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Abstract— In this paper, we consider Networked Control Sys-
tems where the transmission of sensor data is restricted in terms
of a fixed communication budget due to the limited capacity
of the underlying network. Therefore, the remote estimator
cannot be supplied with measurements every time step, which
impacts the accuracy of the estimates and consequently the
achievable control performance. In order to trade off estimation
accuracy against the costs of measurement transmission, we
formulate the considered task as an optimal control problem,
so that it fits into the broader class of sensor and measurement
scheduling problems. As the optimal solution of such problems
is generally intractable, we derive a suboptimal algorithm based
on randomized rounding. In two numerical examples, we show
that the proposed approach can outperfom a state-of-the-art
sensor selection algorithm.

I. INTRODUCTION

In a Networked Control System (NCS), a packet-based
communication infrastructure based on general-purpose net-
works like WiFi or Ethernet is typically employed to connect
the individual components of the control loop. Compared to
traditional, dedicated point-to-point connections, this offers
enhanced flexibility and easier maintenance [1], [2]. On the
downside, additional challenges emerge from the utilization
of such networks, which have to be addressed in conjunction
with the control task. Apart from the occurrence of random
packet delays and losses, usually the limited availability of
communication bandwidth imposes a major restriction to
the achievable system performance [2], [3], which can even
result in instability of the closed loop system [4].

In order to deal with limited communication capabilities,
promising approaches to reduce the amount of data to
be transmitted are referred to as event-based communica-
tion [5]-[7] or controlled communication [2], [8] in litera-
ture. Event-based communication primarily aims at a more
efficient usage of the communication media by only sending
data when required, i.e., only when a certain triggering event
occurs. A common strategy for event-based state estimation
is, for instance, known as send-on-delta [5], while for event-
based control criteria based on Lyapunov functions have been
devised [7]. On the other hand, controlled communication
in the first place aims at trading off system performance
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Fig. 1: Considered setup. The control inputs u§ are computed using state
estimates 27, and then transmitted to the plant over a network. The estimates
are obtained from measurements gkwhich are communicated from the
sensor according to a transmission schedule, i.e., only at time steps when
up = 1.

against communication requirements by not sending data
every time step. This can, for example, be achieved by
formulating the trade-off as an optimal control problem,
which is then solved to derive (deterministic) communication
policies. With respect to sensor data to be communicated
via a network, these approaches can be seen as instances of
measurement or sensor scheduling and selection problems. In
such problems it is typically desired to optimally schedule a
set of different sensors with respect to a cost function which
attempts to trade off estimation accuracy against the costs of
sensor utilization.

However, the number of possible solutions usually in-
creases exponentially with the length of the optimization
horizon so that the considered problems are in general
NP-hard. Thus, computing the optimal solution is often
intractable and one has to resort to suboptimal solutions and
heuristics. Due to the relevance of these kind of problems in
a variety of fields, plenty of research has been carried out
for a long time, resulting in both important theoretical in-
sights into the structure of optimal solutions, and suboptimal
algorithms based on, e.g., pruning strategies or relaxation
techniques (cf. [9]-[12] or, for more recent results, [13]—
[16D.

In this paper, we consider the case where measurements of
a single sensor have to be transmitted to a remote estimator
attached to a controller over a network as depicted in Fig. 1.
The communication is subject to transmission constraints
given in terms of limited bandwidth and a fixed budget
that is available to the sensor and that can be spent for
communication within a fixed horizon. To the best of our
knowledge, this particular scenario has not been considered
in literature although it belongs to the general problem class
described above and resembles problems where only a fixed,
limited number of (costly) measurements can be taken, as
discussed, for instance, in [14].



More precisely, the contribution of this paper is threefold.
First, we present a formal description of the considered
scenario and translate it into an optimal control problem,
for which we then, second, derive necessary optimality
conditions. Third, we introduce and analyze a suboptimal,
probabilistic algorithm for the considered problem based on
a suitable relaxation.

Notation: Throughout the paper, vectors will be indi-
cated by underlined letters () while random vectors will
be underlined and in bold (x). To denote matrices, we will
employ boldface capital letters, e.g., A. 0 and I are used to
denote zero and identity matrix, respectively, and a subscript
k indicates the time step. The notation A > 0 means that
the symmetric matrix A is positive semidefinite. Finally,
transposition of a matrix is indicated by (.)T, tr[.] denotes
the trace operator, and |z and [z], respectively, denote floor
and ceiling function.

