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Abstract

Development and application of a wave-function method The present thesis is concerned with the devel-
opment of the random-phase approximation method aiming to overcome its slow basis-set convergence by
combining it with the explicitly correlated wave-function ansatz of F12 theory. The random-phase approxi-
mation has proven as powerful approach to treat electron correlation, being capable to describe long-range
interactions while exhibiting a favorable scaling of the computation time with respect to the system size.
In this thesis, two ansätze are presented to further improve the computational efficiency of random-phase
approximation methods, summarizing working equations, corresponding implementations and benchmark
results. It is shown that basis-set convergence can be drastically accelerated when relying on the ring coupled-
cluster doubles formulation. Benchmark results demonstrate that triple-zeta basis sets are sufficient to con-
verge correlation and atomization energies to within 99% of the basis-set limit. An analogous improvement is
achieved for several explicitly correlated ring coupled-cluster doubles ansätze including exact exchange. The
connection to coupled-cluster theory is furthermore exploited to set up diagnostic schemes which allow to
validate the applicability of the random-phase approximation depending on the system under investigation.

Keywords: Ab initio quantum chemistry, random-phase approximation, F12 theory, coupled-cluster theory

Kurzfassung

Entwicklung und Anwendung einer Wellenfunktionsmethode Gegenstand der vorliegenden Arbeit ist die
Entwicklung der Random-Phase-Approximation-Methode, mit dem Ziel deren langsame Basissatzkonver-
genz durch Kombination mit dem explizit korrelierten Wellenfunktionsansatz der F12-Theorie zu über-
winden. Die Random-Phase-Approximation hat sich als leistungsfähiger Ansatz zur Erfassung der Elektro-
nenkorrelation erwiesen, da sie langreichweitige Wechselwirkungen beschreiben kann und gleichzeitig eine
vorteilhafte Skalierung der Rechenzeit mit der Systemgröße aufweist. Zur weiteren Verbesserung der Rech-
eneffizienz der Random-Phase-Approximation-Methoden werden im Rahmen dieser Arbeit zwei Ansätze
eingeführt und anhand einer Zusammenfassung der Arbeitsgleichungen, der zugehörigen Implementierun-
gen und Benchmark-Ergebnisse vorgestellt. Es wird gezeigt, dass die Basissatzkonvergenz drastisch beschle-
unigt werden kann, wenn der Ring-Coupled-Cluster-Doubles-Ansatz zugrunde liegt. Benchmark-Ergebnisse
veranschaulichen, dass triple-zeta-Basissätze ausreichen um Korrelations- und Atomisierungsenergien bis zu
99% des Basissatzlimits zu konvergieren. Eine vergleichbare Verbesserung wird für verschiedene explizit
korrelierte Ring-Coupled-Cluster-Doubles-Ansätze erzielt, welche exakten Austausch berücksichtigen. Die
Verbindung zur Coupled-Cluster-Theorie wird zudem verwendet um Diagnostiken zu entwickeln, die es er-
möglichen die Anwendbarkeit der Random-Phase-Approximation in Abhängigkeit des zu untersuchenden
Systems zu überprüfen.

Schlagwörter: Ab-initio-Quantenchemie, Random-Phase-Approximation, F12-Theorie, Coupled-Cluster-
Theorie
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1. Introduction

The development of a quantum-chemical method should be based on the aim of explaining, falsifying or
even predicting experimental data, an undertaking which requires both broad applicability and sufficient
accuracy. Applicability on the one hand to enable the investigation of larger systems, accuracy on the other
hand to make rigorous and reliable quantitative predictions. Fulfilling both conditions is a major challenge in
quantum chemistry: methods that reach the gold standard in terms of accuracy suffer from their complexity
limiting applications to small systems. In reverse, universal applicability often comes with the charge of
crucial approximations resulting in unpredictable and unreliable errors. This thesis focuses on a quantum-
chemical method called random-phase approximation (RPA) which is claimed not only to yield a connection
between the gold standard of accuracy and a universal, broad applicability, but also to combine both accuracy
and applicability in a favorable ratio: On the one hand, RPA is an ab initio method not relying on empirical
data, allowing to predict error ranges and therefore reliable results. Systematic improvement of the direct
RPA approach is possible due to its connection to coupled-cluster methods and perturbation theory, so that
accuracy can be tuned as needed by adding corrections. On the other hand, the non-perturbative RPA ansatz
describes dispersion and is not sensible to small HOMO-LUMO gaps, enabling to tackle challenging systems
like metal clusters or complexes with dominant van der Waals interactions. Moderate scaling of the compu-
tation time with respect to the size of the investigated system allows to exceed the computational limit of
various other sophisticated wave-function methods.
These advantages motivate a further development of the RPA method and the following dissertation aims to
make a contribution by combining RPA with the well-established explicitly correlated wave-function ansatz.
Two different explicitly correlated RPA approaches are presented, investigating possible ansätze to improve
basis-set convergence and thus computation times. Applicability is assessed with the focus on static cor-
relation, aiming to answer the question: Can RPA treat systems with low computational cost? And is it
possible to validate the applicability of RPA, a method, which is often claimed to be sufficiently accurate and
universally applicable?



1. Introduction

1.1 The random-phase approximation: climbing Jacob’s ladder to touch

heaven?

Universal applicability, sufficient accuracy and low computational cost are three striking qualities, which need
further explanation if not intended to be meaningless. Certainly, a definition is always variable, given the fact
that "sufficient" and "low" are adjectives that imply a reference or relating context, which can or even needs to
be chosen depending on the examined molecular property and the field of applications. And "universal" can
only be understood in the sense of "broad", as even the largest benchmark set can be controverted as insuffi-
cient. The following classification therefore has to be appraised keeping not only the vagueness in mind, but
also tolerating a certain bias, as it was written from the viewpoint of wave-function theory designed to treat
molecules in the gas phase. The emphasis is based on the random-phase approximation, aiming to outline
and specify the wanted features ”applicability, accuracy and efficiency” in reflection with the achievements
and obstacles of current research.

Universal applicability

Applicability, accuracy and efficiency are always connected - high computational cost limits the applicability,
applicability requires a certain accuracy and accuracy often increases the computational cost. One possibility
to define universal applicability without referring to accuracy or efficiency is to interpret it as the ability of
describing different sorts of correlation - defined for instance as static and dynamic correlation - in order to
allow the treatment of molecular systems throughout the periodic table. A system is dominated by dynamic
correlation if a single reference determinant is sufficient as zeroth-order description of the exact wave func-
tion. This is often the case for main-group compounds, where wave-function methods like coupled-cluster
singles doubles (CCSD) or second-order Møller-Plesset perturbation theory (MP2) are standardly applied,
based on a single Hartree-Fock (HF) determinant. In contrast, transition-metal chemistry is commonly as-
sociated with strong static correlation: due to the partially filled d shells and thereto nearly degenerate s
shells, a variety of low-lying states emerge leading to a ground state with significant near-degeneracy corre-
lation [1, 2]. In such cases, HF and the thereon relying post-HF correlation methods fail, leaving the field to
multireference approaches or density-functional theory (DFT). Even though the latter is by definition a single-
reference method, being based on solely one Kohn-Sham (KS) determinant, it can implicitly cover moderate
static correlation through the exchange-correlation functional [3, 4]. DFT is thus claimed to be applicable
to molecular systems throughout the periodic table, including transition metals [5] and f elements [6]. RPA
adopts this advantage as it can equally rely on a KS determinant. Its capability to capture multireference
effects goes hand in hand with its insensitivity towards small band gaps, one of the benefits where RPA
takes precedence over perturbative methods like MP2 [7]. The list of RPA applications therefore includes
transition-metal compounds [8], metal clusters [9, 10] and solids [11–13], demonstrating an equally broad
applicability as DFT. RPA even outruns DFT when it comes to dynamic correlation, in particular dispersion
interactions: The long-range forces, which are purely dynamical in character, are not captured by standard
DFT functionals [14, 15], even though there has been recent progress in developing empirical corrections [16–
19]. In contrast, RPA includes van der Waals interactions in a non-empirical, seamless way [20–23], enabling
for example the description of the interlayer bonding in hexagonal boron nitride [24] or graphite [25] as well
as the interaction between graphene and metal surfaces [26, 27]. In the latter study, both chemisorption and
physisorption minima are described as well as the correct long-range asymptotics behavior. Consistent re-
sults for lattice constants and cohesive energies of noble gas solids [28], alkali, alkaline-earth and transition
metals [29] support the claim that RPA accounts equally well for all bonding situations.

Sufficient accuracy

Since RPA ”incorporates van der Waals interactions, but also describes ionic bonding, covalent and metallic
bonding”, Kresse et al. reason that it has the potential to be ”universally applicable to solids, molecules and
biological systems” [11]. However, abandoning the rather theoretical definition from above, it is certain that
applicability in practice always requires sufficient accuracy in order to make reliable predictions.
In the most general and simple way, a method is said to be sufficiently accurate if it reproduces and confirms
experimental data. As experiment also implies a certain variance or error range, the aim can only be of
”chemical accuracy”. This well-established landmark is fixed to 1 kcal/mol for thermochemistry of main-
group compounds; for transition metals it is shifted towards 3 kcal/mol. Providing chemical or quantitative
accuracy is the major advantage of coupled-cluster (CC) methods. The exponential wave-function ansatz
enables a systematic improvement towards the exact result, reaching the gold standard of accuracy at the
coupled-cluster singles doubles with perturbative triples (CCSD(T)) level. CCSD(T) results are considered
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to be predictive and therefore standardly serve as benchmark reference circumventing a more involved, di-
rect comparison with experiment. DFT in contrast is usually doomed to be not systematically improvable,
grounded on a variety of exchange-correlation functionals which depend on empirical parameters and there-
fore often fail to give consistent results. An attempt to introduce a certain systematic into the huge spectrum
of exchange-correlation functionals is the ordering of Jacob’s ladder [30]. RPA as an orbital-dependent func-
tional constitutes the fifth rung, thus it is located above the second rung GGA functionals TPSS [31] and PBE
[32, 33] as well as third-rung hybrid functionals PBE0 [34] and B3LYP [35]. Going from GGA over hybrid
functionals to RPA, one climbs Jacob’s ladder from earth to heaven and based on this ordering, it is tempting
to assume comparable smaller error bars. When regarding investigations on compounds over the whole pe-
riodic table, a promising but still ambiguous picture emerges:
Taking for instance a look at van-der-Waals systems, RPA convinces with its superior description of the long-
range forces. Binding energies for the dispersion-dominated complexes of the S22 test set [36] deviate by a
mean absolute error of 0.41 kcal/mol from the theoretical reference values [7], only slightly inferior to the
fitted, dispersion-corrected B3LYP-D3 result of 0.36 kcal/mol. Relative energies of n-alkanes are found to be
comparable in magnitude to CCSD(T) [23]. The mean absolute errors in lattice constants and atomization
energies reduce about a factor of 2 in comparison to other semilocal and van-der-Waals corrected functionals
[28, 29]. RPA binding energies of graphite or graphene-metal systems match experiment and are considered
as current benchmark, used to assess the quality of DFT functionals [25, 27].
Regarding small-gap systems, like transition-metal compounds, metals or metal clusters, the performance
of RPA appears more biased: Dissociation energies of third-row transition metal oxides are accurately pre-
dicted with a mean absolute deviation of 3.3 kcal/mol, outpacing the best-performing DFT functional TPSS
with a comparable large error of 14.3 kcal/mol. For equilibrium bond distances and frequencies, RPA re-
sults are in contrast inferior to corresponding TPSS calculations [8]. Applications on neutral gold clusters [9]
demonstrate that RPA can determine the 2D to 3D transition in structural growth, outperforming TPSS and
supporting revTPSS [37] results at the same time. Cohesive energies of copper clusters are however too small
and comparable to PBE0 [10], a hybrid functional which is known for its inconsistent performance concerning
metals and metal clusters [38, 39]. The tendency towards underbinding is also found for atomization energies
and heats of formation for a variety of semiconductors and metals; lattice constants are in contrast in good
agreement with experiment, with relative errors smaller than 1% [11, 12]. Slightly larger errors are found for
RPA band gaps which are only about 5% too large compared to the experimental values [13].
The selected applications not only highlight RPA’s successful performance for interaction energies of disper-
sion-dominated compounds, but also reveal its failure when it comes to correlation and atomization energies.
In general, a significant underbinding trend is found, not only for small-gap systems, but also for closed-shell
main-group compounds [7, 40]. The failure is rooted in the inadequate description of short-range correlation
and the self-interaction error, representing a major disadvantage of the direct RPA approach.
However, these apparently troublesome shortcomings can be cured when exploiting the method’s connection
to coupled-cluster and many-body perturbation theory: RPA is not only related to density-based approaches,
but can equally well be derived in a wave-function framework [41–44], paving the way for systematic correc-
tions. In the past decade, the connection served as starting point for several current research fields:

