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Abstract: Symmetric graphs have non-trivial automorphism groups. This article starts with the proof
that all partition comparison measures we have found in the literature fail on symmetric graphs,
because they are not invariant with regard to the graph automorphisms. By the construction of a
pseudometric space of equivalence classes of permutations and with Hausdorff’s and von Neumann’s
methods of constructing invariant measures on the space of equivalence classes, we design three
different families of invariant measures, and we present two types of invariance proofs. Last,
but not least, we provide algorithms for computing invariant partition comparison measures as
pseudometrics on the partition space. When combining an invariant partition comparison measure
with its classical counterpart, the decomposition of the measure into a structural difference and a
difference contributed by the group automorphism is derived.

Keywords: graph partitioning; graph clustering; invariant measures; partition comparison; finite
automorphism groups; graph automorphisms

1. Introduction

Partition comparison measures are routinely used in a variety of tasks in cluster analysis:
finding the proper number of clusters, assessing the stability and robustness of solutions of cluster
algorithms, comparing different solutions of randomized cluster algorithms or comparing optimal
solutions of different cluster algorithms in benchmarks [1], or in competitions like the 10th DIMACS
graph-clustering challenge [2]. Their development has been for more than a century an active area of
research in statistics, data analysis and machine learning. One of the oldest and still very well-known
measure is the one of Jaccard [3]; more recent approaches were by Horta and Campello [4] and
Romano et al. [5]. For an overview of many of these measures, see Appendix B. Besides the need to
compare clustering partitions, there is an ongoing discussion of what actually are the best clusters [6,7].
Another problem often addressed is how to measure cluster validity [8,9].

However, the comparison of graph partitions leads to new challenges because of the need to
handle graph automorphisms properly. The following small example shows that standard partition
comparison measures have unexpected results when applied to graph partitions: in Figure 1, we show
two different ways of partitioning the cycle graph C4 (Figure 1a,d). Partitioning means grouping the
nodes into non-overlapping clusters. The nodes are arbitrarily labeled with 1 to 4 (Figure 1b,e), and
then, there are four possibilities of relabeling the nodes so that the edges stay the same. One possibility
is relabeling 1 by 2, 2 by 3, 3 by 4 and 4 by 1, and the images resulting from this relabeling are shown in
Figure 1c,f. The relabeling corresponds to a counterclockwise rotation of the graph by 90◦, and formal
details are given in Section 2. The effects of this relabeling on the partitions P1 and Q1 are different:

1. Partition P1 = {{1, 2}, {3, 4}} is mapped to the structurally equivalent partition P2 = {{1, 4}, {2, 3}}.
2. Partition Q1 = {{1, 3}, {2, 4}} is mapped to the identical partition Q2.
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Figure 1. Two structurally different partitions of the cycle graph C4: grouping pairs of neighbors (a) and
grouping pairs of diagonals (d). Equally-colored nodes represent graph clusters, and the choice of colors
is arbitrary. Adding, again arbitrary, but fixed, node labels impacts the node partitions and results in the
failure to recognize the structural difference when comparing these partitions with partition comparison
measures (see Table 1). The different images (b,c) (P1 = {{1, 2}, {3, 4}}, P2 = {{1, 4}, {2, 3}}) and
(e,f) (Q1 = Q2 = {{1, 3}, {2, 4}}) emerge from the graph’s symmetry.

Table 1 illustrates the failure of partition comparison measures (here, the Rand Index (RI)) to
recognize structural differences:

1. Because P1 and P2 are structurally equivalent, the RI should be one (as for Cases 1, 2 and 3)
instead of 1/3.

2. Comparisons of structurally different different partitions (Cases 4 and 5) and comparisons of
structurally equivalent partitions (Case 6) should not result in the same value.

Table 1. The Rand index is RI = N11+N00
N11+N10+N01+N00

. N11 indicates the number of nodes that are in both
partitions together in a cluster; N10 and N01 are the number of nodes that are together in a cluster
in one partition, but not in the other; and N00 are the number of nodes that are in both partitions in
different clusters. See Appendix B for the formal definitions. Partitions P1 and P2 are equivalent (yet
not equal, denoted “∼”), and partitions Q1 and Q2 are identical (thus, also equivalent, denoted “=”).
However, the comparison of the structurally different partitions (denoted “ 6=”) Pi and Qj yields the
same result as the comparison between the equivalent partitions P1 and P2. This makes the recognition
of structural differences impossible.

Case Compared Partitions Relation N11 N10 N01 N00 RI

1 P1,P1 = 2 0 0 4 1
2 P2,P2 = 2 0 0 4 1
3 Q1,Q1 or Q1,Q2 or Q2,Q2 = 2 0 0 4 1

4 P1,Q1 or P1,Q2 6= 0 2 2 2 1
3

5 P2,Q1 or P2,Q2 6= 0 2 2 2 1
3

6 P1,P2 ∼ 0 2 2 2 1
3



Symmetry 2018, 10, 504 3 of 24

One may argue that graphs in real applications contain symmetries only rarely. However, recent
investigations of graph symmetries in real graph datasets show that a non-negligible proportion of
these graphs contain symmetries. MacArthur et al. [10] state that “a certain degree of symmetry is
also ubiquitous in complex systems” [10] (p. 3525). Their study includes a small number of biological,
technological and social networks. In addition, Darga et al. [11] studied automorphism groups in very
large sparse graphs (circuits, road networks and the Internet router network), with up to five million
nodes with eight million links with execution times below 10 s. Katebi et al. [12] reported symmetries
in 268 of 432 benchmark graphs. A recent large-scale study conducted by the authors of this article
for approximately 1700 real-world graphs revealed that about three quarters of these graphs contain
symmetries [13].

The rather frequent occurrence of symmetries in graphs and the obvious deficiencies of classic
partition comparison measures demonstrated above have motivated our analysis of the effects of graph
automorphisms on partition comparison measures.

Our contribution has the following structure: Permutation groups and graph automorphisms are
introduced in Section 2. The full automorphism group of the butterfly graph serves as a motivating
example for the formal definition of stable partitions, stable with regard to the actions of the
automorphism group of a graph. In Section 3, we first provide a definition that captures the property
that a measure is invariant with regard to the transformations in an automorphism group. Based on
this definition, we first give a simple proof by counterexample for each partition comparison measure
in Appendix B, that these measures based on the comparison of two partitions are not invariant to the
effects of automorphisms on partitions. The non-existence of partition comparison measures for which
the identity and the invariance axioms hold simultaneously is proven subsequently. In Section 4, we
construct three families of invariant partition comparison measures by a two-step process: First, we
define a pseudometric space by defining equivalence classes of partitions as the orbit of a partition
under the automorphism group Aut(G). Second, the definitions of the invariant counterpart of a
partition comparison measure are given: we define them as the computation of the maximum, the
minimum and the average of the direct product of the two equivalence classes. The section also contains
a proof of the equivalence of several variants of the computation of the invariant measures, which—by
exploiting the group properties of Aut(G)—differ in the complexity of the computation. In Section 5,
we introduce the decomposition of the measures into a structurally stable and unstable part, as well as
upper bounds for instability. In Section 6, we present an application of the decomposition of measures
for analyzing partitions of the Karate graph. The article ends with a short discussion, conclusion and
outlook in Section 7.