II. PROBLEM FORMULATION

Consider the NCS illustrated in Fig. 1, where the discrete-
time dynamics of the linear plant is given by

L1 = Az, + Bruy +w,,,

with z,, € RY the plant state, u¢ € R the control input
applied to the plant, A;, € RV*¥ the system matrix and
B, € RY*L the input matrix. The noise process w;, is
white, Gaussian, and zero mean with covariance matrix W.
At each time step, a sensor takes a noisy measurement y, €
RM of the state according to

y, = Hyzy, + v,

where H;, € RM™*Y is the measurement matrix. The mea-
surement noise v, is also white, zero mean, and Gaussian
with covariance matrix Vi, and independent of w;. The
initial plant state x, is assumed to be Gaussian with given
mean 2, and covariance Xy, and independent of w, and v;.

At each time step, the control input uj; is computed by a
controller based on an estimate of the plant state provided by
an estimator, and then transmitted to the plant over a network.
We do not make any particular assumption on the nature of
the applied controller and the network between it and the
plant, because this is not the focus of this work. Thus, in the
most general case, the network might be lossy and subject to
random delays, and the employed controller can be tailored
to NCS scenarios based on model predictive [17], [18] or
sequence-based [19] control approaches.

The estimator is attached to the controller and supplied
with measurements transmitted by the sensor over another
network. Under the conditions of perfect communication,
that is, measurements arrive without delay at the estimator
and do not get lost, it is well known that the Kalman
filter (KF) is the minimum mean squared error (MMSE) esti-
mator [20]. The evolution of the covariance of the estimation
error is then governed by the discrete Riccati equation

Cri1 = ArCrAL + Wy,

_ (1)
— AC HT (H,CH} + V) H,C,AT.

However, in the considered setup, the network is subject
to a limited capacity. Hence, the measurements cannot be
transmitted to the estimator at each time instant k. Instead, at
every K-th time step, the sensor is assigned a communication
budget that can be spent for sending measurements in a
time window of length K € N. More precisely, at time
nK, n=0,1,2,..., a budget B,, > 0 is available for
communication at time steps nK, nK+1,...,(n+1)K —1.
Within this horizon, the nonnegative costs [y, for transmitting
the measurements y, are known but not necessarily equal.
The overall goal is to find a schedule of measurement
transmissions which i) does not exceed the prescribed budget,
ii) avoids sending measurements at costly time steps (that is,
when [y, is large) and iii) maintains small error covariances
Cy, expressed in terms of the MSE given by tr [Cy].

The cost function to be minimized at time n K with respect
to the binary decision variables i, Unk+1; - - - U(nt1)K—1
is

Tn =1 [Clusvyr] + g e [Crl + fur, ()

where u;, = 1 if the measurement shall be communicated
to the estimator, and ur = O otherwise. Note that we
use the squared transmission costs in (2) to enforce that
communication at costly time steps is avoided. The budget
constraint can be expressed by the inequality

(n+1)K-1

k=nK ukﬂk < Bn ’

and the evolution of the error covariance (1) becomes
Cry1 = AkaAE + Wy
-1
—upAC H! (H G HY + V)  HiCrAL .

This is a modified Riccati equation whose properties have,
for instance, been investigated in [21]. For convenience, we
will denote the right side of (3) by G (Cy,ux) and write
Ck+1 = Gk(Ck,uk).

3)

Remark 1 A formula for the evolution of the state estimate
2y which complements (3) has been derived in [9], [21].
Therein it has also been shown that the resulting KF-like
estimator is optimal in the MSE sense.

Remark 2 It is worth to mention that digital networks are
typically packet-based, so that sending only portions or
single entries of the measurements Y, requires the same
amount of network resources. Hence, the transmission costs
Bk stay the same.

In summary, the considered problem can be stated in terms
of the deterministic optimal control problem!
min

Lo min J = tr[Cx] + 300" tr [Chl + BRu
st. (3, u,€{0,1} Vk=0,...,K—1, 4)
Zf;ol upfr < B.

'In the remainder of this paper, we restrict ourselves to Jp, i.e., n = 0,
without loss of generality and write 7 and B instead of Jp and Bo for
convenience.