1. Various approaches have been set up to correct for exchange, either in a perturbative way [45–47] or via
renormalization [8, 48–50]. The so-called approximate exchange kernel (AXK) [8, 51] is of the latter cat-
egory. It successfully circumvents the self-interaction error and thus significantly improves atomization
energies and ionization potentials without affecting reaction barriers. Second-order screened exchange
(SOSEX) is in contrast a perturbative correction [45, 52], which corrects the self-interaction error but still
suffers from numerical instabilities when applied to small-gap systems.

2. Single-excitation corrections [10, 50, 53] can be introduced to account for orbital relaxation, improving
both correlation and binding energies [24, 54]. It was for instance shown by Scheffler et al. that the
inclusion of both exchange (SOSEX) and single excitations results in a consistent improvement over
RPA for test sets with dominant self-interaction, atomization energies and isogyric reactions [55].

3. A range of higher-order RPA approaches were suggested based on the generalizing polarization prop-
agator formalism [56, 57], considering additional double excitations in the excitation manifold [58, 59]
or a correlated ground state beyond a single HF determinant [60–62]. Heßelmann also investigated the
impact of third-order corrections on the RPA correlation energy [63].

Numerous other beyond-RPA approaches exist (see e.g. the overviews in Refs. [7, 24]) and the number is
steadily increasing, however, none of the developed approaches has so far established itself as flawless,
optimal choice. This is mainly due to the fact that improvement on one side often entails certain drawbacks on
the other. The inclusion of exact exchange e.g. corrects the self-interaction error, but worsens the description
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of left-right correlation [64]. Moreover, most proposed schemes cannot compete with the favorable scaling of
the initial direct RPA ansatz [65]. AXK for instance increases the computational cost to N6; SOSEX scales as
N5 with respect to the system size N.

High efficiency

Low computational cost is however one of the crucial characteristics that the ideal quantum-chemical method
should possess. The success of DFT is certainly aligned to its moderate scaling, for GGA functionals e.g. the
computation times increase proportional to N3 with the number of basis functions N. In comparison, the
scaling of RPA is higher, showing an N4 log N dependence [65–67], but the method is in contrast to DFT non-
iterative. In practice, RPA calculations are therefore routinely faster than conventional HF or KS calculations
[68], allowing to treat large systems with up to 1500 atoms. Large-scale applications are for example reported
in Refs. [69, 70]. Implementations on Gaussian atomic orbitals are available in the TURBOMOLE program
package [65, 71]; plane-wave implementations are provided by the CP2K simulation package [69, 72, 73] and
the VASP program [28, 66, 67]. Also note that a variety of other RPA implementations exist, see e.g. Refs.
[74–76], and that linear scaling RPA approaches were published only recently [77–79]. For both atomic orbital
and plane-wave implementations, the moderate scaling of the direct RPA approach is achieved by exploiting
resolution of the identity (RI) techniques which speeds up the calculation of the integrals and reduces the
memory requirements. The so-obtained gain in efficiency is remarkable: as shown for instance in Ref. [69],
RIRPA energies of condensed phase systems with up to 1500 atoms can be computed in less than one hour.
Nevertheless, efficiency suffers from the slow basis-set convergence which is inherent to RPA as a wave-
function method based on atomic orbitals [80, 81]. The basis-set incompleteness error, which is introduced
by truncating the one-electron basis, entails the need to go for larger and larger basis sets including basis
functions of higher and higher angular momentum quantum numbers. In particular, it was shown that
convergence is proportional to X3 with the angular momentum quantum number X and that basis sets of
quadruple- or even quintuple-zeta quality are required to converge RPA atomization and interaction energies
to the basis-set limit [40, 80]. Furthermore, the unfavorable basis-set dependence has as consequence that RPA
interaction energies are often flawed by the basis-set superposition error (BSSE) [82]. The overlap of atomic
basis functions results in a spurious stabilization of the dimer complex relative to its individual monomers,
leading to large errors in the binding energy. Thus, both basis-set incompleteness and superposition error
have to be taken into account when aiming for a robust and efficient quantum-chemical method. More
precisely, the quest should be focused on equilibrating the methodological error, introduced by approximating
the N-electron wave-function ansatz, with the basis-set incompleteness error, conceded through the truncation
of the one-electron basis.

1.2 Tuning efficiency with explicitly correlated wave-function theory

Regarding the rapidly growing research field of more and more accurate beyond-RPA methods thus calls
for equally sophisticated approaches to tackle the problem of RPA’s intrinsically slow basis-set convergence.
Fortunately, several remedies exist: asymptotic laws allow for instance to set up extrapolation schemes [83–
85]. Fabiano et al. applied various extrapolation formulae to investigate the basis-set dependence of RPA
[81], showing that the basis-set limit is reached for a two-point extrapolation when using quintuple- and
sextuple-zeta basis sets. A corresponding extrapolation including basis sets of quadruple-zeta size was found
to be insufficient and the authors therefore recommend to either increase the basis-set size or to fall back on
semiempirical extrapolation schemes. Moreover, basis-set convergence can be accelerated when combining
short-range RPA with long-range DFT in terms of a range-separated wave-function ansatz [86–89]. Describing
the critical short-range part of the correlation hole within density-functional theory accelerates convergence,
in particular, Franck et al. showed that both the short- and the long-range part of range-separated RPA
approaches converge exponentially with the maximum angular momentum quantum number [90]. A third
alternative is given by explicitly correlated wave-function methods [91–93]: the idea of F12 theory is to
improve the wave-function ansatz by considering geminals in the wave-function expansion. Incorporating
two-particle basis functions which depend explicitly on the interelectronic distance improves the description
of the Coulomb hole, decreasing the asymptotic dependence of the correlation energy from X−3 to X−7

[94, 95].

The success story of F12 methods

During the last decades, F12 methods have therefore been established as efficient working tools in wave-
function theory. The hour of birth can be seen in a series of fundamental papers by Kutzelnigg and co-

4
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workers [93, 96–98], originating and developing the idea of an explicitly correlated wave-function ansatz. First
applications of explicitly correlated MP2 theory demonstrated its usefulness and paved the way to a rapidly
growing research field [97]. While the initial ansatz assumed a linear dependence on the interelectronic
distance r12, it later on became state of the art to work with Slater geminals, now depending exponentially
on r12 [99, 100]. Higher efficiency was achieved by introducing auxiliary basis sets for the resolution of the
identity [95, 101] and by developing a complementary auxiliary basis (CABS) [102]. It was furthermore found
that keeping the geminal amplitudes fixed according to the cusp conditions reduces the scaling while the
loss of accuracy is negligible [99, 103]. Different ansätze for projection operators were investigated, ensuring
that the geminal excitation manifold is strongly orthogonal to the conventional HF orbitals [104]. Based
on these developments, a variety of highly efficient explicitly correlated wave-function methods have been
developed, reaching e.g. from MP2-F12 theory [105] to CCSD(T)(F12) [106, 107] and allowing to treat not only
correlation, but also excitation energies [108, 109] as well as gradients [110, 111]. Most importantly it was
shown that triple-zeta basis sets are in general sufficient to reach quintuple-zeta quality [112]. The F12 ansatz
thus represents a large saving in computation time, primarily due to the computation of the Hartree-Fock
wave function.

Incorporating an interelectronic property in a time-dependent mean-field approach — an outline

The aim of this thesis is to combine the explicitly correlated wave-function approach with the random-phase
approximation in order to enable fast basis-set convergence for correlation energies. Given the fact that
F12 geminals are standardly introduced by describing the wave-function expansion as an exponential ansatz
of excitation operators acting onto the reference determinant, two derivations of explicitly correlated RPA
are presented using an analogous wave-function formalism: the first is based on the equations of motion,
allowing to describe the RPA ground state as a linear combination of the reference determinant, conventional
doubly excited states as well as the additionally introduced geminal manifold (Chapter 3). The second
approach exploits the connection of RPA and coupled-cluster theory, implying that RPA single excitation
vectors can be coupled to yield a double excitation amplitude (Chapter 4). Inclusion of exchange is also
investigated, regarding several approximate ring coupled-cluster schemes and investigating their sensitivity
towards triplet instabilities. Furthermore, it is the goal to learn about the shortcomings of RPA theory: wave-
function diagnostics which have proven to be feasible tools in coupled-cluster theory are transferred to RPA
and tested on small main-group molecules in Chapter 5.
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2. The starting point — a summary on
achievements in the field of RPA and F12
theories

2.1 Calculating ground-state energies within the random-phase approx-

imation

Since David Bohm and David Pines set up their approximate electron-correlation method in the 1950s [113–
115], a variety of "random-phase approximation" methods have been developed. The historical development
of the RPA method gives an overview over the huge spectrum of approaches, revealing and underlining the
impact of Bohm and Pines’ initial concept (see for example Refs. [7, 24]). All approaches are essentially based
on the approximation that the electron correlation is described by the Coulomb potential and single-particle
excitations only, but differ in the working equations, the treatment of exchange and the underlying reference
determinant. Inconsistencies in the nomenclature exist since many methods were only shown to be equivalent
to the RPA ansatz in retrospect. Using a Hartree-Fock (HF) determinant as reference and including exact ex-
change, the RPA eigenvalue problem is for instance equivalent to time-dependent Hartree-Fock theory [116].
To avoid misunderstandings, it therefore became a convention to refer to "direct" RPA (dRPA) when strictly
speaking of the original ansatz neglecting exchange. In contrast, RPA acronyms representing approaches
including exchange are in generally substituted or completed by a variety of abbreviations specifying the
underlying characteristic treatment of exchange. The nomenclature in the following chapters of this thesis
sticks to this convention, thus referring to RPA as a generic term for both direct and exchange methods, while
specifying the latter two approaches by adding the specific acronym. Furthermore, if not stated otherwise
the derived equations hold for both HF and Kohn-Sham (KS) determinants, also in cases where only one of
the two is stated explicitly.
Even though the aim of the thesis is focused on calculating ground-state energies, it is necessary to review
the calculation of excitation energies first, in order to introduce the basic approximations defining the RPA
approach. The outline on RPA is therefore split in two parts: first deriving the RPA eigenvalue problem and
subsequently introducing explicit expressions for the RPA correlation energy. For both steps, several ansätze
exist, all leading to more or less equivalent working equations for excitation energies and the correlation
energy. The following summary focuses on those ansätze which are used in subsequent chapters to derive
explicitly correlated RPA approaches.

