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Abstract. We consider the task of extending a given coin toss. By this, we mean the
two-party task of using a single instance of a given coin toss protocol in order to inter-
actively generate more random coins. A bit more formally, our goal is to generate n
common random coins from a single use of an ideal functionality that gives m < n
common random coins to both parties. In the framework of universal composability,
we show the impossibility of securely extending a coin toss for statistical and perfect
security. On the other hand, for computational security, the existence of a protocol for
coin toss extension depends on the number m of random coins that can be obtained
“for free.” For the case of stand-alone security, i.e., a simulation-based security defi-
nition without an environment, we present a protocol for statistically secure coin toss
extension. Our protocol works for superlogarithmic m, which is optimal as we show
the impossibility of statistically secure coin toss extension for smaller m. Combining
our results with already known results, we obtain a (nearly) complete characterization
under which circumstances coin toss extension is possible.

Keywords. Coin toss, Universal composability, Reactive simulatability, Crypto-
graphic protocols.

1. Introduction

Blum showed in [6] how to flip a coin over the telephone line. His protocol guarantees
that even if one party does not follow the protocol, the other party still gets a uniformly
distributed coin toss outcome. This general concept of generating common randomness
in a way such that no dishonest party can dictate the outcome proved very useful in
cryptography, for example, in the construction of protocols for general secure multiparty
computation.
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Here, we are interested in the task of extending a given coin toss. That is, suppose that
two parties already have the possibility of making a single m-bit coin toss. Is it possible
for them to get n > m bits of common randomness? The answer we come up with is
basically: “It depends on the security model and on the length of the coin toss used as
seed.”
The first thing the extensibility of a given coin toss depends on is the required kind

of security. In this work, we will consider simulation-based security notions, in which a
protocol is secure if and only if it “imitates” an ideal functionality. For the case of coin
toss, this ideal functionality will act as a trusted host that simply equips both parties
with common random coins. However, we would like to stress that we would like to
model an interactive coin toss protocol. Hence, the coin toss ideal functionality first
expects an “activation signal” from both parties before handing out the random coins.
This is quite different from a “common random string” (CRS) functionality that does
not require such activation signals. (In fact, in this work, we will investigate also CRSs
and CRS extension protocols, with somewhat different results compared to the coin toss
case.)
A little more technically, one specific kind of security requirement (which we call

“standalone simulatability” here) is that the protocol imitates the ideal coin toss func-
tionality in the sense of [14], where a simulator has to invent a realistic protocol run after
learning the outcome of the ideal coin toss. A stronger type of requirement is to demand
universal composability, which basically means that the protocol imitates an ideal coin
toss functionality even in arbitrary protocol environments. Security in the latter sense can
conveniently be captured in a simulatability framework like the universal composability
framework [7] (see also [19]) or the reactive simulatability model [3,24].
Orthogonal to this, one can vary the level of fulfillment of each of these security

requirements. For example, one can demand stand-alone simulatability of the protocol
with respect to polynomial-time adversaries in the sense that real protocol and ideal
functionality are only computationally indistinguishable. This specific requirement is
already fulfilled by the protocol of Blum. Alternatively, one can demand, for example,
universal composability of the protocol with respect to unbounded adversaries. This
would then yield statistical or even perfect security.We show thatwhether such a protocol
exists depending on the asymptotic behavior of m.
Finally, we clarify that in this paper, we consider coin toss protocols that do not

necessarily guarantee output in case one party is corrupted. (We only require that when
both parties are honest and all messages are delivered, both parties will give the same
output.) Our definition aligns in a natural way with other simulation-based definitions
(and in particular, universal composability) that usually do not guarantee output. Yet,
our definition is weaker than, for example, the one considered by Cleve [11], Moran et
al. [23] (which guarantees a uniformly distributed output in any case). Specifically, in
our case, a dishonest party could abort the protocol (and potentially cause the other party
not to output anything) once it learns that the result would have been unfavorable. We
consider this weaker notion for the both assumed and achieved coin toss in a coin toss
extension protocol. Hence, it is not clear to what extent even our negative results also
hold for the stronger notion of coin toss. We note, however, that at least for stand-alone
statistical security, we give a positive result (i.e., a coin toss extension protocol) that
does guarantee output.
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Table 1. Summary of our results on coin toss extension.

Security model Level

Computational Statistical Perfect

Stand-alone simulatability Yes Depends No
Universal composability Depends No No

“Depends” means that the entry is “yes” for superlogarithmic m, and “no” otherwise

Our results are summarized in Table 1. A “yes” or “no” indicates whether a protocol
for coin toss extension exists in that setting. “Depends” means that the answer depends
on the size of the seed (the m-bit coin toss that is available by assumption). Boldface
indicates novel results.

1.1. Known Results in the Perfect and Statistical Case

A folklore theorem states that (perfectly non-trivial) statistically secure coin toss is
impossible from scratch (even in very lenient security models). Kitaev extended this
result to protocols using quantum communication (cf. [1]). The task of extending a
given coin toss was first investigated by Bellare et al. [4]. They presented a statistically
secure protocol for extending a given coin toss (pre-shared among many parties using a
verifiable secret sharing scheme), if less than 1

6 of all parties are corrupted.
Their result does not apply to the two-party case.

1.2. Our Results in the Perfect and Statistical Case

Our results in the perfect case are most easily explained. For the perfect case, we show
impossibility of any coin toss extension, no matter how (in)efficient. We show this for
stand-alone simulatability (Corollary 11) and for universal composability (Corollary 16).
We first observe (and abstract in a helper lemma) that we may assume that any (not

necessarily efficient) coin toss extension has a certain outer form, both in the stand-
alone and UC security settings. Most interestingly, we may assume that the protocol
partners run the m-bit coin toss only at the end of the protocol, after all party-to-party
communication. A little more formally, we show that every coin toss extension protocol
can be transformed into an inefficient one in which parties do not communicate any
more after initiating the m-bit coin toss. Our transformation runs 2m instances of the
original protocol in parallel, one for each possible seed (i.e., outcome of the m-bit coin
toss). Note that these instances can all be run without knowledge of the actual seed. The
m-bit coin toss is only initiated after all instances have terminated, and the resulting seed
selects the protocol instance whose outcome is returned. We will show in the proof of
the helper lemma that this modified protocol provides a secure coin toss, assuming the
original protocol is secure.
We now outline our argument for the stand-alone case. The impossibility of per-

fectly secure coin toss extension in the case of universal composability then follows
directly from that in the case of stand-alone simulatability because universal compos-
ability implies stand-alone simulatability.
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So assume a coin toss extension protocol that extends an m-bit coin toss to an n-bit
outcome in the perfect stand-alone setting. Without loss of generality, we can assume
that the protocol partners run the m-bit coin toss only at the end of the protocol, after
all party-to-party communication. A little more formally, we show that every coin toss
extension protocol (efficient or not, but perfectly secure in the stand-alone setting) can
be transformed into an inefficient one in which parties do not communicate any more
after initiating the m-bit coin toss. Our transformation runs 2m instances of the original
protocol in parallel, one for each possible seed (i.e., outcome of them-bit coin toss). Note
that these instances can all be run without knowledge of the actual seed. The m-bit coin
toss is only initiated after all instances have terminated, and the resulting seed selects
the protocol instance whose outcome is returned. We will show in the full proof that this
modified protocol provides a secure coin toss, assuming the original protocol is secure.
Now a run of a protocol (of the form above) up to the point where them-bit coin toss is

started yields a set of 2m possible outcomes, each with probability 2−m (corresponding
to the probability of each single possible seed). This protocol run without the last step
(i.e., without the m-bit coin toss) can hence be interpreted as a finite game with total
information. At the end of that game, there are at most 2m possible candidates for the
final outcome.
The goal of the game for a corrupted Alice is to end in a state in which the all-zero

string has a probability greater than zero (and thus greater–equal to 2−m), whereas a
corrupted Bob will try to end in a state in which the all-zero string has probability 0. A
finite game like this has a winning strategy, and either Alice can make the probability
of the all-zero string nonzero (and thus ≥ 2−m > 2−n) or Bob can make the probability
of the all-zero string equal to zero. In either case, we have a contradiction to the perfect
security of the coin toss extension (in which the probability of an all-zero outcome of
the whole protocol is exactly 2−n).

Now for the statistical case. When demanding only stand-alone simulatability, the
situation depends on the number of already available common coins. Namely, we give
an efficient protocol to extend m common coins to any polynomial number (in the
security parameter), if m is superlogarithmic. The basic idea of the protocol is to have
Alice and Bob each provide a bit string. The final outcome of the coin toss is then
computed by applying a randomness extractor to (the concatenation of) both bit strings.
The seed provided by the givenm-bit coin tosswill be used as the seed for the randomness
extraction. (See Theorem 14 and its proof for details.)
A stand-alone coin toss extension even from m to m + 1 bits is impossible in the

statistical case if the seed is too short, i.e., not superlogarithmic (Corollary 11). To
sketch our argument, assume (for contradiction) a coin toss extension protocol that
achieves statistical security for non-superlogarithmic m. Without loss of generality, we
may again assume that the m-bit coin toss used as seed is only queried after all party-
to-party communication.
Now consider a malicious protocol party (Alice) whose goal is to keep an all-zero

outcome (of the constructed (m + 1)-bit coin toss) possible. More specifically, for each
point p in a protocol run, we consider the probability of three possible conditions:

(1) Starting from p, an optimally playing Alice will “win,” in the sense that in the last
protocol step before the seed is chosen, the all-zero string has a probability not
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equal to zero. This nonzero probability is taken only over the value of the seed and
hence must be noticeable (because the seed is short). In particular, the probability
for an all-zero outcome is noticeably different from an ideal coin toss.

(2) Starting from p, the protocol will not abort, and optimally playing Bob “wins,” in
the sense that the probability of the all-zero string is zero. Since m (and thus also
m + 1) is not superlogarithmic, this also constitutes a noticeable difference to an
ideal coin toss.

(3) Starting from p, the protocol will abort with a nonzero probability even if both
parties are uncorrupted.

We will show by induction that one of the conditions will be true with “high” probability
at every point p in the protocol. Hence, the protocol will abort with “high” probability
in the uncorrupted case, or one of Alice or Bob will be able to “win” and hence cheat in
the coin toss extension.
In the statistical universal composability setting, the situation is more clear: We show

that there is no protocol with polynomially many rounds that extends m to m + 1 coins,
no matter how large m is (Theorem 15). (Note, however, that our result does not exclude
the existence of coin toss protocols that run in a superpolynomial number of rounds.)
As above, we may assume that the protocol obtains the seed in the last protocol step.

The core of our proof rests on the following observation: Given the communication
between the environment and the adversary up to the point when the seed is chosen, at
least half of the strings from {0, 1}n are no longer possible. The protocol proceeds in
polynomiallymany rounds, and at the end (before the seed is chosen), a superpolynomial
amount of strings has become impossible. Hence, there must have been a single “critical
message” excluding a superpolynomial number of strings. The environment lets the
adversary corrupt a party that sends such a critical message. Then, the environment
chooses at randomwhether the criticalmessage is sent or replaced by a differentmessage.
Replacing the critical message then has a noticeable effect on the probability distribution
of the final outcome; this effect cannot be mimicked by the simulator in the ideal model.

1.3. Known Results in the Computational Case

In [6], Blum gave a computationally secure coin toss protocol. In [14, Proposition 7.4.8],
this protocol is shown to be stand-alone simulatable, and together with the sequential
composition theorem [14, Proposition 7.4.3] for stand-alone simulatable protocols, this
gives a computationally stand-alone simulatable protocol for tossing polynomially many
coins. This makes coin toss extension trivial in that setting; one just ignores the m-bit
coin toss and tosses n-bit from scratch.
In the computational universal composability setting, it has been shown in [8] that

coin toss cannot be achieved from scratch. However, they showed that a sufficiently large
common random string (CRS) implies (an arbitrary number of) ideal bit commitments.
Such ideal bit commitments allow to implement a coin toss of arbitrary length (e.g., using
Blum’s protocol [6]). Thus, a sufficiently large CRS (and therefore, also a sufficiently
large coin toss) can be extended to any polynomial length. However, it was unclear what
the minimum size required from the CRS or the coin toss is.
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Note that there is a subtle difference between the notion of a CRS and a coin toss. A
CRS is randomness that is available to all parties at the beginning of the protocol, while
with coin toss the randomness is only generated when all parties agree to run the coin
toss. This makes the coin toss actually the stronger primitive, since in some situations, it
is necessary to guarantee that not even corrupted parties learn the outcomes of the coin
toss prior to a given protocol step.
In [11], the task of coin toss is considered in a scenario slightly different from ours.1

Cleve [11] shows that in their setting, coin toss is generally not possible even against
computationally limited adversaries. However, to the best of our knowledge, an extension
of a given coin toss (in any setting) has not been considered so far in the computational
setting.

1.4. Our Results in the Computational Case

We show that under suitable (and plausible) computational assumptions, it is possible to
extend any coin toss of superlogarithmic length m. (Recall that if m is not superlogarith-
mic, we show—unconditionally—that coin toss extension is not possible. Hence, this
positive result complements our negative result from Theorem 8, albeit under certain
computational assumptions.) More specifically, [9] show that when assuming the exis-
tence of (polynomially secure) dense pseudorandom permutations, an m-bit coin toss
(for linear m) can be used to implement (arbitrarily many) bit commitments. These bit
commitments can then be used in the coin-tossing protocol of Blum [6] to derive arbitrar-
ily many fresh random coins. We show (in Theorem 7) that suitably scaling the security
parameter of this construction, an m-bit coin toss can be extended for any superlogarith-
mic m, assuming exponentially strong dense pseudorandom permutations. We leave it
as an open problem to find coin toss extension protocols under weaker assumptions.

