ελ)PQ = δPQ − 2λ<
∑
kc

RP,kcRkc,Q
εk − εc

, (20)

wλpq,rs =
∑
PQ

Rpq,P
(
ε−1λ
)
PQ

RQ,sr , (21)

and (
Ãλ

)
ia,jb

= ∆ia,jb + λvia,jb − λwλij,ab , (22)(
B̃λ

)
ia,jb

= λvia,bj − λwλib,aj . (23)

The corresponding correlation energy, which we denote
as extended Bethe�Salpeter (XBS) correlation energy, is
then given by

EXBS
c =

1

2

∫ 1

0

tr
(
KP̃λ

)
dλ . (24)

Equations (20)�(24) were straighforward to implement
in the Turbomole program package. The previously
applied equations (18)�(19) are obviously an approxima-
tion, which is only exact at small λ.

We note that the corresponding XBSsX correlation
energy is obtained by omitting the term −λwλij,ab in
Eq. (22).

C. Exchange in the interaction kernel

More energy expressions can be generated by replac-
ing the matrix K in Eqs. (1), (14), (15), or (24) by its
�antisymmetrized� counterpart K. For example, by mak-
ing this replacement in Eq. (1), the dRPA-II correlation
energy of Ángyán et al. is obtained,14,17 which is closely
related to the adiabatic-connection second-order screened
exchange (AC-SOSEX) correlation energy,

EdRPA-II
c =

1

2

∫ 1

0

tr
(
KPλ

)
dλ . (25)

The AC-SOSEX correlation energy refers to the dRPA-
IIa approximation de�ned by equation 59 of Ref. 14.

In the spirit of Eq. (25), it seems also worthwhile to in-
vestigate the corresponding expression using the interac-
tion kernel K̃ = K, where the antisymmetric (exchange-
like) contribution is evaluated with the static screened
exchange w at full coupling (λ = 1) instead of v. The
correlation energy is then de�ned as

EIOSEX
c =

1

2

∫ 1

0

tr
(
K̃Pλ

)
dλ . (26)

We denote this new approach as IOSEX (in�nite-order
screened exchange) approach.

Furthermore, we have also investigated correlation-
energy expressions in which only the matrix B is inserted
into Eq. (11) in antisymmetrized (and possibly screened)
form. This resembles the �sX� approximation of Ref. 8
and we therefore denote the corresponding approaches by
the ending �sX�. For example, we de�ne the dRPA-IIsX
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correlation energy as

EdRPA-IIsX
c =

1

2

∫ 1

0

tr
(
KsXPλ

)
dλ , (27)

with

KsX =

(
A′ B
B∗ A′∗

)
. (28)

The IOSEXsX correlation energy is de�ned analogously
in terms of a matrix K̃sX that contains B̃.

D. Ring-coupled-cluster theory

At this point, we note that it is also possible to de-
�ne the second-order screened exchange correlation en-
ergy in the framework of the direct ring-coupled-cluster-
doubles (drCCD) approach, which is equivalent to the
dRPA method. We refer to this drCCD-based variant
as coupled-cluster second-order screened exchange (CC-
SOSEX) correlation energy.22 It is de�ned as

ECC-SOSEX
c =

1

2
tr
(
BY1X

−1
1

)
. (29)

Analogously, we de�ne the coupled-cluster in�nite-order
screened exchange (CC-IOSEX) correlation energy as

ECC-IOSEX
c =

1

2
tr
(
B̃Y1X

−1
1

)
. (30)

E. Overview over all methods

An overview over the abovementioned methods is given
in Table I. Here and in the following, we use blackboard
bold characters to represent any of the matrices given
in the previous sections. With respect to the integrand
tr(KPλ) entering the coupling-strength integration, one
needs to ask the following questions: �rst, how does one
construct the matrices A′ and B to set up K, second,
how does one construct the matrices A′λ and Bλ that
are used to build Pλ, and third, whether to use Kohn�
Sham orbital energies or GW quasiparticle energies. For
all methods without a prime summarized in Table I, the
screened exchange w in the A′ and B matrices for the in-
teraction kernel K and in the A′λ and Bλ matrices for the
polarization propagator are calculated using GW quasi-
particle energies. A prime is attached to the method's
acronym if Kohn�Sham orbital energies are used for the
diagonal matrix ∆ in place of GW quasiparticle energies.
When Kohn�Sham orbital energies are used everywhere,
that is, also for the screened exchange w (and wλ), then
we attach a double prime to the method's acronym (not
shown in Table I).