The RPA eigenvalue problem: Starting from the equations of motion / the hypervirial theorem

In 1977, Bouman and Hansen derived the RPA equations in a wave-function formulation based on the equa-
tions of motion [117, 118],

−i
d

dt
Q̂ = [Ĥ, Q̂] , (2.1)

describing the time-dependence of an arbitrary, single-particle operator Q̂ in terms of its commutator with
the Hamiltonian Ĥ. Note that atomic units are used in Eq. (2.1) and in the following. The expectation value
of the commutator with respect to the complete set of orthonormal eigenstates of the Hamiltonian |Ψn〉 is
known as the general or the off-diagonal hypervirial theorem [119],

〈Ψn|[Q̂, Ĥ]|Ψn〉 = 0 , (2.2)

〈Ψm|[Q̂, Ĥ]|Ψn〉 = Ωnm〈Ψm|Q̂|Ψn〉 . (2.3)
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Ωnm denote excitation energies corresponding to the difference of eigenvalues εn, Ωnm = εn − εm. When
referring to the ground state |0〉, the second index of Ωn0 is in the following omitted, using the short-hand
notation Ωn. To solve Eq. (2.3) within the RPA, Bouman and Hansen chose the projection manifolds |Ψm〉 and
|Ψn〉 as

|Ψm〉 = |Ψ0〉 = N0[|HF〉+ 1
2

∑

ijab

tab
ij |

ab
ij 〉] , (2.4)

|Ψn〉 =
∑

ia

tn
ai|

a
i 〉 . (2.5)

The closed-shell ground state |Ψ0〉 is thus given as the sum of the HF (or KS) determinant |HF〉 (or |KS〉) and
the doubly excited states |ab

ij 〉, weighted by the doubles amplitudes tab
ij and the normalization constant N0. The

excitation manifold is described as a linear combination of singly excited states |ai 〉, parameterized in terms
of the singles amplitudes tn

ai corresponding to the excited state n. Real spatial orbitals are assumed; {a, b, . . . }
indicate virtual and {i, j, . . . } occupied orbitals. The chosen ansatz has the advantage of demonstrating that
the RPA ground state is correlated, including the doubly excited states |ab

ij 〉. The role of double excitations
becomes even more apparent when following the further derivation: Introducing the resolution of the identity
to evaluate the commutator on the left-hand side of Eq. (2.3), one obtains an equation which depends on the
left and right transition moments of the single-particle operator Q̂, 〈a

i |Q̂|HF〉 and 〈HF|Q̂|ai 〉, respectively. The
transition moments can be assumed to be linearly independent because the arbitrary operator Q̂ can be
written as the sum of an Hermitian and an anti-Hermitian operator. Eq. (2.3) can thus be split into a set of
coupled equations,

∑

bj

(Aab
ij Xn

bj + Bab
ij Yn

bj) = ΩnXn
ai ,

∑

bj

(Aab
ij Yn

bj + Bab
ij Xn

bj) = −ΩnYn
ai , (2.6)

given in matrix notation as
(

A B
B A

)(
Xn

Yn

)
= Ωn

(
1 0
0 −1

)(
Xn

Yn

)
. (2.7)

Details on the derivation are outlined in Refs. [51, 117] and discussed in Appendix D if crucial for the thereon
based RPA-F12 method of Chapter 3. It is only noted that, for closed-shell references, the normalization of the
metric to unity is in the following conserved by introducing the biorthogonal basis, indicated by an overline
as {|ai 〉, |ab

ij 〉, . . . } and used in the following as defined in Eqs. (A.1) and (A.2) of Appendix A.
Eq. (2.7) represents an Hermitian eigenvalue problem: Ωn are the requested excitation energies while Xn and
Yn denote the eigenvectors, here defined in connection with the double and single excitation amplitudes t

ij
ab

and tn
ai,

Xn
ai = N0tn

ai , (2.8)

Yn
ai = N0

∑

bj

tab
ij tn

bj , (2.9)

implying that amplitudes and coefficients are connected through

T = YX−1 . (2.10)

The Hermitian matrix A represents the contraction of the Hamiltonian with singly excited determinants,
resulting in a zeroth-order term of the Fock (or KS) matrix elements Fpq and the first-order two-electron
integrals g

pr
qs ,

Aab
ij = 〈a

i |Ĥ|bj 〉− δabδij〈HF|Ĥ|HF〉 = 〈HF|Êia[Ĥ, Êbj]|HF〉
RPAX
= Fabδij − Fjiδab + 2g

aj
ib − g

aj
bi

dRPA
= Fabδij − Fjiδab + 2g

aj
ib . (2.11)

The symmetric matrix B, in contrast, is obtained through projection onto doubly excited determinants,

Bab
ij = 〈ab

ij |Ĥ|HF〉 = 〈HF|[Êia, [Êjb, Ĥ]]|HF〉
RPAX
= 2gab

ij − gab
ji

dRPA
= 2gab

ij . (2.12)
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2.1. Calculating ground-state energies within the random-phase approximation

To allow a straightforward comparison with other, in the following introduced wave-function methods, the
matrix elements of A and B are expressed in terms of single-excitation operators Êpq. For closed-shell systems,
Êpq is defined as a linear combination of creation and annihilation operators, â†

pσ and âpσ, summing over both
spin contributions σ = α, β,

Êpq = â†
pα âqα + â†

pβ âqβ . (2.13)

The creation operator â†
p creates and the complementary operator âp annihilates a particle in the spatial orbital

φp. {p, q, . . . } denote the complete molecular orbital basis and the two-electron integrals are throughout the
thesis defined as

g
pr
qs =

∫ ∫

φ∗
p(r1)φ

∗
r (r2)

1
|r1 − r2 |

φq(r1)φs(r2)dr1dr2 = 〈pr|qs〉 . (2.14)

Eqs. (2.11) and (2.12) summarize the matrix contributions for both direct RPA and RPAX including exchange,
indicated by the label on top of the corresponding equality signs. Note that in the case of dRPA, the two-
electron contribution to matrices A and B is identical since gib

aj = g
ij
ab = gab

ij for real orbitals. The difference
between dRPA and RPAX also has to be taken into account when drawing the corresponding Goldstone di-
agrams, as given in Fig. 2.1. While the Fock matrix contribution to the matrix A, visualized in terms of the
first two diagrams, is equal for both dRPA and RPAX, the two-electron integrals and the related last two dia-
grams require a twofold definition in order to enable a discrimination between both methods: for dRPA, the
dashed line corresponds to the non-antisymmetrized two-electron interaction, whereas the antisymmetrized
counterpart is required for RPAX. However, standardly, antisymmetrized Goldstone diagrams are solely used
to represent open-shell equations referring to spin orbitals, while ordinary Goldstone diagrams are reserved
to closed-shell cases and spatial orbitals. Interpretation rules thus have to be adopted accordingly. A detailed
summary on the nomenclature for antisymmetrized and ordinary Goldstone diagrams is given in Appendix
A.

Aab
ij = δij i

b

a
+ δab

i
a

j +
ai

b j

Bab
ij = δij

i a j b

Fig. 2.1: Diagrammatic representation of the orbital rotation Hessians A and B.

Due to the projection onto doubly excited determinants, it is sometimes claimed that the matrix B could be
interpreted as a double-excitation or correlation contribution [120]. This interpretation is opposed to the pic-
ture that emerges for example from coupled-cluster (CC) theory [121]: Optimizing the connected expectation
value of the coupled-cluster singles wave function with respect to the singles amplitudes leads to identical
definitions for matrices A and B, supporting the viewpoint that both terms arise from orbital relaxation.
Indeed, they are most often referred to as orbital rotation Hessians, emphasizing the connection to coupled-
perturbed HF theory. This ambivalent nature of the B matrix has to be kept in mind when combining RPA
and F12 theory. Furthermore, the discussion should not be mixed up with the interpretation of the matrices
X and Y: Standardly, the matrix Y is considered as correlation contribution. Neglecting Y, the coupled RPA
equations reduce to an uncoupled eigenvalue problem, the Tamm-Dancoff approximation (TDA) [122].

Approximating the excitation operator and the ground state - Connection to response theory and polariza-
tion propagators

Already ten years earlier than Bouman and Hansen, Rowe published a similar derivation based on the equa-
tions of motion, which solely differs by a priori assumed approximations [41, 42, 123]. While Bouman and
Hansen specify ground and excited states in an ad hoc way, Rowe assumed the following two approximations
for the single-particle operator Q̂: The first is that the correlation energy can be captured by only introducing
single excitations in the wave-function expansion, described via the excitation operator Q̂†

n [124],

Q̂†
n =
∑

ia

(Xn
aiÊai + Yn

aiÊia) . (2.15)

9



2. The starting point — a summary on achievements in the field of RPA and F12 theories

Xn
ai and Yn

ai are again single excitation amplitudes describing the excited state n. The second approximation
is to assume boson commutation rules, ensuring a normalization of the ground state |Ψ0〉 [125],

〈Ψ0|[Q̂n, Q̂†
m]|Ψ0〉 =

∑

ai

[
(Xn

ai)
TXm

ai − (Yn
ai)

TYm
ai

]
= δnm , (2.16)

a relation which is automatically fulfilled for HF (or KS) references. Based on these two assumptions, Eq.
(2.3) can be formulated as

〈q|[Ĥ, Q̂†
n]|HF〉 = Ωn〈q|Q̂†

n|HF〉 , (2.17)

with the projection manifold of single excitations 〈q| = 〈0|δQ̂n. Applying standard commutation rules finally
leads to the RPA eigenvalue problem of Eq. (2.7).
The ansatz of Rowe has the advantage that it is much more general, allowing to draw the connection to
higher-order RPA approaches. This can be demonstrated even more apparently when reformulating the
equations of motion in terms of polarization propagators, exposing RPA to be a first-order polarization
propagator approach [56]. For a detailed introduction and comprehensive literature about response theory
or polarization propagator methods, the reader is referred for instance to Refs. [56, 57, 124, 126, 127]. For
the sake of convenience, the density matrix response function or polarization propagator Π(Ω) is here just
shortly introduced as the inverse of Eq. (2.7),