Before we derive necessary conditions for an optimal
solution of (4) in the next section, it is worth to discuss
the semantics of the transmission costs. We regard the
individual 3; as a measure of the actual or estimated state
of the network at the respective time step in such a way
that “large” values reflect a “bad” network. Here, “bad”
can be perceived as a quantification of the quality of the
communication channel in terms of, e.g., high utilization or
little available bandwidth. The corresponding values could
result from the application of network management such as
bandwidth estimation [22]. On the other hand, we envision
that the concepts for event-based communication introduced
recently in [6], [23] can be utilized. There, the authors
propose to use triggering criteria to predict the next network
access in the near future, rather than to decide whether or
not to send data at the current time step. When the network
is shared among several control loops, these predictions can
be used to gather estimates of the expected future utilization
and subsequently to derive the communication costs J.

Finally, we want to stress that the considered problem
is not limited to scenarios where communication is costly.
For instance, (4) can easily be adapted to scenarios where
several sensors are available but associated with different
cost [ when utilized [14]. Additionally, problems where
only a limited number, say ¢, measurements can be taken in
a certain horizon can be handled by setting 8, = 1, B = ¢
and employing an equality constraint in (4).

III. NECESSARY CONDITIONS FOR OPTIMALITY

In this section, we present necessary conditions for an
optimal solution of the optimization problem (4), which
are derived by first formulating the Hamiltonian associated
with the problem and then employing the matrix minimum
principle [24].

Theorem 1 For a feasible sequence vy, ..., u} _, and cor-
responding covariance trajectory C§,...,C} to be a so-
lution of the optimization problem (4) with initial condition
Co, it must hold that

(i) C5=Co,
(ii) if uj, = 0, then

tr [SkCrALPL AL < Be(Bu+1), (5
with
Sy = C;HT (H,C;HT + V) Hy, (6)

and P§, ..., P} > 0 given by

k=1,
* s \T ATp* )
and where |1 > 0 is a constant which fulfills
i (B =TS uis) = 0. ®)

Proof: The proof is given in Appendix A. [ ]

The conditions given in the theorem bear close resem-
blance to those derived in [9] where sensor selection op-
timization was investigated for a continuous-time scenario.
Additionally, an iterative scheme for obtaining a (suboptimal)
solution which directly exploits the structure of the necessary
conditions was devised therein, which was later on adapted
to an akin, discrete-time scenario in [25], [26].

In principle this algorithm from [9], being simple and easy
to implement, could be adopted to the problem considered
in this paper. In essence, it would consist of the repetitive
improvement of a given initial solution by i) solving the
forward recursion (3), ii) evaluating the costate equations (7)
backwards in time and then iii) determining an improved
solution according to the switching function (5). However, the
incorporation of the budget constraint, that is, the additional
condition (8), which was not present in [9], [25], [26], is
not straightforward. Moreover, oscillatory behavior of the
algorithm was reported in [9] and dependence on appropriate
initial guesses was pointed out in [25].

IV. PROPOSED ALGORITHM

Instead of employing an optimization algorithm to directly
(suboptimally) solve the original problem (4), we solve a
relaxed variant where the binary constraints are replaced by
convex ones. This is similar to what was proposed in [14]
for a sensor selection problem. Then, to convert the relaxed
solution into a feasible solution of the original problem, we
apply a strategy based on randomized rounding [27], [28].

A. Problem Relaxation

Substituting the binary constraints in (4) with the convex
constraints uy € [0,1] yields a relaxation of the original
problem which can be summarized as

_ min J

UQ,..., UK —1

s.t. 3), 0<a,<1 Vk=0,....K—-1, O

Zi:ol upfr < B.

Efficient numerical algorithms for solving this problem are,
e.g., interior point methods or sequential quadratic program-
ming [29]. However, the optimal solution of (9) will in
general be fractional and must thus be converted into a feasi-
ble integral solution, which, commonly, will be suboptimal.
On the other hand, since the feasible set of the original
problem (4) is included in the feasible set of (9), we can
deduce that the optimal value, i.e., the minimal costs, of the
latter constitutes a lower bound for the optimal value of the
former.