2. Graphs, Permutation Groups and Graph Automorphisms

We consider connected, undirected, unweighted and loop-free graphs. Let G = (V, E) denote
a graph where V is a finite set of nodes and E is a set of edges. An edge is represented as {u, v} ∈
{{x, y} | (x, y) ∈ V ×V ∧ x 6= y}. Nodes adjacent to u ∈ V (there exists an edge between u and those
nodes) are called neighbors. A partition P of a graph G is a set of subsets Ci, i = 1, . . . , k of V with the
usual properties: (i) Ci ∩ Cj = ∅ (i 6= j), (ii)

⋃
i Ci = V and (iii) Ci 6= ∅. Each subset is called a cluster,

and it is identified by its labeled nodes.
As a partition quality criterion, we use the well-known modularity measure Q of Newman and

Girvan [14] (see Appendix A). It is a popular optimization criterion for unsupervised graph clustering
algorithms, which try to partition the nodes of the graph in a way that the connectivity within the
clusters is maximized and the number of edges connecting the clusters is minimized. For a fast and
efficient randomized state-of-the-art algorithm, see Ovelgönne and Geyer-Schulz [15].

Partitions are compared by comparison measures, which are functions of the form m : P(V)×
P(V)→ R where P(V) denotes the set of all possible partitions of the set V. A survey of many of these
measures is given in Appendix B.
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A permutation on V is a bijection g : V → V. We denote permutations by the symbols f , g and
h. Each permutation can be written in cycle form: for a permutation with a single cycle of length r,
we write c = (v1 v2 . . . vr). c maps vi to vi+1 (i = 1, . . . , r− 1), vr to v1 and leave all other nodes fixed.
Permutations with more than one cycle are written as a product of disjoint cycles (i.e., no two cycles
have a common element). (vk) means that the element vk remains fixed, and for brevity, these elements
are omitted.

Permutations are applied from the right: The image of u under the permutation g is ug. The
composition of g and h is h ◦ g, with ◦ being the permutation composition symbol. For brevity, h ◦ g
is written as gh, so that u(gh) = (ug)h holds. Computer scientists call this a postfix notation; in
prefix notation, we have h(g(u)). Often, we also find ug, which we will use in the following. For k
compositions g ◦ g ◦ g ◦ . . ., we write gk and g0 = id.

A set of permutation functions forms a permutation group H, if the usual group axioms hold [16]:

1. Closure: ∀g, h ∈ H : g ◦ h ∈ H
2. Unit element: The identity function id ∈ H acts as the neutral element: ∀g ∈ H : id ◦ g = g ◦ id = g
3. Inverse element: For any g in H, the inverse permutation function g−1 ∈ H is the inverse of g:
∀g ∈ H : g ◦ g−1 = g−1 ◦ g = id

4. Associativity: The associative law holds: ∀ f , g, h ∈ H : f ◦ (g ◦ h) = ( f ◦ g) ◦ h

If H1 is a subset of H and if H1 is a group, H1 is a subgroup of H (written H1 ≤ H). The set of
all permutations of V is denoted by Sym(V). Sym(V) is a group, and it is called the symmetric group
(see [17]). Sym(V) ∼ Sym(V′) iff |V| = |V′| with ∼ denoting isomorphism. A generator of a finite
permutation group H is a subset of the permutations of H from which all permutations in H can be
generated by application of the group axioms [18].

An action of H on V (H acts on V) is called the group action of a set [19] (p. 5):

1. uid = u, ∀u ∈ V
2. (ug)h = ugh, ∀u ∈ V, ∀g, h ∈ H

Groups acting on a set V also act on combinatorial structures defined on V [20] (p. 149), for
example the power set 2V , the set of all partitions P(V) or the set of graphs G(V). We denote
combinatorial structures as capital calligraphic letters; in the following, only partitions (P) are of
interest because they are the results of graph cluster algorithms. The action of a permutation g on a
combinatorial structure is performed by pointwise application of g. For instance, for P , the image of g
is P g = {{ug | u ∈ C} | C ∈ P}.

Let H be a permutation group. When H acts on V, a node u is mapped by the elements of H onto
other nodes. The set of these images is called the orbit of u under H:

uH =
{

uh | h ∈ H
}

.

The group of permutations Hu that fixes u is called the stabilizer of u under H:

Hu = {h ∈ H | uh = u}.

The orbit stabilizer theorem is given without proof [16]. It links the order of a permutation group
with the cardinality of an orbit and the order of the stabilizer:

Theorem 1. The relation:
|H| = |uH | · |Hu|

holds.

The action of H on V induces an equivalence relation on the set: for u1, u2 ∈ V, let u1 ∼ u2 iff
there exists h ∈ H so that u1 = uh

2. All elements of an orbit are equivalent, and the orbits of a group
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partition the set V. An orbit of length one (in terms of set cardinality) is called trivial. Analogously, for
a partition P , the definition is:

Definition 1. The image of the action of H on a partition P (or the orbit of P under H) is the set of all equivalent
partitions of partition P under H

PH =
{
Ph | h ∈ H

}
.

A graph automorphism f is a permutation that preserves edges, i.e., {u f , v f } ∈ E⇔ {u, v} ∈ E,
∀u, v ∈ V.

The automorphism group of a graph contains all permutations of vertices that map edges to edges
and non-edges to non-edges. The automorphism group of G is defined as:

Aut(G) =
{

f ∈ Sym(V) | E f = E
}

where E f =
{
{u f , v f } | {u, v} ∈ E

}
. Of course, Aut(G) ≤ Sym(V).

Example 1. Let Gb f be the butterfly graph (Figure 2, e.g., Erdős et al. [21], Burr et al. [22]) whose full
automorphism group is given in Table 2 (first column). The permutation (2 5) is not an automorphism, because
it does not preserve the edges from 1 to 2 and from 5 to 4. The butterfly graph has the two orbits {1, 2, 4, 5} and
{3}. The group H = {id, g1, g2, g3} is a subgroup of Aut(Gb f ).

1

2

3

4

5

Figure 2. The butterfly graph (five nodes, with two node pairs connected by the bridging node 3).

Table 2. The full automorphism group Aut(Gb f ) = {id, g1, . . . , g7} of the butterfly graph in Figure 2
and its effect on three partitions. Bold partitions are distinct. A possible generator is {g1, g4}.

Permutation P1, Q = 0 P2, Q = 1
9 P3, Q = − 1

18

id = (1)(2)(3)(4)(5) {1, 2},{3},{4, 5} {1, 2, 3},{4, 5} {1, 2, 3, 4},{5}
g1 = (1 2) {2, 1}, {3}, {4, 5} {2, 1, 3}, {4, 5} {2, 1, 3, 4}, {5}
g2 = (4 5) {1, 2}, {3}, {5, 4} {1, 2, 3}, {5, 4} {1, 2, 3, 5},{4}
g3 = (1 2)(4 5) {2, 1}, {3}, {5, 4} {2, 1, 3}, {5, 4} {2, 1, 3, 5}, {4}
g4 = (1 4)(2 5) {4, 5}, {3}, {1, 2} {4, 5, 3},{1, 2} {4, 5, 3, 1},{2}
g5 = (1 5)(2 4) {5, 4}, {3}, {2, 1} {5, 4, 3}, {2, 1} {5, 4, 3, 2}, {1}
g6 = (1 4 2 5) {4, 5}, {3}, {2, 1} {4, 5, 3}, {2, 1} {4, 5, 3, 2},{1}
g7 = (1 5 2 4) {5, 4}, {3}, {1, 2} {5, 4, 3}, {1, 2} {5, 4, 3, 1}, {2}

Definition 2. Let G = (V, E) be a graph. A partition P is called stable, if |PAut(G)| = 1, otherwise it is
called unstable.