Π(Ω) = −(Λ − ΩΣ)−1 , (2.18)

relying on the superoperator formulation of Eqs. (2.7) and (2.16),

(Λ − ΩnΣ)|Xn, Yn〉 = 0 , (2.19)
〈Xn, Yn|Σ|Xm, Ym〉 = δnm , (2.20)

with the superoperator matrices

Λ =

(
A B
B A

)
and Σ =

(
1 0
0 −1

)
, (2.21)

and the super-column and -row vectors |Xn, Yn〉 and 〈Xn, Yn|. This result for the RPA polarization propagator
can be derived by assuming the same approximations as in the derivation of Rowe: Eq. (2.18) is obtained
by considering the manifold of single excitations and de-excitations only, represented by the one-electron
operator Q̂

†
=
{∑

ai Êai,
∑

ai Êia

}
,

Π(Ω) = −(Q†|(H̆ − Ω1̆)−1|Q†) . (2.22)

Note that |Q†) is the super-row vector corresponding to the operator Q̂† and that expectation values in the
superoperator formalism represent commutators according to (P|H̆|Q) = 〈Ψ0|[P̂

†, [Ĥ, Q̂]]|Ψ0〉. Superopera-
tors H̆ and 1̆ are defined as H̆X̂ = [Ĥ, X̂] and 1̆X̂ = X̂. In the following, the manifold of excitation and
de-excitation operators

∑
ia Êai and

∑
ia Êia is indicated by Ê and Ê

†.
The 2×2 super-matrix representation of Π(Ω) [51, 128],

Π(Ω) =

(
〈〈Ê†, Ê〉〉(Ω) 〈〈Ê†, Ê

†〉〉(Ω)

〈〈Ê, Ê〉〉(Ω) 〈〈Ê, Ê
†〉〉(Ω)

)
, (2.23)

can be formulated based on the response function 〈〈Ê†, Ê〉〉(Ω),

〈〈Ê†, Ê〉〉(Ω) = −(E|(H̆ − Ω1̆)−1|E)

= −〈Ψ0|[Ê
†, [Ê, (Ĥ − Ω1̂)−1]]|Ψ0〉 . (2.24)

Within RPA, the commutator of Eq. (2.24) is approximated by choosing the HF (or KS) determinant as ref-
erence state |Ψ0〉. Furthermore, the evaluation of the inverse in Eq. (2.24) is simplified by exploiting the

resolution of the identity, projecting the equations onto the single excitation manifold |h) =
{

Ê, Ê
†
}

[56, 126],

Π(Ω) = −(Q†|h)(h|H̆ − Ω1̆|h)−1(h|Q†) ,

= −

(
(E|E) (E|E†)
(E†|E) (E†|E†)

)(
(E|H̆ − Ω1̆|E) (E|H̆ − Ω1̆|E†)
(E†|H̆ − Ω1̆|E) (E†|H̆ − Ω1̆|E†)

)
−1 (

(E|E) (E|E†)
(E†|E) (E†|E†)

)

= −

(
U 0
0 −U

)(
A − ΩU −B

−B A + ΩU

)
−1 (

U 0
0 −U

)
, (2.25)

10



2.1. Calculating ground-state energies within the random-phase approximation

with the already known definitions for the Hessian matrices A and B (see Eqs. (2.11) and (2.12)) and the
metric U,

Aab
ij = (Eai|H̆|Ebj) = (E†

ai|H̆|E†
bj) = 〈HF|[Êia, [Ĥ, Êbj]]|HF〉 , (2.26)

Bab
ij = −(Eai|H̆|E†

bj) = −(E†
ai|H̆|Ebj) = −〈HF|[Êia, [Ĥ, Êjb]]|HF〉 , (2.27)

Uab
ij = (E†

ai|Ebj) = 〈HF|[Êia, Êbj]|HF〉 . (2.28)

The advantage of the polarization propagator formulation is that it paves the way to higher-order approaches
based on the expansion of the reference state and the excitation manifold to single, double, triple etc. ex-
citations. A perturbation analysis up to third order is for example summarized in Ref. [129]. A variety of
higher-order RPA schemes were suggested, considering a correlated ground state [60–62], a two-particle, two-
hole correction [58, 130, 131] or the expansion of the excitation manifold to double excitations [58, 59]. These
methods closely resemble the second-order polarization propagator approximation (SOPPA) [56, 132, 133];
a diagrammatic comparison is e.g. given in Ref. [129]. It should be noted that it is also common to apply
Löwdin partitioning [134] to fold the double-excitation space into the single-excitation space, reducing the
dimension of the higher-order RPA eigenvalue problem and allowing to introduce additive two-particle, two-
hole corrections [58, 130, 131].
The derivations presented so far define the RPA method by (1) approximating the ground state and the ex-
cited state in terms of singly and doubly excited determinants or (2) by restricting the projection manifold to
single (de-)excitations and by choosing a HF (or KS) determinant as reference state. In the framework of time-
dependent density-functional theory based on the density response function and the KS determinant, a third
"definition" of the random-phase approximation is common: Its connection to the already introduced deriva-
tions can be highlighted by rewriting the density matrix response function in a Dyson-type form [124, 135],

Π(Ω) = Π
0(Ω) + Π

0(Ω) [V + K(Ω)]Π(Ω) , (2.29)

where Π
0(Ω) = −

(
∆ − Ω1 0

0 ∆ + Ω1

)
−1

denotes the zeroth-order propagator with ∆
ab
ij = Fabδij − Fjiδab.

V
pr

qs = 2g
pr
qs is the bare Hartree kernel and K(Ω) the frequency-dependent Bethe-Salpeter kernel [136]. To re-

cover Eq. (2.18) and thus to obtain the propagator as approximated within direct RPA, exchange contributions
are neglected and K(Ω) is set to zero. For the connection to the Bethe-Salpeter equation and related meth-
ods see e.g. Ref. [137]. Analogously, the density response function χ(Ω) as obtained within time-dependent
density functional theory satisfies the Dyson equation

χ(Ω) = χ0(Ω) + χ0(Ω)

[
1

r12
+ fXC(Ω)

]
χ(Ω) , (2.30)

where again the exchange-correlation kernel fxc(Ω) is set to zero within dRPA. dRPA is therefore often de-
fined as the neglect of the exchange-correlation kernel within linear response theory. It should be furthermore
noted that it is in fact sufficient to calculate the density response function to obtain the RPA correlation energy;
only the diagonal of the density matrix response function is required, Π(Ω, r1, r1, r2, r2) = χ(Ω, r1, r2). More
specifically, the RPA correlation energy can be solely expressed in terms of the real-space transition densities
ρ0n(r), which are connected to the density response function χ(Ω) according to the Lehmann representation
[124],

χ(Ω, r1, r2) = −

∑

n 6=0

(
ρ0n(r1)ρ0n(r2)

Ωn − Ω − iη
+

ρ0n(r1)ρ0n(r2)

Ωn + Ω + iη

)
. (2.31)

Ωn are the excitation energies for all excited states n, Ω the frequency and η a positive infinitesimal ensuring
convergence. The transition densities are hereby defined as the expectation value of the density operator
ρ̂(r) =

∑
pq φp(r)φq(r)Êpq with the ground and excited states |Ψ0〉 and |Ψn〉,

ρ0n(r) = 〈Ψ0|ρ̂(r)|Ψn〉 = 2
∑

ia

(Xn + Yn)iaφi(r)φa(r) . (2.32)

Note that Eq. (2.32) can be obtained by assuming the definitions of Bouman and Hansen for ground and
excited states (Eqs. (2.4) and (2.5)) and applying standard commutation rules, leading to the given definition
of Eq. (2.32) for the transition density.
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2. The starting point — a summary on achievements in the field of RPA and F12 theories

Calculating the RPA ground-state correlation energy: the density matrix formulation, the dielectric matrix
formulation and the plasmon formula

Solving the RPA eigenvalue equation given by Eq. (2.7) provides approximated excitation energies Ωn, excita-
tion vectors Xn and Yn and the corresponding transition densities ρ0n. Several expressions exist to obtain the
thereon based RPA correlation energy, defined as the difference between the exact and the reference energy,
ERPA

C = Eexact − Eref. A classification for the different formulations is for example given in Ref. [138]: Based
on the type and ordering of integration over the frequency or the interaction strength, the correlation energy
can be obtained within the ”density matrix formulation” [7, 40, 139] , the ”dielectric matrix formulation”
[11, 65, 138] or via the ”plasmon formula” [140]. Of course, all formulations yield within numerical accu-
racy an equivalent expression for the RPA correlation energy, as shown e.g. in the appendix of Ref. [138].
However, as the different ansätze are required in the following chapters, they are shortly summarized in the
following. For the sake of convenience, the equations of the following section refer to open-shell references,
spin variables x = rσ and spin orbitals, indicated by capital letters {P, Q, . . . }.

The density matrix formulation

The starting point for the density matrix formulation is the adiabatic connection [22, 141, 142], which allows
to formulate the correlation energy as an integral over the coupling-strength parameter ζ,

EC =

∫ 1

0
dζ W

ζ
C =

∫ 1

0
dζ
(
〈Ψζ

0|V̂ee|Ψ
ζ
0〉− 〈Ψ0

0|V̂ee|Ψ
0
0〉
)

(2.33)

with the electron-electron interaction energy operator V̂ee = 1
2
∑

PQRS gPQ
RS â†

P â†
Q âS âR, the ground state at cou-

pling strength ζ and at zero coupling, |Ψ
ζ
0〉 and |Ψ0

0〉, respectively. For KS references, the adiabatic con-
nection furthermore defines the density to be equal for different coupling-strength values, thus ρ(x) =

〈Ψζ
0|ρ̂(x)|Ψζ

0〉 = 〈Ψ0
0|ρ̂(x)|Ψ0

0〉 with the one-particle density operator ρ̂(x). Note that this constraint holds
only for KS references; for HF references the density changes with varying ζ. For the sake of convenience,
the following discussion thus only refers to KS references. A detailed comparison and a derivation for HF
references is given in Ref. [7].
The adiabatic-connection constraint for the density as well as standard commutation rules and the resolution
of the identity formulation of the delta function δ(x1 − x2) =

∑
q φq(x1)φq(x2) allow to rewrite the coupling-

strength kernel as

W
ζ
C = 1

2

∑

PQRS

gPQ
RS

[
〈Ψζ

0|â
†
P âR â†

Q âS − δQR â†
P âS|Ψ

ζ
0〉− 〈Ψ0

0|â
†
P âR â†

Q âS − δQR â†
P âS|Ψ

0
0〉
]

,

= 1
2

∑

PQRS

g
PQ
RS

[
〈Ψζ

0|â
†
P âR â†

Q âS|Ψ
ζ
0〉− 〈Ψ0

0|â
†
P âR â†

Q âS|Ψ
0
0〉
]

. (2.34)

Inserting the resolution of the identity, 1 =
∑

n |Ψ
ζ
n〉〈Ψζ

n|, according to

〈Ψζ
0|â

†
P âR â†

Q âS|Ψ
ζ
0〉 =

∑

n

〈Ψζ
0|â

†
P âR|Ψ

ζ
n〉〈Ψζ

n|â
†
Q âS|Ψ

ζ
0〉 , (2.35)

the correlation energy can be expressed in terms of transition densities ρ
ζ
0n(x),