1.5. CRS Extension

A common random string (CRS) can be considered to be cryptographically weaker than
a coin toss functionality. The random string of a coin toss functionality is chosen only
after both parties have initiated the functionality. A CRS does not give such a guarantee
and the adversary may know the value of the CRS from the start. Our coin toss extension
protocol fromTheorem14 strongly depends on this guarantee; it is vital that the adversary
cannot make his choices dependent on the seed before both parties have initiated the
choice of the seed. Hence, the results for coin toss extension do not immediately apply
to the task of CRS extension.
A natural question is under which conditions a given CRS can be extended. In this

work, we give a characterization, summarized in Table 2.
Differences to the case of coin toss extension are printed in boldface. ACRS extension

is impossible in the case of statistical stand-alone simulatability even for long seeds. To

1In [11], parties may not abort protocol execution without generating output. In contrast, in our setting, a
party may abort at any time, for example, when detecting a cheating other party, or when it becomes clear that
the overall output may be undesirable. We note that in this setting without aborts, any secure coin toss must
be “fair,” in the sense that a party is guaranteed to obtain a random output.
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Table 2. Summary of our results on CRS extension.

Security type Level

Computational Statistical Perfect

Stand-alone simulatability Yes No No
Universal composability Depends No No

“Depends” means that the entry is “yes” if and only if the seed has superlogarithmic length

show the impossibility, we look at the protocol after the CRS has been chosen. Given a
concrete CRS s to extend, some bits of the protocol outcome should be undetermined
at the start of the protocol. Otherwise, the resulting extended CRS would have at most
the entropy of s. However, given a concrete CRS s, the situation for the undetermined
bits is similar to a coin toss from scratch. These bits can be biased by Alice, or they can
be biased by Bob. This proof illustrates the difference between a coin toss and a CRS.
Recall that in the coin toss case, a given m-bit coin toss can be moved to the end of a coin
toss extension protocol without loss of generality. We stress, however, that the choice of
a CRS always happens at the beginning of the protocol.
For the computational case, the results correspond to the findings for coin toss exten-

sion (with roughly the same proofs).

1.6. Notation

– A function f is negligible, if for any c > 0, f (k) ≤ k−c for sufficiently large k.
– A function f is non-negligible if it is not negligible, i.e., if there is a c > 0 such
that f (k) > k−c for infinitely many k (not to be confused with noticeable).

– f is noticeable, if for some c > 0, f (k) ≥ k−c for sufficiently large k. Note that
functions exist that are neither negligible nor noticeable.

– f is exponentially small, if there exists a c > 0, such that f (k) ≤ 2−kc
for suffi-

ciently large k.
– f is overwhelming, if 1 − f is negligible.
– f is polynomially bounded, if for some c > 0, f (k) ≤ kc for sufficiently large k.
– f is polynomially large, if there is a c > 0 such that f (k)c ≥ k for sufficiently
large k.

– f is superpolynomial, if for any c > 0, f (k) > kc for sufficiently large k.
– f is superlogarithmic, if f/ log k → ∞ (i.e., f ∈ ω(log k)). It is easy to see that

f is superlogarithmic if and only if 2− f is negligible.
– f is superpolylogarithmic, if for any c > 0, f (k) > (log k)c for sufficiently large

k.
– f is subexponential, if for any c > 0, f (k) < 2kc

for sufficiently large k.
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2. Security Definitions

In this section, we roughly sketch the security definitions used throughout this paper.
We distinguish between two notions: stand-alone simulatability as defined in [14]2 and
universal composability (UC) as defined in [7].

2.1. Stand-alone Simulatability

In [14], a definition for the security of two-party secure function evaluations is given
(called security in the malicious model). We will give a sketch; for more details, we refer
to [14].
A protocol consists of two parties that alternatingly send messages to each other. The

parties may also invoke an ideal functionality as an oracle. In our case, the parties invoke
a smaller coin toss to realize a larger one. We remark that the ideal functionality can
only be invoked once. Thus, in our case, the parties have only access to one smaller coin
toss.
We say the protocol π stand-alone simulatably realizes a probabilistic function f , if

for any efficient adversary A that may replace none or a single party, there is an efficient
simulator S such that for all inputs, the following random variables are computationally
indistinguishable:

– The real protocol execution This consists of the view of the corrupted parties upon
inputs x1 and x2 for the parties and the auxiliary input z for the adversary, together
with the outputs I of the parties.

– The ideal protocol execution Here, the simulator first learns the auxiliary input z
and possibly the input for the corrupted party (the simulator must corrupt the same
party as the adversary). Then, he can choose the input of the corrupted party for
the probabilistic function f , and the other inputs are chosen honestly (i.e., the first
input is x1 if the first party is uncorrupted, and the second input x2 if the second
party is). Then, the simulator learns the output I of f (we assume the output to be
equal for all parties). It may now generate a fake view v of the corrupted parties.
The ideal protocol execution then consists of v and I .

Of course, in our case, the probabilistic function f (the coin toss) has no input, so the
above definition gets simpler.
What we have sketched above is what we call computational stand-alone simulata-

bility. We further define statistical stand-alone simulatability and perfect stand-alone
simulatability. In these cases, we do not consider efficient adversaries and simulators,
but computationally unbounded ones. In the case of statistical stand-alone simulatability,
we require the real and ideal protocol execution to be statistically (and not only compu-
tationally) indistinguishable, and in the perfect case, we even require these distributions
to be identical.

2In fact, Goldreich [14] does not use the name stand-alone simulatability but simply speaks about security
in the malicious model. We adopt the name stand-alone simulatability for this paper to be able to better
distinguish the different notions.
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2.2. Universal Composability

In contrast to stand-alone simulatability, universal composability [7] is a much stricter
security notion. The main difference is the existence of an environment that may interact
with protocol and adversary (or with ideal functionality and simulator) and try to distin-
guish between real and ideal protocol. This additional strictness brings the advantage of
a versatile composition theorem (the UC composition theorem [7]). We only sketch the
model here and refer to [7] for details.
A protocol consists of several machines that may (a) get input from the environment

(also during the execution of the protocol), (b) give output to the environment (also
during the execution of the protocol), and (c) send messages to each other.
The real protocol execution consists of a protocol π , an adversary A, and an envi-

ronment Z . Here, the environment may freely communicate with the adversary, and
the latter has full control over the network, i.e., it may deliver, delay, or drop messages
sent between parties. We assume the authenticated model in this paper, so the adversary
learns the content of the messages but may not modify it. When Z terminates, it gives
an output. The adversary may choose to corrupt parties at any point in time.3

The ideal protocol execution is defined analogously, but instead of a protocol π ,
there is an ideal functionality F , and instead of the adversary, there is a simulator S.
The simulator can also corrupt parties, but does not see any inputs/outputs exchanged
between uncorrupted parties and the ideal functionality. If the simulator corrupts a party,
the simulator can choose all inputs from that party into the functionality and get the
corresponding outputs to that party. Uncorrupted parties simply act as relays (or “dummy
parties”) who forward inputs/outputs between Z and F .
The hybrid protocol execution is defined like the real protocol execution, except that

parties also have access to an ideal functionality (also called hybrid functionality in this
context), in addition to their ability to communicate over the network. The adversaryA
controls the network in the sameway as in the real protocol execution, but cannot control
communication to/from the hybrid functionality (like in the ideal protocol execution).
We remark that while Canetti [7] allows parties access to an unbounded number of
instances of hybrid functionalities, here we are only interested in protocols that invoke
and access at most one instance.
We say a protocol π universally composably (UC-)implements an ideal functional-

ity F (or, if F is clear from the context: That π is universally composable), if for any
efficient adversary A, there is an efficient simulator S, such that for all efficient envi-
ronments Z and all auxiliary inputs z for Z , the distributions of the output of Z in the
real4 and the ideal protocol executions are computationally indistinguishable.5

What has been sketched above is called computational UC.We further define statisti-
cal and perfect UC. In these notions, we allow adversary, simulator, and environment to
be computationally unbounded machines. Further, in the case of perfect UC, we require

3If the adversary always only corrupts parties before the start of the protocol, it is called static. Otherwise,
the adversary is called adaptive. The results in this paper hold for both types of adversaries, resp., corruptions.

4Or, if π uses a hybrid functionality, in the hybrid execution.
5In the original UC definition of [7], the output of Z is restricted to a single bit. However, our definition

(with a potentially multi-bit output) will be more convenient for our purposes and is easily seen equivalent to
the one-bit definition from [7].
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the distributions of the output bit of Z to be identical in real/hybrid and ideal protocol
executions.

2.3. The Ideal Functionality for Coin Toss

To describe the task of implementing a universally composable coin toss, we have to
define the ideal functionality of n-bit coin toss. In the following, let n denote a positive
integer-valued function.
Below is an informal description of our ideal functionality for a n-bit coin toss. First,

the functionality waits for initialization inputs from both parties P1 and P2.6 As soon as
both parties have this way signaled their willingness to start, the functionality selects n
coins in the form of an n-bit string κ uniformly and sends this κ to the adversary. (Note
that a coin toss does not guarantee secrecy of any kind.)7

A more detailed description follows:

Ideal functionality CTn (n-bit Coin Toss)

1. Wait until there have been “init” inputs from P1 and P2. Ignoremessages from
the adversary, but immediately inform the adversary about the init.

2. Select κ ∈ {0, 1}n uniformly and send κ to the adversary. From now on:

– on the first (and only the first) “deliver to 1”message from the adversary,
send κ to P1,

– on the first (and only the first) “deliver to 2”message from the adversary,
send κ to P2.

We will consider protocols that implement CTn (either in the sense of stand-alone
or UC security). Unfortunately, the trivial protocol (that never generates any output)
implements any functionality. (The corresponding simulator simply never delivers any
outputs.) Hence, we require the following definition (see also [9] and [2, Sect. 5.1]):

Definition 1. A two-party protocol π is non-trivial if the probability is overwhelming
that both parties generate identical outputs in a setting in which both parties are honest
and all messages are delivered. π is perfectly non-trivial if that probability is zero.

Using CTn , we can also formally express what we mean by extending a coin toss.
Namely:

Definition 2. Let n = n(k) and m = m(k) be positive, polynomially bounded, and
computable functions such that m(k) < n(k) for all k. Then, a protocol is a universally
composable (m → n)-coin toss extension protocol if it is non-trivial and securely

6Here, our formalization of the coin toss functionality differs from that of [7]. They define a coin toss as a
uniformly distributed common random string. In particular, their functionality does not wait for both parties
to initialize the coin toss.

7If the functionality now sent κ directly and without delay to the parties, this behavior would not be
implementable by any protocol (this would basically mean that the protocol output is immediately available,
even without interaction). So the functionality lets the adversary decide when to deliver κ to each party. Note,
however, that the adversary may not in any way influence the κ that is delivered.
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implements CTn by having access only to a single instance of CTm . This security can
be computational, statistical, or perfect.

2.4. The Ideal Functionality for Common Random Strings

In Sect. 5, we will also consider the extension of common reference strings. The differ-
ence between a common random string (CRS) and a coin toss is subtle but important.
Both the coin toss and the CRS produce a uniform random bit string of a certain length
and make it available to all parties. In the case of the CRS, this random bit string is pub-
licly available at the beginning of the protocol. In the case of a coin toss, however, the
random bit string is published only when both parties explicitly initialize the coin toss.
Therefore, the coin toss is the stronger primitive: The security of a protocol can be based
on the fact that the value of the coin toss is not known before a certain point in time. For
example, the protocol given in the upcoming proof of Theorem 13 explicitly uses that
the values a and b chosen by Alice and Bob do not depend on the seed s returned by the
coin toss. Thus, this protocol would not be secure when using a CRS instead of a coin
toss. In the following, we analyze which of the results given in the preceding sections
apply to the problem of extending a CRS, that is, of producing a longer CRS from a
shorter CRS.

Ideal functionality CRSn (n-bit CRS)

1. In the first activation, select κ ∈ {0, 1}n uniformly and send κ to the adversary.
2. When receiving getcrs from party P1 or P2, inform the adversary.
3. When receiving deliver to i from the adversary for some i ∈ {1, 2}, and Pi

did already send getcrs, send κ to Pi .

Definition 3. Let n = n(k) and m = m(k) be positive, polynomially bounded, and
computable functions such that m(k) < n(k) for all k. Then, a protocol is a universally
composable (m → n)-CRS extension protocol if it securely and non-trivially implements
CRSn by having access only to CRSm . This security can be computational, statistical,
or perfect.

2.5. On Unbounded Simulators

Following [3], we havemodeled statistical and perfect stand-alone andUC security using
computationally unbounded simulators. Another approach is to require the simulators
to be polynomial in the running time of the adversary. Our results also hold in such a
model. For the impossibility results, this is straightforward, since the security notion
gets stricter when the simulators become more restricted. The only possibility result for
statistical/perfect security is given in Theorem 14. There, the simulator we construct is
in fact polynomial in the runtime of the adversary.
In the following sections, we investigate the existence of such coin toss extension

protocols, dependingon the desired security level (i.e., computational / statistical / perfect
security) and the parameters n and m.
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3. Coin Toss Extension: The Computational Case

3.1. Universal Composability

In this section, we present two positive results (combined in Theorem 7) and a negative
result (Theorem 8). Our positive results state that as long as m is superlogarithmic,
we can achieve coin toss extension (under a computational assumption, whose strength
depends on m). Our negative result states that for non-superlogarithmic m, no coin toss
extension is possible (unconditionally).
In the following, we start with our positive results and first need to introduce the corre-

sponding computational assumption. Specifically, we need the assumption of (doubly-)
enhanced trapdoor permutations with pseudorandom public keys (called ETDs hence-
forth). Roughly, these are trapdoor permutations with the additional properties that (i)
one can sample an image of the permutation in an oblivious fashion, i.e., even given
the coins used for sampling of the image, it is infeasible to invert the function, (ii) one
can sample a uniform preimage along with the random coins needed to sample the cor-
responding image, and (iii) the public keys are computationally indistinguishable from
random strings.
We inherit the assumption that ETDs exist from [9] (they use it for the case of a

uniform CRS). Although we are not aware of any concrete candidates for ETDs, that
assumption seems plausible.
We will show that when ETDs exist, then so do efficient protocols for extending

a suitably long coin toss. The idea is simple: First, a suitably long coin toss trivially
implements a common random string (CRS), from which we can bootstrap a UC-secure
multi-use bit commitment protocol using the techniques of [9]. (This is captured in Lem-
mas 5 and 6.) Next, the UC-secure bit commitment protocol can be used to implement
any polynomially long coin toss, using Blum’s coin toss protocol [6]. (This is detailed
in Theorem 7.)

