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a b s t r a c t

Deregulated energy markets, demand forecasting, and the continuously increasing share of renewable
energy sources call – among others – for a structured consideration of uncertainties in optimal power
flow problems. The main challenge is to guarantee power balance while maintaining economic and
secure operation. In the presence of Gaussian uncertainties affine feedback policies are known to be
viable options for this task. The present paper advocates a general framework for chance-constrained opf
problems in terms of continuous randomvariables. It is shown that, irrespective of the type of distribution,
the random-variable minimizers lead to affine feedback policies. Introducing a three-step methodology
that exploits polynomial chaos expansion, the present paper provides a constructive approach to chance-
constrained optimal power flow problems that does not assume a specific distribution, e.g. Gaussian, for
the uncertainties. We illustrate our findings by means of a tutorial example and a 300-bus test case.

© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The continuing increase in electricity generation from renew-
able energy sources and liberalized energy markets pose chal-
lenges to the operation of power systems [1]; i.e., the importance
of uncertainties is on the rise. Uncertainty leads to and/or increases
fluctuating reserve capacities, and varying line power flows across
the network, among others. The structured consideration of un-
certainties is thus paramount in order to ensure the economic and
secure operation of power systems in the presence of fluctuating
feed-ins and/or uncertain demands.

Optimal power flow (opf) is a standard tool for operational
planning and/or system analysis of power systems. The objective is
to minimize operational costs whilst respecting generation limits,
line flow limits, and the power flow equations. Assuming no uncer-
tainties are present the solution approaches to this optimization
problem are numerous, see for example references listed in [2]. In
the presence of stochastic uncertainties the opf problem must be
reformulated, ensuring

(i) that technical limitations (inequality constraints) are met
with a specified probability, and

(ii) that the power flow equations (equality constraints) are
satisfied for all possible realizations of the uncertainties,
i.e. power system stability is achieved.
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Regarding issue (i), chance-constrained optimal power flow (cc-
opf) is a formulation that allows inequality constraint violations
with the probability of constraint violation as a user-specified
parameter. Individual chance constraints admit deterministic, dis-
tributionally robust convex reformulations of the cc-opf prob-
lem [3]. For Gaussian uncertainties these reformulations are ex-
act [3–5]. Alternatively, it is possible to solve the individually
chance-constrained optimization problem by means of multi-
dimensional integration [6,7]. Scenario-based methods – often
applied to multi-stage problems [8–10] – are an alternative to
chance-constrained approaches; the chance constraints are re-
placed by sufficiently many deterministic constraints leading to
large but purely deterministic problems [11].

Regarding issue (ii), the power flow equations are physical
constraints that hold despite fluctuations. This requires feedback
control. In particular, automatic generation control (agc) balances
mismatches between load and generation, given sufficient reserves
can be activated. Affine policies have been shown to yield power
references that satisfy dc power flow in the presence of (multi-
variate) Gaussian uncertainties [3–5,12] (assuming ideal primary
control). Existing approaches [3–5,12] to single-stage cc-opf under
dc power flow and Gaussian uncertainties directly formulate the
cc-opf problem in terms of the parameters of the affine feedback,
leading to finite-dimensional second-order cone programs. How-
ever, the relevance and advantages of non-Gaussian uncertainties
for modeling load patterns and renewables have been emphasized
in the literature [13–15]. Certain non-Gaussian distributions (such
as Beta distributions) allow compact supports and skewed prob-
ability density functions, which hence overcome modeling short-
comings of purely Gaussian settings. For example, to model a load
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List of Symbols

N Number of buses
N Set of bus indices
Nl Number of lines
Nl Set of line indices
u Controllable active power
d Uncontrollable active power
pl Line power flow
α agc coefficients
J Cost function
x, x Lower bound, upper bound of x
1n n-dimensional column vector of ones
φ Power transfer distribution factor matrix
Ω Set of outcomes
P Probability measure
L2(Ω,R) Hilbert space of second-order random variables

w.r.t. probability measure P
ξ Stochastic germ
ψℓ ℓth basis function
ψ Vectorized basis ψ = [ψ1, . . . , ψL]

⊤

⟨·, ·⟩ Scalar product
L + 1 pce dimension
x Random variable
x̃ = x(ξ̃ ) Realization of random variable x
xℓ ℓth vector of pce coefficients of x
X Matrix of pce coefficients of x of degree greater

zero
E [x] Expected value of x
Var [x] Variance of x

via aGaussian randomvariable always bears a non-zero probability
for the load acting as a producer. Arguably, this probability may be
small, but an uncertainty description that rules out this possibility
by design is physically consistent and desirable.

We remark that how to address the reformulation of inequality
constraints in the problem formulation, i.e. issue (i), is a user-
specific choice. As such, this choice resembles a trade-off between
computational tractability and modeling accuracy. In contrast, the
validity of the power flow equations, i.e. issue (ii) imposes a physi-
cal equality constraint that has to be accounted for in the problem
formulation. The present paper proposes a general framework for
chance-constrained opf that combines modeling uncertainties in
terms of continuous random variables of finite variance, and a
rigorous mathematical consideration of the power flow equations
as equality constraints of theopfproblem. It is shown that a formu-
lation of the cc-opf problem in terms of randomvariables naturally
leads to engineering-motivated affine policies. Under the mild
assumption that uncertainties are modeled as continuous random
variables of finite variance with otherwise arbitrary probability
distributions, our findings highlight that the optimal affine policies
are indeed random-variable minimizers of an underlying cc-opf
problem.

A consequence of the last item is that the proposed general
framework to cc-opf embeds and extends current approaches [3–
5,12] which consider purely Gaussian settings.

The key step is to formulate the cc-opf problem rigorously with
random variables as decision variables. This unveils the infinite-
dimensional nature of cc-opf. A three-stepmethodology concisely
describes the proposed approach to cc-opf: formulation, parame-
terization, optimization. This results in optimal affine policies that
satisfy power balance despite uncertainties. The corresponding
optimization problem scales well in terms of the number of uncer-
tainties. For common individual chance-constraint reformulations

it leads to a second-order cone program. Polynomial chaos expan-
sion (pce) is employed to represent all occurring random variables
by finitely many deterministic coefficients.

While pce dates back to the late 30s [16], it has been ap-
plied to power systems only recently, for example to design a
power converter [17], to design observers in the presence of un-
certainties [18], and to solve stochastic power flow [19–23]. The
applicability of pce to opf problems under uncertainty has been
demonstrated in [19–22]. The works [21,22] focus on computa-
tional details when implementing pce. In contrast, [19,20] men-
tion that the power flow equations are always satisfied. How-
ever, [19,20] do not put pce approaches to opf in relation to other
existing approaches, and do not show optimality of affine policies.
Instead, the present paper takes a different view: starting from
existing approaches [3–5,12] we show that pce is a generalization;
the more mathematical nature of pce is thus related to the engi-
neering practice of affine policies.

The present manuscript focuses on a framework for single-
stage opf problems under uncertainty, highlighting the impor-
tance of affine control policies rigorously irrespective of the kind
of distribution of the uncertainty. Affine policies have also been
applied to multi-stage opf under uncertainty [8,10,24,25], where
their use is motivated based on engineering intuition. For multi-
stage opfproblems the handling of the inequality constraints is
similar to single-stage opf: it comprises analytically reformulated
chance constraints [25], convex reformulations [26], and scenario-
based approaches [27].

Summing up, the contributions of our work are as follows:
We provide a problem formulation of chance-constrained opf in
terms of random variables that is shown to contain existing ap-
proaches [3–5,12]. We further give a rigorous proof showing when
affine policies are optimal. Additionally, we highlight an important
dichotomy: optimal policies of chance-constrained opf correspond
to optimal random variables. Finally, we provide a tractable and
scalable reformulation of the random-variable problem in terms of
a second-order cone program by leveraging polynomial chaos ex-
pansions. The combination of the contributions provide a tractable
framework for chance-constrained opf.