EC = 1
2

∫ ∫

dx1dx2

∫ 1

0
dζ


∑

n 6=0

ρ
ζ
0n(x1)ρ

ζ
0n(x2)− ρ0

0n(x1)ρ
0
0n(x2)

|r1 − r2 |


 . (2.36)

Finally, the random-phase approximation is introduced by approximating the transition densities according to
Eq. (2.32) as obtained from the RPA eigenvalue problem (Eq. (2.7)), now depending on the coupling-strength
parameter and therefore given as

ρ
ζ
0n(x) =

∑

IA

(Xnζ + Ynζ)IAφI(x)φA(x) , (2.37)

(
Aζ Bζ

Bζ Aζ

)(
Xnζ

Ynζ

)
= Ω

ζ
n

(
1 0
0 −1

)(
Xnζ

Ynζ

)
, (2.38)
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2.1. Calculating ground-state energies within the random-phase approximation

with the adapted definitions for matrices Aζ and Bζ ,

(Aζ)AB
I J

RPAX
= FABδI J − FJ IδAB + ζ(gAJ

IB − g JA
IB )

dRPA
= FABδI J − FJ IδAB + ζgAJ

IB , (2.39)

(Bζ)AB
I J

RPAX
= ζ(gAB

I J − gAB
JI )

dRPA
= ζgAB

I J . (2.40)

Insertion of Eq. (2.37) into Eq. (2.36) yields the RPA correlation energy within the density matrix formulation
[140],

ERPA
C = 1

2

∫ 1

0

∑

IAJB

gAB
I J


∑

n 6=0

(Xnζ + Ynζ)IA(X
nζ + Ynζ) JB − δI JδAB


dζ . (2.41)

Eq. (2.41) is thus obtained by analytical integration over the frequency; integration over the coupling strength
is performed numerically, e.g. by Gauss-Legendre quadrature, as described in Ref. [40] and implemented in
the MPGRAD module of the TURBOMOLE program package [71], leading to an N6 scaling with system size
N. The implementation is thereby based on the following reformulation,

ERPA
C = 1

2

∫ 1

0

∑

IAJB

gAB
I J (Pζ)AB

I J dζ , (2.42)

with matrices Pζ and Mζ ,

Pζ = (Aζ
− Bζ)1/2(Mζ)−1/2(Aζ

− Bζ)1/2
− 1 , (2.43)

Mζ = (Aζ
− Bζ)1/2(Aζ + Bζ)(Aζ

− Bζ)1/2 , (2.44)

corresponding to the transformed eigenvalue problem

MζZζ = Zζ(Ωζ)2 , Zζ(Zζ)T = 1 . (2.45)

Note that both Aζ
− Bζ and Aζ + Bζ are positive definite for stable reference states [40] and that Zζ is related

to the excitation amplitudes Xζ and Yζ via Z
ζ
n = (Ωζ

n)
1/2(A− B)−1/2(Xnζ + Ynζ) (see e.g. Ref. [143]).

The plasmon formula

According to the Hellmann-Feynman theorem [144], the derivative of Ω
ζ
n with respect to the coupling strength

ζ is given for dRPA as

dΩ
ζ
n

dζ
= 〈Xnζ , Ynζ |

dΛ
ζ

dζ
|Xnζ , Ynζ〉 dRPA

=
∑

IAJB

(Xnζ + Ynζ)IA g
I J
AB(X

nζ + Ynζ) JB , (2.46)

where Λ
ζ is defined in Eq. (2.21). Additional analytical integration over the coupling strength is therefore

possible, yielding the so-called plasmon formula [140],

ERPA
C = 1

2

∫ 1

0
dζ
∑

n


dΩ

ζ
n

dζ
−

dΩ
ζ
n

dζ

∣∣∣∣∣
ζ=0


 dRPA

= 1
2

∑

n

(ΩdRPA
n − Ω

dTDA
n ) , (2.47)

which reduces for dRPA to the difference of excitation energies within dRPA and dTDA at full coupling, Ω
dRPA
n

and Ω
dTDA
n , respectively. The dTDA excitation energies Ω

dTDA = tr(AdTDA) =
∑

IA(εA − ε I + gAI
IA) are obtained

by solving the eigenvalue problem AdTDAXndTDA = Ω
dTDA
n XndTDA with (AdTDA)AB

I J = (εA − ε I)δI JδAB + 2g
AJ
IB .

It is interesting to note that the inclusion of exchange is not trivial [7, 145]: For unrestricted KS (UKS)
references, the antisymmetrized interaction operator V̂ee =

1
4
∑

PQRS gPQ
RS (â†

P â†
Q âR âS − â†

P â†
Q âS âR) leads to the

coupling-strength integrand

W
ζ
C (UKS) = 1

4

∑

PQRS

gPQ
RS

[
〈Ψζ

0|â
†
P âR|Ψ

ζ
n〉〈Ψζ

n|â
†
Q âS|Ψ

ζ
0〉− 〈Ψζ

0|â
†
P âS|Ψ

ζ
n〉〈Ψζ

n|â
†
Q âR|Ψ

ζ
0〉

−〈Ψ0
0|â

†
P âR|Ψ

0
n〉〈Ψ0

n|â
†
Q âS|Ψ

0
0〉+ 〈Ψ0

0|â
†
P âS|Ψ

0
n〉〈Ψ0

n|â
†
Q âR|Ψ

0
0〉
]

. (2.48)
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2. The starting point — a summary on achievements in the field of RPA and F12 theories

An analogous derivation for UHF references requires further correction terms, as outlined in Ref. [7]. How-
ever, for both UKS and UHF references, the final expression for the correlation energy can be summarized in
terms of the transition densities ρ

ζ
0n(x) and transition density matrices γ

ζ
0n(x1, x2),

ERPAX
C (UKS/UHF) = 1

4

∫ 1

0
dζ

∫

dx1dx2


∑

n 6=0

ρ
ζ
0n(x1)ρ

ζ
0n(x2)− ρ0

0n(x1)ρ
0
0n(x2)

|r1 − r2 |




−
1
4

∫ 1

0
dζ
∑

PQRS

g
PQ
RS


∑

n 6=0

γ
ζ
0nPSγ

ζ
0nQR −

∑

n 6=0

γ0
0nPSγ0

0nQR


 , (2.49)

where the latter are defined as Ref. [145]

γ
ζ
0nPR = 〈Ψζ

0|âP âR|Ψ
ζ
n〉 = X

nζ
PRvP(1 − vR) + Y

nζ
PRvR(1 − vP) . (2.50)

vP and vR denote orbital occupation numbers, hence in order to get a non-zero contribution for γ
ζ
0nPR, P has

to refer to an occupied orbital and R to an unoccupied,

gPQ
RS γ

ζ
0nPSγ

ζ
0nQR → gIA

JB (X
nζ
IAX

nζ
JB + Y

nζ
IAY

nζ
JB ) + g

I J
BA(X

nζ
IAY

nζ
JB + Y

nζ
IAX

nζ
JB) . (2.51)

The derivative of Ω
ζRPAX
n is therefore given as

dΩ
ζRPAX
n

dζ
=
∑

IAJB

(Xnζ + Ynζ)IA g
I J
AB(X

nζ + Ynζ) JB

− g
I J
BA

(
(Xnζ)IA(Y

nζ) JB + (Ynζ)IA(X
nζ) JB

)
− gIA

JB

(
(Xnζ)IA(X

nζ) JB + (Ynζ)IA(Y
nζ) JB

)
(2.52)

and the final expression for the correlation energy can be formulated in analogy to Eq. (2.47), including an
additional factor of one half,

ERPAX
C (UHF) = 1

4

∑

n

(ΩRPAX
n − Ω

TDAX
n ) . (2.53)

For closed-shell references (restricted HF (RHF)), the consideration of spin-flip excitations requires a parti-
tioning into singlet (S) and triplet (T) contributions [146],

ERPAX
C (RHF) = 1

4

∑

n

(ΩRPAX
nS − Ω

TDAX
nS ) + 3

4

∑

n

(ΩRPAX
nT − Ω

TDAX
nT ) . (2.54)

The dielectric matrix formulation

The most efficient formulation with a scaling of N4logN can be obtained within the dielectric matrix for-
mulation, when integrating analytically over the coupling strength and numerically over the frequency [65].
According to the fluctuation-dissipation theorem [147, 148], Eq. (2.35) can be connected with the density
response function [22, 141, 142],

∑

n 6=0

〈Ψζ
0|ρ̂(x1)|Ψ

ζ
n〉〈Ψζ

n|ρ̂(x2)|Ψ
ζ
0〉 = −

∫
∞

0

dΩ

π
Im χζ(Ω, x1, x2) , (2.55)

allowing to express the correlation energy as

EC = −
1
2

∫ 1

0
dζ

∫
∞

0

dΩ

π
Im
∫

dx1dx2
χζ(Ω, x1, x2)− χ0(Ω, x1, x2)

|r1 − r2 |
. (2.56)

Inserting the response function of Eq. (2.31) yields the RPA correlation energy, which can be formulated for
dRPA in an efficient way using resolution of the identity methods (for the explicit reformulation see Refs.
[51, 65]),

EdRPA
C =

∫
∞

−∞

dΩ
1

4π
tr [ln(1 + Q(Ω))− Q(Ω)] , (2.57)
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with Q(Ω) = 2ST
∆DIAG((∆DIAG)2 + Ω

21)−1S and the diagonal matrix (∆DIAG)AB
I J = (εA − ε I)δI JδAB. The matrix

elements SIA,P ′ are intermediates obtained when factorizing the two-electron integrals using the resolution
of the identity, given in Mulliken notation as gAB

I J =
∑

P ′ SIA,P ′SJB,P ′ =
∑

P ′Q ′(IA|P ′)(P ′|Q ′)−1(Q ′|JB).
{P ′, Q ′, . . . } denote the auxiliary basis. Note that such a formulation in terms of matrix Q is only straightfor-
ward for dRPA — when including exchange, the two-electron integral contributions to matrices A and B are
no longer equivalent, prohibiting an analogous treatment for RPAX.