We start off with the definition of ETDs. The definition of ETDs follows that of doubly
enhanced trapdoor permutations in [15]; only the requirement for pseudorandom public
keys has been added.

Definition 4. (Doubly enhanced trapdoor permutations with pseudorandom public
keys)
A system of doubly enhanced8 trapdoor permutations with pseudorandom public

keys (ETD) consists of the following efficient algorithms: a key generation algorithm I
that (given security parameter k) generates public keys pk and corresponding trapdoors
td (we treat pk and td as efficiently computable functions to facilitate notation) and a
domain sampling algorithm S that given pk outputs an element in the domain of pk.
Additionally, the ETD defines a set of valid public keys. I, S must satisfy the following
conditions:
For any non-uniform probabilistic polynomial-time algorithm A, there is a negligible

function μ such that the following conditions are satisfied:

8We require doubly enhanced trapdoor permutations because they are actually required by current con-
structions of NIZK proofs, see [15].
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– PermutationsPr
[
(pk, td) ← I (1k) : pk is a valid public key and td = pk−1] ≥ 1−

μ(k), and any valid public key is a permutation.
– Almost uniform sampling. For any valid public key pk in the range of I (1k), the
statistical distance between the output of S(pk) and randomly chosen elements in
the domain (=range) of pk is bounded by μ(k).

– Enhanced hardness For all k ∈ N

Pr
[
(pk, td) ← I (1k), y ← S(pk), x ′ ← A(1k, pk, y, r) : pk(x ′) = y

]
≤ μ(k)

Here, r denotes the randomness used by S.
– Doubly enhanced There exists an efficient algorithm that, on input a valid public
key pk, outputs (x, r) with pk(x) = S(pk), where r denotes the randomness used
by S and is distributed uniformly. In other words, it is efficiently possible to sample
a preimage x along with the random coins needed to choose the image pk(x).

– Pseudorandom public keysThere is a polynomially bounded, efficiently computable
function s (not depending on A) such that

∣∣∣Pr
[
(pk, td) ← I (1k) : A(1k, pk) = 1

]

−Pr
[
pk ← {0, 1}s(k) uniformly : A(1k, pk) = 1

]∣∣∣ ≤ μ(k).

AnETD is exponentially hard if for every subexponential-time A, there exists an expo-
nentially smallμ such that all of the above conditions (i.e., permutations, almost uniform
sampling, enhanced hardness, doubly enhanced, and pseudorandom public keys) hold.

Lemma 5. There is a constant d ∈ N such that the following holds for all polynomially
bounded functions s computable in time polynomial in k:

Assume that ETD exists such that the size of the circuits describing the ETD is bounded
by s(k) for security parameter k.9

Then, there is a protocol π using a uniform common random string (CRS) of length
s(k)d such that π securely UC-realizes a bit commitment that can be used polynomially
many times.

Proof. Themain work (i.e., finding the protocol and proving its security) has been done
in [9]. It is left to show that for their construction, a CRS of length poly(s) is sufficient.
By poly(s), we mean a polynomially bounded function in s that is independent of the
chosen ETD. (In [9], it is only shown that a CRS of length p(k) is sufficient, where k is
the security parameter and p a polynomial depending on the ETD.)
In [9], there is a protocol UAHC that, assuming a CRS and the existence of ETD,

implements multiple commitments.10 The CRS is assumed to contain the following: (i)

9By the size of the circuits, we means the total size of the circuits describing both the key generation and
the domain sampling algorithm. Note that then trivially also the size of the resulting keys and the amount of
randomness used by the domain sampling algorithm are bounded by s(k).

10Canetti et al. [9] state their result with respect to enhanced, not doubly enhanced trapdoor permutations.
This is due to the fact that, at the time, it was believed that enhanced trapdoor permutations are sufficient
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a random image under a one-way function fk (that depends on the security parameter
k), (ii) a public key for a semantically secure cryptosystem E , and (iii) a public key for
a CCA2-secure cryptosystem Ecca. We discuss how to instantiate fk, E, Ecca so that we
get a CRS that is indistinguishable from uniform.
The one-way function f may be constructed from the ETD as follows: f interprets its

input r as randomness to be used in the ETD key generation algorithm and outputs the
resulting public key. Then, for security parameter k, the images of f have length s1 ≤ s
(since they are public keys). Further, since the public keys are indistinguishable from
uniform randomness by definition of the ETD, random images of f are computationally
indistinguishable from s1-bit randomness.
Second, a semantically secure cryptosystem E can be constructed from the ETD using

the construction from [16,17]. Then, the public key for E is just a public key for the
ETD. It follows that the length of the public keys is s1(k), and random public keys are
indistinguishable from s1-bit randomness.
The construction of Ecca is more involved but still standard. Specifically, we use the

construction byDolev et al. [12]. For this, we first need a non-interactive zero-knowledge
proof system (NIZK) to prove consistency of a ciphertext. For instance, [13, Construc-
tions 4.10.4 and 4.10.7] together with the additional remarks in [15] present a suitable
scheme, based on doubly enhanced trapdoor permutations.Wewill now examine the size
of the CRS needed for that protocol. To prove a statement that is described by a circuit
of size s2, the CRS consists—for one iteration of the proof—of poly(s2) commitments
to random bits using a trapdoor permutation. The length of each commitment is O(s)
since s bounds the size of the circuits describing the trapdoor permutation scheme. To
guarantee soundness, poly(s2) ·m parallel executions of the scheme are necessary (using
the same trapdoor permutation, see [13, Construction 4.10.4]), where m is a superloga-
rithmic function in the security parameter. So if we choosem := s, the length of the CRS
used by the NIZK scheme is bounded by poly(s(k)+s2(k)). The CRS consists of images
of uniformly random preimages under a permutation; thus, it is uniformly random.
Another ingredient we need is a universal family of one-way hash functions. In [25]

(see also [18,22]), a scheme is presented that converts a one-way function f into a uni-
versal family of one-way hash functions. Here, the image of the hash function has length
s3 ∈ poly(s4), where s4 is the length of the images of f . And if the one-way function is
keyless, so is the hash function. If we use the keyless one-way functions f constructed
above, s4 ≤ s, and the one-way hash is keyless.
Now, we come back to the construction of Ecca. In this construction, the public key

consists of (i) a hash function h from the abovementioned family (s3 bit), (ii) 2s4 public
keys for a semantically secure encryption scheme, say the scheme E constructed above
(2s4s1 bit), and (iii) a CRS for the NIZK scheme above to show a statement that can be
described by a circuit of size polynomial in 2s4 and the size of the circuits describing
the trapdoor permutation scheme (that is bounded by s). So the CRS has a length of at

Footnote 10 continued
for constructing non-interactive zero-knowledge proofs. It was, however, pointed out in [15] (following an
observation by Jonathan Katz) that this is not the case. In particular, we stress that also [9] actually require
the existence of doubly enhanced trapdoor permutations. In case of a uniform CRS, in fact ETDs according
to Definition 4 are required.
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most poly(s + s4) bit. Putting this together, and noting that s4 ≤ s, we see that the public
key of Ecca has a length in s3 + 2s4s1 + poly(s + s4) = poly(s).
Since the key of the hash function we constructed is a zero bit string (the hash function

is keyless), and the public key of E as well as the CRS of the NIZK scheme is indistin-
guishable from uniform, the public key of Ecca is also indistinguishable from uniform.
Finally, the protocol UAHC from [9] uses a CRS consisting of a public key for E , a

public key for Ecca, and an image of f . By our calculations above, the total length of
that CRS lies in poly(s), and the CRS is indistinguishable from uniform.

Let π be the protocol that results from UAHC by using a uniformly random string
of length poly(s). Since the new CRS is indistinguishable from the old CRS, and since
UAHC is a UC-secure commitment, the protocol π is also UC-secure commitment with
uniform CRS. �

Lemma 6. Let s(k) be a polynomially bounded function that is computable in time
polynomial in k.

Assume one of the following holds:

– ETD exists and s is a polynomially large function.
– Exponentially hard ETD exists and s is a superpolylogarithmic function.

Then, there also exists an ETD, such that the size of the circuits describing the ETD is
bounded by s(k) for security parameter k.

Proof. This is shown by scaling the security parameter of the original ETD. Let I be
the key generation algorithm and S be the sampling algorithm of the ETD.

Since I and S are efficient algorithms, there is a c ∈ N such that the size of the
circuits of (I, S) is bounded by kc. Then, set s̃(k) := 
s(k)1/c�. Obviously, if s is
superpolylogarithmic or polynomially large, respectively, then so is s̃. We now construct
a new scheme (I ′, S′) as follows: I ′(k′) := I (s̃(k′)) and S′ := S. Then, for security
parameter k′, the circuits of (I ′, S′) have size s̃(k′)c ≤ s(k′), as required. It is left to
show that (I ′, S′) is a system of ETD.
We will use the following notation: When talking about the original ETD (I, S), we

will use the names from Definition 4 (e.g., A, k,μ). When talking about (I ′, S′), we will
add a prime (e.g., A′, k′, μ′).
Let a polynomial-time algorithm A′ be given. We then construct a machine A as

follows: Upon input 1k , A chooses k′ to be a uniform k′ with s̃(k′) = k (i.e., k′ is
uniformly chosen from the set s̃−1({k})).
After k′ is chosen, A runs A′(1k′

).
As we will show below, A runs in polynomial time (or subexponential time in the

case of exponentially hard ETD). So there is a negligible (or exponentially small) μ

with respect to which all conditions in Definition 4 hold. Let

μ′(k′) := |s̃−1({s̃(k′)})| · μ(s̃(k′)).

Then, by construction, all the conditions in Definition 4 also hold for A′, μ′, and
the modified system (I ′, S′) (to see this, simply substitute s̃(k′) for k and take into
account the uniform choice of k′ over s̃−1(k)). Since μ′ is negligible if μ is negligible
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or exponentially bounded, respectively (as we will show below), it follows that (I ′, S′)
is a system for ETD. It is left to show that A runs in polynomial time (or subexponential
time in the case of exponentially hard ETD) and that μ′ is negligible.
First, we show that A runs in polynomial/subexponential time in k. Since A simulates

A′ in time polynomial in k̃ := max s̃−1({k}), it is sufficient to show that k̃ is polynomially
bounded (or subexponential, respectively) in k. We distinguish two cases. Case 1: If s̃
is polynomially large, then there is a d such that s̃(k′)d ≥ k′ for almost all k′. Then, we
have s̃(k′) ≥ k′1/d and then k̃ = min s̃−1({k}) ≤ kd for almost all k.
Case 2, s̃ is superpolylogarithmic: Let d ∈ N be arbitrary. Since s̃ is superpolyloga-

rithmic, there exists Kd ∈ N with s̃(k′) ≥ (log k′)d for all k′ ≥ Kd . Now let k ∈ N be
arbitrary and k̃ := max s̃−1({k}). By definition of Kd , wemust have (log k̃)d ≤ s̃(k̃) = k
or k̃ < Kd . If (log k̃)d ≤ k, then k̃ ≤ 2k1/d

. Thus, k̃ ≤ max{2k1/d
, Kd}, and so k̃ ≤ 2k1/d

for sufficiently large k. Since d ∈ N was arbitrary, this shows that k̃ is subexponential
in k.

It remains to show that μ′ is negligible. As a preparation, note that

μ′(k′) = |s̃−1({s̃(k′)})| · μ(s̃(k′)) ≤ max s̃−1({s̃(k′)}) · μ(s̃(k′)).

Now in the first case (where s̃ and s are polynomially large), μ is negligible. Since s̃
is polynomially large and computable in polynomial time, there exist d, e ∈ N such
that for sufficiently large k′, it is k′1/d ≤ s̃(k′) ≤ k′e. Then,

μ′(k′) ≤ max s̃−1({s̃(k′)}) · μ(s̃(k′)) ≤ k′ed · μ(k′1/d)

is negligible.
In the second case, s̃ is superpolylogarithmic and μ is exponentially small. Hence,

there exists d > 0 with μ(k) ≤ 2−kd
for all sufficiently large k. Furthermore, since s̃ is

superpolylogarithmic, for every c > 0, there exists a Dc ∈ Nwith s̃(k′′) ≥ (log k′′)c−Dc

for all k′′. The latter fact implies that k′′ ≤ 2(s̃(k′′)+Dc)
1/c

for any k′′. Hence, with
k′′ := max s̃−1({s̃(k′)}), we get

max s̃−1({s̃(k′)}) ≤ 2(s̃(k′)+Dc)
1/c

(1)

for any k′. We now show that μ′(k′) is negligible. To this end, we set c := 3/d and thus
derive

μ′(k′) ≤ max s̃−1({s̃(k′)}) · μ(s̃(k′))
(1)≤ 2(s̃(k′)+Dc)

d/3 · 2−s̃(k′)d

≤ 2s̃(k′)d/2 · 2−s̃(k′)d = 2−s̃(k′)d/2 (∗)≤ 2−(log k′)2 = k′−log k′

for sufficiently large k′, where (∗) follows from the assumption that s̃ is superpolylog-
arithmic. Thus, μ′(k′) is negligible in k′ as desired. �

Theorem 7. Let n = n(k) and m = m(k) be polynomially bounded and efficiently
computable functions. Assume one of the following conditions holds:



1136 D. Hofheinz et al.

Fig. 1. Coin extension protocol from Theorem 7.