TABLE I. Overview of various models, using either orbital
energies (OE) or quasiparticle energies (QP) for ∆. Given is
the exchange-like contribution to the respective matrix.

Methoda K Pλ
A′ B ∆ A′λ Bλ

CC-SOSEX �b v OE 0 0
CC-IOSEX �b w QP 0 0
CC-IOSEX′ �b w OE 0 0
dRPAc 0 0 OE 0 0
dRPA-II v v OE 0 0
dRPA-IIsX 0 v OE 0 0
IOSEX w w QP 0 0
IOSEX′ w w OE 0 0
IOSEXsX 0 w QP 0 0
IOSEXsX′ 0 w OE 0 0
BSE 0 0 QP w w

BSE′ 0 0 OE w w

RPAsX 0 0 QP 0 w

RPAsX′ 0 0 OE 0 w

XBS 0 0 QP wλ wλ

XBS′ 0 0 OE wλ wλ

XBSsX 0 0 QP 0 wλ

XBSsX′ 0 0 OE 0 wλ

RPAxd 0 0 OE v v

RPAx-IIe v v OE v v

a) The prime indicates that quasiparticle energies are
used for w but not for ∆.

b) Energy computed from drCCD amplitudes and B.
c) dRPA ≡ dRPA-I.
d) RPAx ≡ RPAx-I.
e) See Ref. 14.

A few comments are in place here. First, we have
grouped Table I into di�erent categories. The �rst three
lines correspond to time-ordered perturbation theory as
realized in the coupled-cluster approach. The next seven
methods use the direct RPA to determine the polar-
ization propagator but contract over di�erent (possibly
antisymmetrized) interaction kernels. If the polariza-
tion propagator is calculated in the direct RPA, anti-
symmetrization of the interaction kernel K seems ad-
vantageous. Inspired by the observation by Maggio and
Kresse8 that instabilities can be avoided by using only
antisymmetrized B kernels, we have investigated this ap-
proximation for the interaction kernel K as well (. . . sX
methods). The next nine methods apply direct RPA-
like kernels for the interaction K but calculate the po-
larization propagator either in the full random-phase ap-
proximation (RPAx method) or by using the full Bethe�
Salpeter polarization propagator with antisymmetrized
A′λ and Bλ matrices. The �nal method (RPAx-II) uses
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antisymmetrized matrices in both the polarization prop-
agator and the interaction kernel.

As to what kind of combinations are expected to be
useful, the following issues are important:

Common experience tells that orbitals and one-
electron energies obtained from density-functional the-
ory (DFT) combined with the dRPA yield reasonable
polarizabilities (for instance, DFT static dielectric con-
stants, C6 coe�cients and symmetry-adapted perturba-
tion theory using DFT polarizabilities are often remark-
ably accurate).23 Combined with a dRPA kernel, the cor-
relation energies are too negative, but that can be allevi-
ated by contracting over an antisymmetrized interaction
kernel. Combining dRPA polarizabilities with antisym-
metrized interaction kernels restores the direct and ex-
change diagram in second order.

If quasiparticle energies are used to calculate the
independent-particle propagator, one needs to include
the antisymmetric terms in the A′λ and Bλ matrices of
the Bethe�Salpeter equation to obtain quantitatively re-
liable excitation spectra and polarizabilities. Speci�cally,
combining quasiparticle energies with the dRPA yields
much too small polarizabilities as shown in Ref. 24. To
obtain accurate results, the inclusion of w (or wλ) in A′λ is
particularly important, as this term introduces excitonic
e�ects via the particle-hole ladder diagrams. However,
including screened (w or wλ) unscreened (v) exchange
integrals in the A′λ matrix often introduces instabilities
causing negative eigenvalues in the excitation spectrum
(cf. Ref. 8). As discussed in the results section, these
methods turn out to be unstable for most systems;

Inclusion of the exchange diagrams only in the Bλ ma-
trix of the polarization propagator resolves the instabil-
ity issues. Fundamentally, however, it is unclear whether
this approach should be combined with DFT orbital ener-
gies or GW quasiparticle energies. Since excitonic e�ects
are neglected (no exchange diagrams in the A′λ matrix),
it seems reasonable to test this approach with both DFT
orbital energies or GW quasiparticle energies, with DFT
orbital energies possibly having a slight advantage.