2.2 From single excitations to double excitations: Working equations

based on the equivalence of RPA and ring coupled-cluster theory

Already in early papers on the random-phase approximation [149–151], it was shown that both the dRPA
and the RPAX eigenvalue problem can be formulated as a doubles amplitude equation,

B + AT + TA + TBT = 0 , (2.58)

based on the connection of doubles and singles amplitudes, see Eq. (2.10). In addition, the correlation energy,
as defined within Eqs. (2.47) and (2.53), can be expressed in terms of the respective amplitudes T, given for
open-shell systems as

EdRPA
C = 1

2 tr[BdRPAT] , (2.59)

ERPAX
C = 1

4 tr[BRPAXT] . (2.60)

For the sake of convenience, the amplitudes are in the following not labeled according to the underlying
method — a specification is only added in case of ambiguity. For dRPA, Scuseria et al. [43] furthermore proved
that the matrix X is invertible and that the given Riccati equation can also be obtained when approximating the
coupled-cluster doubles (CCD) approach by solely considering ring contributions and neglecting all ladder
and cross terms [43, 44].
Within CCD theory (see e.g. Refs. [144, 152] and references therein), the wave function is parametrized
through the double excitation operator T̂2,

|ΨCCD〉 = exp(T̂2)|Ψ0〉 , (2.61)

with T̂2 = 1
4
∑

I JAB tAB
I J â†

A â†
B âJ âI . Acting on the reference function |Ψ0〉, T̂2 generates double excitations into

the conventional virtual space weighted by the amplitudes tAB
I J . The amplitudes are determined by projecting

the Schrödinger equation on the double excitation manifold,

(ΩCCD)AB
I J = 〈AB

I J |exp(−T̂2)Ĥexp(T̂2)|HF〉
= 〈AB

I J |[F̂, T̂2] + φ̂ + [φ̂, T̂2] +
1
2 [[φ̂, T̂2], T̂2]|HF〉 , (2.62)

where the Hamiltonian is split into the zeroth-order Fock operator F̂ =
∑

PQ FPQ â†
P âQ and the first-order

fluctuation potential φ̂, Ĥ = F̂ + φ̂. Note that the fluctuation potential is — in contrast to the earlier used
two-electron interaction potential V̂ee — defined as φ̂ = V̂ee − Ĵ + K̂, where Ĵ and K̂ are the Coulomb and non-
local exchange operators. Furthermore, a HF (or KS) determinant is assumed as reference function |Ψ0〉. For
KS references, the KS orbitals are used to form a determinant and the succeeding CC treatment is identical
to HF-based CC calculations. The correlation energy is therefore defined as the difference between the exact
energy and the energy expectation value of the KS determinant,

EC = Eexact − 〈KS|Ĥ|KS〉 . (2.63)

See for example Refs. [153, 154] for a validation on the performance of KS references for CC methods and
the connection to Brueckner CC schemes. More explicitly, the CCD correlation energy is defined through the
double excitation amplitudes tAB

I J as,

ECCD
C = 〈HF|Ĥ|ΨCCD〉− 〈HF|Ĥ|HF〉 = 1

4

∑

I JAB

(
g

I J
AB − g

I J
BA

)
tAB

I J = 1
4 tr [BRPAXT] . (2.64)
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CCD rCCD and drCCD

gAB
I J − gAB

JI gAB
I J −gAB

JI

[1] [1]

P̂−

ABtAC
I J FBC

A I B J B J A I

tAC
I J FBC + tCB

I J FAC

[2] [2a] [2b]

−P̂−

I J tAB
IK FKJ

I A J B J B I A

−tAB
IK FKJ − tAB

KJ FKI

[3] [3a] [3b]

1
2 (gAB

CD − gAB
DC)t

CD
I J

[4]

1
2 (gKL

I J − gKL
JI )t

AB
KL

[5]

(P̂−)AB
I J tAC

IK (gKB
CJ − gKB

JC )

A I B J B J A I

(gAK
IC −gAK

CI )t
CB
KJ

+(gBK
JC −gBK

CJ )t
CA
KI

[6] [6a] [6b]

1
4 (gKL

CD − gKL
DC)t

CD
I J tAB

KL

[7]

P̂−

I J (gKL
CD − gKL

DC)t
AC
IK tBD

JL

A I B J B J A I

tAC
IK (gCD

KL −gCD
LK )tDB

LJ

[8] [8a] [8b]

−
1
2 P̂−

I J (gKL
CD − gKL

DC)t
DC
IK tAB

LJ

[9]

−
1
2 P̂−

AB(gKL
CD − gKL

DC)t
AC
LK tDB

I J

[10]

Fig. 2.2: Antisymmetrized Goldstone diagrams representing spin orbitals for the CCD and rCCD residual
equations. Ring diagrams are coloured in red. Exchange contributions which are omitted within drCCD
are marked in blue; corresponding diagrams require a nomenclature where the dashed line refers to the
non-antisymmetrized two-electron interaction operator. The permutation operators P̂−

AB, P̂−

I J and (P̂−)AB
I J are

defined as P̂−

ABXAB
I J = XAB

I J − XBA
I J , P̂−

I J XAB
I J = XAB

I J − XAB
JI and (P̂−)AB

I J = P̂−

I J P̂−

AB. For convenience, Einstein
summation rules are assumed. The nomenclature for antisymmetrized Goldstone diagrams is explained in
Appendix A.
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2.2. From single excitations to double excitations: Working equations based on the equivalence of RPA and
ring coupled-cluster theory

In contrast to CCD, it is not possible to derive the rCCD residual equations algebraically, starting from
an appropriate wave function expressed in terms of annihilation and creation operators and evaluating the
projected equations by applying Wick’s theorem [155]. However, based on the CCD equations, the rCCD
approach can be derived graphically, as visualized in Figure 2.2. On the left, the CCD residual equations are
explicitly given in terms of antisymmetrized Goldstone diagrams with the corresponding algebraic expres-
sions [106]. The standardly used nomenclature for antisymmetrized Goldstone diagrams representing spin
orbitals is explained in Appendix A. Ring terms, i.e. those contributions which solely represent particle-hole
interactions, are represented by diagrams where the double amplitudes are contracted with the two-electron
integrals in such a way that the particle and hole lines corresponding to one electron start and end pairwise
at the same vertex. Graphically this corresponds to a closed loop (if fully contracted) which can be easily
associated with a ring. The accordingly featured ring diagrams of Figure 2.2 are highlighted in red. It should
however be noted that diagrams [1], [2], [3], [6] and [8] do so far not solely comprise the wanted subset
of particle-hole contributions as it would be the case for non-antisymmetrized diagrams. Due to the chosen
(standard) definition including antisymmetrization, the ring or particle-hole terms still need to be concretized
by either changing the interpretation rules, as done in Ref. [156], or by adding labels and arrow directions
to the present diagrams, as depicted on the right-hand side of Figure 2.2. Furthermore, the standard CC
nomenclature, interpreting up- and down-going lines in terms of creation and annihilation operators and as-
sociating vertexes with one- and two-electron operators, is inappropriate as it assumes that these translation
rules allow to derive the algebraic expressions by applying Wick’s theorem. This is as already mentioned not
possible for rCCD. However, simplified interpretation rules which are reduced to amplitude matrices and
two-electron interaction integrals still hold for diagrams [1] to [8b]. The so-obtained rCCD residual equa-
tion is equivalent to the RPAX eigenvalue problem of Eq. (2.7) and thus corresponds to Eq. (2.58) assuming
the same definitions for matrices A and B as defined within RPAX (see Eqs. (2.11) and (2.12)). The rCCD
correlation energy then corresponds to Eq. (2.60),

ErCCD
C = 1

4

∑

I JAB

(gI J
AB − gI J

BA)t
AB
I J = 1

4 tr [BRPAXT] . (2.65)

Furthermore, the drCCD equations can be extracted from the rCCD equations when neglecting exchange.
Exchange contributions are marked in blue on the right-hand side of Figure 2.2. The drCCD diagrams
are obtained by assuming - in contrast to rCCD - a nomenclature with non-antisymmetrized two-electron
interaction operator, yielding identically looking diagrams which simply differ in the algebraic expressions
requiring an additional factor of two. Consistently, the drCCD correlation energy is, in contrast to Eq. (2.65),
defined as

EdrCCD
C = 1

2

∑

I JAB

gI J
ABtAB

I J = 1
2 tr [BdRPAT] . (2.66)

The role of spin-flipped excitations: derivation of the closed-shell equations for rCCD and drCCD

Regarding the zeroth-order Fock (or KS) matrix contributions to the CCD and rCCD equations, it is important
to note that the rCCD contributions, tAC

I J FBC + tCB
I J FAC and −tAB

IK FKJ − tAB
KJ FKI corresponding to diagrams [2a],

[2b] as well as [3a] and [3b], cannot be formulated as for CCD by exploiting the permutation operators P̂−

AB

and P̂−

I J , P̂−

ABtAC
I J FBC = tAC

I J FBC − tBC
I J FAC and −P̂−

I J tAB
IK FKJ = −tAB

IK FKJ + tAB
JK FKI . This is due to the fact that the

CCD amplitudes are symmetric with respect to the interchange of I and J and A and B,

tAB
I J = −tAB

JI = −tBA
I J = tBA

JI , (2.67)

whereas the rCCD amplitudes are not. As a consequence, the CCD correlation energy can be expressed as

ECCD
C = 1

2

∑

I JAB

tAB
I J gI J

AB = 1
2 tr [BdRPAT] , (2.68)

while the rCCD correlation energy is restricted to the formulation of Eq. (2.64). The reduced symmetry of
the rCCD amplitudes needs to be taken into account for the derivation of the corresponding closed-shell
equations: For standard coupled-cluster schemes like CCD, spin integration over the two spin components
σ = α, β can be performed in various ways yielding different residual equations for spatial orbitals [121, 157–
159]. This ambiguity arises due to the fact that the number of independent variables (cluster amplitudes) is
larger than the projection manifold. One standardly used adaptation scheme is to exclude spin-flipped ampli-
tudes like t

aβbα
iαjβ from the projection manifold as the corresponding doubly excited singlet-spin eigenfunctions
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would be linearly dependent on the eigenfunctions corresponding to t
aαbβ
iαjβ and t

aβbα
iβjα . The redundancy be-

comes apparent when recalling the spin-expanded formulation of Eqs. (2.64) and (2.68),

ECCD
C = 1

4

∑

abij

(
taαbα
iαjα

(
g

iαjα
aαbα − g

jαiα
aαbα

)
+ t

aβbβ
iβjβ

(
g

iβjβ
aβbβ − g

jβiβ
aβbβ

)
+ t

aαbβ
iαjβ g

iαjβ
aαbβ + t

aβbα
iβjα g

iβjα
aβbα − t

aβbα
iαjβ g

iαjβ
bαaβ − t

aαbβ
iβjα g

iβjα
bβaα

)
,

(2.69)

= 1
2

∑

abij

(
taαbα
iαjα g

iαjα
aαbα + t

aβbβ
iβjβ g

iβjβ
aβbβ + t

aαbβ
iαjβ g

iαjβ
aαbβ + t

aβbα
iβjα g

iβjα
aβbα

)
. (2.70)

The projection manifold can thus be restricted to

Ω
AB
I J = Ω

aαbα
iαjα + Ω

aβbβ
iβjβ + Ω

aαbβ
iαjβ + Ω

aβbα
iβjα . (2.71)

The resulting residual equations for taαbα
iαjα , t

aβbβ
iβjβ , t

aβbα
iβjα and t

aαbβ
iαjβ show that the CCD amplitudes obey the

following symmetry relations [160–162],

taαbα
iαjα = t

aβbβ
iβjβ = t

aαbβ
iαjβ − t

aαbβ
jαiβ , (2.72)

t
aαbβ
iαjβ = t

aβbα
iβjα , (2.73)

which allow to express all four residuals in terms of one amplitude, for example t
aαbβ
iαjβ → tab

ij . tab
ij and tab

ji are

independent, each related to the corresponding singlet-spin eigenfunction 〈ab
ij | and 〈ab

ji |,

|ab
ij 〉 = â†

aα â†
bα âjα âiα|HF〉+ â†

aα â†
bβ âjβ âiα|HF〉+ â†

aβ â†
bα âjα âiβ|HF〉+ â†

aβ â†
bβ âjβ âiβ|HF〉 , (2.74)

|ba
ij 〉 = â†

bα â†
aα âjα âiα|HF〉+ â†

bα â†
aβ âjβ âiα|HF〉+ â†

bβ â†
aα âjα âiβ|HF〉+ â†

bβ â†
aβ âjβ âiβ|HF〉 , (2.75)

and not symmetric with respect to the exchange of indices i and j,

tab
ij = tba

ji 6= tba
ij = tab

ji . (2.76)