The remainder is organized as follows: Section 2 introduces
the cc-opf problem in terms of random variables, and demon-
strates the flexibility of the proposed formulation: existing ap-
proaches for Gaussian uncertainties can be obtained as special
cases (Section 2.2). The observations at the end of Section 2 lead
to a three-step methodology to cc-opf, presented in Section 4 in
greater detail. Section 3 introduces polynomial chaos expansion
as a mathematical tool that is required to tackle Section 4. The
methodology developed in Section 4 is demonstrated for a tutorial
3-bus example in Section 5.1, and a 300-bus test case in Section 5.2.

2. Preliminaries and problem formulation

Consider a connected N-bus electrical transmission network in
steady state that is composed of linear components, for which the
dc power flow assumptions are valid (lossless lines, unit voltage
magnitude constraints, small angle differences). The Nl lines have
indices Nl = {1, . . . ,Nl}. For simplified presentation each bus
i ∈ N = {1, . . . ,N} is assumed to be connected to one generation
unit, and one fixed but uncertain power demand/generation. The
net active power realization p ∈ RN is p = u + d, where u ∈ RN

represents adjustable/controllable (generated) power, and d ∈ RN

resembles (uncontrollable) power demand in case of di < 0 for bus
i ∈ N , or (uncontrollable) renewable feed-in in case of dj > 0 for
bus j ∈ N . The goal of (deterministic)opf is tominimize generation
costs J(u) with J : RN

→ R such that the power flow equations are
satisfied (equality constraints), and generation limits and line flow
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limits are satisfied (inequality constraints). Under dc power flow
conditions the standard formulation for opf reads

min
u∈RN

J(u) (1a)

s. t. 1⊤

N (u + d) = 0, (1b)
u ≤ u ≤ u, (1c)
p
l
≤ pl = φ (u + d) ≤ pl, (1d)

where (1b) is the power balance with 1N = [1 . . . 1]⊤ ∈ RN . The
generation limits and line limits are u, u ∈ RN and p

l
, pl ∈ RNl

respectively, and φ ∈ RNl×N is the power transfer distribution
factor matrix, which maps the net power p linearly to the line
flows pl ∈ RNl .

2.1. Stochastic optimal power flow

Deterministic opf (1) assumes perfect knowledge of the un-
controllable power d ∈ RN . Instead, stochastic opf models power
consumption and/or the power feed-in due to renewables as (non-
trivial) continuous second-order random vectors d ∈ L2(Ω,RN )
with Ω ⊆ RN as the set of possible outcomes.1 We will show
that the probabilistic modeling of d requires a reformulation of
the deterministic opf problem (1) in terms of random variables as
decision variables.

Power balance
Power balance despite probabilistic uncertainties can be

achieved by – formally – optimizing over random variables. To
see this, choose some fixed power generation u ∈ RN as in the
opf problem (1). Then, this will violate the power balance almost
surely, i.e.

a.s. ∀ξ̃ ∈ Ω : 1⊤

N (u + d̃) ̸= 0, (2)

where d̃ = d(ξ̃ ) ∈ RN is the realization of the random vari-
able uncontrollable power d for the outcome ξ̃ ∈ Ω . Hence,
we introduce a feedback policy u = u(d) ∈ L2(Ω,RN ) for the
generators. More precisely, the feedback policy d ↦→ u(d) maps
stochastic uncertainties d to power set points that ensure power
balance despite uncertainties. Doing so, the decision variable u of
opf becomes itself a random variable.2 The requirement of power
balance leads to the notion of viability [4].

Definition 1 (Viable policy [4]). A feedback policy u = u(d) is called
viable if for any realization of the uncertainty d the power flow
equations are satisfied.3 □

Viability of the policy u(d) is ensured if the power balance is
satisfied in terms of random variables

1⊤

N (u(d) + d) = 0, (3a)

1 More precisely, given a probability space (Ω,F,P) the Hilbert space L2(Ω,R)
w.r.t. measure P is the set of equivalence classes modulo the almost-everywhere-
equality relation of real-valued random variables x : (Ω,F,P) → R with finite
variance and inner product ⟨x, y⟩ = E [xy], see [28]. We refrain from explicitly
mentioning the σ -algebra F and the probability measure P when referring to the
Hilbert space. For Rn-valued random vectors x : (Ω,F,P) → Rn we introduce the
shorthand notation x ∈ L2(Ω,Rn) w.r.t. probability measure P in the sense that
x ∼= [x1, . . . , xn]⊤ with xi ∈ L2(Ω,R).
2 This is also observed in [6], where it is stated that ‘‘due to random inputs [. . . ],

the output variables are also random’’.
3 This definition of viability is slightly more general than the original definition

from [4]: it is not limited to affine control policies, and it is not restricted to the dc
power flow setting. In the context of power systems, viability is related to power
system stability. Specifically for steady state power flow this amounts to power
balance despite uncertain fluctuations.

or written in terms of realizations of the random variables

∀ξ̃ ∈ Ω : 1⊤

N (ũ(d̃) + d̃) = 0, (3b)

where ũ(d̃) = u(d(ξ̃ )) ∈ RN is the control input, and d̃ = d(ξ̃ ) ∈ RN

is the realization of the uncontrollable power. The decision variable
of stochastic opf is thus the random vector u ∈ L2(Ω,RN ) which
corresponds to a feedback control policy.

Cost function
For stochastic opf the cost function has tomap policies to scalars

Ĵ : L2(Ω,RN ) → R. (4)

A typical choice is Ĵ(u) = E [J(u)], where E [·] is the expected
value [29].

Inequality constraints
The presence of uncertainties requires the inequality con-

straints (1c), (1d) to be reformulated, because inequality con-
straints formulated in terms of random variables are in general
not meaningful. This may be done, for example, either by using
chance constraints (individual/joint) or robust counterparts. Pos-
sible chance constraint formulations are [5,8,30]

joint:
{
P((u ≤ u ≤ u) ∩ (p

l
≤ pl ≤ pl)) ≥ 1 − ε,

(5a)

double:
{
P(ui ≤ ui ≤ ui) ≥ 1 − ε, i ∈ N ,
P(p

l,j
≤ pl,j ≤ pl,j) ≥ 1 − ε, j ∈ Nl,

(5b)

individual:

⎧⎪⎨⎪⎩
P(ui ≤ ui) ≥ 1 − ε, i ∈ N ,
P(ui ≤ ui) ≥ 1 − ε, i ∈ N ,
P(pl,j ≤ pl,j) ≥ 1 − ε, j ∈ Nl,

P(p
l,j

≤ pl,j) ≥ 1 − ε, j ∈ Nl,

(5c)

where pl,j is the random-variable power flow across line j.

L2-optimization problem
Using the random-variable power balance (3), the generic cost

function (4), and a chance constraint formulation from (5), the
chance-constrained optimal power flow (cc-opf) problem can be
written as

min
u∈L2(Ω,RN )

Ĵ(u) (6a)

s. t. 1⊤

N (u + d) = 0, (6b)
(5a), (5b), or (5c). (6c)

Any feasible feedback policy of (6) is viable, see Definition 1. The
solution of the infinite-dimensional problem (6) – assuming it
exists – is the optimal viable control policy u⋆(d) that yields power
balance for all realizations of the uncertainty d, and satisfies the
constraints in a chance-constrained sense. Notice that the random-
variable power balance is a direct consequence frommodeling the
uncertainties d as random variables. Instead, the specific choice
of the cost function (4) and the chance constraint formulations
are modeling degrees of freedom. Further, notice that the cc-
opf (6) does not assume a specific probability distribution for the
uncertain power d.