III. COMPUTATIONAL DETAILS

All adiabatic-connection correlation-energy calcula-
tions were performed with the Turbomole pro-
gram package using the modules dscf (for Kohn�
Sham calculations), escf (for the GW quasiparti-
cle energies and Bethe�Salpeter correlation energies),
and rirpa (for dRPA and AXK). The CFOUR pro-
gram (Coupled-Cluster techniques for Computational

Chemistry)25 was used for the coupled-cluster cal-
culations on the transition-metal monoxides at the
coupled-cluster singles-and-doubles level with perturba-
tive triples, CCSD(T).26,27

A. Atomic total energies and HEAT test set

The calculations were performed in the aug-cc-
pwCVXZ (aug-cc-pVXZ for H) basis sets of Peterson
and Dunning,28�30 with X = T, Q and 5. When using
the escf module, the �MP2-�tting� basis set of Hättig
was used as auxiliary basis set for the RI approximation
(cbas in Turbomole jargon).31 When using the rirpa
module, Weigend's universal �Coulomb-�tting� basis was
used for the RI approximation (jbas in Turbomole

jargon).32

The complete-basis-set (CBS) total and atomization
energies were obtained by �tting the function Eref(∞) +
α exp(−βX) to the Kohn�Sham determinant expectation
values obtained in aug-cc-pVXZ basis sets28 with X = Q,
5 and 6 (X = T, Q and 5 for Li and Be) and by �tting
the function Ec(∞) + γX−3 to the correlation energies
obtained in aug-cc-pwCVXZ (aug-cc-pVXZ for H) basis
sets with with X = Q and 5.33,34 We refer to this extrap-
olation as Q56/Q5 extrapolation.
Quasiparticle energies were computed at the evGW

level35 with Turbomole's escf module using the im-
plementation of Ref. 7. In these calculations, the rel-
evant Turbomole parameters were set to eta = 0.05

and rpaconv = 5. Numerical integration over coupling
strength was done using a Gauÿ-Legendre quadrature
using 32 points or more. The evGW level was cho-
sen because it was found to outperform the (linearized)
G0W0 scheme with respect to electronic excitation en-
ergies, yielding an accuracy similar to that of the com-
putationally more involved quasiparticle self-consistent
approach (qsGW ).7

The functionals TPSS36 and TPSSh37,38 were em-
ployed in the Kohn�Sham calculations, using the Tur-
bomole parameters gridsize = 5, scfconv = 10, and
denconv = 1d-9.
In Ref. 39, Bates and Furche argue that the reference

determinant for RPA correlation-energy calculations is
most appropriately generated from a (non-hybrid) semi-
local DFT calculation. They recommend the TPSS func-
tional, but we decided to also test the hybrid functional
TPSSh. At this point, a comprehensive study of func-
tionals must be postponed into the future.

B. Transition-metal monoxides

The computations on the 3d transition-metal monox-
ides were all performed in the def2-QZVPP basis set of
Weigend, Ahlrichs and Furche.40 As for the atomic to-
tal energies and atomization energies, the �MP2-�tting�
basis set of Hättig was used as cbas auxiliary basis
set for the RI approximation31 while for computations
with the rirpa module, Weigend's universal �Coulomb-
�tting� jbas basis was used.32 Quasiparticle energies
were computed at the evGW level35 using the param-
eters eta = 0.05 and rpaconv = 5. The underlying
Kohn�Sham calculations were performed with the func-
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tionals TPSS36 and TPSSh37,38 using the Turbomole
parameters gridsize = 5, scfconv = 9, and denconv

= 1d-8. Calculations were performed for the same elec-
tronic states as given in Table VI of Ref. 41, and for each
system the equilibrium geometry and harmonic vibra-
tional frequency were determined by �tting a 6th-degree
polynomial to seven points about the minimum of the
potential-energy curve (of the method of interest), using
an equidistant spacing of 0.02 a0. Numerical integration
over coupling strength was done using a Gauÿ-Legendre
quadrature using 32 points or more.