– m is polynomially large and ETD exists, or
– m is superpolylogarithmic and exponentially hard ETD exists.

Then, there is a polynomial-time computationally universally composable protocol π

for (m → n)-coin toss extension.

Proof. Let d be as in Lemma 5. If m is polynomially large or superpolylogarithmic,
then s := m1/d is polynomially large or superpolylogarithmic, respectively. So, by
Lemma 6, there is ETD, such that the size of the circuits describing the ETD is bounded
by s = m1/d . Then, by Lemma 5, there is a UC-secure protocol for implementing n-bit
commitments using an (m1/d)d = m-bit CRS.

Given n-bit commitments, the following protocol π UC-realizes an n-bit coin toss
(based on the protocol of [6]):
Now consider the coin toss extension protocol from Fig. 1. It is easy to see that

this protocol UC-realizes an n-bit coin toss. We sketch the simulator S: As soon as
all uncorrupted parties got input (init), S learns what value r the ideal n-bit coin toss
has. When P1 is or gets corrupted, S learns the value r1 as soon as P1 commits, so the
simulated r2 can be chosen as r1⊕r . When P2 is or gets corrupted, but P1 is uncorrupted
at least during the commitment to r1, the simulator S unveils value r1 to r2 ⊕ r . In the
case that both parties get corrupted, the environment does not learn the value from the
ideal coin toss, so the simulator can simply choose it to be r1 ⊕ r2.

Furthermore, an m-bit CRS can be trivially implemented using an m-bit coin toss.
Using the UC composition theorem [7], we can put the above constructions together and
get a protocol that UC-realizes an n-bit coin toss using an m-bit coin toss. �

Note that given stronger, but possibly unrealistic assumptions, the lower bound for m
in Theorem 7 can be decreased. If we assume that for any superlogarithmic m, there is
ETD such that the size of their circuits is bounded by m1/d (where d is the constant from
Lemma 5), we get coin toss extension even for superlogarithmicm (using the same proof
as for Theorem 7, except that instead of Lemma 6, we use the stronger assumption).

However, we cannot expect an even better lower bound form, as the following theorem
shows:

Theorem 8. Let n = n(k) and m = m(k) be functions with n(k) > m(k) ≥ 0 for all
k, and assume that m is not superlogarithmic (i.e., 2−m is non-negligible). Then, there
is no non-trivial polynomial-time computationally universally composable protocol for
(m → n)-coin toss extension.
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We first give a proof sketch. We note that our proof generalizes a similar result from [8]
(that shows Theorem 8 for m = 0). Canetti [8] argue that a hypothetical simulator for
coin toss would have to be able to “convince” the other party of an arbitrary outcome
of the coin toss. We show that a similar property holds even when an ideal (but short)
m-bit coin toss is available.
More specifically, first, we recall how the impossibility of a universally composable

coin toss is shown in the case that we have no seed (i.e., without the functionalityCTm).
Assume for contradiction that a protocol π with parties P1 and P2 exists such that π

implements CTn . (Here, n is as in the theorem.) Then, assume an adversary A1 that
corrupts P1 and simply reroutes all communication with P1 to the environment. (E.g.,
messages sent by P2 are forwarded to the environment; cf. also the left-hand side of
Fig. 2.) Assume an environment Z1 that internally simulates an instance P1 of P1 and
instructs A1 to forward the messages produced by the simulated P1. The outputs made
by P1 and P2 we call κ1 and κ2, respectively. Since the network consisting ofZ1,A1, and
P2 essentially is an honest execution of π , we have that with overwhelming probability,
κ1 and κ2 are n-bit strings and κ1 = κ2. Z1 outputs 1 iff κ1 = κ2; thus, Z1 outputs 1
with overwhelming probability when running with π and A1 as above.

Since we assume that π is universally composable, there is a simulator S1 that sim-
ulates the adversary A1. That is, Z1 cannot distinguish between A1 with P2 (the real
model) and S1 with CTn (the ideal model). Since A1 just forwards messages from P2,
the simulator S1 effectively produces a simulation of P2’s messages. Furthermore, in the
ideal model, Z1 gets the n-bit string κ2 from CTn . Since Z1 cannot distinguish between
the real and the ideal models, we have that κ1 = κ2 with overwhelming probability also
in the ideal model. This implies that S1 is a machine that manages to make P1 (which is
identical to the honest party P1) output an externally given n-bit string κ2. This, however,
violates the assumption that P1 is part of a secure coin toss protocol. In a secure coin toss
protocol, S1 would succeed only with probability 2−m in making P1 output κ2. Thus,
our assumption that π was a universally composable coin toss protocol is false.

Now consider the case where we additionally have an m-bit seed ω given by the ideal
functionality CTm used in the real model by P1 and P2. In this case, the simulator S1 is
allowed to simulate the valueω. Thus,S1 now is amachine that canmake the honest party
P1 output an externally given n-bit string κ2 if S1 is allowed to choose the seed ω. If S1
may not choose the seed ω, it will only succeed if the seed ω accidentally is the one that
S1 would have chosen. This happens with probability 2−m . Thus, S1 manages to make
P1 output an externally given value κ with probability 2−m (up to a negligible error).
However, since π is a secure coin toss protocol, S1 should succeed with probability
at most 2−n (up to a negligible error). Since the difference between 2−n and 2−m is
non-negligible (as n is not superlogarithmic), it follows Z1 can distinguish between the
real model and the ideal model with S1. Thus, π is not universally composable.

We proceed with the full proof.

Proof (of Theorem 8). We use the notation from the proof sketch. So assume for con-
tradiction that π , usingCTm , implements CTn . We start with a network C1 of machines
as in a real protocol run with corrupted P1. More specifically, C1 consists of a party P2,
a helping coin toss functionalityCTm , an adversaryA1 that takes the role of a corrupted
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Fig. 2. Left Real protocol C1 with corrupted P1 and relayingA1. Right Ideal protocol C2 with corrupted P1
and simulator S1.

P1, and an environment Z1. Note that the corrupted party P1 has been removed, since it
is taken over by the adversary.
The machine A1 simply relays the connections of the corrupted P1 to Z1. That is,

every message sent from CTm or P2 to the corrupted P1 is forwarded to Z1, andA1 lets
Z1 send messages to CTm or P2 in the name of P1. Now Z1 in turn internally simulates
an instance P1 of party P1 and lets this simulation take part in the protocol throughA1.
Additionally, Z1 simulates a machine Z . That machine Z only gives “init” inputs to
the parties P1 and P2 and then collects their outputs. At the end of the execution,Z gives
output 1 iff both parties give output and both outputs are identical. The output is passed
through by Z1. The situation is depicted in Fig. 2.

Our first claim is that in runs of this network C1, eventually identical κ1 and κ2 are
observed byZ1 with overwhelming probability. Indeed, by definition ofCTn , in an ideal
protocol run with no corruptions, the outputs κ1 and κ2 must be identical if both are
output. Sinceπ UC-implementsCTn , thismust also holdwith overwhelming probability
in runs of the real protocol without corruptions. Since protocol π is non-trivial, in such
a case output is guaranteed, and we have thus κ1 = κ2 with overwhelming probability.
This carries over to C1, since C1 is formed from an uncorrupted real protocol simply by
relaying some messages through A1 and by regrouping machines. So in C1, Z1 gives
output 1 with overwhelming probability.
Now since π UC-implements CTn , there must be a simulator S1 in the ideal setting

with CTn that simulates attacks carried out by A1. In our situation (depicted in Fig. 2),
this simulator must in particular achieve that κ1 = κ2 with overwhelming probability. In
other words, S1 must “convince” the simulation of P1 to output the κ1 that was chosen
by the ideal CTn . To this end, S1 may make up an initial seed ω1 from a machine CTm

that is actually not present in the ideal model. Also, S1 may make up suitable responses
from a faked party P2 (that is also not present in the ideal model) in communication with
P1. Call this network (consisting of S1, CTn , and Z1) C2. Since the probability that Z
gave output 1 was overwhelming in C1, the same holds for C2 by the definition of UC
security.



On the (Im-)Possibility of Extending Coin Toss 1139

κ2

κ1 Z

CTm

P1

S1
∗

κ1

ω1

A2

ω2
ω1

Z2

CTn

κ2

ω2

ω1

S1

P1

∗ ω1

κ1 Z

CTm CTn

κ1

Fig. 3. Left Modification C3 of C2. Right Regrouping C4 of C3.

Now we modify network C2. First, we regroup machines and make the simulation P1
of P1 a machine of its own. (This machine is then identical to P1.) Then, we introduce a
new machineCTm that ideally selects and delivers an ω1 to P1. (In C2, P1 got that value
from S1.) Both the seed ω2 output by CTm and the seed ω1 output by S1 are simply
collected by a dummy machine ∗ that discards them. The resulting network is called C3
and depicted in Fig. 3.

The networks C2 and C3 provide completely identical views for P1 when ω1 =
ω1 in C3. This again happens with probability 2−m by definition. Since in C2, the
environment Z gave output 1 with some overwhelming probability p, it follows that in
C3 the probability is at least 2−m(1 − p) = 2−m − μ for some negligible μ.

Now comes the crucial part: We combine Z , S1, CTn , and the dummy machine ∗
(that is to say, all machines but P1 andCTm) into a protocol environmentZ2. A new real
adversary is added that only relays the connection between S1 and P1 and the connection
between ∗ and CTm .
This regrouping of machines gives a new network C4 (cf. Fig. 3). Note that C4 is

only a regrouping of C3 (followed by the insertion of a machine A2) that just forwards
messages, and hence it still holds that Z gives output 1 with probability 2−m − μ. Note
further that C4 actually is the network in which A2 corrupts the party P2 in the real
protocol π and runs with environment Z2.
Now sinceπ UC-implementsCTn , theremust be a simulatorS2 that in an ideal setting

with CTn simulates the situation from network C4. (Here, we use the different name
CTn only to avoid conflicting names with the CTn-instance inside Z2). This simulator
simulates attacks carried out by A2 on the real protocol. The network consisting of S2,
Z2, and CTn we call C5; see Fig. 4.
In particular, this simulator achieves that the probability ofZ outputting 1 is negligibly

less than in the real setting C4. However, in C4 this probability has a lower bound of
2−m −μ for some negligibleμ. On the other hand, in the ideal setting of C5, both κ1 and
κ2 are chosen in an ideal manner as independent uniform n-bit strings by instances of
the functionality CTn . So the probability that κ1 = κ2 in C5 is at most 2−n (note that it
is also possible that no output is generated), and therefore the probability of an 1-output
in C5 is bounded by 2−n . So the difference between the probabilities that Z outputs 1
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Fig. 4. Ideal setting C5 corresponding to the real setting of C4.

in runs of C4 and C5 is at least

2−m − μ − 2−n ≥ 2−m−1 − μ

which is not negligible since m is not superlogarithmic. This contradicts the fact derived
above that the difference of the probabilities is negligible. So π cannot securely imple-
ment an n-bit coin toss. �

4. Coin Toss Extension: The Statistical and the Perfect Case

4.1. A Technical Lemma

We first show that we can make certain simplifying assumptions about the protocols we
consider.

Lemma 9. If there is a non-trivial (computationally, statistically, or perfectly) stand-
alone secure (resp. universally composable) protocol for (m → n)-coin toss extension,
then there is also (a potentially inefficient) one in which

– in the honest case, both parties either output the same bit string z ∈ {0,1}n, or
both parties output nothing (in which case, we write z = ⊥),

– this output z (for the honest parties) is a deterministic function of the messages sent
and the value s of the m-bit coin toss,

– each party sends in each protocol run at most one message to CTm, and this is
always an “init” message,

– the internal state of each of the two parties consists only of the messages exchanged
(with the other party and CTm) so far,11 and

– after Pi sends “init” to CTm, it does not further communicate with P3−i (for
i = 1, 2 and in case of no corruptions).

11In particular, the randomness required to produce a message is always chosen directly before sending
that message.
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Proof. First, we modify a given protocol as follows, to enforce the first two require-
ments: Each party sends a confirmation messages at the end, where it tells the other
party what it is going to output. If these exchanged values do not match, both parties
output nothing. The same modification also achieves that the outcome is a deterministic
function of the protocol transcript and the used m-bit coin toss s. This modification only
suppresses outputs in certain cases and thus can be simulated perfectly, without any
simulation error.
Next, straightforward syntacticmodifications show that we can assume that each party

sends at most one message to CTm in each run, and this is always an “init” message.
(Othermessages toCTm would be ignored anyway.) An application of Lemma 21 further
shows we can assume that the internal state each party consists only of the messages
exchanged so far with the other party and CTm . The remaining transformation modifies
π such that no further communication between P1 and P2 is necessary after CTm has
been invoked.
First, we change each Pi (for i ∈ {1, 2}) so as to signal the other party P3−i before it

sends an “init”message toCTm . Then, Pi proceeds to send “init” toCTm only after
it has received an acknowledgement message from P3−i . We call the modified protocol
π1. It is easy to see that π1 statistically implements (resp., UC-implements) the original
protocol π . The simulator only has to produce the additional message “init”; he can
do so because the functionality CTm informs him when it is invoked.
Second, each Pi is modified to wait for CTm-output as soon as Pi itself has sent

“init” to CTm and P3−i has also signaled to do so. All messages from P3−i are
buffered and processed by Pi only when that CTm-output arrives. This protocol π2
implements (resp., UC-implements) π1 (and by transitivity also π ) since the modified
behavior of the π2-parties can be simulated by a simulator in π1 simply by delaying
message delivery in π1.
Now comes the interesting part: We modify each Pi so as to postpone the “init”

message to CTm to the end of the protocol run. Instead, Pi carries on with π2 as if it
had sent “init.” When it goes into the waiting state (for CTm-output ω, which will
now certainly not arrive), it immediately leaves that waiting state. Then, Pi makes 2m

copies of its current internal state and carries on with 2m parallel executions of π2. In
execution number j (0 ≤ j < 2m), Pi behaves as if it had gotten a seed ω = j from
CTm . At the end of the protocol run, when all the parallel executions have fixed their
output, Pi then queries CTm with an “init” message and waits for a seed ω to arrive.
Finally, Pi outputs whatever the ωth execution of the parallelized protocol would have
output.12 Call the protocol with these modified parties π3.