B. Randomized Rounding

In case of uniform transmission costs, that is, Sy = (3, a

simple approach to obtain a feasible solution of the original
problem is to set the % largest elements of the solution
of the relaxation to 1 and the remaining ones to 0. Yet, as
stressed in [14], very little can be said on how close to the
optimal solution of (4) the thus obtained schedule will be.

Moreover, for the general case of non-uniform transmission



costs, the described procedure is likely to produce solutions
that violate the imposed budget constraint.

We propose to instead employ a strategy based on random-
ized rounding [27], [28] to recover a solution ug, ..., Uk —1
of the original problem from a given feasible solution
U, . . . , U —1 of the relaxation. Although being probabilistic,
this scheme is superior to the one discussed above as it allows
us in the following i) to explicitly derive an upper bound for
the expected objective value of the obtained solution, that is,
the expected costs E{J} and ii) to prove that this solution
is feasible with non-zero probability.

The basic idea of randomized rounding is straightforward
and can be summarized as follows. For each element @y, the
corresponding element uy, is set to 1 with probability u; and
to 0 with probability 1 — u;. More formally, each wuy is the
result of a Bernoulli trial 7),, with success probability wy,
ie.,

Py, =1] = ag.

By exploiting that the values of the wuj are determined
independently of each other, we can find an upper bound
for the expected costs E{J} of the resulting solution.

Theorem 2 Suppose a not necessarily feasible solution
Uug, ..., Ug—1 Of the original problem (4) is given where
each uy, is the outcome of a Bernoulli trial 1, with success
probability ty. Then, the expected objective value E{J} is
bounded from above according to

E{J} < tr[Ax] +30,2 tr[Ax] + Bfa,  (10)
with Ay computed by the recursion
Ao =Co, Apy1=Gp(Ag, ).
Proof: The proof is given in Appendix B. [ ]

Despite the derived bound, using this simple rounding
scheme as is, however, is of similarly little avail as the
procedure discussed above because violations of the budget
constraint are likely. In fact, it is typically not possible to
determine in advance, that is, before a feasible solution
of the relaxation is at hand, whether the probability that
the rounding procedure yields a feasible solution is non-
zero [27]. Main reason for this is that the right side of
the inequality constraint in (4) is independent of the cost
function 7. As a consequence, we adopt a technique named
scaling, introduced in [27], to bound the probability that the
budget constraint is violated by a value less than 1. This in
turn implies that the corresponding solution is feasible with
non-zero probability. The basic idea here is to decrease the
number of variables which are set to 1 by scaling the individ-
ual rounding probabilities. This is achieved by multiplying
them with a constant 1 — J, where § € (0,1). The following
result shows that for every such J the obtained solution
ug, ..., Ux—1 1S indeed feasible with non-zero probability.

Theorem 3 Let g, ...,ux—1 be a feasible solution of the
relaxation (9), fix a § € (0,1) and obtain ug, ..., uk_1

by randomized rounding with scaled success probabilities
(1 = &)ty Then

o2

PSS i > B < <1, an

— 0-24'_,)/2

with

0% = (1= 0)3 32y Brux (1— (1—8)ig)
v=B— (11—, B,

i.e., the probability that ug, . .., uk_1 exceeds the prescribed
transmission budget is strictly less than 1.

Proof: The proof is given in Appendix C. [ ]

An immediate consequence of Theorem 3 is that the expected

number of trials required until the rounding procedure yields

a feasible solution of the original problem (4) can be ex-

pressed as the mean of a geometric distribution with success
probability

o2 2

>1-— = .
b=z 0-2_’_,7/2 0-2"!_’)/2

(12)

The mean of a geometric distribution with parameter p is
% [28], we thus have the following corollary.

Corollary 1 An upper bound for the expected number of
2 2
trials required until ZkK:_Olukﬁk < B holds is {U ;27 _‘

It is apparent from the above results that the choice of
the scaling parameter § impacts both the quality of the
resulting solutions and the runtime of the algorithm. More
precisely, by Theorem 3, choosing § close to 1 decreases the
probability of infeasible solutions and hence, by Corollary 1,
the expected number of trials required. On the downside, it
becomes more likely that only few w; will be 1 and thus,
by (3), the quality of the obtained solutions will be poor.
On the contrary, if § is near to 0, it can be expected that the
resulting solutions will be closer to the optimal one, however
at the cost of an increased risk of infeasibility and, in turn,
increased runtime.