Stability here means that the automorphism group of the graph does not affect the given partition
by tearing apart clusters.
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Example 2. Only P1 in Table 2 is stable because its orbit is trivial. The two modularity optimal partitions

(e.g., P id
2 and P g4

2 ) are not stable because |PAut(Gb f )

2 | = 2. Furthermore, |PAut(Gb f )

3 | = 4.

For the evaluation of graph clustering solutions, the effects of graph automorphisms on graph
partitions are of considerable importance:

1. Automorphisms may lead to multiple equivalent optimal solutions as the butterfly graph shows
(P id

2 and P g4
2 in Table 2).

2. Partition comparison measures are not invariant with regard to automorphisms, as we show in
Section 3.

3. Graph Partition Comparison Measures Are Not Invariant

When comparing graph partitions, a natural requirement is that the partition comparison measure
is invariant under automorphism.

Definition 3. A partition comparison measure m : P(V)× P(V)→ R is invariant under automorphism, if:

m(P ,Q) = m(P̃ , Q̃)

for all P ,Q ∈ P(V) and P̃ ∈ PAut(G), Q̃ ∈ QAut(G).

Observe that if Q ∈ PAut(G), then such a measure m cannot distinguish between P and Q, since
m(P ,Q) = m(P ,P) by definition.

However, unfortunately, as we show in the rest of this section, such a partition comparison
measure does not exist. In the following, we present two proofs of this fact, which differ both in their
level of generality and sophistication.

3.1. Variant 1: Construction of a Counterexample

Theorem 2. The measures for comparing partitions defined in Appendix B do not fulfill Definition 3 in general.

Proof. We choose the cycle graph C36 and compute all modularity maximal partitions with Q = 2/3.
Each of these six partitions has six clusters, and each of these clusters consists of a chain of six nodes
(see Figure 3).

Clearly, since all partitions are equivalent, an invariant partition comparison measure should
identify them as equivalent:

m(P0,P g0

0 ) = . . . = m(P0,P g5

0 ) (1)

Computing m(P0,P gk

0 ) for k = 0, . . . , 5 produces Table 3. Because the values in each row
differ (in contrast to the requirements defined by Equation (1)), each row of Table 3 contains the
counterexample for the measure used.

3.2. Variant 2: Inconsistency of the Identity and the Invariance Axiom

Theorem 3. Let G = (V, E) be a graph with |V| > 2 and nontrivial Aut(G). For partition comparison
measures m : P(V)× P(V)→ R, it is impossible to fulfill jointly the identity axiom m(P ,Q) = c, if and only
if P = Q (e.g., for a distance measure c = 0, for a similarity measure c = 1, etc.) for all P ,Q ∈ P(V) and the
axiom of invariance (from Definition 3) m(P ,Q) = c, ∀Q ∈ PAut(G).

Proof.

1. Since Aut(G) is nontrivial, a nontrivial orbit with at least two different partitions, namely P and
Q, exists because |PAut(G)| > 1. It follows from the invariance axiom that m(P ,Q) = c.

2. The identity axiom implies that it follows from m(P ,Q) = c that P = Q.
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3. This contradicts the assumption that P and Q are different.

�

Table 3. Comparing the modularity maximizing partitions of the cycle graph C36 with modularity
Q = 2

3 . The six optimal partitions consist of six clusters (see Figure 3). The number of pairs in the same
cluster in both partitions is denoted by N11, in different clusters by N00 and in the same cluster in one
partition, but not in the other, by N01 or N10. For the definitions of all partition comparison measures,
see Appendix B. To compute this table, the R package partitionComparison has been used [23].

Measure m(P0,P gk

0 ) with g = (1 2 3 . . . 35 36) for k:

0 1 2 3 4 5

Pair counting measures ( f (N11, N00, N01, N10); see Tables A1 and A2)

RI 1.0 0.90476 0.84762 0.82857 0.84762 0.90476
ARI 1.0 0.61111 0.37778 0.3 0.37778 0.61111
H 1.0 0.80952 0.69524 0.65714 0.69524 0.80952

CZ 1.0 0.66667 0.46667 0.4 0.46667 0.66667
K 1.0 0.66667 0.46667 0.4 0.46667 0.66667

MC 1.0 0.33333 −0.06667 −0.2 −0.06667 0.33333
P 1.0 0.61111 0.37778 0.3 0.37778 0.61111

WI 1.0 0.66667 0.46667 0.4 0.46667 0.66667
WII 1.0 0.66667 0.46667 0.4 0.46667 0.66667
FM 1.0 0.66667 0.46667 0.4 0.46667 0.66667
Γ 1.0 0.61111 0.37778 0.3 0.37778 0.61111

SS1 1.0 0.80556 0.68889 0.65 0.68889 0.80556
B1 1.0 0.91383 0.87084 0.85796 0.87084 0.91383
GL 1.0 0.95 0.91753 0.90625 0.91753 0.95
SS2 1.0 0.33333 0.17949 0.14286 0.17949 0.33333
SS3 1.0 0.62963 0.42519 0.36 0.42519 0.62963
RT 1.0 0.82609 0.73554 0.70732 0.73554 0.82609
GK 1.0 0.94286 0.79937 0.71429 0.79937 0.94286

J 1.0 0.5 0.30435 0.25 0.30435 0.5
RV 1.0 0.61039 0.37662 0.29870 0.37662 0.61039
RR 0.14286 0.09524 0.06667 0.05714 0.06667 0.09524
M 0.0 120.0 192.0 216.0 192.0 120.0
Mi 0.0 0.81650 1.03280 1.09545 1.03280 0.81650
Pe 0.00002 0.00001 0.00001 0.00001 0.00001 0.00001
B2 0.12245 0.07483 0.04626 0.03673 0.04626 0.07483
LI 24.37212 14.89407 9.20724 7.31163 9.20724 14.89407

NLI 1.0 0.61111 0.37778 0.3 0.37778 0.61111
FMG 0.94730 0.61396 0.41396 0.34730 0.41396 0.61396

Set-based comparison measures (see Table A3)

LA 1.0 0.83333 0.66667 0.5 0.66667 0.83333
dCE 0.0 0.16667 0.33333 0.5 0.33333 0.16667
D 0.0 12.0 24.0 36.0 24.0 12.0

Information theory-based measures (see Table A4)

MI 1.79176 1.34120 1.15525 1.09861 1.15525 1.34120
NMI (max) 1.0 0.74854 0.64475 0.61315 0.64475 0.74854
NMI (min) 1.0 0.74854 0.64475 0.61315 0.64475 0.74854

NMI (Σ) 1.0 0.74854 0.64475 0.61315 0.64475 0.74854
VI 0.0 0.90112 1.27303 1.38629 1.27303 0.90112
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Figure 3. The cycle graph C36 (the “outer” cycle) and an initial partition of six clusters (connected nodes
of the same color, separated by dashed lines). A single application of g = (1 2 . . . 36) “rotates” the
graph by one node (the “inner” cycle Cg

36). As a consequence, in each cluster, one node drops out and is
added to another cluster: For instance, Node 1 drops out of the “original” cluster C = {1, 2, 3, 4, 5, 6},
and Node 7 is added, resulting in Cg = {2, 3, 4, 5, 6, 7}. All dropped nodes are shown in light gray.