IV. RESULTS AND DISCUSSION

In this section, we will discuss results that were ob-
tained using Kohn�Sham orbitals obtained from DFT
calculations with the TPSS functional.36 All of these cal-
culations have been repeated with TPSSh orbitals, but
the results obtained with this hybrid functional have been
moved to the Supplemental Information. The results do
not depend too much on the Kohn�Sham orbitals, and
it seems appropriate to focus on the TPSS results in the
main text.
In the following, we will discuss the results obtained for

atomic total energies, atomization energies, bond lengths,
and harmonic vibrational frequencies.
Note that we do not report results of all methods men-

tioned in Section II because we encountered instabilities
(matrices that were not positive de�nite) on many oc-
casions when applying the RPAx, RPAx-II, BSE, BSE′,
XBS and XBS′ methods. Thus, these methods do not
occur in the tables with results. Note that the methods
plagued by instabilities have in common that the matrix
A′ of Table I contains exchange contributions.

A. Atomic total energies

Table II shows results for the total energies of the
atoms H�Ne. Computed energies are compared with
the estimates for the exact nonrelativistic total energies
of Davidson and co-workers.42 In wave function theory,
the post-Hartree�Fock correlation energy is added to the
Hartree�Fock energy (Hamiltonian expectation value ob-
tained with the Hartree-Fock determinant) to obtain the
total electronic energy. In the framework of the adiabatic
connection, however, the correlation energy is added to
the Hamiltonian expectation value computed with the
Kohn-Sham determinant. Such an adiabatic-connection
correlation energy can therefore not directly be compared
with a post-Hartree�Fock correlation energy. Thus, we
decided to extrapolate both the expectation values and
the correlation energies to the limit of a complete basis,
such that for each system, we can compare the sum of
the two extrapolated energies with the highly accurate
total electronic energy of Ref. 42.

The dRPA model yields only very poor total en-
ergies for the atoms H�Ne. Also the Bethe�Salpeter
based methods using orbital energies only (instead of
quasiparticle energies) do not perform very well (meth-
ods RPAsX′′�IOSEXsX′′). The virtually identical re-
sults for AC-SOSEX and CC-SOSEX have been ob-
served for many systems in several studies. dRPA-
IIsX is also very close, and a diagrammatic analysis
shows that all three include identical diagrams up to
second order in the Coulomb interaction. In third
order, subtle di�erences exist, where AC-SOSEX in-
cludes improper diagrams. It it somewhat remarkable
that the di�erences between CC-SOSEX/AC-SOSEX
and RPAsX/XBSsX/CC-IOSEX are also small, although
the latter three methods calculate the polarization propa-
gators using GW quasiparticle energies instead of Kohn�
Sham orbital energies. There is no obvious reason for
this good agreement. On the other hand, the good agree-
ment within the group RPAsX/XBSsX/CC-IOSEX is ex-
pected, since these methods use the same one-electron
energies and include a very similar set of diagrams (they
are again identical up to second order in the Coulomb
interaction).
Replacing the quasiparticle energies by orbital ener-

gies in the diagonal matrix ∆ increases the magnitude of
the correlation energies consistently by about 25�35 mEh

for the atoms B�Ne. This is in line with our expec-
tations: the one-electron gaps are smaller using orbital
energies than quasiparticle energies, so �uctuations and
correlation energies increase in magnitude. XBSxX′ and
IOSEXsX′ are particularly close, and a diagrammatic
analysis shows that they sum the same set of diagrams up
to third order in the Coulomb interaction (in fourth or-
der, the XBSxX′ approach includes diagrams with two
B's that are missing in IOSEXsX′). A more detailed
diagrammatic analysis is postponed to future studies,
though.
The di�erences between the other methods are only

minor, and some of the new methods perform roughly as
well as the approximate-exchange-kernel (AXK) method
of Bates and Furche.39

B. HEAT test set

In real-world applications of electronic-structure ap-
proaches to chemical problems of interest, energy di�er-
ences are more important than total energies. In 2008,
Harding et al.16 published accurate values for the non-
relativistic electronic atomization energies for a series of
small molecules using the �highly accurate extrapolated
thermochemistry� (HEAT) protocol, and in Table III,
we compare the results of our calculations with these
HEAT reference values. Both our values and the HEAT
values have been extrapolated to the complete-basis-set
(CBS) limit. Deviations from the HEAT values obtained
in �nite basis sets are also reported. Figure 1 visual-
izes the deviations from the HEAT reference values for
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TABLE II. Errors in the total energies (in mEh) of the atoms H�Ne. Computed using the TPSS functional and extrapolated
to the basis-set limit (Q56/Q5 extrapolation).