To summarize the results of this section, the proposed al-
gorithm consists of solving the relaxation (9) and randomized
rounding with suitably scaled success probabilities where the
latter step is repeated until a feasible solution is obtained.

V. EVALUATION

In this section, we compare the proposed approach to the
suboptimal algorithm for sensor selection presented in [13]
which we adapted to our purposes and implemented using
yalmip [30]. The comparison will be conducted by means of
simulations. To that end, we consider an uncontrolled double
integrator plant with parameters

11 042 0
A’f:[o 1]’Wk:[0 0.42}’

H,=[10], V, =08,
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Fig. 2: Average costs of the the proposed approach compared to the costs
of the approach from [13] for 8 = 1.
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Fig. 3: Best found solution of the proposed approach, the solution found by
the pruning approach from [13] and the optimal solution for K = 20 and
Br =1.

and initial condition
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The suboptimal algorithm proposed in [13] is deterministic
and utilizes a concept named e—redundancy to prune the
search tree, where € is a parameter to be supplied by the
user. We choose ¢ = 0.1, since this value exhibited a fairly
good trade-off between computational demand and solution
quality in the numerical examples in [13]. For the proposed
randomized rounding approach, we use the scaling parameter
§ =103

The general procedure of the simulations is as follows.
First, we compute a solution of the original problem (4)
using the deterministic method from [13]. Then, we compute
a solution of the relaxation (9) and perform the proposed
randomized rounding to obtain a solution of the original
problem. Instead of repeating the rounding step until a
feasible solution is obtained, we conduct 50 000 single trials
and discard all infeasible solutions.

A. Uniform Transmission Costs

First, we consider uniform transmission costs, 8 = 1,
and the possibility to send measurements at least 50 % of
the time, which corresponds to B = [%1

In Fig. 2 the costs of both approaches for different hori-
zons K =5,0,...,40 are depicted, where for the proposed
approach the costs are averaged over all feasible solutions.
The results show that the proposed approach produces sig-
nificantly better results for optimization horizons K > 12.
Moreover, in contrast to the approach from [13], where we
can observe sharp increases, the costs increase only slightly
with the horizon length. For K = 20, the best found solution
of the proposed algorithm is shown in Fig. 3, in comparison
to the solution of the pruning approach and the optimal
solution, which has been obtained by enumerating all feasible

solutions. From the figure, we can conclude that the proposed

Uniform B~ Non-Uniform Sy
Optimal Solution 65.307 499.055
Approach From [13] 117.627 499.055
Proposed Approach 68.226 516.944

TABLE I: Costs of the solutions for K = 20 shown in Figs. 3 and 5.

Uniform S Non-Uniform Sy,
Percentage of Feasible Solutions 0.948 1
Computed Lower Bound (12) 3.815-1073 0.999

TABLE II: Percentage of feasible solutions in comparison to the derived
lower bound (12).

approach is only slightly suboptimal in this scenario, because
it coincides with the optimal solution most of the time. This
can also be seen from the corresponding values of the cost
function, which are given in the middle column of Table I.
The periodic nature of the optimal solution and the solution
computed by the proposed approach is another interesting
observation, as it is in line with previous results [6], [15].
There, however, in contrast to this work, only the estimation
error was considered as decision criterion.

In Table II the percentage of all feasible solutions and the
(averaged) lower bound of the probability that the proposed
rounding procedure yields a feasible solution, computed
according to (12), are given. The numbers suggest that the
derived bound, and consequently the bounds given in Theo-
rem 3 and Corollary 1, are too conservative in this scenario.
On the other hand, they indicate that a feasible solution
is obtained with at most two repetitions of the rounding
procedure.