4. The Construction of Invariant Measures for Finite Permutation Groups

The purpose of this section is to construct invariant counterparts for most of the partition
comparison measures in Appendix B. We proceed in two steps:

1. We construct a pseudometric space from the images of the actions of Aut(G) on partitions in P(V)

(Definition 1).
2. We extend the metrics for partition comparison by constructing invariant metrics on the

pseudo-metric space of partitions.

4.1. The Construction of the Pseudometric Space of Equivalence Classes of Graph Partitions

We use a variant of the idea of Doob’s concept of a pseudometric space [24] (p. 5). A metric for a
space S (with s, t, u ∈ S) is a function d : S× S→ R+ for which the following holds:

1. Symmetry: d(s, t) = d(t, s).
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2. Identity: d(s, t) = 0 if and only if s = t.
3. Triangle inequality: d(s, u) ≤ d(s, t) + d(t, u).

A pseudometric space (S, d∗) relaxes the identity condition to d∗(s, s) = 0. The distance between
two elements s1, s2 of an equivalence class [s] is defined as d∗(s1, s2) = 0 by Definition 3.

For graphs, S is the finite set of partitions P(V) and S∗ is the partition of P(V) into orbits of Aut(G):

S∗(V) = P(V)Aut(G) =
{
PAut(G) | P ∈ P(V)

}
.

A partition P in S corresponds to its orbit PAut(G) in S∗. The relations between the spaces used in
the following are:

1. (S, d) is a metric space with S = P(V) and with the function d : P(V)× P(V)→ R.
2. (S∗, d∗) is a metric space with S∗ = P(V)Aut(G) = {PAut(G) | P ∈ P(V)} and the function d∗:

P(V)Aut(G) × P(V)Aut(G) → R. We construct three variants of d∗ in Section 4.2.
3. (S, d∗) is the pseudometric space with S = P(V) and with the metric d∗. The partitions in S are

mapped to arguments of d∗ by the transformation ec : P(V)→ P(V)Aut(G), which is defined as
ec(P) := PAut(G).

Table 4 illustrates S∗ (the space of equivalence classes) of the pseudometric space (S, d∗) of the
butterfly graph (shown in Figure 2). S∗ is the partition of P({1, 2, 3, 4, 5}) into 17 equivalence classes.
Only the four classes E1, E8, E12 and E17 are stable because they are trivial orbits. The three partitions
from Table 2 are contained in the following equivalence classes: P1 ∈ E8, P2 ∈ E14, and P3 ∈ E13.

Table 4. The equivalence classes of the pseudometric space (S, d∗) of the butterfly graph (see Figure 2).
Classes are grouped by their partition type, which is the corresponding integer partition. k is the
number of partitions per type; l is the number of clusters the partitions of a type consists of; dia1−RI is
the diameter (see Equation (2)) of the equivalence class computed for the distance dRI computed from
the Rand Index (RI) by 1− RI.

PAut(G) Q dia1−RI

Partition type (1, 1, 1, 1, 1), k = 1, l = 5

E1 {1}, {2}, {3}, {4}, {5} − 2
9 0.0

Partition type (1, 1, 1, 2), k = 10, l = 4

E2 {1}, {2}, {3}, {4, 5} {1, 2}, {3}, {4}, {5} − 1
9 0.2

E3 {1}, {2}, {3, 4}, {5} {1}, {2}, {3, 5}, {4} {1}, {2, 3}, {4}, {5} − 1
6 0.2

{1, 3}, {2}, {4}, {5}
E4 {1}, {2, 4}, {3}, {5} {1}, {2, 5}, {3}, {4} {1, 4}, {2}, {3}, {5} − 5

18 0.2
{1, 5}, {2}, {3}, {4}
Partition type (1, 1, 3) k = 10, l = 3

E5 {1}, {2}, {3, 4, 5} {4}, {5}, {1, 2, 3} 0 0.6
E6 {1}, {3}, {2, 4, 5} {3}, {5}, {1, 2, 4} {3}, {4}, {1, 2, 5} − 2

9 0.4
{2}, {3}, {1, 4, 5}

E7 {1}, {5}, {2, 3, 4} {1}, {4}, {2, 3, 5} {2}, {5}, {1, 3, 4} − 1
6 0.6

{2}, {4}, {1, 3, 5}
Partition type (1, 2, 2), k = 15, l = 3

E8 {3}, {1, 2}, {4, 5} 0 0.0
E9 {3}, {1, 4}, {2, 5} {3}, {1, 5}, {2, 4} − 1

3 0.4
E10 {1}, {2, 3}, {4, 5} {5}, {1, 2}, {3, 4} {4}, {1, 2}, {3, 5} − 1

18 0.4
{2}, {1, 3}, {4, 5}

E11 {1}, {2, 4}, {3, 5} {1}, {2, 5}, {3, 4} {5}, {1, 3}, {2, 4} − 2
9 0.4

{4}, {1, 3}, {2, 5} {2}, {1, 4}, {3, 5} {5}, {1, 4}, {2, 3}
{2}, {1, 5}, {3, 4} {4}, {1, 5}, {2, 3}
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Table 4. Cont.

PAut(G) Q dia1−RI

Partition type (1, 4), k = 5, l = 2

E12 {1, 2, 4, 5}, {3} − 2
9 0.0

E13 {2, 3, 4, 5}, {1} {1, 2, 3, 4}, {5} {1, 2, 3, 5}, {4} − 1
18 0.6

{1, 3, 4, 5}, {2}
Partition type (2, 3), k = 10, l = 2

E14 {1, 2}, {3, 4, 5} {4, 5}, {1, 2, 3} 1
9 0.4

E15 {3, 5}, {1, 2, 4} {3, 4}, {1, 2, 5} {1, 3}, {2, 4, 5} − 1
6 0.6

{2, 3}, {1, 4, 5}
E16 {2, 5}, {1, 3, 4} {2, 4}, {1, 3, 5} {1, 4}, {2, 3, 5} − 2

9 0.6
{1, 5}, {2, 3, 4}
Partition type (5), k = 1, l = 1

E17 {1, 2, 3, 4, 5} 0 0.0

4.2. The Construction of Left-Invariant and Additive Measures on the Pseudometric Space of Equivalence
Classes of Graph Partitions

In the following, we consider only partition comparison measures, which are distance functions
of a metric space. Note that a normalized similarity measure s can be transformed into a distance by
the transformation d = 1− s.