Methoda H He Li Be B C N O F Ne
Referenceb −500.00 −2903.7 −7478.1 −14667 −24654 −37845 −54589 −75067 −99734 −128939

TPSS 0 −6 −10 −4 −15 −22 −27 −43 −46 −42

TPSS orbital energies
dRPAc −20 −40 −65 −81 −105 −129 −145 −169 −189 −199

AXKc −2 −4 −9 −11 −10 −9 −5 −6 −6 −2

CC-SOSEX 0 1 1 6 11 13 14 17 20 22

AC-SOSEX 0 1 1 6 11 14 14 18 21 23

dRPA-II −3 −6 −16 −27 −30 −38 −17 −28 −40 −14

dRPA-IIsX 1 3 5 14 21 25 22 28 33 34

RPAsX′′ −4 −10 −18 −25 −29 −33 −27 −35 −40 −31

XBSsX′′ −3 −7 −14 −18 −20 −23 −17 −23 −26 −18

CC-IOSEX′′ −4 −9 −17 −23 −27 −31 −24 −32 −37 −27

IOSEX′′ −7 −16 −33 −55 −63 −73 −48 −67 −81 −54

IOSEXsX′′ −3 −8 −15 −20 −23 −25 −19 −26 −29 −20

evGW quasiparticle energies
RPAsX −2 −1 −5 8 8 7 6 8 10 12

RPAsX′ −3 −8 −13 −18 −19 −21 −20 −25 −28 −26

XBSsX −1 1 −2 12 14 14 13 16 20 22

XBSsX′ −2 −6 −9 −12 −11 −12 −12 −14 −16 −14

CC-IOSEX −2 0 −4 9 10 9 8 10 12 15

CC-IOSEX′ −3 −7 −12 −16 −17 −18 −18 −22 −24 −22

IOSEXsX′ −2 −6 −9 −10 −10 −11 −12 −14 −15 −15

a) One prime indicates that orbital energies are used for ∆; a double prime indicates that
orbital energies are not only used for ∆ but also for w (or wλ).

b) From Ref. 42.
c) Computed with the rirpa module.

a few selected methods in terms of normalized Gaussian
distributions. The HEAT test set comprises the 26
molecules N2, H2, F2, CO, O2, C2H2, CCH, CF, CH2,
CH, CH3, CN, CO2, H2O2, H2O, HCN, HCO, HF, HNO,
HO2, NH2, NH3, NH, NO, OF, and OH. For molecules
of this size, a mean absolute error of 31.2 kJmol−1 in
the atomization energies as obtained at the dRPA level
is unacceptable (the standard deviation σ of the error
distribution amounts to 21.9 kJmol−1, see Figure 1).
This is much improved by the AXK method of Bates
and Furche,39 which shows a mean absolute error of 18.4
kJmol−1 (σ = 12.7 kJmol−1).

The SOSEX variants AC-SOSEX, CC-SOSEX, dRPA-
II and dRPA-IIsX all yield results of poorer quality than
dRPA and thus are no improvement. Very promising,
however, are the methods RPAsX′, XBSsX′, CC-IOSEX′

and IOSEXsX′. It appears that it is advantageous to
use quasiparticle energies only for the screened interac-
tion w (and/or wλ), not for the energy di�erences of
the matrix ∆. Since all of these methods neglect the
particle�hole ladder diagrams in the A′λ matrix, the use

of quasiparticle energies in the polarization propagator
would yield too small polarizabilities and �uctuations.
Using the Kohn�Sham orbital energies recti�es this prob-
lem. All of this also applies to the results obtained with
the TPSSh functional (see Table S2 in the Supplemental
Information). Of the above mentioned methods, the CC-
IOSEX′ method is particularly promising. Building the
matrices X1 and Y1 is relatively straightforward and not
hampered by instabilities (it is done at the dRPA level).
Furthermore, no numerical integration over the coupling
strength is involved (see Eq. 30).