B. Non-Uniform Transmission Costs

Now we consider non-uniform transmission costs
which increase linearly within the horizon according to
Br =1,2,..., K. This corresponds to a network whose qual-
ity gradually decrez}(s§§ over time. The available transmission
budget is B = &3/31

The resulting costs for different horizon lengths are plotted
in Fig. 4. The costs for the proposed approach are again
averaged over all feasible solutions. Note that, in contrast
to the previous scenario, we used € = 0.5 for the algorithm
from [13]. This became necessary since for smaller values
the algorithm was not able to prune the search tree effi-
ciently, and hence, computation became intractable already
for small K. The results indicate that both approaches
perform similarly, which is remarkable because the pruning
approach from [13] was able to compute the optimal solution
in this setup. This is illustrated for K =20 in Fig. 5,
where the best found solution of the proposed algorithm, the
solution of the pruning approach and the optimal solution are
shown. The corresponding costs are given in the right column
of Table I. Due to the relatively large transmission costs,
the number of feasible solutions and hence the resulting
search tree might be fairly small. This could explain the
good performance of the algorithm from [13] in this scenario.
However, we did not verify this supposition. From Fig. 5,
it also becomes obvious that a large portion of the available
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Fig. 5: Best found solution of the proposed approach, the solution found by
the pruning approach from [13] and the optimal solution for K = 20 and
non-uniform Sy.

transmission budget, which is B = 105 for K = 20, remains
unused. This is an expected outcome, since the transmission
costs enter the cost function (4) quadratically. Nonetheless,
it is necessary to transmit a measurement at a costlier time
step in the second half of the horizon in order to minimize
the estimation error and hence the value of the cost function.

Finally, the percentage of all feasible solutions com-
puted by the proposed approach and the (averaged) lower
bound (12) are listed in Table II. In contrast to the pre-
vious scenario, the bound is relatively sharp this time. It
is striking that in this scenario all of the 50000 computed
solutions are feasible, which again illustrates the applicability
of the approach. It is important to emphasize that this
result also suggests that the algorithm has only polynomial
computational complexity in practice. As opposed to this,
the algorithm from [13] exhibits exponentially increasing
computational demand, as already mentioned above, due to
the employed pruning strategy.

VI. CONCLUSIONS

In this work, we investigated the scheduling of measure-
ments in Networked Control Systems, where communication
between sensor and remote estimator was constrained in
terms of a fixed communication budget due to limited net-
work capacity. We derived necessary optimality conditions
for the resulting optimal control problem and presented a
suboptimal algorithm based on a suitable problem relaxation
and subsequent randomized rounding. Also, we derived
upper bounds for the expected costs of a solution computed
by the algorithm and for the probability that this solution is
infeasible. The evaluation results indicated that the proposed
approach is superior to a state-of-the-art sensor selection
algorithm in both quality and computational demand.

Future work might be concerned with deriving a lower
bound for the expected costs, similar to what has been
done in [16]. Likewise, it may be interesting to elaborate
on the impact of the scaling parameter § on the presented

bounds and, more importantly, to further investigate the
trade-off between solution quality and the required number of
rounding steps. Also, future research should aim at providing
clues on how to determine appropriate transmission costs [y.

APPENDIX

A. Proof of Theorem 1

With the scalar state s; with initial condition s = B
and dynamics spy1 = sp — upfS; the global inequality
constraint in (4) becomes sx > 0, which is equivalent but
only local [11]. Then, the Hamiltonian #Hj, of (4) is [24]

Hy = tr [Cy] + Bruk, + tr [Gr(Cr, up)Ph 4 |
+ Aeg1 (8K — urfBr) 5

where Py, and A4 are the costates associated with Cy
and sy, respectively. For the former, the dynamics for an
optimal solution are given by

. Otr[Cy] . OHp
K= ocy, Tk acy
Performing the differentiation using identities from,
e.g., [31], yields
k=1,

P =1+ AP, Ay + u;HT (H,CH] + Vy)
.C}ATP; A,C{H] (H,C;H} + V) Hy
—ufATP:, A, CiHT (H,CIHT + V) ' H,

which, after the substitution (6) and completing the square,
gives (7). Symmetry of P}, then follows from the symmetry
of P}, by inductive reasoning. Likewise, positive semidef-
initeness of P7% is apparent. Now suppose that this holds
for some k +1 < K. Then AJPj Ay > 0 and hence
P; > (I—ujSy)" AFP; Ay (I—uS;) > 0, which
concludes the induction.

To show the remaining parts, we first observe that (8) is an
immediate consequence of the complementary condition [29]
5% = 0 imposed on the nonnegative multiplier 1 corre-
sponding to the constraint —s7, < 0. Finally, for (5), we use
that the optimal input must minimize Hg, i.e.,

BRuy — up tr [SkCRATPY  Ax] — Ny ui By
< 5137.% — ug tr [SkCZA;‘FPZ+1Ak] — )\Z+1uk5k s

must hold, with the optimal costate A} determined by the
recursion

13)

OHy, .