In a pseudometric space (S, d∗), we measure the distance d∗(P ,Q) between equivalence classes
(which are sets) of partitions instead of the distance d(P ,Q) between partitions. The partitions P and
Q are formal arguments of d∗, which are expanded to equivalence classes by PAut(G) and QAut(G).
The standard construction of a distance measure between sets has been developed for the point set
topology and is due to Felix Hausdorff [25] (p. 166) and Kazimierz Kuratowski [26] (p. 209). For finite
sets, it requires the computation of the distances for all pairs of the direct product of the two sets. Since
for finite permutation groups, we deal with distances between two finite sets of partitions, we use the
following definitions for the lower and upper measures, respectively. Both definitions have the form
of an optimization problem:

d∗L(P ,Q) = min
P̃∈PAut(G),
Q̃∈QAut(G)

d(P̃ , Q̃)

and:

d∗U(P ,Q) =

 0 if PAut(G) = QAut(G)

maxP̃∈PAut(G),
Q̃∈QAut(G)

d(P̃ , Q̃) else

The diameter of a finite equivalence class of partitions is defined by

dia(P) = max
P̃∈PAut(G),
Q̃∈PAut(G)

d(P̃ , Q̃). (2)

The third option of defining a distance between two finite equivalence classes of partitions of
taking the average distance is due to John von Neumann [27]:

d∗av(P ,Q) =

 0 if PAut(G) = QAut(G)

1
|PAut(G) |·|QAut(G) | ∑P̃∈PAut(G),

Q̃∈QAut(G)

d(P̃ , Q̃) else
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Note that the definitions for d∗L, d∗U and d∗av require the computation of the minimal, maximal and
average distance of all pairs of the direct product PAut(G) ×QAut(G). The computational complexity
of this is quadratic in the size of the larger equivalence class.

Posed as a measurement problem, we can instead fix one partition in one of the orbits and measure
the minimal, maximal and average distance between all pairs of either the direct product of {P} ×
QAut(G) or {Q} × PAut(G). The complexity of this is linear in the size of the smaller equivalence class.

Theorems 4 and 5 and their proofs are based on these observations. They are the basis for the
development of algorithms for the computation of invariant partition comparison measures of a
computational complexity of at most linear order and often of constant order.

Theorem 4. For all PAut(G) 6= QAut(G), the following equations hold:

d∗L(P ,Q) = min
P̃∈PAut(G),
Q̃∈QAut(G)

d(P̃ , Q̃) = min
g,h∈Aut(G)

d(Ph,Qg)

= min
Q̃∈QAut(G)

d(P , Q̃) = min
g∈Aut(G)

d(P ,Qg)

= min
P̃∈PAut(G)

d(P̃ ,Q) = min
h∈Aut(G)

d(Ph,Q)

For PAut(G) 6= QAut(G):

d∗U(P ,Q) = max
P̃∈PAut(G),
Q̃∈PAut(G)

d(P̃ , Q̃) = max
g,h∈Aut(G)

d(Ph,Qg)

= max
Q̃∈QAut(G)

d(P , Q̃) = max
g∈Aut(G)

d(P ,Qg)

= max
P̃∈PAut(G)

d(P̃ ,Q) = max
h∈Aut(G)

d(Ph,Q)

Proof. Let g, h, f ∈ Aut(G), P̃ ∈ PAut(G) and Q̃ ∈ QAut(G), that is P̃ = Ph and Q̃ = Qg. Then, since
the orbits of both partitions are generated by Aut(G), the following identities between distances hold:

d(P , Q̃) = d(P ,Qg) = d(P g−1
,Q),

d(P̃ ,Q) = d(Ph,Q) = d(P ,Qh−1
)

as well as:
d(P̃ , Q̃) = d(Ph,Qg) = d(Phg−1

,Q),

and:
d(P̃ , Q̃) = d(Ph,Qg) = d(P ,Qgh−1

).

Furthermore, let f = gh−1.

1. For d∗L, we have:

min
Q̃∈QAut(G)

d(P , Q̃) = min
g∈Aut(G)

d(P ,Qg)

= min
g−1∈Aut(G)

d(P g−1
,Q) = min

P̃∈PAut(G)
d(P̃ ,Q)

by switching the reference systems. In the next sequence of equations, we establish that taking
the minimum over all reference systems is equivalent to finding the minimum for one arbitrarily
fixed reference system.



Symmetry 2018, 10, 504 12 of 24

min
P̃∈PAut(G),
Q̃∈QAut(G)

d(P̃ , Q̃) = min
g,h∈Aut(G)

d(Ph,Qg) = min
g,h∈Aut(G)

d(P ,Qgh−1
)

= min
f∈Aut(G)

d(P ,Q f ) = min
Q̃∈QAut(G)

d(P , Q̃)

2. For the proof of d∗U for PAut(G) 6= QAut(G) we substitute max for min in the proof of d∗L.

Theorem 5. For all PAut(G) 6= QAut(G), the following equations hold:

d∗av(P ,Q) = 1
|PAut(G)| · |QAut(G)| ∑

P̃∈PAut(G),
Q̃∈QAut(G)

d(P̃ , Q̃) (3)

=
1

|Aut(G)|2 ∑
h,g∈Aut(G)

d(Ph,Qg) (4)

=
1

|PAut(G)| ∑
P̃∈PAut(G)

d(P̃ ,Q) (5)

=
1

|Aut(G)| ∑
h∈Aut(G)

d(Ph,Q) (6)

=
1

|QAut(G)| ∑
Q̃∈QAut(G)

d(P , Q̃) (7)

=
1

|Aut(G)| ∑
g∈Aut(G)

d(P ,Qg) (8)

Proof. For the proof of the equality of the identities of d∗av, we use the property of an average of n
observations xi,j with k identical groups of size m with i ∈ 1, . . . , k, j ∈ 1, . . . , m:

1
n

k

∑
i=1

m

∑
j=1

xi,j =
k

km

m

∑
j=1

x1,j =
1
m

m

∑
j=1

x1,j (9)

The computation of an average over the group equals the result of the computation of an average
over the orbit, because the orbit stabilizer Theorem 1 implies that each element of the orbit is generated
|Aut(G)P | times, and this means that we average |Aut(G)P | groups of identical values and that
Equation (9) applies. This establishes the equality of Expressions (3) and (4), as well as of Expressions (5)
and (6) and of Expressions (7) and (8), respectively.

The two decompositions of the direct product Aut(G) × Aut(G) establish the equality of
Expressions (4) and (6), as well as of Expressions (4) and (8).

Note that these proofs also show that d∗L(P ,Q), d∗U(P ,Q) and d∗av(P ,Q) are invariant. Next, we
prove that the three measures d∗L(P ,Q), d∗U(P ,Q) and d∗av(P ,Q) are invariant measures.

Theorem 6. The lower pseudometric space (S, d∗L) has the following properties:

1. Identity: d∗L(P ,Q) = 0, if PAut(G) = QAut(G).
2. Invariance: d∗L(P ,Q) = d∗L(P̃ , Q̃), for all P ,Q ∈ P(V) and P̃ ∈ PAut(G), Q̃ ∈ QAut(G).
3. Symmetry: d∗L(P ,Q) = d∗L(Q,P).
4. Triangle inequality: d∗L(P ,R) ≤ d∗L(P ,Q) + d∗L(Q,R)

These properties also hold for the upper pseudometric space (S, d∗U) and the average pseudometric
space (S, d∗av).
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Proof.

1. Identity holds because of the definition of the distance d∗ between two elements in an equivalence
class of the pseudometric space (S, d∗).

2. Invariance of d∗L(P ,Q), d∗U(P ,Q) and d∗av(P ,Q) is proven by Theorems 4 and 5.
3. Symmetry holds, because d is symmetric, and min, max and the average do not depend on the

order of their respective arguments.
4. To proof the triangular inequality, we make use of Theorems 4 and 5 and of the fact that d is a

metric for which the triangular inequality holds:

(a) For d∗L follows:

d∗L(P ,R) = min
P̃∈PAut(G),
R̃∈RAut(G)

d(P̃ , R̃)

≤ min
P̃∈PAut(G),
Q̃∈QAut(G),
R̃∈RAut(G)

(
d(P̃ , Q̃) + d(Q̃, R̃)

)

= min
P̃∈PAut(G),
R̃∈RAut(G)

(
d(P̃ ,Q) + d(Q, R̃)

)
= min
P̃∈PAut(G)

d(P̃ ,Q) + min
R̃∈RAut(G)

d(Q, R̃)

= d∗L(P ,Q) + d∗L(Q,R)

(b) For the proof of the triangular inequality for d∗U , we substitute max for min and dU for dL in
the proof of the triangular inequality for d∗L.