This protocol obviously fulfills the requirements in the lemma statement, and it only
remains to show that π3 implements (resp. UC-implements) π2 (and thus π ) and hence
is a stand-alone secure (resp., universally composable) protocol for coin toss extension.
We sketch a simulator S that simulates attacks (performed by a an adversaryA) on π3 in
the setting of π2. Recall that π3 and π2 proceed identically until CTm is queried (which
causes S to be notified by CTm). Hence, S can proceed like A until then.

12Note that it is crucial here that the machines do not have any secret internal state, since otherwise
some protocol instances might reveal secrets that make the other instances insecure. This fact is used in the
construction of the simulator below.
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Once a party queries CTm in π3, however, that party internally forks into 2m parallel
executions, one for each possible CTm (as described above). In interacting with π2,
S will only see one of those protocol executions, namely the one for the actual CTm-
output. Hence, in order to simulate π3, S will have to simulate an additional 2m − 1
instances of (the remaining part of) π2. However, S can easily start and maintain such
simulations, since the state of the corresponding parties (which only consists of the
exchanged messages and the hypothetical CTm-output for that instance) is known. �

4.2. Stand-alone Simulatability

4.3. Negative Results

Theorem 10. Let m < n be functions in the security parameter k. Assume that m is
not superlogarithmic. There is no (efficient or inefficient) non-trivial (in the sense of
Definition 1) two-party (m → n)-bit coin toss extension protocol with the following
property:

– For any (possibly unbounded) adversary corrupting one of the parties, there is a
negligible function μ such that for every security parameter k and every c ∈ {0,1}n,
the probability for protocol output c is at most 2−n + μ(k).

If we require perfect non-triviality and perfect security (the probability for a given output
c is at most 2−n), no such a protocol π exists for any m (even superlogarithmic m).

Note that the notion of security used in this theorem is intentionally very weak. For
example, if the first bit of the outcome is 0, and all other bits are uniformly random
(and n is superlogarithmic), this notion of security is satisfied. Since the theorem is an
impossibility result, using aweaker security notion strengthens the theorem. InCorollary
11, we will instead use the familiar simulation-based security notions.
We start with a proof sketch for the first statement (for the non-perfect case with

non-superlogarithmic m).
Using Lemma 9 (and the fact that an n-bit coin toss immediately implies an m-bit

coin toss for any m < n), we may assume that

– the available m-bit coin toss is only used at the end of the protocol,
– in the honest case, the parties never output distinct or invalid values, and
– n = m + 1.

To show the theorem, we first consider “complete transcripts” of the protocol. By a
complete transcript,wemean allmessages sent during the run of a protocol, but excluding
the value of the m-bit coin toss. We define three sets of complete transcripts:

– the set A of transcripts having nonzero probability for the protocol output 0n ,
– the set B of transcripts having zero probability of output 0n and zero probability
that the protocol gives no output,

– and the set C of transcripts having nonzero probability of giving no output.

Since for a complete transcript, the protocol output only depends on the m-bit coin toss,
any of the nonzero probabilities in the definitions of A, B, C is at least 2−m . Besides,
by definition, B = {0,1}n \ (A ∪ C), but A and C need not be disjoint.
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For any partial transcript p (i.e., a situation during the run of the protocol), we define
three values α, β, and γ . The value α denotes the probability with which a corrupted
Alice can enforce a transcript in A starting from p, the value β denotes the probability
with which a corrupted Bob can enforce a transcript in B, and the value γ denotes the
probability that the complete protocol transcript will lie in C if no one is corrupted.
We show inductively that for any partial transcript p, we have (1 − α)(1 − β) ≤ γ .
In particular, this holds for the beginning of the protocol. For simplicity, we assume
that 2−m is not only non-negligible, but noticeable (in the full proof, the general case
is considered). Since a transcript in C gives no output with probability at least 2−m ,
the probability that the protocol generates no output (in the uncorrupted case) is at
least 2−mγ . By the non-triviality condition, this probability is negligible, so γ must be
negligible, too. So (1−α)(1−β) is negligible, too. Therefore, min {1 − α, 1 − β}must
be negligible. For now, we assume that 1−α is negligible or 1−β is negligible (for the
general case, see the full proof).
If 1 − α is negligible, α is overwhelming. The probability for output 0n is at least

2−mα. Since α is overwhelming and 2−m noticeable, this is greater than 2−n = 1
22

−m

by a noticeable amount which contradicts the security property.
If 1 − β is negligible, we have that Bob can ensure an output in {0,1}n \ {0n} with

overwhelming probability β. By the security property, however, such an output should
occur at most with probability (2n − 1)2−n plus a negligible amount. (2n − 1)2−n =
1−2−n = 1−2−m/2 is not overwhelming sincem is not superlogarithmic by assumption,
so we have a contradiction.
The perfect case is proven similarly.
We proceed with the full proof.

Proof (of Theorem 10). We first consider the statistical (i.e., non-perfect) case. Let us
assume that such a π exists. Invoking Lemma 9, we can assume the following:

(i) If no party is corrupted, both parties always give the same (or no) output, and this
output is a deterministic function of the sent messages, and the value of the used
m-bit coin toss.

(ii) No messages are sent after invoking the m-bit coin toss.
(iii) The honest parties maintain no internal state except for the list of the messages

sent so far.

Finally, we assume without loss of generality that n = m + 1.
We call the parties Alice and Bob.
In the following, by a complete transcript t , we mean (the sequence of) all messages

sent during a run of the protocol π , excluding the value s of the m-bit coin toss. The
protocol outcome (of the honest parties) is then f (t, s) ∈ {0,1}n ∪ {⊥} for some
deterministic function f . By a partial transcript p, we mean a prefix of a complete
transcript. We write p ≤ p′ to denote that partial transcript p is a prefix of partial
transcript p′, and we write p <1 p′ to denote that p is the immediate prefix of p′ (i.e.,
the maximal p ≤ p′ with of p �= p′). Finally, let last(p) denote the last message for
a non-empty partial transcript p.
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We can now distinguish three sets of complete transcripts t :

A := {
t : ∃s ∈ {0,1}m : f (t, s) = 0n}

B := {
t : ∀s ∈ {0,1}m : f (t, s) �= 0n, f (t, s) �= ⊥}

C := {
t : ∃s ∈ {0,1}m : f (t, s) = ⊥}

We now associate with each of the partial transcript p values αp, βp, and γp. The value
αp is defined as the maximum probability, going over all adversaries, that with corrupted
Alice, the complete transcript of the protocol will lie inA, when starting with the partial
transcript p (this is well defined, since the honest parties do not maintain a state except
for the transcript so far). In other words, αp denotes the probability that a corrupted
Alice can enforce a complete transcript in A. Similarly, βp is defined as the maximum
probability that the complete transcript will lie in B for corrupted Bob. And finally, γp

is the probability that in the uncorrupted case, the complete transcript will lie in C when
starting from p. �

Claim 1. (1 − αp)(1 − βp) ≤ γp for every partial transcript p.

Proof of Claim 1. Let first t be a complete transcript. Then, αt , βt , γt ∈ {0, 1}. Fur-
thermore, since A ∪B ∪ C contains all complete transcripts, at least one of αt , βt , γt is
not 0. So, for every complete transcript t , it holds (1 − αt )(1 − βt ) ≤ γt .

Now consider a partial transcript p that is not complete. Let us assume that at that
point of the protocol, it is Alice’s turn to send a message. Consider the set

Mp := {i | p <1 i}

of partial transcripts that can immediately succeed p. For each i ∈ Mp, there is a well-
defined probability ri that, given an uncorrupted Alice and a previous partial transcript
p, Alice indeed sends last(i). It is

∑
i∈Mp

ri = 1. Then, we have

αp = max
i∈Mp

αi , βp =
∑

i∈Mp

riβi γp =
∑

i∈Mp

riγi , (2)

since a corrupted Alice may choose the partial transcript i that maximizes α, while if
only Bob or no one is corrupted, the next partial transcript is chosen according to the
probabilities ri prescribed by the protocol. Let us assume that (1 − αi )(1 − βi ) ≤ γi

holds for all i ∈ Mp. Then, we can conclude (1−αp)(1−βp) ≤ γp as follows: First we
write ᾱp for 1−αp and analogously for the other values. Note that since

∑
i∈Mp

ri = 1,

(2) also holds for β̄... and γ̄... instead of β... and γ...). Hence,

ᾱpβ̄p
(i)=

∑

i

ri ᾱpβ̄i
(i i)≤

∑

i

ri ᾱi β̄i
(i i i)≤

∑

i

riγi
(iv)= γp, (3)

where (i), (i i), (iv) follow from the middle, left, and right part of (2), respectively, and
(i i i) follows from our assumption.
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Analogous reasoning can be applied when it is Bob’s turn to send a message.
By induction, we therefore get (1 − αp)(1 − βp) ≤ γp for any partial transcript p.

This concludes the proof of Claim 1.
Now let ∅ denote the empty partial transcript, i.e., the beginning of the protocol. Then,

for α := α∅, β := β∅, γ := γ∅, Claim 1 implies (1− α)(1− β) ≤ γ . We will construct
a contradiction to the non-triviality and security properties of the protocol, which will
finish the proof. �

Claim 2. 1 − α or 1 − β is negligible on an infinite subset K ′ of security parameters.

Proof of Claim 2. If a protocol reaches a complete transcript in C, it will output⊥with
probability at least 2−m , so the probability that π outputs ⊥ is at least 2−mγ . On the
other hand, since π is non-trivial, the probability that the protocol gives output ⊥ in the
uncorrupted case is negligible. Hence, 2−mγ is negligible. Since 2−m is non-negligible
by assumption, there exists an infinite set K of security parameters k such that 2−m is
noticeable on K . If γ was non-negligible on K , 2−mγ would be non-negligible on K . So
γ must be negligible on K . Since (1− α)(1− β) ≥ γ for each k ∈ K , one of 1− α and
1 − β is bounded by

√
γ which is negligible on K . So there is an infinite set K ′ ⊆ K ,

such that 1 − α is negligible on K ′ or 1 − β is negligible on K ′. This shows Claim 2.
We can now finish the proof by showing a contradiction to the security of the protocol

in either case of Claim 2. Let us consider the first case, i.e., α is overwhelming on K ′. By
assumption, the probability P for protocol output 0n (with corrupted Alice) is bounded
from above by 2−n + μ for negligible μ. But since a complete transcript in A has
probability at least 2−m of giving output 0n , we have P ≥ 2−mα = 2−n + (α − 1

2 )2
−m

(note n = m + 1), so μ ≥ (α − 1
2 )2

−m . Since α is overwhelming and 2−m noticeable
on K ′, μ is not negligible, which concludes the proof in this case.
Let us consider the second case, i.e., β is overwhelming on K ′. By assumption, the

maximum probability P for an output in {0,1}n \ {0n} (with corrupted Bob) is at most
2−n(2n − 1) + μ(2n − 1) for some negligible μ. On the other hand, since a complete
transcript in B has probability 1 of giving output in {0,1}n \ {0n}, we have P ≥ β. It
is

P ≥ β = 2−n(2n − 1) + ( 1
2n(2n−1) − 1−β

2n−1

)
(2n − 1)

and thusμ ≥ 1
2n(2n−1) − 1−β

2n−1 . Since 2
−m is noticeable on K ′, 2n = 2·2m is polynomially

bounded on K ′, so 1
2n(2n−1) is noticeable on K ′. Further, 1−β is negligible, so the lower

bound forμ is also noticeable on K ′. It follows thatμ is not negligible, which concludes
the proof in the statistical (non-perfect) case.
For the perfect case, the proof of (1− α)(1− β) ≤ γ is performed identically (since

we did not use the non-triviality and the security of π in that part of the proof). By the
perfect non-triviality, we get γ = 0, so for every k, at least one of α, β is 1. If α = 1,
the probability for an output of 0n is (for suitable adversary) ≥ 2−m > 2−n . If β = 1,
the probability for an output in {0,1}n \ {0n} is 1 > (2n − 1)2−n . Both cases contradict
the security property. �
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Corollary 11. Let m be not superlogarithmic and n > m. Then, there is no non-trivial
(in the sense of Definition 1) protocol realizing n-bit coin toss using an m-bit coin toss
in the sense of statistical stand-alone simulatability.

Let m be any function (possibly superlogarithmic) and n > m. Then, there is no
perfectly non-trivial protocol realizing n-bit coin toss using an m-bit coin toss in the
sense of perfect stand-alone simulatability.

Proof. A statistically secure protocol would have the security property from Theo-
rem 10 and thus, if non-trivial, contradict Theorem 10 analogously for perfect security.

�

4.4. Positive Results

Now we will prove that there exists a protocol for coin toss extension from m to n bits
that is statistically stand-alone simulatably secure. The basic idea is to have the parties
P1 and P2 contribute random strings to generate one string with sufficiently large min-
entropy (the min-entropy of a random variable X is defined as minx − logPr[X = x]).
The randomness from this string is then extracted using a randomness extractor. The
amount of perfect randomness (i.e., the size of the m-bit coin toss) one needs to invest
is smaller than the amount extracted. This makes coin toss extension possible.
For our protocol, we need a family of strong randomness extractors with suitable

parameters. The following lemma states the existence of these extractors.

Lemma 12. For every m, there exists a function hm : {0, 1}m × {0, 1}m−1 →
{0, 1}, (s, x) �→ r such that for a uniformly distributed s and for an x with min-entropy
of at least t , the statistical distance between s‖hm(s, x) and the uniform distribution on
{0, 1}m+1 is at most 2−t/2/

√
2. The functions hm are efficiently computable.