* 6(75*) *
)\ K — )\k:aisz— k41 -

K= W )
The claim then follows by setting uy, = 0 in (13).
B. Proof of Theorem 2

The proof works similar to the one of Theorem 3 in [16].
We have E{4,,} = 4 so that the expected costs are given
by

E{J} = E{tr[Cx]} + 31y E{tr[Chl} + 57E{w)

= tr [B{Cx}] + 35 tr [E{Ck}] + B,



where the expectations are with respect to 1, ...
Since 1, and Cj, are independent, we get

E{C1} = E{Go(Ao, %)} = Go(Ag, U) = A1,
E{CQ} = E{G1(Cl,ﬂ1)} .

7¢K71'

Finally, as Gy, is both increasing and concave with respect to
Cy [21, Lemma 1c),e)], due to Jensen’s inequality we obtain

E{Cs} < G1(E{C1},u1) = Gi (A, 1) = Az,

from which the indicated recursion follows inductively and
hence the bound (10).

C. Proof of Theorem 3

Note that E{t;,} = (1 — d)uy and consider the random
variables

Y =000 Yib. €= —E{y} .
Then, observe that mean and variance of v are given by
E{y} = (1 -850 frtn, Var{yp} =o?,

and that £ is zero mean with same variance as ). Since
Uo, ..., Ux—1 is feasible, we have E{tp} < (1 — §)B and
thus v > 0. Hence, for any € > —vy

Plt) > Bl =P[>1] =P +e>7+¢]

2
P[£+6>1]§P (£+6) >1
v+e v +e

Applying Markov’s inequality then yields

E+e)’
Pl > B <E (7“)

. 02+e2
(v+e?

(14)

The right side of (14) attains its minimum at € = "72 from
which (11) follows.

REFERENCES

[1] L. Zhang, H. Gao, and O. Kaynak, “Network-Induced Constraints
in Networked Control Systems—A Survey,” IEEE Transactions on
Industrial Informatics, vol. 9, no. 1, pp. 403—416, 2013.

[2] J.P. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results
in networked control systems,” Proceedings of the IEEE, vol. 95, no. 1,
pp. 138-162, 2007.

[3] G. C. Walsh and H. Ye, “Scheduling of networked control systems,”
IEEE Control Systems Magazine, vol. 21, no. 1, pp. 57-65, 2001.

[4] L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, and S. S.
Sastry, “Foundations of control and estimation over lossy networks,”
Proceedings of the IEEE, vol. 95, no. 1, pp. 163-187, 2007.

[51 J. Sijs, B. Noack, M. Lazar, and U. D. Hanebeck,
Event-Based Control and Signal Processing.  CRC Press,
Nov. 2015, ch. Time-Periodic State Estimation with Event-
Based Measurement Updates, pp. 261-279. [Online]. Available:
http://www.crcnetbase.com/isbn/9781482256567

[6] S. Trimpe and R. D’Andrea, “Event-based state estimation with
variance-based triggering,” IEEE Transactions on Automatic Control,
vol. 59, no. 12, pp. 3266-3281, 2014.

[71 W. Heemels, K. H. Johansson, and P. Tabuada, “An introduction to
event-triggered and self-triggered control,” in Decision and Control
(CDC), 2012 IEEE 51st Annual Conference on. 1EEE, 2012, pp.
3270-3285.

[8] Y. Xu and J. P. Hespanha, “Estimation under uncontrolled and con-
trolled communications in networked control systems,” in Decision
and Control, 2005 and 2005 European Control Conference. CDC-
ECC’05. 44th IEEE Conference on. 1EEE, 2005, pp. 842-847.

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]
[29]

[30]

[31]

M. Athans, “On the determination of optimal costly measurement
strategies for linear stochastic systems,” Automatica, vol. 8, no. 4,
pp. 397 — 412, 1972.

R. Mehra, “Optimization of measurement schedules and sensor designs
for linear dynamic systems,” IEEE Transactions on Automatic Control,
vol. 21, no. 1, pp. 55-64, Feb 1976.