Remark 1 (Economic dispatch vs. cc-opf). Traditionally, an eco-
nomic dispatch calculation provides base points for each genera-
tion unit, given some forecast. Automatic generation control (agc)
with prescribed participation factors accounts for mismatches in
generation and demand online, i.e. it reacts to realizations of
the uncertainties [31]. Chance-constrained opf attempts to unify
both steps while considering the specific stochastic nature of
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the fluctuations, and ensuring economic and secure operation of
the overall system. This also means that the solutions from cc-
opf are applicable on the same time scale as economic dispatch
and agc. □

Remark 2 (Online opf vs. cc-opf). Online optimal power flow
is another approach to tackle opf under uncertainty [32]. The
main idea is to measure the realization of the uncertainty, to
formulate and solve a corresponding opf problem, and to apply
the generation inputs to the grid. The conceptual advantage of
online opf is that it acts irrespective of the distribution of the
uncertainty; the method reacts to realizations ‘‘online’’. However,
online opf relies on accurate online state estimation as well as
reliable, fast, repeated, and accurate solutions of large-scale opf
problems. Chance-constrained opf differs conceptually as it for-
mulates a single optimization problem that determines policies
instead of set points. These policies can be applied in real time,
similarly to agc. However, chance-constrained opf hinges on both
the uncertainty model and the problem formulation. □

2.2. Gaussian uncertainties

The purpose of this section is to show that cc-opf from (6)
embeds existing approaches to cc-opf under dc power flow and
Gaussian uncertainties [3,12,33]. To this end, we restate the setting
from [3,12,33] entirely in random variables.

Setting 1 (Linear cost, Gaussian uncertainties [3,12,33]).

1. The deterministic cost function J(u) = h⊤u is linear.
2. The uncertain power demand d is modeled as

d = d0 + Sdξ, (7a)

with d0 ∈ RN , nonsingular Sd ̸= 0N×N ∈ RN×N . The N-
valued stochastic germ ξ ∼ N(0, IN ) is a standard multivariate
Gaussian.

3. The feedback policy u is

u = u(ξ ) = u0 − α 1⊤

N Sdξ,

1⊤

N (u0 + d0) = 0,

1 − 1⊤

Nα = 0,

(7b)

with unknown u0, α ∈ RN .4

4. Inequality constraints are modeled as individual chance con-
straints, and rewritten using the first and second moment,
e.g. for upper bounds

E [x] + β(ε)
√
Var [x] ≤ x ⇒ P(x ≤ x) ≥ 1 − ε, (7c)

where ε ∈ [0, 1] is a user-defined security level.5 □

To obtain the numerical values of the expected generation u0
and the coefficients α from Setting 1, [3,33] suggest solving the

4 This choice of feedback control is also called balancing policy [12], reserves
representation [9], or base point/participation factor [31].
5 These formulations are popular, because they are exact for Gaussian random

variables (choosing β accordingly); i.e. (7c) holds in both directions. For general
unimodal, symmetric distributions, the reformulations (7c) can be conservative,
nevertheless yield convex reformulations [3]. For highly skewed distributions less
conservative results can be obtained by considering higher-order (centralized)
moments, i.e. skewness and/or kurtosis [34].

following optimization problem

min
u0,α∈RN

h⊤u0 (8a)

s. t. 1⊤

N (u0 + d0) = 0,
1 − 1⊤

Nα = 0
(8b)

ui ≤ E [ui] ± βu

√
Var [ui] ≤ ui, (8c)

p
l,j

≤ E
[
pl,j

]
± βl

√
Var

[
pl,j

]
≤ pl,j, (8d)

∀i ∈ N , ∀j ∈ Nl,

where pl,j is the jth entry of the line flow pl = φ (u + d) with
the matrix of power transfer distribution factors φ. The nominal
dc power flow and the summation condition (8b) ensure viability
of the feedback policy u, cf. [4, Lemma 2.1]. The generation limits
and line flow limits are modeled as individual chance constraints
that admit the exact reformulation (8c) and (8d) for Gaussian un-
certainties [3]; they correspond to the individual chance constraint
formulation from (5). Let u⋆0, α

⋆ denote the optimal solution of
Problem (8)—assuming it exists. Then, the optimal feedback policy
is u⋆(ξ ) = u⋆0 − α⋆1⊤

N Sdξ . Given the realization ξ̃ of the random
variable ξ the corresponding realization ũ⋆ of the random variable
u⋆ becomes ũ⋆ = u⋆(ξ̃ ) = u⋆0−α

⋆1⊤

N Sdξ̃ , which is the control action.

Remark 3 (Gaussian random variables). Under Setting 1 the power
demand d, the feedback policy u, and the line power pl areGaussian
random variables,

d ∼ N(d0,Σd), Σd = SdS⊤

d (9a)

u ∼ N(u0,Σu), Σu = (α1⊤

N Sd)(α1
⊤

N Sd)
⊤, (9b)

pl ∼ N(pl0,Σl), Σl = (φ(I − α1⊤

N )Sd)(φ(I − α1⊤

N )Sd)
⊤, (9c)

with all covariancematrices being positive semidefinite.Moreover,
all random variables admit an affine parameterization

x = x0 +Σxξ, x ∈ {d, u, pl}, x ∈ {d, u, l}, (9d)

w.r.t. the stochastic germ ξ ∼ N(0, IN ). □

Remark 3 shows and emphasizes the dichotomy of u: it is both a
random variable and a feedback policy in terms of the (realization
of the) stochastic germ, i.e. once the realization of ξ is known the
evaluation of u(ξ ) yields an applicable control.6

Now we can address the question raised at the beginning of
this section, namely how cc-opf (6) relates to Problem (8). To this
end, consider cc-opf (6) under Setting 1 with the cost formulation
Ĵ(u) = E [J(u)]. This gives

min
u∈L2(Ω,RN )

E[h⊤u] (10a)

s. t. 1⊤

N (u + d) = 0,
(8c), (8d), ∀i ∈ N , ∀j ∈ Nl. (10b)

Proposition 1 (Equivalence of (8) and (10)). Let the optimal solution
to Problem (8) be u⋆0, α

⋆
∈ RN . Furthermore, let the optimal solution

to Problem (10) be u⋆ ∈ L2(Ω,RN ). Then,

u⋆ = u⋆0 − α⋆ 1⊤

N Sdξ (11)

holds such that u⋆ ∼ N(u⋆0, (α
⋆1⊤

N Sd)(α
⋆1⊤

N Sd)
⊤). □

Proof. First, the cost function (10a) becomes E
[
h⊤u

]
= h⊤u0,

which is (8a). Using the uncertainty modeling (7) the random-
variable dc power flow (10b) becomes

1⊤

N (u + d) = 1⊤

N (u0 + d0) + (1 − 1⊤

Nα) 1
⊤

N Sdξ =: x. (12)

6 This assumes perfect and immediate measurement of the realization of ξ . State
estimation of power systems is beyond the scope of this paper.
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The real-valued random variable x is a linear combination of the
Gaussian random variables d and u,

x ∼ N(1⊤

N (u0 + d0), (1 − 1⊤

Nα)
21⊤

N SdS
⊤

d 1N ), (13)

hence it is fully described by its mean and variance. The random
variable x from (12) has to degenerate to zero according to (10b).
This is the case if and only if its mean and variance are zero,

E [x] = 1⊤

N (u0 + d0)
!
= 0 (14a)

Var [x] = (1 − 1⊤

Nα)
21⊤

N SdS
⊤

d 1N
!
= 0. (14b)

This means that random-variable dc power flow under Assump-
tion 1 is equivalent to considering thenominaldcpower flow (14a)
and the summation condition (14b), cf. (8b).7 The inequality
constraints are identical by construction. The infinite-dimensional
Problem (10) is equivalently represented by a deterministic finite
dimensional problem in terms of u0 and α. As such it is equivalent
to Problem (8), and the optimal feedback follows from (7b). □

The consequence of Proposition 1 is that Problem (8) is a refor-
mulation of the infinite-dimensional Problem (10) in terms of the
mean and variance of the Gaussian decision variable u. Problem
(10) is thus a generalization of Problem (8). Further, the optimal
policies stemming from the solution of Problem (8) are Gaussian
random variables. Gaussianity of all occurring random variables
follows from linearity of the dc power flow, cf. Remark 3. In fact,
linearity of the dc power flow allows a more general statement
when interpreted as a mapping: regardless of the distribution of
the uncertainty d, the control u has –qualitatively – the same
distribution. It hence stands to reason that Problem (10) allows the
computation of optimal affine policies that satisfy power balance
also for non-Gaussian uncertainties—which is shown in Section 4
by means of a three-step methodology. In preparation, however,
we have to introduce polynomial chaos expansion as a tool that
allows a structured treatment of random variables.