Proof. Let hm(s, x) := 〈s1 . . . sm−1, x〉⊕ sm . Here, 〈·, ·〉 denotes the inner product and
⊕ the addition over GF(2). It is easy to verify that hm(s, ·) constitutes a family of uni-
versal hash functions [10], where s is the index selecting from that family. Therefore, the
LeftoverHashLemma [20,26] guarantees that the statistical distancebetween s‖hm(s, x)

and the uniform distribution on {0, 1}m+1 is bounded by 1
2

√
2 · 2−t = 2−t/2/

√
2. �

With this family of functions hm , a simple protocol is possible that extends m(k) coin
tosses to m(k) + 1 if the function m(k) is superlogarithmic.

Theorem 13. Let m(k) be a superlogarithmic function. Then, there exists a constant
round statistically stand-alone simulatable protocol with efficient simulator that realizes
an (m + 1)-bit coin toss using an m-bit coin toss.

Proof. Let hm be as in Lemma 12. Then, the following protocol realizes a coin toss
extension by one bit.

1. P1 uniformly chooses a ∈ {0, 1}
 m−1
2 � and sends a to P2.

2. P2 uniformly chooses b ∈ {0, 1}� m−1
2 � and sends b to P1.
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3. If one party fails to send a string of appropriate length or aborts, then this string is
assumed by the other party to be an all-zero string of the appropriate length.

4. P1 and P2 invoke the m-bit coin toss functionality and obtain a uniformly dis-
tributed s ∈ {0, 1}m . If one party Pi fails to invoke the coin toss functionality or
aborts, then the other party chooses s at random.

5. Both P1 and P2 compute s‖hm(s, a‖b) and output this string.

Note that the protocol is constructed in a way that the adversary is not able to abort the
protocol. Hence, we can safely assume that the adversary will send some message of the
correct length and will invoke the coin toss functionality. (We follow [14, Construction
7.4.7] in this.) We assume the adversary to corrupt P2; corruption of P1 is handled
analogously. Further, we assume without loss of generality that the random tape t of
A to be fixed. (The advantage of a probabilistic adversary is bounded by that of the
deterministic adversary with a worst-case random tape.) Due to these assumptions, there
exists a function fA : {0, 1}
m/2� → {0, 1}�m/2� for each real adversaryA such that the
message b sent in step 2 of the protocol equals fA(a). (Since t is fixed, it does not have to
be included as an argument to fA.) There is no loss in generality if we assume the view
of the adversary to consist of just a, b, s since the complete view can be reconstructed
given these values and the (fixed) random tape t .

Now for a specific adversary A with fixed random tape corrupting P2, the output
distribution of the real protocol (i.e., view and output) is completely described by the

following game: Choose a
R∈ {0, 1}
m/2�, let b ← fA(a), choose s

R∈ {0, 1}m(k), let
r ← s‖hm(s, a‖b), and return ((a, b, s), r).

We now describe the simulator. To distinguish the random variables in the ideal model
from their real counterparts, we decorate themwith a∼, e.g., ã, b̃, s̃. The simulator in the

ideal model obtains a string r̃
R∈ {0, 1}m+1 from the ideal n-bit coin toss functionality

and sets s̃ = r1 . . . rm . Then, the simulator chooses ã
R∈ {0, 1}
 m−1

2 � and computes
b̃ = fA(ã) by giving ã to a simulated copy of the real adversary. If hm(s̃, ã‖b̃) = r̃m+1,
the simulator gives s̃ to the simulated real adversary expecting the coin toss. Then, the
simulator outputs the view (ã, b̃, s̃). If, however, hm(s̃, ã‖b̃) �= r̃m+1, then the simulator

rewinds the adversary, i.e., the simulator chooses a fresh ã
R∈ {0, 1}
 m−1

2 � and again
computes b̃ = fA(a). If now hm(s̃, ã‖b̃) = r̃m+1, the simulator outputs (ã, b̃, s̃). If
again hm(s̃, ã‖b̃) �= r̃m+1, then the simulator rewinds the adversary again. If after k
invocations of the adversary no triple (ã, b̃, s̃) was output, the simulator aborts and
outputs fail.
To show that the simulator is correct, we have to show that the following two distri-

butions are statistically indistinguishable: ((a, b, s), r) as defined in the real model, and
((ã, b̃, s̃), r̃).

By construction of the simulator, it is obvious that the two distributions are identical
under the condition that rm = 0, r̃m = 0 and that the simulator does not fail. The same
holds given rm = 1, r̃m = 1 and that the simulator does not fail. Therefore, it is sufficient
to show two things: (i) The statistical distance between r and the uniform distribution on
n bits is negligible, and (ii) the probability that the simulator fails is negligible. Property
(i) is shown using the properties of the randomness extractor hm . Since a is chosen at
random, themin-entropy of a is at least 
m−1

2 � ≥ m
2 −1, so themin-entropy of a‖b is also
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at least m
2 −1. Since s is uniformly distributed, it follows by Lemma 12 that the statistical

distance between r = s‖hm(s, a‖b) and r̃ is bounded by 2−m/4−1/2/
√
2 = (2−m)1/4/2.

Since for superlogarithmic m, we have that 2−m is negligible, this statistical distance is
negligible.
Property (ii) is then easily shown: From (i), we see that after each invocation of

the adversary, the distribution of hm(s̃, ã‖b̃) is negligibly far from uniform. So the
probability that hm(s̃, ã‖b̃) �= r̃m is at most negligibly higher than 1

2 . Since the
hm(s̃, ã‖b̃) in the different invocations of the adversary are independent, the proba-
bility that hm(s̃, ã‖b̃) �= r̃m for all m is negligibly far from 2−k . So the simulator fails
only with negligible probability.
It follows that the real and the ideal protocol executions are indistinguishable, and the

protocol stand-alone simulatably implements an (m+1)-bit coin toss. �

The idea of the one bit extension protocol can be extended by using an extractor that
extracts a larger amount of randomness. This yields constant round coin toss extension
protocols. However, the simulator needed for such a protocol does not seem to be effi-
cient, even if the real adversary is. To get a protocol that also fulfills the property of both
computational stand-alone simulatability and statistical stand-alone simulatability, we
need a simulator that is efficient if the adversary is.
Below, we give such a coin toss extension protocol for superlogarithmic m(k). This

protocol is statistically and computationally secure, i.e., the simulator for polynomial-
time adversaries is polynomially bounded, too. The basic idea here is to extract one bit
at a time in polynomially many rounds.

Theorem 14. Let m(k) be superlogarithmic, and p(k) be a positive polynomially
bounded function, then there exists a statistically and computationally stand-alone sim-
ulatable protocol with efficient simulator that realizes an (m + p)-bit coin toss using an
m-bit coin toss.

Proof. Let hm be as in Lemma 12. Then, the following protocol realizes a coin toss
extension by p(k) bits.

1. for i = 1 to p(k) do

(a) P1 uniformly chooses ai ∈ {0, 1}
 m−1
2 � and sends ai to P2.

(b) P2 uniformly chooses bi ∈ {0, 1}� m−1
2 � and sends bi to P1.

(c) If one party fails to send a string of appropriate length or aborts, then this string
is assumed by the other party to be an all-zero string of the appropriate length.

2. P1 and P2 invoke the m-bit coin toss functionality and obtain a uniformly dis-
tributed s ∈ {0, 1}m . If one party Pi fails to invoke the coin toss functionality or
aborts, then the other party chooses s at random.

3. P1 and P2 compute s‖hm(s, a1‖b1)‖ . . . ‖hm(s, ap(k)‖bp(k)) and output this string.

We describe the proof for the case of a corrupted P2; for corrupted P1, the proof is
analogous. Without loss of generality, we can assume that the adversary computes the
values bi by evaluating bi := fi (a1, . . . , ai ) for some deterministic function fi . We
can also assume that the view of the adversary consists only of (a1, b1, . . . , ap, bp, s)
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(as we did in proof of Theorem 13). The output of the honest party P1 is r :=
s‖hm(s, a1‖b1)‖ . . . ‖hm(s, ap‖bp).

To show security, we have to construct a polynomial-time simulator that, after obtain-
ing a random r̃ ∈ {0, 1}m+p from the ideal n-bit coin toss functionality, outputs
(ã1, b̃1, . . . , ãp, b̃p, s̃) such that (a1, b1, . . . , ap, bp, s, r) and (ã1, b̃1, . . . , ãp, b̃p, s̃, r̃)

are statistically indistinguishable.
To construct the simulator, we first construct auxiliary algorithms Si : Given a seed s̃,

values a1, . . . , ai−1, and a bit r̃i , Si (s̃, a1, . . . , ai−1, r̃i ) picks a random ãi ∈ {0, 1}� m−1
2 �,

sets b̃i := fi (a1, . . . , ai−1, ãi ), and checks whether hm(s̃, ãi‖b̃i ) = r̃i . If so, Si returns
ãi , b̃i . Otherwise, Si tries again (picking a new ãi ). Si performs up to k tries. (k is the
security parameter.)
We claim that the outputs of the following two games have, for all ai , . . . , ai−1,

statistical distance at most μ for some negligible function μ:

s̃
R∈ {0, 1}m, ai

R∈ {0, 1}
 m−1
2 �, bi := fi (a1, . . . , ai ), rm+i := hm(s̃, ai‖bi ),

output (ai , bi , s̃, rm+i )

and s̃
R∈ {0, 1}m, r̃m+i

R∈ {0, 1}, ãi , b̃i := Si (s̃, a1, . . . , ai−1, r̃i ),

output (ãi , b̃i , s̃, r̃m+i ) (4)

As this claim is shown exactly as the indistinguishability of ((a, b, s), r) and ((ã, b̃, s̃), r̃)

in the proof of Theorem 13, we omit the proof of the claim. Note that μ can be chosen
to be independent of i .
In the real model, we have that the distribution of (a1, b1, . . . , ap, bp, s, r) can be

described by the following game G R :

s
R∈ {0, 1}m, a1

R∈ {0, 1}
 m−1
2 �, b1 := f1(a1), rm+1 := hm(s̃, a1‖b1), . . . ,

ap
R∈ {0, 1}
 m−1

2 �, bp := f p(a1, . . . , ap), rm+p := hm(s̃, ap‖bp),

r := s‖rm+1‖ . . . ‖rm+p, output (a1, b1, . . . , ap, bp, s, r).

In the ideal model, the distribution of (ã1, b̃1, . . . , ãp, b̃p, s̃, r̃) can be described by the
following game G I :

s̃
R∈ {0, 1}m, r̃m+1

R∈ {0, 1}, ã1, b̃1 := S1(s̃, r̃), . . . ,

r̃m+p
R∈ {0, 1}, ãp, b̃p := Sp(s̃, ã1, . . . , ãp−1, r̃), r̃ := s̃‖r̃m+1‖ . . . ‖r̃m+p,

output (ã1, b̃1, . . . , ãp, b̃p, s̃, r̃).

To show that the outputs of those two games are indistinguishable, we first introduce
a hybrid game Hi :
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s
R∈ {0, 1}m,

a1
R∈ {0, 1}
 m−1

2 �, b1 := fi (a1), rm+1 := hm(s̃, a1‖b1), . . . ,

ai
R∈ {0, 1}
 m−1

2 �, bi := fi (a1, . . . , ai ), rm+i := hm(s̃, ai‖bi ),

rm+i+1
R∈ {0, 1}, ai+1, bi+1 := Si+1(s, r, a1, . . . , ai ), . . . ,

rm+p
R∈ {0, 1}, ap, bp := Sp(s, a1, . . . , ap−1, r),

r := s‖rm+1‖ . . . ‖rm+p, output (a1, b1, . . . , ap, bp, s, r).

For i = 0, this is the game G I , and for i = p, this is the game G R .
Note that we can reorder the computations in Hi−1 as follows:

a1
R∈ {0, 1}
 m−1

2 �, b1 := fi (a1), . . . ,

ai−1
R∈ {0, 1}
 m−1

2 �, bi−1 := fi−1(a1, . . . , ai−1),

s
R∈ {0, 1}m, rm+i

R∈ {0, 1}, ai , bi := Si (s, r, a1, . . . , ai−1),

rm+1 := hm(s̃, a1‖b1), . . . , rm+i−1 := hm(s̃, ai−1‖bi−1),

rm+i+1
R∈ {0, 1}, ai+1, bi+1 := Si+1(s, r, a1, . . . , ai ), . . . ,

rm+p
R∈ {0, 1}, ap, bp :=:= Sp(s, r, a1, . . . , ap)

And we can reorder the computations in Hi as follows:

a1
R∈ {0, 1}
 m−1

2 �, b1 := fi (a1), . . . ,

ai−1
R∈ {0, 1}
 m−1

2 �, bi−1 := fi−1(a1, . . . , ai−1),

s
R∈ {0, 1}m, ai

R∈ {0, 1}
 m−1
2 �, bi := fi (a1, . . . , ai ), rm+i := hm(s, ai‖bi )

rm+1 := hm(s̃, a1‖b1), . . . , rm+i−1 := hm(s̃, ai−1‖bi−1),

rm+i+1
R∈ {0, 1}, ai+1, bi+1 := Si+1(s, r, a1, . . . , ai ), . . . ,

rm+p
R∈ {0, 1}, ap, bp :=:= Sp(s, r, a1, . . . , ap)

When reordered like this, only the second line is different in Hi−1 and Hi , and it
corresponds to the second line andfirst line of (4), respectively.Thus, by (4), the statistical
distance between the output of Hi−1 and Hi is at most μ. Thus, the statistical distance
between G I and G R , which is the same as the statistical distance between H0 and Hp,
is at most pμ which is negligible.
This shows security in the case of corrupted P2. �

Remark. We note that this protocol defines a “default value” for values not sent by the
other party. Hence, it guarantees output even in the face of uncooperative parties and
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thus even achieves the stronger notion of a “fair” coin toss from [11,23] (see also our
discussion in Sect. 1).