C. Transition-metal monoxides

In view of the success of the CC-IOSEX′ approach,
we found it interesting to see whether the method would
also perform well on a quite di�erent set of molecules such
as the 3d transition-metal monoxides MO with M=Ca�
Zn. The results of the corresponding calculations are
presented and discussed in the present section.
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TABLE III. Mean absolute error (in kJmol−1) with respect
to the non-relativistic, electronic atomization energies of the
HEAT test set. Computed using the TPSS functional.

Method ACVTZ ACVQZ ACV5Z CBSa

TPSS 15.1 15.5 15.6 15.6
TPSS orbital energies

dRPAb 55.2 41.1 36.4 31.2
AXKb 46.2 30.2 24.6 18.4
CC-SOSEX 61.0 45.7 40.5 34.8
AC-SOSEX 61.1 45.8 40.6 34.9
dRPA-II 77.6 61.5 56.2 51.8
dRPA-IIsX 75.4 60.2 55.0 49.5
RPAsX′′ 37.5 22.3 18.5 15.9
XBSsX′′ 37.1 22.0 16.9 13.6
CC-IOSEX′′ 37.8 22.8 18.6 15.6
IOSEX′′ 56.6 48.8 47.1 45.4
IOSEXsX′′ 40.9 25.9 20.7 16.5

evGW quasiparticle energies
RPAsX 57.6 41.0 34.7 27.8
RPAsX′ 23.5 8.1 5.3 5.8
XBSsX 62.7 46.2 40.0 33.1
XBSsX′ 27.7 12.3 7.1 4.0
CC-IOSEX 59.3 42.8 36.6 29.8
CC-IOSEX′ 24.1 8.7 4.8 4.7
IOSEX 41.5 24.8 18.6 11.9
IOSEX′ 43.2 36.1 34.5 32.9
IOSEXsX 97.1 80.4 73.9 66.9
IOSEXsX′ 26.7 11.3 6.2 3.2

a) Q56/Q5 extrapolation.
b) Computed with the rirpa module.

The 3d transition-metal monoxides have been inves-
tigated by Furche and Perdew as well as by Bates and
Furche to test the TPSS functional and the AXK ap-
proach, respectively.39,41 As in Ref. 39, we use the def2-
QZVPP basis set and compare the computed results
(equilibrium bond lengths and harmonic vibrational fre-
quencies) with experimental data. Of course, a compar-
ison of non-relativistic, pure electronic-structure results
obtained in a �nite basis set of atomic orbitals with ex-
perimental results is somewhat troublesome, but we can
compare our results also with those that are obtained at
the Kohn�Sham, dRPA, AXK and CCSD(T) levels.

Considering the equilibrium bond length re, the mean
error and mean absolute error of the set of 11 monoxides
amount to −0.5 and 0.7 pm, respectively, at the Kohn�
Sham TPSS/def2-QZVPP level (see Table IV). This is
remarkably accurate, in particular in comparison with
the dRPA and AXK levels, which display mean absolute
errors of 1.2 and 0.8 pm, respectively (the mean errors
are 0.7 and 0.0 pm, respectively). The dRPA and AXK

FIG. 1. Normalized Gaussian distributions of deviations from
the HEAT benchmark values.

approaches do not seem to improve the underlying Kohn�
Sham results.
This behavior of the TPSS, dRPA and AXK meth-

ods is corroborated by the results obtained for the har-
monic vibrational frequencies ωe (see Table V). Whereas
the mean absolute error amounts to 25 cm−1 at the
TPSS/def2-QZVPP level, these errors are 43 and 33
cm−1 at the dRPA and AXK levels, respectively. Also
the SOSEX variants are no improvement over Kohn�
Sham theory. For the bond lengths, we �nd mean abso-
lute errors of 3.1, 3.3, 1.9 and 5.8 pm, respectively, for the
methods CC-SOSEX, AC-SOSEX, dRPA-II and dRPA-
IIsX. For the harmonic vibrational frequencies, the re-
spective mean absolute errors are 97, 103, 52 and 180
cm−1.
With respect to harmonic vibrational frequencies of

individual systems, the di�erences between results ob-
tained with TPSS or TPSSh orbitals seem somewhat
more pronounced than for the equilibrium distances, but
the corresponding mean absolute errors show a compara-
ble order of magnitude for the TPSS- and TPSSh-based
results.
Unfortunately, it is di�cult to identify clear trends