3. Polynomial chaos expansion

We review the basic elements of polynomial chaos expansion
in Section 3.1; refer to [28,35] for a more detailed introduction.

3.1. Introduction

Consider nξ independent second-order random variables ξi ∈

L2(Ωi,R) w.r.t. the measure Pi for i = 1, . . . , nξ . The random
vector ξ ∼= [ξ1, . . . , ξnξ ]

⊤ is called stochastic germ. Denote byΩ =

Ω1 × · · · ×Ωnξ the support, and let P = P1 · · ·Pnξ be the product
measure. Polynomial chaos then allows to express any random
variable x ∈ L2(Ω,R) w.r.t. measure P as a linear combination
of orthogonal nξ -variate polynomials. To this end, let the Hilbert
space L2(Ω,R) be spanned by the set of nξ -variate polynomials
{ψℓ}

∞

ℓ=0 that are orthogonal, i.e.

E [ψℓψk] = ⟨ψℓ, ψk⟩ =

∫
ψℓ(τ )ψk(τ )dP(τ ) = γℓδℓk, (15)

for all ℓ, k ∈ N0, where γℓ is a positive constant, and δℓk is the
Kronecker-delta.8 W.l.o.g. we choose ψ0 = 1.9 Polynomial chaos
allows to rewrite Rnx-valued random vectors x = [x1, . . . , xnx ]

⊤

with elements xi ∈ L2(Ω,R) for i = 1, . . . , nx as

x =

∞∑
ℓ=0

xℓψℓ with xℓ = [x1,ℓ, . . . , xnx,ℓ]
⊤

∈ Rnx , (16a)

7 An alternative proof of viability is given in [4].
8 The (non-unique) multivariate basis can be constructed from the univariate

bases cf. [28].
9 For univariate stochastic germs one chooses the basis s.t. degψℓ = ℓ.

and

xi,ℓ =
⟨xi, ψℓ⟩

⟨ψℓ, ψℓ⟩
∈ R. (16b)

The vector xℓ contains all so-called pce coefficients (16b). For nu-
merical implementations the infinite sum (16a) is truncated after
L + 1 ∈ N terms

x ≈ x̂ =

L∑
ℓ=0

xℓψℓ = x0 + Xψ, (17a)

with X = [x1 . . . xL] ∈ Rnx×L, (17b)

ψ = [ψ1 . . . ψL]
⊤. (17c)

The truncation error ∥xi − x̂i∥ is L2-optimal, i.e. limL→∞∥xi − x̂i∥ =

0, in the induced norm ∥ · ∥, see [28,35]. The dimension of the
subspace span {ψℓ}

L
ℓ=0 ⊆ L2(Ω,R) is

L + 1 =
(nξ + nd)!
nξ !nd!

, (18)

where nξ is the dimension of the stochastic germand nd the highest
polynomial degree. Hence, the subspace is spanned by orthogonal
basis polynomials in nξ variables of degree at most nd. Statistics of
x can be obtained directly from the pce coefficients, without having
to sample, e.g. [28,35]

E
[
x̂
]

= x0, Var
[
x̂
]

=

L∑
ℓ=1

xℓx⊤

ℓ ⟨ψℓ, ψℓ⟩. (19)

Remark 4 (Higher-order moments). The fact that moments of the
random variable x̂ can be computed from its pce coefficients alone
can be leveraged for moment-based bounds or bounds that con-
sidermore than twomoments [34]. That is, highly skeweddistribu-
tionsmay requiremore than twomoments to reduce conservatism
in (8c) and (8d). For which moments to include see, e.g. [34].
If additional moments are included pce is still applicable, but
comes at a higher computational cost potentially, since convexity
may be lost. □

The applicability of pce hinges on the dimension (L + 1)
from (18). It is desirable to have both a low dimension and exact
expansions. How to achieve this is considered next.

3.2. Exact affine polynomial chaos

We are interested in random variables that admit a truncated
polynomial chaos expansion that is both exact in the sense that (17)
holds with equality, and affine in the sense that the maximum
degree of the polynomial basis is one.

Definition 2 (Exact affine pce). A random variable x ∈ L2(Ω,R) is
said to have an exact affine pce if

x = x̃ =

L∑
ℓ=0

xℓψℓ with max
ℓ=0,...,L

(deg ψℓ) = 1, (20)

i.e., the orthogonal polynomial basis {ψℓ}
L
ℓ=0 has at most degree

one. The Rn-valued random vector x ∈ L2(Ω,Rn) is said to have
an exact affine pce if every entry xi admits an exact affine pce (20)
for i = 1, . . . , n. □

In other words—Definition 2 demands the polynomial basis
{ψℓ}

L
ℓ=0 to be at most affine, i.e. the stochastic germ ξ appears

in no higher order. It remains to discuss how to choose this
specific polynomial basis. For a variety of well-known univariate
distributions, for example Beta, Gamma, Gaussian, or Uniform
distributions, the orthogonal bases that yield exact affine pces (17)
are known. In the remainder we refer to these uncertainties as
canonical uncertainties.
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Corollary 1 (Exact affine pce for canonical uncertainties [35]). Let
x ∈ L2(Ω,R) follow one of the following univariate distributions:
Beta, Gamma, Gaussian, or Uniform. Then, for the following stochastic
germs ξ

Distribution Support Polyn. Basis ψℓ Notation

Beta [0, 1] Jacobi P (α,β)
ℓ ξ ∼ B(α, β)

Gamma [0,∞) Gen. Laguerre Lℓ ξ ∼ Γ (p)
Gaussian (−∞,∞) Hermite Heℓ ξ ∼ N(0, 1)
Uniform [0, 1] Legendre Pℓ ξ ∼ U(0, 1)

the pce of x

x = x̂ =

1∑
ℓ=0

xℓψℓ = x0 + x1ψ1

is an exact affine pce in the basis {ψℓ}
1
ℓ=0. □

Example 1. Any univariate Gaussian random variable x ∼

N(µ, σ 2) admits the exact affine pcewith respect to the stochastic
germ ξ ∼ N(0, 1)

x = µ+ σξ = x0 + x1He1,

where [x0, x1]⊤ = [µ, σ ]
⊤ are the pce coefficients, and {ψℓ}

1
ℓ=0 =

{Heℓ}1ℓ=0 = {1, ξ} is the affine Hermite polynomial basis that is
orthogonal w.r.t. the univariate Gaussian measure, namely

⟨ψ0, ψ0⟩ = ⟨He0,He0⟩ =
1

√
2π

∫
R
1 e−

τ2
2 dτ = 1,

⟨ψ1, ψ1⟩ = ⟨He1,He1⟩ =
1

√
2π

∫
R
τ 2 e−

τ2
2 dτ = 1,

⟨ψ0, ψ1⟩ = ⟨He0,He1⟩ =
1

√
2π

∫
R
τ e−

τ2
2 dτ = 0.