4.5. Universal Composability (Statistical/Perfect Case)

In contrast to the stand-alone case, in the UC setting, statistically secure coin toss exten-
sion protocols are impossible. Intuitively, the reason for this difference is that our positive
result for stand-alone security (Theorem 14) rewinds an adversary in a simulation, while
this is not possible for UC security.
More precisely, we show that there is no protocol that runs a polynomial number of

rounds, uses an m-bit coin toss functionality as a seed, and statistically UC-implements
the n-bit coin toss functionality for n > m.
The proof of this statement is done by contradiction. Invoking Lemma 9, we can

assume that a protocol for statistically universally composable coin toss extension has a
certain outer form. Then, we show that any such protocol (of this particular outer form)
is insecure.
More concretely, our plan of action will be as follows. For contradiction, assume a

statistically universally composable (m → n)-coin toss extension protocol. We may
assume that the m-bit seed coin toss is only invoked at the end of the extension protocol.
Also, slightly simplifying things, we can think of the produced n-bit coin toss as

a deterministic function f (c, s) of the protocol transcript c (i.e., the transcript of all
messages exchanged between the parties) and the m-bit coin toss s. Now for every
transcript c, the set { f (c, s) | s ∈ {0, 1}m} of possible (valid) protocol outputs after
transcript c is at most half the size of {0, 1}n . On the other hand, initially, almost all
outputs of {0, 1}n should be roughly equally probable. Hence, a full transcript c “cuts
away” about half of all possible protocol outputs.
By assumption, the transcript c is generated interactively from scratch, without using

the m-bit coin toss s. Also, every party contributes only polynomially many messages
to c. Hence, there is a single message that “cuts away” a non-negligible fraction of all
possible outputs. Call such a message “critical.” Our adversaryAwill corrupt one party
passively and detect the first such critical message. When encountering such a message,
A will then internally toss a coin. If heads comes out, A will continue the protocol run,
and let the corrupted party send that criticalmessage. If tails comes out,Awill rewind the
party and let it send a different message. We will show that this decision (whether to let
the party send the critical message) has a non-negligible impact on the protocol’s output
distribution. More concretely, the probability that the protocol output lies in exactly that
subset of possible outputs that would have been “cut away” by the critical message is
highly correlated with the outcome of A’s coin flip.

We will now proceed to formalize this proof outline. This will require some prepara-
tions.
For the following statements,we always assume thatm = m(k), n = n(k) are arbitrary

functions, only satisfying 0 ≤ m(k) < n(k) for all k. We also restrict to protocols that
proceed in a polynomial number of rounds. That is, by a “protocol,” we mean in the
following one in which each party halts after at most p(k) activations, where p(k) is a
polynomial that depends only on the protocol. (We do not, however, require the parties
to be computationally limited.) We stress that a protocol in which the honest parties run
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Fig. 5. Left Initial setting D0 for the statistical case. (Some connections that are not important for our proof
have been omitted.) Right Setting D1 with a corrupted P1. Setting D2 (with P2 corrupted instead of P1) is
defined analogously.

in polynomial time automatically has a polynomial number of rounds; the restriction to
a polynomial number of rounds is thus a very weak one.

Theorem 15. There is no non-trivial statistically or perfectly universally composable
protocol for (m → n)-coin toss extension that proceeds in a polynomial number of
rounds.

Proof. Assume for contradiction that π , using CTm , is a statistically universally com-
posable implementation of CTn . By Lemma 9, we may also assume that π satisfies the
requirements from that lemma.
Setting D0 Fix an environment Z0 that gives both parties “init” input and then waits
for both parties to output a coin toss outcome. Consider an adversary A0 that delivers
all messages between the parties immediately. The resulting setting D0 is depicted in
Fig. 5.

Denote the protocol communication in a run of D0, i.e., the ordered list of messages
sent between P1 and P2, by com. Denote by κ1 and κ2 the final outputs of the parties.
For M ⊆ {0, 1}n and a possible protocol communication prefix c, let E(M, c) be the
probability that the protocol outputs are identical and in M , provided that the protocol
communication starts with c, i.e.,

E(M, c) := Pr[κ1 = κ2 ∈ M | c ≤ com] ,

where x ≤ y means that x is a prefix of y.
Note that the parties have, apart from their communication com, only the seed ω ∈

{0, 1}m provided by CTm for computing their final output κ . So we may assume that
there is a deterministic function f for which κ1 = κ2 = f (com, ω) with overwhelming
probability.
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For a fixed protocol communication com = c, consider the set

Mc := {0, 1}n \ { f (c, s) | s ∈ {0, 1}m }

of “improbable outputs” after communication c. Then, obviously |Mc| ≥ 2n − 2m ≥
2n−1. Since the protocol π is non-trivial, we have that Pr[κ1, κ2 �= ⊥] is overwhelming.
Hence,

∣∣Pr[κ1 = κ2 ∈ Mc] − |Mc|2−n
∣∣ is negligible (otherwise, one could distinguish

the real and the ideal models). Thus, for sufficiently large security parameters k, the
probability that κ1 = κ2 ∈ Mc is at least 2/5. (Here, any number strictly between 0
and 1/2 would have done as well.) Since E(Mc,∅) (for the empty transcript ∅) is, by
definition, the probability that κ1 = κ2 ∈ Mc, we have E(Mc,∅) ≥ 2/5 for sufficiently
large k. Also, E(Mc, c) is negligible by definition of Mc, so Mc satisfies

E(Mc,∅) − E(Mc, c) ≥ 1

3
(5)

for sufficiently large k.
Since the protocol consists by assumption only of polynomially many rounds, c is a

list of size at most p(k) for a fixed polynomial p. This means that there are a prefix c
of c and a single message m (either sent from P1 to P2 or vice versa) such that cm ≤ c
and

E(Mc, c) − E(Mc, cm) ≥ 1

3p(k)
(6)

for sufficiently large k. Intuitively, this means that at a certain point during the protocol
run, a single message m had a significant impact on the probability that the protocol
output is in Mc.

A message m that satisfies (6) for c := com we call critical. (Remember that com is
the random variable describing the communication in an execution of the real protocol.)

Setting D j Note that in any execution, a critical m is sent by at least one party. So there is
a j ∈ {1, 2} such that for infinitely many k, party Pj sends a critical m with probability
at least 1/2. We describe a modification D j of setting D0. In setting D j , party Pj is
corrupted and simulated (honestly) insideZ j . Furthermore, adversaryA j simply relays
all communication between this simulation inside Z j and the external machines P3− j

and CTm . For supplying inputs to the simulation of Pj and to the uncorrupted P3− j , a
simulation of Z0 is employed inside Z j . The situation (for j = 1) is depicted in Fig. 5.
Since D j is basically only a regrouping of D0, the random variables com, ω, and

κi are distributed exactly as in D0, so we simply identify them with the corresponding
random variables in D0. In particular, in D j , for infinitely many k, a critical message is
sent by Pj .

Setting D′
j . Now we slightly change the environment Z j into an environment Z ′

j .
Each time the simulated Pj sends a message m to P3− j , Z ′

j checks whether

∃M ⊆ {0, 1}n : E(M, c) − E(M, cm) ≥ 1

3p(k)
, (7)

where c denotes the communication between Pj and P3− j so far.
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If (7) holds at some point for the first time, then Z ′
j tosses a coin b uniformly at

random and proceeds as follows: If b = 0, then Z ′
j keeps going just as Z j would have.

In particular, Z ′
j then lets Pj send m to P3− j . However, if b = 1, then Z ′

j rewinds the
simulation of Pj to the point before that activation and activates Pj again with fresh
randomness, thereby letting Pj send a possibly different message m′. In the further
proof, c, m, and M refer to these values for which (7) holds.
In any case, after having tossed the coin b once, Z ′

j remembers the set M from (7)
and does not check (7) again. After the protocol finishes, Z ′

j outputs (b, β). Here, b is
as above, and β := 1 iff κ1 = κ2 ∈ M and β := 0 otherwise. (b, β := ⊥ if (7) was
never fulfilled.)
Now by our choice of j , and since a critical m fulfills (7), Pr[b �= ⊥] ≥ 1/2 for

infinitely many k.
Also, Lemma 9 guarantees that the internal state of the parties at the time of tossing

b consists only of c. So, when Z ′
j has chosen b = 1, and rewound the simulated Pj ,

the probability that at the end of the protocol κ1 = κ2 ∈ M holds is the same as the
probability of that event in the setting D j under the condition that the communication ,

begins with c̄. This probability again is exactly E(M, c̄) by definition.
Similarly, when Z ′

j has chosen b = 0, the probability that at the end of the protocol
κ1 = κ2 ∈ M is the same as the probability of that event in the setting D j under the
condition that the communication , begins with c̄m, i.e., E(M, c̄m).

Therefore, just before Z ′
j chooses b (i.e., when c̄ and M are already determined), the

probability that at the end we will have β = 1 ∧ b = 1 is 1
2E(M, c̄) and the probability

of β = 1 ∧ b = 0 is 1
2E(M, c̄m). Therefore, the difference between these probabilities

is at least 1
2

(
E(M, c̄) − E(M, c̄m)

) ≥ 1
6p(k)

.

Since Pr[b �= ⊥] ≥ 1
2 for infinitely many k, it follows that

Pr[β = 1 ∧ b = 1] − Pr[β = 1 ∧ b = 0] ≥ 1

12p(k)
(8)

for infinitely many k when Z ′
j runs with the real protocol as described above.

The contradiction We show that no simulator S j can achieve property (8) in the ideal
model, whereZ ′

j runs withCTn and S j . To distinguish random variables during a run of
Z ′

j in the ideal model from those in the real model, we add a tilde to a random variable

in a run of Z ′
j in the ideal model, for example, b̃, β̃.

Since the protocol π is non-trivial, for any S j achieving indistinguishability of real
and ideal model, we can assume without loss of generality that S j always delivers the
outputs κ̃1 = κ̃2 =: κ̃ .
Recall that b̃ is independently and uniformly chosen after M̃ is determined and that

κ̃ is chosen independently by CTn . Hence, the variable b̃ and the tuple (M̃, κ̃) are
independent given b̃ �= ⊥. Hence, since β̃ is a function of M̃ and κ̃ ,

Pr
[
(b̃, β̃) = (0, 1)

]
= Pr

[
(b̃, β̃) = (1, 1)

]
. (9)



On the (Im-)Possibility of Extending Coin Toss 1155

Combining (9) with (8), we get that Z ′
j ’s output (i.e., (b, β), resp. (b̃, β̃)) differs non-

negligibly in real and ideal model. So no simulator S j can simulate attacks carried out
by Z ′

j and A j , which gives the desired contradiction. �

Actually, in the case of perfect security, impossibility holds even for protocols with
arbitrarily many rounds. Namely, in the proof of Theorem 15, we have used that the
protocol has only polynomially many rounds only in one place. Namely, we obtained
in (6) that one party sends a message that has non-negligible impact on the probability
that κ ∈ M . For perfect security, we need only that one party has some nonzero impact on
that probability, i.e., we can drop the requirement on the polynomial number of protocol
rounds in the perfect case. The reasoning in the proof stays exactly the same only that
we end up with the left-hand side of (8) being nonzero instead of non-negligible. This
suffices to show that the considered protocol is not perfectly secure and thus:

Corollary 16. There is no non-trivial perfectly universally composable protocol for
(m → n)-coin toss extension (the number of rounds does not matter here).

However, we do not know whether or not there is a protocol for the statistical case that
proceeds in a superpolynomial number of rounds.
Note that all discussions above assume that statistical security means security with

respect to computationally unbounded adversaries, simulators, and environments, i.e.,
machines that can implement any probabilistic function, even, for example, the halting
problem or similar. Often, however, statistical security is instead defined with respect to
(computationally unbounded) Turing machines, i.e., machines that can only implement
computable functions. To show the above results for this case, one could try and check
whether all constructions given in the proof above are indeed computable or can be
replaced by computable approximations. Fortunately, however, there is an easier way,
using results from [27].

Corollary 17. Say a protocol is bounded time if there is a (not necessary small or
computable) bound on the execution time of that protocol (e.g., all efficient protocols
are bounded time). Let further n, m be computable functions, and m > n.

Then, there is no non-trivial bounded-time protocol for (m → n)-coin toss extension
that proceeds in a polynomial number of rounds and that is statistically universally com-
posable with respect to adversaries / environments / simulators that are computationally
unbounded Turing machines.

Proof. [27] shows that a bounded-time protocol universally composably implements
a bounded-time functionality with respect to computationally unbounded adversaries /
environments / simulators if and only if it universally composably implements that func-
tionality with respect to computationally unbounded Turing adversaries / environments
/ simulators. Since the n-bit and m-bit coin toss functionalities are bounded time, too
(n(k) can be evaluated in finite time), a protocol contradicting this corollary would also
contradict Theorem 15. �

Similar reasoning applies to the perfect case, and we omit the details here.
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5. CRS Extension

Before we go through the results one by one, we summarize the results of this section in
the following table. The only case where CRS extension differs from coin toss extension
is highlighted in boldface.

Security type Level

Computational Statistical Perfect

Stand-alone simulatability Yes No No
Universal composability Dependsa No No

aCRS extension is impossible if the seed does not have superlogarithmic length. The possibility result
depends on the complexity assumption we use

5.1. The Computational Case

As alreadymentioned in Introduction, [14, Proposition 7.4.8] and [14, Proposition 7.4.3]
show the existence of an n-bit coin toss protocol π for any polynomially bounded,
efficiently computable n. This makes (m → n)-CRS extension trivial: One can ignore
the m-bit seed and use the protocol π to produce an n-bit random string which is then
used as the CRS.
In the setting of computational universal composability, the results from Sect. 3.1

carry over directly. To state these results, we first have to specify the ideal functionality
CRS.
The following corollary shows that CRS extension is possible in the computational

UC setting given sufficiently long seeds.