To simplify the equations further, it is therefore common to combine both projection manifolds, yielding a
biorthogonal basis as used in the beginning of this chapter and explained in Appendix A. In conclusion, spin
integration for CCD allows to reduce computation time by condensing the open-shell equations into a single
closed-shell residual equation (see also Figure 2.4), which defines the amplitudes tab

ij and therefore the CCD
correlation energy,

ECCD
C =

∑

ijab

tab
ij

(
2g

ij
ab − g

ij
ba

)
= tr [BRPAXT] . (2.77)

This is not possible for rCCD: As solely ring diagrams are considered, requiring that the index pair (IA) can
only be permuted as a unit with (JB), the amplitude tAB

JI is neglected. In consequence, tab
ji and the corre-

sponding eigenfunction |ab
ji 〉 are omitted for spatial orbitals. Hence, by definition, the rCCD spin amplitudes

do not fulfill the symmetry relation of Eq. (2.72) and the rCCD correlation energy cannot be recast into an
expression without exchange, but has to rely on the spin-expanded formulation of Eq. (2.69) depending on
spin-flipped amplitudes of the type t

aαbβ
iβjα . Starting from the rCCD residual equations for spin orbitals, given

in Figure 2.2, the diagrams for the different spin cases can be derived taking into account that spin has to
be conserved along each continuous path with the exception of spin-flipped excitations, as summarized in
Figure 2.3. Spin-flipped amplitudes are marked at the vertex by an empty circle and the label αβ indicates
that spin is flipped from α spin to β spin or vice versa. Note that the equations are illustrated using antisym-
metrized Goldstone diagrams, which would require a labeling of the paired indices (AI) and (BJ) to specify
the particle-hole contributions, analogously to Figure 2.2. For the sake of convenience, such a labeling is
omitted in Figure 2.3. The so-obtained rCCD diagrams for the spin-expanded open-shell case visualize that
the residuals for same- and opposite-spin amplitudes are no longer redundant and that, in contrast to CCD,
only those exchange terms contribute which arise from the antisymmetrization of the two-electron integrals.
The rCCD amplitude equations can therefore not be merged into a single residual equation for closed-shell
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H
Ω
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Fig. 2.3: Diagrammatic representation of the spin-expanded open-shell rCCD residual equations. A detailed
diagrammatic treatment of spin summation is outlined in Ref. [121, 152]. Spin-flipped amplitudes are marked
at the vertex by an empty circle. The Einstein summation convention is assumed.
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Coulomb Exchange Algebraic expression
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Fig. 2.4: Non-antisymmetrized Goldstone diagrams for the CCD and drCCD residual equations representing
spatial orbitals. The labeling on the right-hand side, classifying the different terms as contributions A to F,
refers to Appendix E explaining the implementation in the TURBOMOLE program package.
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references and a representation in the biorthogonal basis analogously to CCD is also not possible. However,
the spin-flipped residual Ω

aαbβ
iβjα is decoupled from the other residual equations and can be evaluated sepa-

rately. As noted and examined by Klopper et al., the decoupling allows to completely neglect spin-flipped
contributions [146] when aiming for an approximate rCCD method. In comparison to CCD, they find that the
exclusion of spin-flipped excitations rises the rCCD correlation energy by about 30 %, while incorporation
effects a lowering of about 40 %. Both approximations deviate in total by a factor of two.
In order to avoid the bottleneck of solving three residual equations for the same-spin, opposite-spin and spin-
flip case in corresponding closed-shell implementations, the three spin cases can be furthermore connected
by linear combination, exploiting the redundancy of the spin-flipped contributions and introducing singlet
and triplet amplitudes 1tab

ij and 3tab
ij as,

1tab
ij = taαbα

iαjα + t
aαbβ
iαjβ , (2.78)

3tab
ij = taαbα

iαjα − t
aαbβ
iαjβ = t

aαbβ
iβjα . (2.79)

Note that Eqs. (2.78) and (2.79) hold for both CCD and rCCD. For CCD, the symmetry relations allow to
express the CCD correlation energy in multiple ways,

ECCD
C = 1

4

∑

ijab

[
1tab

ij

(
2g

ij
ab − g

ij
ba

)
+ 3 3tab

ij

(
−g

ij
ba

)]
= 1

4 tr
[

1T 1BRPAX + 3 3T 3BRPAX
]

, (2.80)

= 1
2

∑

ijab

1tab
ij

(
2g

ij
ab

)
= 1

2 tr
[

1T 1BdRPA
]

, (2.81)

= 1
2

∑

ijab

(
1tab

ij −
3tab

ij

) (
2g

ij
ab − g

ij
ba

)
= 1

2 tr
[

1T −
3T
]

1BRPAX , (2.82)

with the singlet and triplet matrices (1BRPAX)ab
ij = 2g

ij
ab − g

ij
ba, (1BdRPA)ab

ij = 2g
ij
ab and (3BRPAX)ab

ij = −g
ij
ba. In

contrast, the rCCD correlation energy can only be represented by a single singlet-triplet-formulation [116],

ErCCD
C = 1

4

∑

ijab

[
1tab

ij

(
2g

ij
ab − g

ij
ba

)
+ 3 3tab

ij

(
−g

ij
ba

)]
= 1

4 tr
[

1BRPAX 1T + 3 3BRPAX 3T
]

. (2.83)

The corresponding residual equations for singlet and triplet amplitudes are given in terms of the analogously
defined matrices (1ARPAX)ab

ij = 2g
aj
ib − g

aj
bi and (3ARPAX)ab

ij = −g
aj
bi ,

s
Ω = sT∆ + sBRPAX + sARPAX sT + sT sARPAX + sT sBRPAX sT , (2.84)

with s = 1 for the singlet and s = 3 for the triplet quantities. ∆ summarizes the zeroth-order contributions,
as already defined after Eq. (2.57).
Concerning spin adaptation, it is furthermore interesting to note that the reformulation in terms of singlet
and triplet amplitudes corresponds to an orthogonal transformation (see Chapter 4 and e.g. Refs. [47, 145]).
Moreover, it can be shown that the analogously defined singlet and triplet amplitudes sY and sX are related
by 1Y1XT = −

3Y3XT, a requirement from the condition that the wave function is an eigenfunction of the
square of the spin operator with eigenvalue zero [163].
Even though Eq. (2.84) reduces the computational effort of closed-shell rCCD schemes, requiring solely the
calculation of singlet and triplet amplitudes compared to the calculation of same-spin, opposite-spin and spin-
flipped amplitudes, the efficiency of standard CC schemes like CCD cannot be achieved, because for the latter,
closed-shell implementations only rely on one-type of spin-adapted, closed-shell amplitudes. Approximate
and more cost-efficient rCCD schemes were however introduced by Szabo and Ostlund [21, 151], based on
the CCD formulations of Eqs. (2.82) and (2.81),

ErCCD-SO1
C = 1

2 tr
[

1BRPAX
(

1T −
3T
)]

, (2.85)

ErCCD-SO2
C = 1

2 tr
[

1BdRPA 1T
]

. (2.86)

The nomenclature, denoting the approaches ”rCCD-SO1” and ”rCCD-SO2”, is taken from Ref. [86] and is
adopted for the later discussions in Chapter 4. Both approximations were shown to be correct to second-order
perturbation theory and to describe dispersion at the coupled HF level. In comparison, the rCCD-SO2 method
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2. The starting point — a summary on achievements in the field of RPA and F12 theories

was proven to be the most accurate and practical approach [86, 164] as it solely involves singlet excitations,
thus reducing computation time and avoiding triplet instabilities which are otherwise a serious bottleneck for
rCCD schemes [146]. Furthermore, it is in contrast to rCCD-SO1 possible to recast the closed-shell equations
into an open-shell analogon [164]. More precisely, the open-shell rCCD-SO2 correlation energy resembles the
non-antisymmetrized formulation of open-shell CCD (Eq. (2.68)), now referring to the rCCD amplitudes,

ErCCD-SO2
C = 1

2

∑

I JAB

(TrCCD)AB
I J gI J

AB = 1
2 tr [BdRPATrCCD] . (2.87)

In contrast to the rCCD schemes including exchange, the direct rCCD approach allows straightforward spin
integration: Even though the symmetry relation of Eq. (2.72) is also not fulfilled, spin integration yields a
single closed-shell residual equation, exploiting that the amplitudes of same- and opposite-spin are connected
by

taαbα
iαjα = t

aαbβ
iαjβ , (2.88)

and that spin-flipped contributions are all of exchange type and therefore do not contribute to drCCD [146].
Thus, the closed-shell drCCD equations [145] can be derived starting from the CCD equations within the
biorthogonal basis, as given in Figure 2.4. Exchange contributions are hereby visualized by expanding the
antisymmetrized Goldstone diagrams of Figure 2.2 in terms of ordinary Goldstone diagrams, yielding addi-
tional contributions for diagrams [6],[8],[9] and [10] [121]. Those terms corresponding to the closed-shell dr-
CCD residual equations are marked in red. Note that the highlighted diagrams are identical to the open-shell
rCCD diagrams of Figure 2.2, deviating only by the underlying nomenclature and the algebraic expressions
as the closed-shell drCCD analogues now correspond to the non-antisymmetrized two-electron interaction.
Thus, they solely represent particle-hole contributions and require no additional labeling as introduced in
Figure 2.2. The so-obtained drCCD amplitudes yield the drCCD correlation energy which is equivalent to
the dRPA energy of Eq. (2.47),

EdrCCD
C =

∑

abij

2g
ij
abtab

ij = tr [BdRPATdrCCD] = EdRPA
C . (2.89)

Eq. (2.89) highlights once more the connection between RPA and ring coupled-cluster methods, showing that
the coupled RPA eigenvalue problem can be rewritten as an amplitude equation and that the correlation
energy can be expressed in terms of double excitation amplitudes. Despite the equivalency of the dRPA
(RPAX) and drCCD (rCCD) correlation energies, it is however important to keep in mind that both approaches
are based on a different formalism varying in the elementary working equations. Within RPA, for instance,
the energy is given as the sum of excitation energies; rCCD theory expresses it in contrast in terms of pair
interaction energy differences [140]. It is furthermore interesting to note that approximations to such differing
formulations may also need to be distinguished: the Tamm-Dancoff Approximation (TDA) for example is
only defined for rCCD correlation methods [165]. For RPA correlation energies based on the TDDFT eigenvalue
problem (Eq. (2.7)) and the plasmon formula (Eq. (2.47)), it is however invalid, yielding by definition zero
correlation energies [140].