As can be seen, the univariate Gaussian admits an exact affine pce
in the Hermite polynomial basis. Of course it is possible to derive
a polynomial chaos expansion of a Gaussian random variable in a
different orthogonal basis, for example in a Legendre basis. In that
case, however, the pce of xwill not be exact and affinewith respect
to this Legendre basis. □

Going beyond canonical uncertainties, the exact affine pce for
any random variable of finite variance is obtained as follows.

Proposition 2 (Exact affine pce for non-canonical uncertainty). Let
x ∈ L2(Ω,R) with probability measure P be given. Then, x can be
used directly as the stochastic germ, and the pce of x

x = x̂ =

1∑
ℓ=0

xℓψℓ = x0 + x1ψ1 (21)

is exact affine with pce coefficients [x0, x1]⊤ = [E [x] , 1]⊤ w.r.t. the
orthogonal basis {ψℓ}

1
ℓ=0 = {1, x − E [x]}. □

Proof. Direct inspection of (21) with the given pce coefficients
shows that x = x. Orthogonality of the basis {ψℓ}

1
ℓ=0 is shown by

verifying the orthogonality condition (7b),

⟨ψ0, ψ0⟩ =

∫
1 dP(τ ) = 1

⟨ψ0, ψ1⟩ =

∫
1 (τ − E [xi])dP(τ ) =

∫
τdP(τ ) − E [x] = 0

⟨ψ1, ψ1⟩ =

∫
(τ − E [xi])2dP(τ ) = Var [x] ,

which completes the proof. □

Example 2. Consider a continuous random variable x with proba-
bility density fx : [0, 1] → R≥, and fx(x) = π/2 sin(πx). According
to Proposition 2, an orthogonal basis is then

ψ0 = 1,

ψ1 = x − E [x] = x −
π

2

∫ 1

0
τ sin(πτ ) dτ = x −

1
2
,

with ⟨ψ1, ψ1⟩ = Var [x] = 1/4 − 2/π2. The pce coefficients of x
become [x0, x1]⊤ = [1/2, 1]⊤. □

Both Corollary 1 and Proposition 2 consider a single univariate
uncertainty. This may not suffice when modeling uncertainties
for cc-opf problems, where multiple sources of uncertainty are
present (for example solar, wind, demand). However, the combi-
nation of several independent exact affine pces can still be cast as
a multivariate exact affine pce.

Proposition 3 (Multivariate exact affine pce). Consider n indepen-
dent random variables with exact affine pces xi ∈ L2(Ωi,R) with
respective pces xi = xi0 + xi1ψ

i
1 for i = 1, . . . , n. Then, the Hilbert

space L2(Ω1 × · · · ×Ωn,R)w.r.t. probability measure P = P1 · · ·Pn
is spanned by the orthogonal basis

{ψℓ}
L
ℓ=0 = {1, ψ1

1 , ψ
2
1 , . . . , ψ

n
1 } (22)

of dimension L + 1 = n + 1, cf. (18) with nξ = n, and nd = 1. Let
ei be the ith unit vector of Rn, and let ψ = [ψ1, . . . , ψn]

⊤. Then, the
pce

xi ∼= xi0 + e⊤

i ψ (23)

recovers the ith random variable xi. □

Proof. The assertion follows from the fact that the space over the
product probability space L2(Ω1 × · · · × Ωn,R) is isomorphic to
the Hilbert space tensor product of the Hilbert spaces L2(Ωi,R),
see [28]. □

Example 3. We illustrate how pce applies to the multivariate
Gaussian random variables from Setting 1: The stochastic germ
ξ ∼ N(0, IN ) is RN -valued and standard Gaussian. According to
Corollary 1 every univariate ξi requires a Hermite polynomial basis
{Heiℓ}

1
ℓ=0 = {1, ξi} of degree at most nd = 1 for all i = 1, . . . , nξ

with nξ = N . The tensorized pce-basis from Proposition 3 is the
N-variate Hermite polynomial basis {ψℓ}

L
ℓ=0 = {1, ξ1, . . . , ξN}

of dimension L + 1 = N + 1. Orthogonality holds w.r.t. to the
multivariate Gaussian measure, i.e. for all i, j = 0, . . . ,N

⟨ψi, ψj⟩ =

(√
2π

)−N
∫
ψi(τ )ψj(τ ) e−

τ⊤τ
2 dτ =

{
0, i ̸= j
1, i = j.

The pce (17) for the uncertain power demand (7a) from Setting 1
is then exact and affine

d = d̂ = d0 + Sdξ =

L∑
ℓ=0

dℓψℓ = d0 + Dψ

with ψ = ξ = [ξ1 . . . ξN ]
⊤. The RN -valued pce coefficients dℓ for

ℓ = 1, . . . ,N correspond to the columns of Sd. Similarly, the pce
for the feedback policy (7b) from Setting 1 is exact and affine

u = u0 − α1⊤

N Sdξ =

L∑
ℓ=0

uℓψℓ = u0 + Uψ,

where the real-valued pce coefficients uℓ for ℓ = 1, . . . ,N corre-
spond to the columns of −α1⊤

N Sd. □
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4. Stochastic opf in three steps

Recall that Section 2 concluded that cc-opf according to Prob-
lem (10) provides optimal affine feedback policies irrespective of
the probability distribution of d. On the other hand, Example 3
from Section 3 analyzes Setting 1 for cc-opf from the point of
view of pce. The result is that the affine feedback from Setting 1
is equivalent to a pce, and the solution to Problem (8) provides
the optimal pce coefficients from (3). In the following, both ob-
servations will be connected and it will be shown that the cc-
opf Problem (10) can be reformulated as an optimization problem
in terms of pce coefficients of optimal feedback policies. More
precisely, the following three-step methodology is proposed:

Step 1 Formulate a random-variable opf problem.
Step 2 Introduce an affine, viable feedback.
Step 3 Determine the values of the feedback parameters by

means of a suitable optimization problem.

We apply the three-step methodology exemplarily and demon-
strate the role of pce in it, more specifically the role of exact affine
pce as introduced in Section 3.2. That is, from this point on we
associate with Step 1 the specific cc-opf problem

min
u∈L2(Ω,RN )

E[J(u)] (24a)

s. t. 1⊤

N (u + d) = 0, (24b)
(5c). (24c)

Problem (24) is studied for the following setting:

Setting 2 (Quadr. cost, exact affine pce [20]).

1. The deterministic cost J(u) = u⊤Hu + h⊤u is quadratic and
positive (semi-)definite in u.

2. The uncertainty d admits an exact affine pce

d =

L∑
ℓ=0

dℓψℓ = d0 + Dψ, (25a)

and the pce coefficients dℓ ∈ RN are known w.r.t. the polyno-
mial basis {ψℓ}

L
ℓ=0.

3. The feedback policy u is given by its finite pce

u =

L∑
ℓ=0

uℓψℓ = u0 + Uψ,

1⊤

N (uℓ + dℓ) = 0, ℓ = 0, 1, . . . , L,

(25b)

where the pce coefficients uℓ ∈ RN are decision variables w.r.t.
the polynomial basis {ψℓ}

L
ℓ=0.

4. The individual chance constraints (5c) are rewritten using the
first and second moment, cf. Setting 1. □

The main assumption in Setting 2 is finiteness and exactness
of the pce for the uncertainty d—which is no severe restriction, cf.
Section 3.10 Setting 2 also addresses Step 2: it contains an affine
feedback parameterization. It remains to show that this feedback
parameterization is indeed viable.

Theorem1 (Viable feedback control via pce). Let the uncertain power
demand d admit an exact affine pce (25a). Then, any viable feedback
control (25b) admits an exact affine pce. □

10 Note that Setting 2 contains Setting 1: quadratic costs generalize linear costs;
Gaussian random variables admit an exact affine pce; the feedback parameteriza-
tion is affine and viable; and the inequality constraint modeling is equivalent.