(c) For d∗av, it follows:

d∗av(P ,R) = 1
|PAut(G)| · |RAut(G)| ∑

P̃∈PAut(G)

∑
R̃∈RAut(G)

d(P̃ , R̃)

≤ 1
|PAut(G)| · |RAut(G)| ∑̃P

∑̃
R

[
d(P̃ ,Q) + d(Q, R̃)

]
=

1
|PAut(G)| · |RAut(G)| ∑̃P

∑̃
R

d(P̃ ,Q) + 1
|PAut(G)| · |RAut(G)| ∑̃P

∑̃
R

d(Q, R̃)

=
1

|RAut(G)| ∑̃R
d∗av(P ,Q) + 1

|PAut(G)| ∑̃P
d∗av(Q,R)

= d∗av(P ,Q) + d(Q̃,R)

�

5. Decomposition of Partition Comparison Measures

In this section, we assess the structural (dis)similarity between two partitions and the effect of the
group actions by combining a partition comparison measure and its invariant counterpart defined
in Section 4. The distances d(P ,Q), d∗L(P ,Q), d∗U(P ,Q) and d∗av(P ,Q) allow the decomposition of a
partition comparison measure (transformed into a distance) into a structural component dstruc and the
effect dAut(G) of the automorphism group Aut(G):
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d(P ,Q) = d∗L(P ,Q)︸ ︷︷ ︸
dstruc

+ (d(P ,Q)− d∗L(P ,Q))︸ ︷︷ ︸
dAut(G)

= d∗U(P ,Q)︸ ︷︷ ︸
dstruc

− (d∗U(P ,Q)− d(P ,Q))︸ ︷︷ ︸
dAut(G)

= d∗av(P ,Q)︸ ︷︷ ︸
dstruc

− (d∗av(P ,Q)− d(P ,Q))︸ ︷︷ ︸
dAut(G)

dia(P) measures the effect of the automorphism group Aut(G) on the equivalence class PAut(G)

(see the last column of Table 4). eAut(G)
max is an upper bound of the automorphism effect on the distance

of two partitions P and Q:
eAut(G)

max = min(dia(P), dia(Q)).

This follows from Theorem 4. Note that eAut(G)
max ≥ d∗U − d∗L, as Case 1 in Table 5 shows.

Table 5. Measure decomposition for partitions of the butterfly graph for the Rand distance dRI = 1−RI.

Case P Q dRI d∗ dstruc dAut(G)

1
{{1, 2, 3, 4}{5}} {{4}{5}{1, 2, 3}} 0.3 d∗L 0.3 0.0

∈ E13 ∈ E5 0.3 d∗av 0.5 -0.2
dia(E13) = 0.6 dia(E5) = 0.6 0.3 d∗U 0.7 -0.4

2
{{2, 4}{1, 3, 5}} {{3}{1, 4}{2, 5}} 0.6 d∗L 0.2 0.4

∈ E16 ∈ E9 0.6 d∗av 0.4 0.2
dia(E16) = 0.6 dia(E9) = 0.4 0.6 d∗U 0.6 0.0

3
{{1}{2, 5}{3, 4}} {{1}{2, 3}{4}{5}} 0.3 d∗L 0.1 0.2

∈ E11 ∈ E3 0.3 d∗av 0.25 0.05
dia(E11) = 0.4 dia(E3) = 0.2 0.3 d∗U 0.3 0.0

4
{{3}{1, 2}{4, 5}} {{1}{2, 3}{4, 5}} 0.3 d∗L 0.3 0.0

∈ E8 ∈ E10 0.3 d∗av 0.3 0.0
(dia(E8) = 0, stable) dia(E10) = 0.4 0.3 d∗U 0.3 0.0

In Table 5, we show a few examples of measure decomposition for partitions of the butterfly
graph for the Rand distance dRI :

1. In Case 1, we compare two partitions from nontrivial equivalence classes: the difference of 0.4
between d∗U and d∗L indicates that the potential maximal automorphism effect is larger than the
lower measure. In addition, it is also smaller (by 0.2) than the automorphism effect in each of
the equivalence classes. That dAut(G) is zero for the lower measure implies that the pair (P ,Q)
is a pair with the minimal distance between the equivalence classes. The fact that d∗av = 0.5 is
the mid-point between the lower and upper measures indicates a symmetric distribution of the
distances between the equivalence classes.

2. That dAut(G) is zero for the upper measure in Case 2 means that we have found a pair with the
maximal distance between the equivalence classes.

3. In Case 3, we have also found a pair with maximal distance between the equivalence classes.
However, the maximal potential automorphism effect is smaller than for Cases 1 and 2. In addition,
the distribution of distances between the equivalence classes is asymmetric.

4. Case 4 shows the comparison of a partition from a trivial with a partition from a non-trivial
equivalence class. Note, that in this case, all three invariant measures, as well as dRI coincide and
that no automorphism effect exists.

A different approach to measure the potential instability in clustering a graph G is the computation
of the Kolmogorov–Sinai entropy of the finite permutation group Aut(G) acting on the graph [28].
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Note, that the Kolmogorov–Sinai entropy of a finite permutation group is a measure of the uncertainty
of the automorphism group. It cannot be used as a measure to compare two graph partitions.

6. Invariant Measures for the Karate Graph

In this section, we illustrate the use of invariant measures for the three partitions PO, P1 and P2

of the Karate graph K [29], which is shown in Figure 4. Aut(K) is of order 480, and it consists of the
three subgroups G1 = Sym(Ω1) with Ω1 = {15, 16, 19, 21, 23}, G2 = Sym(Ω2) with Ω2 = {18, 22} and
G3 = {(), (5 11), (6 7)}. In addition to the modularity optimal partition PO (with its clusters separated
by longer and dashed lines in Figure 4), we use the partitions P1 and P2:

P1 = {{5, 6, 7, 19, 21} , {1, 2, 3, 4, 8, 12, 13, 14, 18, 20, 22} ,

{9, 10, 11, 15, 16, 17, 23, 27, 30, 31, 33, 34} , {24, 25, 26, 28, 29, 32}}
P2 = {{5, 6, 7, 8, 12, 19, 21} , {1, 2, 3, 4, 13, 14, 18, 20, 22} ,

{9, 10, 11, 15, 16, 17, 23, 27, 30, 31, 33, 34} , {24, 25, 26, 28, 29, 32}}

Both partitions are affected by the orbits {15, 16, 19, 21, 23} and {5, 11}, each overlapping two
clusters. The dissimilarity to PO is larger for P2, which is reflected in Tables 6 and 7.

1

2

3

4 8

9

10

12

13

14

17

20

24

25
26
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29
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31

32

33

34
5

6

7
11

15

16

18

19
21

22

23

C1

C2

C3

C4

Figure 4. Zachary’s Karate graph K with the vertices of the orbits of the three subgroups of Aut(K) in
bold and the clusters of PO separated by dashed edges.