or approaches that perform clearly better than others.
With respect to the atomization energies of the HEAT
test set, the methods RPAsX′, XBSsX′, CC-IOSEX′ and
IOSEXsX′ look promising, and indeed, these methods
also perform (reasonably) well for the transition-metal
monoxides. With respect to the bond lengths, the mean
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TABLE IV. Errors in the equilibrium bond lengths (re in pm) of transition-metal monoxides. Computed in the def2-QZVPP
basis set. Hartree�Fock reference for UHF-CCSD(T), TPSS reference elsewhere.

Method CaO ScO TiO VO CrO MnO FeO CoO NiO CuO ZnO MAEa

Expt.b 182.2 166.8 162.0 158.9 161.5 164.6 161.6 162.9 162.7 172.4 171.9c

CCSD(T)d 0.7 0.4 −0.3 −1.5 0.1 −0.3 −1.2 −2.8 −0.1 2.6 −1.2 1.0

TPSS −1.0 0.0 1.1 0.1 −0.1 −1.7 −1.1 −0.4 0.2 −0.2 −2.0 0.7

TPSS orbital energies
dRPAe 0.0 1.2 2.0 0.9 1.9 −0.7 0.3 2.8 1.2 −0.2 −2.1 1.2

AXKe −0.2 −0.1 0.6 −0.9 0.2 −1.1 −0.7 0.6 −1.2 2.6 0.3 0.8

CC-SOSEX −3.0 −2.1 −1.4 −3.0 −2.5 −2.7 −3.2 −2.5 −5.6 6.2 −1.9 3.1

AC-SOSEX −3.1 −2.1 −1.5 −3.1 −2.8 −2.8 −3.3 −2.7 −6.0 7.0 −1.7 3.3

dRPA-II 1.5 2.1 2.5 1.6 −0.5 −0.1 2.0 −5.0 0.2 3.6 . . .f 1.9

dRPA-IIsX −5.6 −4.0 −3.4 −5.2 −5.2 −4.9 −5.8 −4.7 −9.8 11.4 −4.1 5.8

RPAsX′′ 2.7 2.1 2.9 2.0 2.3 1.1 2.1 2.1 3.6 0.5 1.6 2.1

XBSsX′′ 2.4 1.8 2.6 1.7 2.0 1.0 1.9 1.7 3.3 0.9 1.4 1.9

CC-IOSEX′′ 2.8 2.2 2.9 2.1 2.3 1.2 2.2 2.2 3.8 0.6 1.7 2.2

IOSEXsX′′ 2.4 1.8 2.6 1.7 2.0 1.0 1.9 1.8 3.2 1.0 1.7 1.9

evGW quasiparticle energies
RPAsX 0.6 −2.1 −1.4 −2.0 −0.8 −2.2 −1.9 −0.9 −1.4 1.3 −2.8 1.6

RPAsX′ 1.6 0.9 1.7 0.6 1.1 0.0 0.4 1.0 0.9 0.5 −0.4 0.8

XBSsX 0.3 −2.3 −1.6 −2.2 −1.0 −2.3 −2.1 −1.4 −1.7 1.7 −2.9 1.8

XBSsX′ 1.0 0.4 1.2 0.0 0.5 −0.4 −0.1 0.3 −0.3 1.1 −0.7 0.5

CC-IOSEX 0.6 −2.1 −1.4 −2.0 −0.8 −2.2 −1.9 −0.9 −1.4 1.4 −2.8 1.6

CC-IOSEX′ 1.7 0.9 1.7 0.6 1.1 0.0 0.5 1.1 1.0 0.7 −0.4 0.9

IOSEXsX′ 0.7 0.1 1.0 −0.2 0.2 −0.7 −0.5 0.1 −0.8 1.4 −1.2 0.6

a) Mean absolute error.
b) For details on experimental data, cf. Ref. 41.
c) CCSD(T) result from Ref. 43.
d) Frozen-core (M: 1s2s2p, O: 1s) UHF-CCSD(T)/def2-QZVPP computations with cfour.
e) Computed with the rirpa module.
f) Computation failed.

absolute errors are 0.8, 0.5, 0.9 and 0.6 pm, respec-
tively. This is roughly the same quality as obtained in the
TPSS and AXK calculations. A similar conclusion can be
drawn from the harmonic-vibrational-frequency results,
and in view of the above, we conclude that the CC-
IOSEX′ approach remains a good candidate for the accu-
rate and cost-e�cient computation of correlation energies
in the framework of the adiabatic-connection �uctuation�
dissipation theorem.