Proof. Viability of the feedback control (25b) follows from linearity
of the random-variable dc power flow (10b). Under Setting 2
Eq. (10b) becomes

1⊤

N (d + u) =

L∑
ℓ=0

1⊤

N dℓψℓ + 1⊤

N u = 0. (26)

The basis {ψℓ}
L
ℓ=0 – which is at most affine by assumption – spans

the (L+1)-dimensional subspaceM = span{ψℓ}
L
ℓ=0 ⊆ L2(Ω,R).11

All entries di of d are elements of M. To attain a feasible feedback
control for (26) it is necessary and sufficient to choose ui ∈ M;
hence u is exact affine. To attain zero in (26), which corresponds
to viability of the feedback control,

∑L
ℓ=01

⊤

N (dℓ + uℓ)ψℓ = 0
must hold. Project onto the non-zero basis functions ψℓ, and
exploit orthogonality

1⊤

N (dℓ + uℓ) ⟨ψℓ, ψℓ⟩ = 0, ℓ = 0, 1, . . . , L, (27)

which holds if and only if 1⊤

N (dℓ + uℓ) = 0, because ⟨ψℓ, ψℓ⟩ =

∥ψℓ∥
2 is positive. □

In short, Theorem 1 shows that affine policies are viable in case
of exact affine pces for the uncertainty d. Importantly, viability
of the affine feedback is a consequence only of linearity of the
random-variable dc power flow.

Finally, Step 3 needs to be addressed, i.e. how to compute the
pce coefficients uℓ tractably and efficiently. To this end, properties
of pce introduced in Section 3 are exploited to reformulate the cost
function, the equality constraints, and the inequality constraints
from Problem (24) in terms of pce coefficients.

Cost function

Under Setting 2 the cost function from Problem (24) reads
E[J(u)] = E[u⊤Hu + h⊤u] for positive definite H . Exploiting
orthogonality of the pce basis, the cost function becomes [20]

E [J(u)] = J(E [u]) +

L∑
ℓ=1

γℓ u⊤

ℓ Huℓ, (28a)

where the positive constant γℓ is computed offline according
to (15). The cost (28a) is equal to the sumof the cost of the expected
value J(E [u]) = J(u0) and the cost of uncertainty. The cost of
uncertainty has two origins: the monetary quadratic costs H , and
the genuine cost of uncertainty due to uncertainty encoded by
higher-order coefficients uℓ for ℓ = 1, . . . , L.

Equality constraints

Power balance (24b) in terms of random variables holds iff the
power balance holds in terms of the pce coefficients,

1⊤

N (dℓ + uℓ) = 0, ℓ = 0, . . . , L. (28b)

This has been proved in Theorem 1, and is contained in (25b)
from Setting 2.

11 In principle any basis B spanning M is possible. The choice of the basis
{ψℓ}

L
ℓ=0 is natural, because orthogonality is computationally advantageous as it

allows the deterministic reformulation (27) of the random-variable power flow
equations. It further yields L2-optimality. Furthermore, applying Gram–Schmidt
orthogonalization to B leads to the basis {ψℓ}

L
ℓ=0 .
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Inequality constraints

Moments of a random variable can be rewritten in terms of pce
coefficients, cf. (19). For the control input u this leads to

E[ui] + βu

√
Var[ui] = ui,0 + βu

√ L∑
ℓ=1

γℓu2
i,ℓ , (28c)

where ui,ℓ is the ℓth pce coefficient of the control input at bus i.
The same procedure applies to the uncertain line flows pl,j for lines
l ∈ Nl.

Optimization problem

Combining the results (28), Step 3 leads to the following convex
program [20]

min
uℓ∈RN∀ℓ=0,...,L

J(u0) +

L∑
ℓ=1

γℓ u⊤

ℓ Huℓ (29a)

s. t. 1⊤

N (dℓ + uℓ) = 0, ℓ = 0, . . . , L, (29b)

ui ≤ ui,0 ± βu

√ L∑
ℓ=1

γℓ u2
i,ℓ ≤ ui, (29c)

p
l,j

≤ pl,j,0 ± βl

√ L∑
ℓ=1

γℓ p2l,j,ℓ ≤ pl,j, (29d)

∀i ∈ N , ∀j ∈ Nl.

Problem (29) is a convex second-order cone program (socp) where
the pce coefficients of the control inputs are decision variables. The
optimal policy is obtained from the optimal solution u⋆ℓ of socp (29)
as follows

u⋆ =

L∑
ℓ=0

u⋆ℓψℓ = u⋆0 + U⋆ψ ∈ L2(Ω,RN ). (30)

Given a particular realization d̃ of the uncertain demand, there
exists a corresponding realization ξ̃ of the stochastic germ, i.e. d̃ =

d(ξ̃ ). This, in turn, results in a realization of the feedback pol-
icy (30), namely the control input

ũ⋆ = u⋆(ξ̃ ) =

L∑
ℓ=0

u⋆ℓψℓ(ξ̃ ) = u⋆0 + U⋆ψ(ξ̃ ) ∈ RN . (31)

The control action (31) satisfies the dc power flow equations by
construction. Similarly, the probability for violations of generation
limits and/or line limits is accounted for.

Remark 5 (Realization d̃). In practice it is the N-valued realization
d̃ of the power demand that is accessible, from which the nξ -
valued realization ξ̃ of the stochastic germ has to be computed.
This is straightforward for multivariate exact affine uncertainties
for which nξ = L, see Proposition 3. All basis polynomials of degree
one can be concisely written as an RL-valued affine function ψ =

[ψ1, . . . , ψL]
⊤

= a + Bξ with a ∈ RL and nonsingular B ∈ RL×L.
Rearranging (25a) leads to

DBξ̃ = d̃ − d0 − Da. (32)

A mild assumption is N ≥ nξ = L, i.e. there are as many or more
buses in the network than there are modeled sources of uncer-
tainties. If the matrix DB has full column rank, then the system
of linear equations (32) admits a unique solution by construction,
because the realization ξ̃ must be in the range of the rectangular
matrix DB ∈ RN×L. □

Fig. 1. Three-bus system with two generators and one uncertain load.

Numerical scalability

The socp (29) is a tractable convex reformulation of the cc-
opf Problem (24), and it exhibits structural equivalence: the cost
function remains quadratic and positive definite, the random-
variable dc power flow remains linear. Also, the reformulated
chance constraints are second-order cone constraints. Compared
to a standard deterministic dc-opf Problem (1) with N decision
variables ui for i ∈ N , the socp (29) has N(L+ 1) decision variables
ui,ℓ for i ∈ N and ℓ = 0, . . . , L; for every bus i the (L + 1) pce
coefficients have to be computed. In order to solve Problem (29),
the positive numbers γℓ have to be computed. This can be done
offline, for example via Gauss quadrature [28].

In general, the pce dimension (L + 1) grows rapidly with the
number of sources of uncertainty and the required univariate ba-
sis dimensions, see (18). However, problems with many sources
of uncertainty are intrinsically complex, hence are expected to
be challenging both conceptually and numerically. If exact affine
uncertainties are used to model uncertainties, then the required
dimension of the univariate bases reduces significantly. For exam-
ple, if every bus is modeled by a distinct exact affine uncertainty,
then the number of decision variables of the socp (29) becomes
N(L + 1) = N(N + 1).