For the optimal partition PO of type (5, 6, 11, 12), the upper bound of the size of the equivalence
class is 480 [30] (p. 112). The actual size of the equivalence class of PO is one, which means the optimal
solution is not affected by Aut(K). Partition P1, which is of the same type as PO, also has an upper
bound of 480 for its equivalence class. The actual size of the equivalence classes of both P1 and P2 is 20.
Note that the actual size of the equivalence classes that drive the complexity of computing invariant
measures is in our example far below the upper bound. Table 6 shows the diameters of the equivalence
classes of the partitions.
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Table 6. Diameter (computed using dRI), orbit size and stability of partitions PO, P1 and P2.

X PO P1 P2

dia(X ) 0.0000 0.1176 0.1390
|X Aut(G)| 1 20 20
X stable? yes no no

Table 7 illustrates the decomposition into structural effects and automorphism effects for the three
partitions of the Karate graph. We see that for the comparison of a stable partition (PO) with one
of the unstable partitions, the classic partition comparison measures are sufficient. However, when
comparing the two unstable partitions P1 and P2, the structural effect (0.0499) is dominated by the
maximal automorphism effect (0.1176). Furthermore, we note that the distribution of values over the
orbit of the automorphism group is asymmetric (by looking at d∗L, d∗U and d∗av).

Table 7. Invariant measures and automorphism effects for the Karate graph. The R package
partitionComparison has been used for the computations [23].

Measure d = dRI m(PO,P1) m(PO,P2) m(P1,P2)

d 0.0927 0.1426 0.0499
d∗L + dAut(G) 0.0927 0.1426 0.0499 + 0.0000
d∗U − dAut(G) 0.0927 0.1426 0.1676− 0.1176
d∗av − dAut(G) 0.0927 0.1426 0.1280− 0.0781

eAut(K)
max 0.0000 0.0000 0.1176

The analysis of the effects of the automorphism group of the Karate network showed that the
automorphism group does not affect the stability of the optimal partition. However, the first results
show that the situation is different for other networks like the Internet AS graph with 40,164 nodes
and 85,123 edges (see Rossi et al. [31], and the data of of the graph tech-internet-as are from Rossi
and Ahmed [32]): for this graph, several locally optimal solutions with a modularity value above 0.694
exist, all of which are unstable. Further analysis of the structural properties of the solution landscape
of this graph is work in progress.

7. Discussion, Conclusions and Outlook

In this contribution, we study the effects of graph automorphisms on partition comparison
measures. Our main results are:

1. A formal definition of partition stability, namely P is stable iff |PAut(G)| = 1.
2. A proof of the non-invariance of all partition comparison measures if the automorphism group is

nontrivial (|Aut(G)| > 1).
3. The construction of a pseudometric space of equivalence classes of graph partitions for three

classes of invariant measures concerning finite permutation groups of graph automorphisms.
4. The proof that the measures are invariant and that for these measures (after the transformation to

a distance), the axioms of a metric space hold.
5. The space of partitions is equipped with a metric (the original partition comparison measure) and

a pseudometric (the invariant partition comparison measure).
6. The decomposition of the value of a partition comparison measure into a structural part and a

remainder that measures the effect of group actions.

Our definitions of invariant measures have the advantage that any existing partition comparison
measure (as long as it is a distance or can be transformed into one) can still be used for the task.
Moreover, the decomposition of measures restores the primary purpose of the existing comparison
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measures, which is to quantify structural difference. However, the construction of these measures
leads directly to the classic graph isomorphism problem, whose complexity—despite considerable
efforts and hopes to the contrary [33]—is still an open theoretical problem [34,35]. However, from
a pragmatic point of view, today, quite efficient and practically usable algorithms exist to tackle the
graph isomorphism problem [34]. In addition, for very large and sparse graphs, algorithms for finding
generators of the automorphism group exist [11]. Therefore, this dependence on a computationally
hard problem in general is not an actual disadvantage and allows one to implement the presented
measure decomposition. The efficient implementation of algorithms for the decomposition of graph
partition comparison measures is left for further research.

Another constraint is that we have investigated the effects of automorphisms on partition
comparison measures in the setting of graph clustering only. The reason for this restriction is that the
automorphism group of the graph is already defined by the graph itself and, therefore, is completely
contained in the graph data. For arbitrary datasets, the information about the automorphism group is
usually not contained in the data, but must be inferred from background theories. However, provided
we know the automorphism group, our results on the decomposition of the measures generalize to
arbitrary cluster problems.

All in all, this means that this article provides two major assets: first, it provides a theoretic
framework that is independent of the preferred measure and the data. Second, we provide insights
into a source of possible partition instability that has not yet been discussed in the literature. The
downsides (symmetry group must be known and graph clustering only) are in our opinion not too
severe, as we discussed above. Therefore, we think that our study indicates that a better understanding
of the principle of symmetry is important for future research in data analysis.

Supplementary Materials: The R package partitionComparison by the authors of this article that implements the
different partition comparison measures is available at https://cran.r-project.org/package=partitionComparison.
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Appendix A. Modularity

Newman’s and Girvan’s modularity [14] is defined as:

Q = ∑
i

(
eii − a2

i

)
with the edge fractions:

eij =

∣∣{{u, v} ∈ E|u ∈ Ci ∧ v ∈ Cj}
∣∣

2|E| , i 6= j,

and the cluster density:

eii =
|{{u, v} ∈ E|u, v ∈ Ci}|

|E| .

We have to distinguish eij and eii because of the set-based definition E. eij is the fraction of edges
from cluster Ci to cluster Cj and eji, vice versa. Therefore, the edges are counted twice, and thus, the
fraction has to be weighted with 1

2 . The second part of Q is the marginal distribution:

https://cran.r-project.org/package=partitionComparison
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a2
i =

(
∑

j
eij

)2

.

High values of Q indicate good partitions. The range of Q is [− 1
2 , 1). Even if the modularity

has some problems by design (e.g., the resolution limit [36], unbalanced cluster sizes [37], multiple
equivalent, but unstable solutions generated by automorphisms [38]), maximization of Q is the de
facto standard formal optimization criterion for graph clustering algorithms.

Appendix B. Measures for Comparing Partitions

We classify the measures that are used in the literature to compare object partitions as three
categories [39]:

1. Pair-counting measures.
2. Set-based comparison measures.
3. Information theory based measures.

All these measures come from a general context and, therefore, may be used to compare any
object partitions, not only graph partitions. The flip side of the coin is that they do not consider any
adjacency information from the underlying graph at all.

The column Abbr. of Tables A1–A4 denotes the Abbreviations used throughout this paper; the
column P = P denotes the value resulting when identical partitions are compared (max stands for
some maximum value depending on the partition).

Appendix B.1. Pair-Counting Measures

All the measures within the first class are based on the four coefficients Nxy that count pairs of
objects (nodes in our context). Let P ,Q be partitions of the node set V of a graph G. C and C′ denote
clusters (subsets of vertices C, C′ ⊆ V). The coefficients are defined as:

N11 :=
∣∣{{u, v} ⊆ V | (∃C ∈ P : {u, v} ⊆ C) ∧ (∃C′ ∈ Q : {u, v} ⊆ C′)

}∣∣ ,

N10 :=
∣∣{{u, v} ⊆ V | (∃C ∈ P : {u, v} ⊆ C) ∧ (∀C′ ∈ Q : {u, v} 6⊆ C′)

}∣∣ ,

N01 :=
∣∣{{u, v} ⊆ V | (∀C ∈ P : {u, v} 6⊆ C) ∧ (∃C′ ∈ Q : {u, v} ⊆ C′)

}∣∣ ,

N00 :=
∣∣{{u, v} ⊆ V | (∀C ∈ P : {u, v} 6⊆ C) ∧ (∀C′ ∈ Q : {u, v} 6⊆ C′)

}∣∣ .