V. CONCLUSIONS

We have implemented (in the Turbomole program
package) a number of methods based on the Bethe�
Salpeter equation for the computation of correlation
energies in the framework of the adiabatic-connection
�uctuation�dissipation theorem. Inclusion of (screened)

exchange contributions when constructing the matrices
Pλ (see Table I) often leads to instabilities. The cor-
responding methods were not applicable. More use-
ful methods were obtained when invoking the direct
random-phase approximation (dRPA) when constructing
Pλ. Then, (screened) exchange contributions can be ac-
counted for in the matrix K (see Table I). The perfor-
mance of the corresponding methods has been assessed
and in particular the CC-IOSEX′ approach seemed very
promising. As we have shown, this approach performs
practically identical to XBSsX, which is a more accurate
variant than RPAsX (the method advocated originally
by Maggio and Kresse8). There is an important di�er-
ence, though. In the present work, the polarization prop-
agators are evaluated using Kohn�Sham orbital energies.
This approximation was not investigated by Maggio and
Kresse for the homogeneous electron gas, since it tends
to overestimate the absolute correlation energy (which is
also the case for atoms, as demonstrated in Table II).
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TABLE V. Errors in the harmonic vibrational frequencies (ωe in cm−1) of transition-metal monoxides. Computed in the
def2-QZVPP basis set. Hartree�Fock reference for UHF-CCSD(T), TPSS reference elsewhere.

Method CaO ScO TiO VO CrO MnO FeO CoO NiO CuO ZnO MAEa

Expt.b 732 965 1009 1011 898 840 880 853 838 640 727c

CCSD(T)d −33 −16 39 −83 16 14 67 145 132 −28 19 54

TPSS 43 9 6 4 15 67 43 8 15 25 36 25

TPSS orbital energies
dRPAe −37 −66 −65 −46 −36 −51 23 25 43 28 49 43

AXKe −12 −24 −10 18 5 39 39 71 58 −48 −43 33

CC-SOSEX 54 30 51 89 81 84 111 217 212 −123 15 97

AC-SOSEX 56 32 54 95 93 88 116 230 222 −136 12 103

dRPA-II −42 −87 −54 −12 120 33 −1 −60 32 −80 . . .f 52

dRPA-IIsX 120 89 119 167 165 137 186 376 367 −169 81 180

RPAsX′′ −59 −83 −73 −62 −18 15 −16 −61 −64 12 −72 49

XBSsX′′ −54 −75 −65 −53 −15 15 −12 −60 −58 3 −71 44

CC-IOSEX′′ −61 −84 −74 −63 −17 13 −18 −65 −70 10 −75 50

IOSEXsX′′ −55 −76 −65 −52 −15 14 −12 −53 −56 −2 −74 43

evGW quasiparticle energies
RPAsX −12 −19 3 36 −63 57 30 −201 174 24 102 66

RPAsX′ −32 −55 −46 −29 −2 40 31 13 15 10 −18 27

XBSsX −11 −17 1 44 −56 70 43 −67 129 −25 95 51

XBSsX′ −20 −41 −29 −10 12 45 43 43 53 −9 −7 28

CC-IOSEX −11 −18 5 37 −62 56 29 −202 173 13 102 64

CC-IOSEX′ −33 −55 −47 −29 0 40 29 13 12 6 −17 26

IOSEXsX′ −14 −34 −24 −3 19 49 50 60 74 −18 15 33

a) Mean absolute error.
b) For details on experimental data, cf. Ref. 41.
c) CCSD(T) result from Ref. 43.
d) Frozen-core (M: 1s2s2p, O: 1s) UHF-CCSD(T)/def2-QZVPP computation with cfour.
e) Computed with the rirpa module.
f) Computation failed.

Absolute errors in the correlation energy are, however,
often acceptable: for the homogeneous electron gas, the
most relevant property is that the density dependence
of the correlation energy is well reproduced, a constant
o�set hardly matters.
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