Remark 6 (Local balancing via pce). pce naturally yields local bal-
ancing policies [12], because every bus can react to all uncertainties
individually, hence especially to its local source of uncertainty.
Local imbalances can be accounted for locally, thus avoiding net-
work congestions. Instead, the agc feedback from Setting 1 is a
global balancing policy: the agc coefficient αj reacts to the sum
of all fluctuations. This is motivated by current practice, where
the sum of all fluctuations may be the only available broadcast
signal by the tso. Then, however, local imbalances are, potentially,
accounted for globally, thus possibly creating network congestions.
Importantly, the pce coefficients can be constrained to also yield a
global balancing policy by enforcing equality of all non-zero-order
pce coefficients. □

5. Case studies

This section demonstrates the proposed method to cc-opf for
two test systems. Section 5.1 considers a 3-bus example in a
tutorial style: the system is simple enough to provide an analytical
solution, hence allows for insightful comparisons; canonical and
non-canonical uncertainties are considered. Section 5.2 provides a
concise study of the 300-bus test case. All units are given in per-
unit values.
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5.1. Tutorial 3-bus example

Consider the grid depicted in Fig. 1: a connected 3-bus network
where buses 1 and 2 each have generators but zero power demand,
and bus 3 has no generator but non-zero stochastic power demand.
With slight abuse of notation set u = [u1, u2]

⊤
∈ L2(Ω,R2) and

d ≡ d3 ∈ L2(Ω,R).

5.1.1. Beta distribution
We consider cc-opf under Setting 2 with the following data:

The separable quadratic cost has parameters H = diag(0.2, 0.2),
h = [h1, h2]

⊤
= [0.5, 0.6]⊤. The uncertain power demand d

is modeled as a Beta distribution with support [−1.5,−0.9] and
shape parameters a = 4, b = 2. According to Corollary 1 it
admits an exact affine pced =

∑1
ℓ=0dℓψℓw.r.t. the stochastic germ

ξ ∼ B(a, b) in a Jacobi polynomial basis {ψℓ}
1
ℓ=0 = {P (b−1,a−1)

ℓ (2ξ−

1)}1ℓ=0 = {1, 6ξ−4}with pce coefficients [d0, d1]⊤ = [−1.1, 0.1]⊤,

d = d0 + d1ψ1 = −1.5 + 0.6ξ ⇐⇒ ξ =
d + 1.5
0.6

. (33)

Fig. 2(a) shows the skewed probability density function ( PDF)
fd : [−1.5,−0.9] → R≥0 of the demand d. Furthermore, an upper
generation limit u1 = 0.85 for the generator at bus 1 is considered
via the chance constraint reformulation

E [u1] + βu

√
Var [u1] ≤ u1 ⇒ P(u1 ≤ u1) ≥ 1 − ε. (34)

The chance constraint parameter is βu =
√
(1 − ε)/ε for a risk

level ε ∈ {0.05, 0.10}, which is a distributionally robust formu-
lation [30]. From Theorem 1 it is known that any viable feedback
policy has to be exact affine w.r.t. the Jacobi polynomial basis,
i.e. u =

∑1
ℓ=0uℓψℓ. The socp (29) for this setup becomes

min
u0,u1∈R2

1
2
u⊤

0 Hu0 + h⊤u0 +
γ1

2
u⊤

1 Hu1 (35a)

s. t. dℓ + 1⊤

2 uℓ = 0, ℓ = 0, 1 (35b)

u1,0 + βu

√
γ1 u2

1,1 ≤ u1, (35c)

with γ1 = ⟨ψ1, ψ1⟩ =
2

35 B(4,2) , where B(·, ·) is the Beta function.
Having solved (35), the optimal pce becomes u⋆ = u⋆0 + u⋆1ψ1 in
terms of the stochastic germ ξ ; see Table 1 for numerical values
of the optimal pce coefficients. For practical considerations the
optimal feedback policy in terms of the uncertain demand d is of
interest. Using (33), this yields the following policies

u⋆(d) =

[
u1(d)
u2(d)

]

=

⎧⎪⎪⎨⎪⎪⎩
[

0.6513
−0.6513

]
−

[
0.1270
0.8730

]
d, ε = 0.05,[

0.58
−0.58

]
−

[
0.19
0.81

]
d, ε = 0.10,

(36)

which satisfy the power balance, e.g. for ε = 0.05

d + 1⊤

2 u
⋆
= d + 1⊤

2

([
0.6513

−0.6513

]
−

[
0.127
0.873

]
d

)
= 0. (37)

The policies (36) are plotted in Fig. 3(a): generator 1 takes a big-
ger share in power generation because it is cheaper. A reduced risk
level makes the slope of the policy of generator 1 more horizontal,
hence more constraint-averse. The policies map a specific realiza-
tion of the demand to a specific realization of the generation; this
does not contain any information about how often certain control
actions are taken. To obtain this information about frequency of
occurrences the PDFs of the optimal feedback policies have to be
studied; they are plotted in Figs. 3(b) and 3(c). They show how often

Fig. 2. Probability density of uncertain demand d.

Table 1
Optimal pce coefficients and policies for ε ∈ {0.05, 0.10}.

ε Section 5.1.1—Beta Section 5.1.2—Sinusoidal
u⋆0 u⋆1 u⋆0 u⋆1

0.05
[
0.7910
0.3090

]
−

[
0.0127
0.0873

] [
0.7813
0.6187

]
−

[
0.1919
0.8081

]
0.10

[
0.7890
0.3110

]
−

[
0.0190
0.0810

] [
0.7837
0.6163

]
−

[
0.2376
0.7624

]

certain optimal inputs are applied. One observes that the chance
constraint remains (numerically) non-binding for either choice of
ε. Analytically, the constraint violation probability becomes

P(u⋆1 ≤ u1) = 1 − F (α,β)
(
1
6

(
u⋆1 − u⋆1,0

u⋆1,1
+ 4

))
, (38)

where u⋆1,0, u
⋆
1,1 are the zero- and first-order pce coefficient of

generator 1, and F (a,b) is the cumulative distribution function of
the Beta distribution with shape parameters a, b. Inserting the
numerical values from Table 1 yields

ε = 0.05 : P(u⋆1 ≤ 0.85) = 1 ≥ 1 − 0.05, (39a)

ε = 0.10 : P(u⋆1 ≤ 0.85) = 1 ≥ 1 − 0.10. (39b)

This shows that the employed chance constraint reformula-
tion (34) is conservative for the considered skewed distribution
from Fig. 2(a). To get the least conservative results, the closed-
form (38) should be used directly in the optimization (35), possibly
leading to nonconvexities, hence harder problems to solve.

5.1.2. Sinusoidal distribution
Sticking to the aforementioned grid from Fig. 1 let us consider

cc-opf under Setting 2 with the following data: The separable
quadratic cost has parameters H = diag(0.2, 0.1), h = [0.5, 0.6]⊤.
The uncertain power demand d follows a sinusoidal distribution on
[−1.9,−0.9] with PDF fd(d) = π/2 sin(π (d + 1.9)), see Fig. 2(b).
Choosing the stochastic germ according to the example from Sec-
tion 3.2, d admits an exact affine pce w.r.t. the orthogonal basis
{1, ξ − 1/2} with pce coefficients [d0, d1]⊤ = [−1.4, 1.0]⊤, i.e.

d = d0 + d1ψ1 = −1.4 + (ξ − 0.5) H⇒ ξ = d + 1.9. (40)

The upper generation limit remains u1 = 0.85, as does the
chance constraint reformulation (34). However, the chance con-
straint parameter is chosen as βu = Φ−1(1 − ε) for risk levels
ε ∈ {0.05, 0.10}, where Φ−1 is the inverse of the cumulative
distribution function of a standard Gaussian random variable. The
chance constraint reformulation is exact for Gaussian randomvari-
ables [30]. It is chosen here because the PDF of u is symmetric and
unimodal. Solving (35) yields the optimal pce coefficients, listed in
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Fig. 3. Demand as Beta distribution—Results for security levels ε = 0.05 (dash-dotted), and ε = 0.10 (solid). Upper generation limit shown dotted.

Fig. 4. Demand as sinusoidal distribution—Results for security levels ε = 0.05 (dash-dotted), and ε = 0.10 (solid). Upper generation limit shown dotted.