Please note that N11 + N10 + N01 + N00 = (n
2) = n(n−1)

2 . One easily can see that for identical
partitions N10 = N01 = 0, because two nodes either occur in a cluster together or not. Completely
different partitions result in N11 = 0. All the measures we examined are given in Tables A1 and A2.
The RV coefficient is used by Youness and Saporta [40] for partition comparison, and p and q are the
cluster counts (e.g., p = |P|) for the two partitions. For a detailed definition of the Lerman index
(especially the definitions of the expectation and standard deviation), see Denœud and Guénoche [41].
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Table A1. The pair counting measures used in Table 3 [42]. The above measures are similarity measures.
Distance measures and non-normalized measures are listed in Table A2. For brevity: N21 = N11 + N10,
N12 = N11 + N01, N′01 = N00 + N01 and N′10 = N00 + N10. Abbr., Abbreviation.

Abbr. Measure Formula P = P

RI Rand [43] N11+N00
(n

2)
1.0

ARI Hubert and Arabie [44] 2(N00 N11−N10 N01)
N′01 N12+N′10 N21

1.0

H Hamann [45] (N11+N00)−(N10+N01)
(n

2)
1.0

CZ Czekanowski [46] 2N11
2N11+N10+N01

1.0

K Kulczynski [47] 1
2

(
N11
N21

+ N11
N12

)
1.0

MC McConnaughey [48] N2
11−N10 N01
N21 N12

1.0

P Peirce [49] N11 N00−N10 N01
N21 N′01

1.0

WI Wallace [50] N11
N21

1.0

WII Wallace [50] N11
N12

1.0

FM Fowlkes and Mallows [51]
√

N11
N21

N11
N12

1.0

Γ Yule [52] N11 N00−N10 N01√
N21 N12 N′10 N′01

1.0

SS1 Sokal and Sneath [53] 1
4

(
N11
N21

+ N11
N12

+ N00
N′10

+ N00
N′01

)
1.0

B1 Baulieu [54] (n
2)

2−(n
2)(N10+N01)+(N10−N01)2

(n
2)

2 1.0

GL Gower and Legendre [55] N11+N00
N11+

1
2 (N10+N01)+N00

1.0

SS2 Sokal and Sneath [53] N11
N11+2(N10+N01)

1.0

SS3 Sokal and Sneath [53] N11 N00√
N21 N12 N′01 N′10

1.0

RT Rogers and Tanimoto [56] N11+N00
N11+2(N10+N01)+N00

1.0

GK Goodman and Kruskal [57] N11 N00−N10 N01
N11 N00+N10 N01

1.0

J Jaccard [3] N11
N11+N10+N01

1.0

RV Robert and Escoufier [58]

(
N11 − 1

q N21 − 1
p N12 + (n

2)
1
pq

)[(
p−2

p N21 + (n
2)

1
p2

)
(

q−2
q N12 + (n

2)
1
q2

)]− 1
2

1.0
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Table A2. Pair counting measures that are not similarity measures. For brevity: N21 = N11 + N10,
N12 = N11 + N01, N′01 = N00 + N01 and N′10 = N00 + N10.

Abbr. Measure Formula P = P

RR Russel and Rao [59] N11
(n

2)
max

M Mirkin and Chernyi [60] 2(N01 + N10) 0.0

Mi Hilbert [61]
√

N10+N01
N11+N10

0.0

Pe Pearson [62] N11 N00−N10 N01
N21 N12 N′01 N′10

max

B2 Baulieu [54] N11 N00−N10 N01

(n
2)

2 max

LI Lerman [63] N11−E(N11)√
σ2(N11)

max

NLI Lerman [63] (normalized) LI(P1,P2)
LI(P1,P1)LI(P2,P2)

1.0

FMG Fager and McGowan [64] N11√
N21 N12

− 1
2
√

N21
max

Appendix B.2. Set-Based Comparison Measures

The second class is based on plain set comparison. We investigate three measures (see Table A3),
namely the measure of Larsen and Aone [65], the so-called classification error distance [66] and
Dongen’s metric [67].

Table A3. References and formulas for the three set-based comparison measures used in Table 3. σ is
the result of a maximum weighted matching of a bipartite graph. The bipartite graph is constructed
from the partitions that shall be compared: the two node sets are derived from the two partitions, and
each cluster is represented by a node. By definition, the two node sets are disjoint. The node sets are

connected by edges of weight wij =
∣∣∣{Ci ∩ C′j | Ci ∈ P , C′j ∈ Q}

∣∣∣. As in our context |P| = |Q|, the

found σ is assured to be a perfect (bijective) matching. n is the number of nodes |V|.

Abbr. Measure Formula P = P

LA Larsen and Aone [65] 1
|P| ∑C∈P maxC′∈Q

2|C∩C′ |
|C|+|C′ | 1.0

dCE Meilǎ and Heckerman [66] 1− 1
n maxσ ∑C∈P |C ∩ σ(C)| 0.0

D van Dongen [67]
2n−∑C∈P maxC′∈Q |C ∩ C′|−

∑C′∈QmaxC∈P |C ∩ C′| 0.0

Appendix B.3. Information Theory-Based Measures

The last class of measures contains those that are rooted in information theory. We show the
measures in Table A4, and we recap the fundamentals briefly: the entropy of a random variable X is
defined as:

H(X) = −
k

∑
i=1

pi log pi

with pi being the probability of a specific incidence. The entropy of a partition can analogously be
defined as:

H(P) = − ∑
C∈P

|C|
n

log
|C|
n

.
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The mutual information of two random variables is:

I(X, Y) =
k

∑
i=0

l

∑
j=0

pij log
pij

pi pj

and again, analogously:

MI(P ,Q) = ∑
C∈P

∑
C′∈Q

|C ∩ C′|
n

log n
|C ∩ C′|
|C||C′|

is the mutual information of two partitions [68]. Meilǎ [69] introduced the Variation of Information as
VI = H(P) + H(Q)− 2MI.

Table A4. Information theory-based measures used in Table 3. All measures are based on Shannon’s
definition of entropy. Again, n = |V|.

Abbr. Measure Formula P = P

MI e.g., Vinh et al. [68] ∑C∈P ∑C′∈Q
|C∩C′ |

n log n |C∩C′ |
|C||C′ | max

NMIϕ Danon et al. [70] MI
ϕ(H(P),H(Q)) , ϕ ∈ {min, max} 1.0

NMIΣ Danon et al. [70] 2·MI
H(P)+H(Q) 1.0

VI Meilǎ [69] H(P) + H(Q)− 2MI 0.0

Appendix B.4. Summary

As one can see, all three classes of measures rely mainly on set matching between node sets
(clusters), as an alternative definition of N11 = ∑C∈P ∑C′∈Q (|C∩C′ |

2 ) shows [42]. The adjacency
information of the graph is completely ignored.
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