L. Meier, J. Peschon, and R. Dressler, “Optimal control of measure-
ment subsystems,” IEEE Transactions on Automatic Control, vol. 12,
no. 5, pp. 528-536, 1967.

J. Geromel, “Global Optimization of Measurement Strategies for
Linear Stochastic Systems,” Automatica, vol. 25, no. 2, pp. 293-300,
1989.

M. P. Vitus, W. Zhang, A. Abate, J. Hu, and C. J. Tomlin, “On Effi-
cient Sensor Scheduling for Linear Dynamical Systems,” Automatica,
vol. 48, no. 10, pp. 2482-2493, 2012.

S. Joshi and S. Boyd, “Sensor Selection via Convex Optimization,”
IEEE Transactions on Signal Processing, vol. 57, no. 2, pp. 451-462,
2009.

L. Zhao, W. Zhang, J. Hu, A. Abate, and C. J. Tomlin, “On the Optimal
Solutions of the Infinite-Horizon Linear Sensor Scheduling Problem,”
IEEE Transactions on Automatic Control, vol. 59, no. 10, pp. 2825-
2830, 2014.

V. Gupta, T. H. Chung, B. Hassibi, and R. M. Murray, “On a stochastic
sensor selection algorithm with applications in sensor scheduling and
sensor coverage,” Automatica, vol. 42, no. 2, pp. 251-260, 2006.

V. Gupta, B. Sinopoli, S. Adlakha, A. Goldsmith, and R. Murray, “Re-
ceding horizon networked control,” in Proc. Allerton Conf. Commun.,
Control Comput, 2006.

D. E. Quevedo and D. Nesic, “Input-to-state stability of packetized pre-
dictive control over unreliable networks affected by packet-dropouts,”
IEEE Transactions on Automatic Control, vol. 56, no. 2, pp. 370-375,
2011.

J. Fischer, A. Hekler, M. Dolgov, and U. D. Hanebeck, “Optimal
Sequence-Based LQG Control over TCP-like Networks Subject to
Random Transmission Delays and Packet Losses,” in Proceedings of
the 2013 American Control Conference (ACC 2013), Washington D.C.,
USA, Jun. 2013.

D. Simon, Optimal State Estimation: Kalman, H Infinity, and Nonlin-
ear Approaches. Wiley-Interscience, 2006.

B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. 1. Jordan,
and S. S. Sastry, “Kalman Filtering With Intermittent Observations,”
IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1453—
1464, 2004.

C. D. Guerrero and M. A. Labrador, “On the applicability of available
bandwidth estimation techniques and tools,” Computer Communica-
tions, vol. 33, no. 1, pp. 11-22, 2010.

S. Trimpe, “Predictive and self triggering for event-based state esti-
mation,” in Decision and Control (CDC), 2016 IEEE 55th Conference
on. IEEE, 2016, pp. 3098-3105.

M. Athans, “The Matrix Minimum Principle,” Information and Con-
trol, vol. 11, no. 5, pp. 592 — 606, 1967.

T. H. Kerr, “Modeling and evaluating an empirical INS difference
monitoring procedure used to sequence SSBN navaid fixes,” Naviga-
tion, vol. 28, no. 4, pp. 263-285, 1981.

T. H. Kerr and Y. Oshman, “Further comments on” Optimal sensor
selection strategy for discrete-time estimators”[and reply],” IEEE
Transactions on Aerospace and Electronic Systems, vol. 31, no. 3,
pp. 1159-1167, 1995.

P. Raghavan and C. D. Tompson, “Randomized rounding: a technique
for provably good algorithms and algorithmic proofs,” Combinatorica,
vol. 7, no. 4, pp. 365-374, 1987.

R. Motwani and P. Raghavan, Randomized Algorithms.
University Press, 1995.

J. Nocedal and S. Wright, Numerical Optimization (Springer Series in
Operations Research and Financial Engineering). Springer, 2006.
J. Lofberg, “YALMIP : A Toolbox for Modeling and Optimization in
MATLAB,” in 2004 IEEE International Conference on Robotics and
Automation, Taipei, Taiwan, Sep. 2004, pp. 284-289.

J. R. Magnus and H. Neudecker, Matrix Differential Calculus with Ap-
plications in Statistics and Econometrics (Wiley Series in Probability
and Statistics — Applied Probability and Statistics Section). Wiley,
1988.

Cambridge