Table 1. The optimal policies are, using (40),

u⋆(d) =

[
u1(d)
u2(d)

]

=

⎧⎪⎪⎨⎪⎪⎩
[

0.5126
−0.5126

]
−

[
0.1919
0.8081

]
d, ε = 0.05,[

0.4511
−0.4511

]
−

[
0.2376
0.7624

]
d, ε = 0.10,

(41)

which satisfy the power balance, e.g. for ε = 0.05

d + 1⊤

2 u
⋆
= d + 1⊤

2

([
0.5126

−0.5126

]
−

[
0.1919
0.8081

]
d

)
= 0. (42)

The policies (41) are plotted in Fig. 4(a): While the risk level does
not have a big influence on the policies, the upper constraint
generation u1 is clearly violated for generator 1 for high demands
(< −1.7). The PDFs of the generators are plotted in Figs. 4(b) and
4(c). The PDF of generator 1 confirms that the constraint violation
occurs with non-negligible probability. The empirical constraint
violation is given by

P(u⋆1 ≤ u1) =
1
2

(
1 + cos

(
π

(
u1 − u⋆1,0

u⋆1,1
+

1
2

)))
, (43)

where u⋆1,0, u
⋆
1,1 are the zero- and first-order pce coefficient of

generator 1. Inserting the numerical values from Table 1 yields

ε = 0.05 : P(u⋆1 ≤ 0.85) = 0.9511 ≥ 1 − 0.05, (44a)
ε = 0.10 : P(u⋆1 ≤ 0.85) = 0.9105 ≥ 1 − 0.10. (44b)

Hence, the employed chance constraint formulation is adequate for
this case, because the optimization problem (35) remains convex,
yet it is not overly conservative.

5.2. 300-bus example

This subsection considers the ieee 300-bus test case which has
N = 300 buses, Ng = 69 generation units, and Nl = 411 lines. The
results build on the simulation study from [20], but the present
work considers twice as many sources of uncertainties (20 in the
present paper vs. 10 in [20]).

Specifically, we introduce 18 sources of uncertainties for power
the demand at buses

Nu = {14, 17, 61, 77, 120, 121, 122, 139, 192, 204,

217, 218, 225, 228, 231, 234, 235, 246} ⊆ N ,
(45)

where buses i ∈ {14, . . . , 218} ⊂ Nu are modeled as Gaus-
sians, and buses i ∈ {225, . . . , 246} ⊂ Nu are modeled as Beta
distributions (Table 2 lists the shape parameters). The mean and
variance for the Gaussian uncertainties are computed such that the
±3σ -interval contains ±15% deviations from the nominal value.
Similarly, the support of the Beta distributions is the interval of
±15% deviations from the nominal value.

Additionally, there is one source of uncertainty for wind power
(modeled as a Gaussian), and one source of uncertainty for so-
lar power (modeled as a Beta distribution with shape param-
eters (7,7)), yielding a total of nξ = 20 sources of uncer-
tainties. Solar and wind power are modeled to affect all buses.
The constraint reformulation parameters βu and βl are chosen
as βu = βl =

√
(1 − ε)/ε with violation probability ε =

2.5%. This choice ensures distributionally robust satisfaction of the
chance constraints [30].

The optimal pce coefficients are the solution to the socp (29),
fromwhich optimal policies are recovered.12 To assess the quality
of the optimized policies via cc-opf we compare them to the
policies from the most-informative case, namely in-hindsight opf
(hopf) [36]; in-hindsight policies are obtained by sampling the
uncertainties, and then solving a deterministic opf problem for
every sample.13 The policy from hopf provides the best distri-
bution of optimal inputs and satisfies the constraints strictly for
every sample.

For the chance constraint reformulations to be exact, it is im-
portant that pce computes the moments accurately. Let us assess
the quality of the standard deviation – which is related to the
secondmoment – as it acts as an uncertaintymargin for the chance
constraint reformulations, see (29). Fig. 5 shows two values for

12 The socp is solved in 300 ms with Matlab and Gurobi.
13 We selected 20000 samples. Solving the 20000 deterministic opf problems
took about 12.5min (without any parallelization).
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Fig. 5. Standard deviations σi for generation buses computed by in-hindsight opf (hopf) and chance-constrained opf (cc-opf).

Table 2
Shape parameters of Beta distributions for 300-bus example.

Bus 225 228 231 234 235 246
Parameters (8,3) (3,8) (8,3) (3,8) (7,7) (3,8)

the standard deviations, for all generation buses; one is computed
by hopf, the other is computed by cc-opf. As can be seen from
Fig. 5 the numerical values are close. In terms of the 1-norm of the
vectors of standard deviations, the power fluctuation from cc-opf
is marginally bigger, namely ∥σ CC-OPF

∥1 = 1.7035 = ∥σ hOPF
∥1 +

0.0030. A closer look at Fig. 5 reveals that the standard deviation
from cc-opf appears to be slightly larger for all buses except for
bus 48, where it is significantly lower, ∥σ hOPF

− σ CC-OPF
∥∞ =

|σ hOPF
48 −σ CC-OPF

48 | = 0.0090. The generator at bus 48 is connected to
line 394 for which the line flow limit becomes binding. Compared
to the hopf solution, cc-opf is more conservative and reduces the
variability of the power injections at bus 48.

To conclude, cc-opf finds by means of a single optimization
problem optimal policies that satisfy the power balance strictly
and that satisfy the inequalities in a chance constraint sense. The
statistics of the policies from cc-opf are consistent with the results
from the best-informed hopf solution, yet obtained at lower com-
putation times.

6. Conclusions and outlook

Given the continuously increasing share of renewables, the
structured consideration of uncertainties for optimal power
flow problems is paramount. Existing approaches to chance-
constrained opf under dc conditions often employ affine feedback
policies to account for fluctuationsmodeled viamultivariate Gaus-
sian uncertainties. Starting from a chance-constrained optimal
power flow problem written in terms of random variables, this
paper shows that the importance of affine policies is not related
to the uncertainty model, e.g. Gaussian, but to the power balance
constraint that maps random variables to random variables. In
addition, the optimal affine policies are random variables whose
realizations satisfy the power balance, and satisfy the inequal-
ity constraints in the chance constraint sense. The present paper
proposes a three-step methodology to solving cc-opf problems,
namely formulation, parameterization, optimization. When for-
mulating cc-opf problems, it is argued that the choice of the cost
function and chance constraint formulation are modeling choices,
hence user-specific. In any case, an affine parameterization of the
optimal policy is required due to power balance. The resulting
parameterized optimization problem can be solved tractably and
efficiently using polynomial chaos expansion, which results for
example in a second-order cone program that scales well with the
number of uncertainties. The proposed methodology is applied to
a tutorial 3-bus example both for a standard and non-standard
uncertainty model, and to the ieee 300-bus system.

The present paper has not investigated the relation between
different problem formulationswhatsoever. For example,what can

be said about the minimizers if just the cost function formulation
is changed?What is the ‘‘mostmeaningful’’ way to reformulate the
cost and the inequalities in the presence of certain inequalities? To
find an acceptable trade-off between conservatism and computa-
tional complexity is a topic worth pursuing.

The presented results hold for transmission networks under dc
power flow assumptions. It is natural to ask whether the method
can be extended to the more general case of ac power flow. In
fact, [19,37] studied ac-opf under uncertainty using polynomial
chaos and showed that pce provides policies of higher order than
affine policies that satisfy the acpower flow equations numerically;
however no rigorous proof is provided. It remains an open research
question what kinds of policies generally satisfy ac power flow.

Finally, in applications the data-driven computation of the pce
of the uncertain demand/feed-in may itself be challenging and
subject to uncertainty about the uncertainty. Thus, distributionally
robust pce formulations are of interest in the future.
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