Corollary 18. Let n = n(k) and m = m(k) be polynomially bounded and efficiently
computable functions. Assume one of the following conditions holds:

– m is polynomially large and ETD exists, or
– m is superpolylogarithmic and exponentially hard ETD exists.

Then, there is a polynomial-time computationally universally composable (m → n)-
CRS extension protocol π .

Proof. The proof of Theorem 7 actually shows that an n-bit coin toss can be realized
from an m-bit CRS. Furthermore, from an n-bit coin toss, we can trivially realize an
n-bit CRS. Thus, from an m-bit CRS, we can realize an n-bit CRS. �

The following corollary shows that extending coin toss is impossible in the computa-
tional UC setting for short seeds.

Corollary 19. Let n = n(k) and m = m(k) be functions with n(k) > m(k) ≥ 0 for all
k and assume that m is not superlogarithmic (i.e., 2−m is non-negligible). Then, there
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is no non-trivial polynomial-time computationally universally composable protocol for
(m → n)-CRS extension.

The proof is identical to that of Theorem 8. (Except, of course, that we have to replace
thementions of the functionalityCT byCRS and that the environmentZ sendsgetcrs
instead of init.)

5.2. The Statistical and the Perfect Case

For superlogarithmic m and n > m, Theorem 13 states that an (m → n)-coin toss
extension is possible with respect to statistical stand-alone simulatability. This is not
true, however, for CRS extension. We will show that CRS extension is impossible for
any lengthm of the seed, both for statistical and perfect security, and both for stand-alone
simulatability and UC.

Theorem 20. Let 0 ≤ m < n be polynomially bounded functions in the security
parameter k. Then, there is no non-trivial (in the sense of Definition 1) two-party n-bit
CRS protocol π (not even an inefficient one) that uses an m-bit CRS and has the following
property:

– There is a negligible function μ in the security parameter such that for any (possibly
unbounded) adversary corrupting one of the parties, for every security parameter
k, and for every set M ⊆ {0, 1}n, we have that the probability that the output of the
honest party lies in M is at most 2−n|M | + μ.13

We begin with a proof sketch. For contradiction, assume a protocol π with bounds μ

and ν as in the statement of the theorem. Let S denote the value of the seed (the initial
CRS), and let R denote the outcome of the protocol (the extended CRS).
First, we find that there is an index i such that the i-th bit Ri of R is not completely

determined by S (up to some negligible error). If there was no such index, each bit of R
would be determined by S, and hence R could only take 2m � 2n different values.

Furthermore, for a fixed value s of S, let αs denote the maximum probability that a
corrupted Alice can achieve Ri = 0. Similarly, βs denotes the maximum probability
that a corrupted Bob can achieve Ri = 1. For any fixed s, we are in the same situation as
in a coin toss protocol that has to pick a random bit Ri without using any seed at all. In
this case, either Alice can enforce outcome 0 or Bob can enforce outcome 1 (Theorem
10). Thus, for all s, αs ≈ 1 or βs ≈ 1. Let Vα := {s : αs ≈ 1}, i.e., Vα is the set of all
seeds for which Alice can enforce outcome 0. Vβ is defined analogously.
Let Δα denote the probability that in an honest execution, S ∈ Vα and Ri �= 0. Let

Δβ denote the probability that in an honest execution, S ∈ Vβ and Ri �= 1. If both
Δα ≈ 0 and Δβ ≈ 0, then the value of Ri would be determined by whether S ∈ Vα

holds. But this contradicts the fact that Ri is not determined by S. Thus, Δα �≈ 0 or
Δβ �≈ 0. Without loss of generality, assume Δα �≈ 0, i.e., with noticeable probability, in

13We bound this probability from above only since we want to allow that an honest party gives no output
with high probability.
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an honest execution we have Ri �= 0, but the seed S is such that a corrupted Alice could
have enforced Ri = 0.

Thus, a corrupt Alice can increase the bias toward 0 by the noticeably amount Δα

when compared to the honest case. But since in the honest case, the bias toward 0 is
1
2 , Alice can enforce Ri = 0 with probability 1

2 + Δα . This violates the security of the
protocol π .
Thus, we have led our initial assumption to a contradiction; hence, Theorem 20 holds.
We now proceed with the full proof.

Proof. Assume for contradiction that a protocol π with negligible bounds μ and ν as
in the statement of the theorem exists.
Without loss of generality, we may assume that honest parties always give output in

{0, 1}n or no output. We also assume that if both parties are honest (and all messages
are delivered), with probability 1, both parties give the same output or both parties give
no output. The latter can be achieved by adding two additional messages at the end of
the protocol where the parties compare their outputs (and give no output in the case of
disagreement).
For the remainder of the proof, we fix the security parameter k.
We first make a number of simple definitions. Denote by the random variable S ∈

{0, 1}m the initial seed that is available to both protocol parties (the CRS). Let the random
variable R ∈ {0, 1}n ∪ {⊥} denote the protocol outcome, i.e., the extended CRS, in an
honest protocol execution. We write R = ⊥ for the case that no output is given. Let Ri

be the i-th bit of R, with Ri := ⊥ if R = ⊥.
Let bi (s) ∈ {0, 1} with bi (s) := 1 iff Pr[Ri = 1 | S = s] > Pr[Ri = 0 | S = s].

(Intuitively, bi (S) is the most probable value of Ri given S.) �

Claim 1. There exists an i ∈ {1, . . . , n} such that we have:

Pr[Ri = bi (S)] ≤ 1 − 1 − 2μ

2n
. (10)

First, assume for contradiction that (10) does not hold for any i . Let f (s) :=
b1(s)‖ . . . ‖bn(s) for s ∈ {0, 1}m , i.e., f (S) is the value of R resulting from predict-
ing R bitwise.
Then, we have

Pr[R = f (S)] = Pr
[∀i : Ri = bi (S)

] ≥ 1 −
n∑

i=1

Pr
[
Ri �= bi (S)

] (∗)
> 1 − n

1 − 2μ

2n
= 1

2
+ μ

(11)
where (∗) uses the fact that (10) is assumed not to hold. With M := f ({0, 1}m), we get

Pr[R ∈ M] ≥ Pr[R = f (S)]
(11)
> 1

2 + μ.
But by the security of π , we have that Pr[R ∈ M] ≤ 2−n|M |+μ ≤ 2−n2m +μ 1

2 +μ.
Thus, we have a contradiction, and hence (10) holds and Claim 1 is shown.
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Claim 2. For the value i from Claim 1, we have

Pr[Ri = b(S)] ≤ 1 − 1 − 2μ

2n
, (12)

for any predicate b : {0, 1}m → {0, 1}.

Since Pr[Ri = bi (s)|S = s] ≥ Pr[Ri = 1 − bi (s)|S = s] by construction of bi , we
have Pr[Ri = bi (s)|S = s] ≥ Pr[Ri = b(s)|S = s] both in the case bi (s) �= b(s) and
trivially in the case bi (s) = b(s). Thus,

Pr[Ri = b(S)] =
∑

s∈S

2−m Pr[Ri = b(s)|S = s]

≤
∑

s∈S

2−m Pr[Ri = bi (s)|S = s] = Pr[Ri = bi (S)] (10)≤ 1 − 1 − 2μ

2n
.

This shows Claim 2.
Note the implications of Claim 2: Intuitively it states that (if μ is small) there is a

bit of the protocol output that is (to a certain extent) undetermined at the start of the
protocol, even when knowing the seed S.
In the following, let i be as in Claims 1 and 2.

Claim 3. It is

ν + √
ν ≥ 1

4n
− μ

2n
− 2μ. (13)

To see this, for any seed s ∈ {0, 1}m , we denote by αs the maximal probability for
an adversary A∗ that corrupts the first party Alice to achieve R∗

i = 0. Analogously, by
βs , we denote the maximal probability for an adversary that corrupts the second party
Bob to achieve R∗

i = 1. Here, R∗ ∈ {0, 1}n ∪ {⊥} denotes the honest party’s output and
R∗

i denotes the i-th bit of R∗. These definitions are similar to the definitions α and β

from the proof of Theorem 10, except that here we consider the probabilities given a
specific value s of the seed. Further, let γs := Pr[R = ⊥ | S = s] (in the uncorrupted
case). An analogous calculation to the one in the proof of Theorem 10 shows that for all
s ∈ {0, 1}m ,

(1 − αs)(1 − βs) ≤ γs . (14)

Now we define

Vα := {s ∈ {0, 1}m | αs > βs} Vβ := {s ∈ {0, 1}m | αs ≤ βs}
Γα := Pr[Ri = 0 and S ∈ Vα] Γβ := Pr

[
Ri = 1 and S ∈ Vβ

]

Δα := 2−m |Vα| − Γα Δβ := 2−m |Vβ | − Γβ.
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First, we will compute a lower bound on Δα + Δβ . For this, we define the predicate
b : {0, 1}m → {0, 1} such that b(s) = iff s ∈ Vα . Then,

1 − (Δα + Δβ) = Γα + Γβ = Pr[Ri = b(S)]
(12)≤ 1 − 1 − 2μ

2n
.

Thus, Δα + Δβ ≥ 1−2μ
2n .

Hence, Δα ≥ 1−2μ
4n or Δβ ≥ 1−2μ

4n . First consider the case that Δα ≥ 1−2μ
4n . For

s ∈ Vα , we have (1 − αs)
2 < (1 − αs)(1 − βs) ≤ γs from (14), so

2−m |Vα| − 2−m
∑

s∈Vα

αs = 2−m
∑

s∈Vα

(1 − αs) ≤ 2−m
∑

s∈{0,1}m

√
γs

(∗)≤
√ ∑

s∈{0,1}m

2−mγs = √
Pr[R = ⊥] ≤ √

ν (15)

where (∗) is an application of Jensen’s inequality.
Let ε > 0 be arbitrary. Then, we construct an adversary A∗ that corrupts the first

party Alice and proceeds as follows. If s ∈ Vα , it executes a strategy that achieves
Pr

[
R∗

i = 0 | S = s
] ≥ αs − ε. (We have to include the error ε since αs might be a

proper supremum.) If s �∈ Vα , the adversary A∗ behaves honestly. We get that

Pr
[
R∗

i = 0
] − Pr[Ri = 0]

= Pr
[
R∗

i = 0 and S ∈ Vα

] − Pr[Ri = 0 and S ∈ Vα]

+ Pr
[
R∗

i = 0 and S �∈ Vα

] − Pr[Ri = 0 and S �∈ Vα]
(∗)= Pr

[
R∗

i = 0 and S ∈ Vα

] − Pr[Ri = 0 and S ∈ Vα]

=
∑

s∈Vα

Pr
[
R∗

i = 0 and S = s
] − Γα

≥
⎛

⎝2−m
∑

s∈Vα

(αs − ε)

⎞

⎠ − Γα

(15)≥ 2−m |Vα| − √
ν − ε − Γα = Δα − √

ν − ε (16)

Here, (∗) uses the fact that A∗ behaves honestly if s /∈ Vα , so R and R∗ have the same
distribution in this case.
On the other hand, we have by the security and non-triviality of π that

Pr[Ri = 0] = 1 − Pr[Ri = 1] − Pr[Ri = ⊥] ≥ 1 − ( 1
2 + μ

) − ν = 1
2 − μ − ν

and

Pr[R∗
i = 0] ≤ 1

2 + μ,
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so

1 − 2μ

4n
−√

ν − ε ≤ Δα − √
ν − ε

(16)≤ Pr[R∗
i = 0] − Pr[Ri = 0]

≤ 1
2 + μ − ( 1

2 − μ − ν
) = 2μ + ν.

Since this holds for any ε > 0, we have 1−2μ
4n −√

ν ≤ 2μ+ ν, from which (13) follows
immediately.
The case that Δβ ≥ 1−2μ

4n is handled analogously, except that now A∗ corrupts Bob
and achieves Pr

[
R∗

i = 1 | S = s
] ≥ βs + ε for all s ∈ Vβ . This shows Claim 3.

From Claim 3, we immediately get Claim 20, since no pair of negligible functions
μ, ν can fulfill (13). �
From Theorem 20, we can directly derive the impossibility of statistical and perfect

coin toss extension for both stand-alone simulatability and UC.
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A. An Auxiliary Lemma

Lemma 21. For any interactive machine M, there is a (not necessarily efficient) inter-
active machine M ′ that has the same behavior as M,14 but M ′ additionally fulfills the
following property: In each activation, the output of M ′ depends only on the input and
output M ′ received so far and on fresh randomness, but not on any internal state.

Proof. We transform the machine M into M ′ as follows: In an activation of M ′, let com
denote the communication so far. Let Icom denote the inputs of M ′ in com and Ocom
the outputs. Then, for any possible output x , M ′ calculates the conditional probability
px that M gives output x when receiving Icom under the condition that it gave outputs
Ocom so far. Then, M ′ outputs x with probability px . By construction, the probability

14By having the same behavior, we mean that given a fixed sequence of inputs, the outputs of M and M ′
have the same probability distribution.

http://creativecommons.org/licenses/by/4.0/
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that M ′ outputs a sequence Ocom given inputs Icom is the same as the probability that P
outputs Ocom given inputs Icom. It follows that M and M ′ behave identically. �

Note The interactive machine M ′ constructed above can be very inefficient. Hence,
removing state may cost efficiency. Alternatively, a machine M can be transformed into
a stateless machine M ′ that has access to an NP oracle [5,21]. (These papers show that
an NP oracle allows to uniformly choose a witness among all witnesses of a given NP
statement. If we choose the witnesses to be the random coins of M , and the statement
to be “M’s history is consistent with its inputs and outputs so far,” we obtain a stateless
machine M ′ that requires access to an NP oracle.) We thank one anonymous reviewer
for pointing out this connection.
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