2.3 F12 theory: Including geminals in the wave-function expansion

Modern F12 methods are based on Slater-type correlation factors depending exponentially on the interelec-
tronic distance r12 [99],

f (r12) = γ−1(1 − exp(−γr12)) . (2.90)

The prefactors γ are optimized according to the chosen orbital basis [166–169]. The corresponding geminal
functions wAB

X̃Y
,

wAB

X̃Y
= 〈AB|Q̂12 f (r12)|X̃Y〉 , (2.91)

are added to the conventional wave-function ansatz, parameterizing e.g. the configuration interaction doubles
(CID) wavefunction as

|CID-F12〉 = |HF〉+
∑

I>J,A>B

cAB
I J |AB

I J 〉+
∑

I>J,X>Y,A>B

cXY
I J wAB

X̃Y
|AB
I J 〉 , (2.92)
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or the coupled-cluster doubles (CCD) approach according to

|CCD-F12〉 = exp(T̂2 + T̂2 ′)|HF〉 = exp


 ∑

I>J,A>B

tAB
I J τAB

I J +
∑

I>J,A>B

tAB
I J τAB

I J


 |HF〉 , (2.93)

= exp


 ∑

I>J,A>B

tAB
I J τAB

I J +
∑

I>J,X>Y,A>B

cXY
I J wAB

X̃Y
τAB

I J


 |HF〉 . (2.94)

cAB
I J and tAB

I J denote the corresponding conventional CI coefficients and CC amplitudes, weighting double
excitations from the occupied to the virtual space. τAB

I J = â†
A â†

B âJ âI denote the double excitation operators.
The explicitly correlated geminal amplitudes tAB

I J =
∑

X>Y cXY
I J wAB

X̃Y
are defined analogously, now referring

to an excitation from the occupied spin orbitals {I, J, . . . } into the spin orbitals of the infinite virtual basis
{A, B, . . . }. (Note that spatial orbitals of the infinite virtual space are in the following indicated as {α, β, . . . }).
{X, Y, . . . } denote spin orbitals of the geminal space, which are standardly taken to be occupied orbitals.
While the CI formulation of Eq. (2.92) visualizes that the wave-function ansatz is linear in r12, the CC ansatz
of Eq. (2.94) highlights that the inclusion of geminals can also be interpreted as double excitations into
an infinite virtual basis with subsequent reprojection onto the geminal space. The projection operator Q̂12
thereby ensures that the geminals are orthogonal to the conventional excitation manifold [112]. Different
ansätze for Q̂12 were introduced [102, 170] and are summarized in Appendix B. The most common ansatz 2
is defined as

Q̂12 = (1 − Ô1)(1 − Ô2)− V̂1V̂2 , (2.95)

with the projection operators onto the occupied and virtual orbital space, Ô and V̂, respectively. Standardly,
three-center integrals are avoided by introducing auxiliary basis sets and it is common to evaluate F12 inte-
grals using a complementary auxiliary basis (CABS) [102]. Throughout the thesis, CABS orbitals are indicated
as {P ′′, Q ′′, . . . }.
Evaluating the Schrödinger equation using the wave-function expansions of Eqs. (2.92) and (2.94) yields work-
ing equations for both conventional and geminal CI coefficients or CC amplitudes. For explicitly correlated
coupled-cluster approaches, the so-obtained residual equations for the geminal amplitudes can be solved it-
eratively in analogy to the conventional counterparts (see Appendix B). However, it became common practice
to keep the geminal amplitudes fixed according to the s- and p-wave cusp conditions [171], motivated by the
fact that the ansatz is not only more efficient than an iterative procedure, but also avoids numerical insta-
bilities. Furthermore, it is free from geminal BSSE and provides stable predictions for weak van der Waals
interactions [172]. Keeping the geminal amplitudes fixed is often also called rational generator approach or
SP ansatz [99], as the basic working equations can be expressed by introducing the rational generator ŜXY,

|X̃Y〉 = ŜXY|XY〉 = ( 3
8 + 1

8 P̂flip

XY)|XY〉 . (2.96)

The permutation operator P̂flip

XY flips the spatial part of the orbitals X and Y keeping the spin functions σX and
σY the same,

P̂
flip
XY ϕXσX ϕYσY = ϕYσX ϕXσY . (2.97)

Eq. (2.97) can thus be interpreted as flipping from α to β spin or vice versa, justifying to call the open-shell
approach ”spin-flipped amplitudes”. In contrast to other common choices for fixed amplitudes, the rational
generator approach ensures basis-set convergence proportional to X−7 and has the advantage that open-shell
equations can be directly transformed into the closed-shell analogues, just by applying spin summation rules
and using identical orbitals for α and β spin. The presented F12 approaches in the following chapters there-
fore always refer to spin-flipped amplitudes. It should however be kept in mind that other choices for fixed
amplitudes are possible which are more cost-efficient [103, 173, 174] (see Appendix B).

Towards explicitly correlated RPA: On the basis-set convergence of established F12 methods and its trans-
ferability to RPA approaches

Based on the original idea of Kutzelnigg, various explicitly correlated wave-function methods have been
developed in the last decades. One of the first approaches was based on second-order Møller-Plesset per-
turbation theory [97] and further developments led to the nowadays established MP2-F12 approach [105].
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MP2-F12 theory proved as convincingly efficient, accelerating basis-set convergence while solely requiring an
additive F12 contribution with N5 scaling,

EMP2-F12
C = 1

4 tr[BRPAXT] + 1
4 tr[(V −V

X)† D] + 1
4 tr[ΩF12(MP2-F12)DLAG] ,

= 1
4

∑

ABI J

tAB
I J

(
g

I J
AB − g

I J
BA

)
+ 1

4

∑

XYI J

dXY
I J

((
V†
)I J

X̃Y
−

(
V†
)I J

ỸX

)
+ 1

4

∑

XYI J

dXY
I J (ΩF12(MP2-F12))X̃Y

I J . (2.98)

Keeping the geminal amplitudes fixed and assuming ansatz 2∗ for the projection operator Q̂12, the residual
equation for the geminal amplitudes is reduced to a constant term, given as

(ΩF12(MP2-F12))XY
I J = V X̃Y

I J − V X̃Y
JI +

∑

VW

dVW
I J B(I J)

X̃Y,ṼW
. (2.99)

Eq. (2.98) parameterizes the MP2-F12 correlation energy analogously to Eq. (2.65) referring to matrix BRPAX

which contains the antisymmetrized two-electron integrals as defined within Eq. (2.12). In contrast to Eq.
(2.65), the first-order double excitation amplitudes are now given as T = BRPAX/∆ with ∆

AB
I J = (ε I + ε J − εA −

εB). Note that pure exchange contributions are in the following indicated by adding the superscript X, as
already done in Eq. (2.98) for matrix V . The latter F12 intermediate and matrix B are defined as

V X̃Y
I J = 〈X̃Y| f12Q̂12 ĝ12|I J〉 , (2.100)

B(I J)

X̃Y,ṼW
= 〈X̃Y| f12Q̂12(F̂1 + F̂2 − ε I − ε J)Q̂12 f12|ṼW〉 . (2.101)

Details on the further evaluation of the matrices V and B are summarized in Appendix B, showing that
the projection onto the infinite virtual basis is treated analytically enabling fast basis-set convergence. In Eq.
(2.98), the geminal amplitudes are parameterized in terms of dXY

I J to highlight that the fixed ansatz requires
antisymmetrized coefficients when including exchange, dXY

I J = δIXδJY − δIYδJX, with the corresponding matrix
representation D. Ten-no furthermore suggested to set the Lagrange multipliers equal to DLAG = D since this
is true for optimized amplitudes [175, 176].
Neglecting all exchange contributions gives a corresponding direct MP2-F12 (dMP2-F12) approach, yielding
the Lagrangian with the conventional dMP2 contribution [177] in analogy to Eq. (2.66) as well as the related
explicitly correlated energy and residual term in analogy to Eq. (2.66),

EdMP2-F12
C = 1

2 tr[BdRPAT] + 1
2 tr[V †C] + 1

2 tr[ΩdMP2-F12CLAG] ,

= 1
2

∑

ABI J

tAB
I J g

I J
AB + 1

2

∑

XYI J

cXY
I J

(
V†
)I J

X̃Y
+ 1

2

∑

XYI J

cXY
I J (ΩF12(dMP2-F12))X̃Y

I J , (2.102)

with

(ΩF12(dMP2-F12))X̃Y
I J = V X̃Y

I J +
∑

VW

cVW
I J B(I J)

X̃Y,ṼW
. (2.103)

For dMP2, fixed amplitudes are chosen according to cXY
I J = δIXδJY for all spin cases. The Lagrange multipliers

are again given by the relation CLAG = C. Even though this connection might appear trivial for open-shell
systems, it should be noted that the strict identity between Lagrange multipliers and geminal amplitudes is
lifted when introducing a biorthogonal basis for closed-shell equations. Taking the partial derivatives of the
closed-shell analogues for Eq. (2.102) with respect to both coefficients and comparing the so-obtained equa-
tions shows that CLAG and C differ by a factor of two (or analogously it is found for closed-shell counterpart
of Eq. (2.98) that CLAG has to be set equal to 2C − CX). Explicit working equations for the closed-shell case are
given in Appendix C.
To visualize the three different contributions to the (d)MP2-F12 correlation energy, diagrams for the con-
ventional and the explicitly correlated energy contributions are given in Figure 2.5. An overview on the
nomenclature, summarizing all special vertices which are necessary to describe the additional F12 terms, is
given in Appendix A. In short, contractions over the infinite virtual basis are indicated by double arrows
and geminal amplitudes are represented by a double bar. The integral over the Slater geminal is drawn as a
wiggly line. Also note that contributions which cancel due to the chosen ansatz and the corresponding projec-
tion operator Q̂12 are already neglected. Regarding the translation rules to obtain the algebraic expressions,
it should be mentioned that these are identical to the standard rules for antisymmetrized Goldstone dia-
grams representing spin orbitals in the case of MP2-F12 theory including exchange. Moreover, analogously
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2.3. F12 theory: Including geminals in the wave-function expansion

to the two-electron interaction contribution (corresponding to the dashed line), the two-electron integral over
the Slater geminal is assumed to be antisymmetrized. Based on the nomenclature of Figure A.1, the alge-
braic equations can be derived by applying Wick’s theorem, as outlined in standard textbooks (see e.g. Ref.
[121]). The dMP2-F12 diagrams however refer to non-antisymmetrized integrals introducing — in analogy
to drCCD — an additional factor of 2. The dashed line thus corresponds to 1

2 gPR
QS â†

P â†
R âS âQ instead of the

antisymmetrized definition 1
4

(
gPR

QS − gPR
SQ

)
â†

P â†
R âS âQ.

It should furthermore be noted that the geminal amplitudes are not specified; the diagrams visualize not
only fixed, but also optimized amplitudes. Matrix B, as given in Eq. (2.101), is therefore depicted in terms of
the two diagrams [4] and [5]. This general representation does however not provide any information on the
further evaluation of the F12 intermediate. A short outline concerning the final working equations is given
in Appendix B, following Refs. [105, 178, 179] and showing that diagram [4] cancels to zero for fixed am-
plitudes. When furthermore referring to KS references with local exchange-correlation functional, exchange
contributions cancel and the two common approximations A and B turn out to be equivalent due to the fact
that all local potentials commute with the correlation factor f12 [180]. Approximations to the kinetic energy
term are also identical, elsewise standardly denoted as [T+V] and [F+K]. This conclusion holds for all F12
methods that are presented in the following chapters of the thesis and, in consequence, all further discussions
thus only discriminate between ansatz 1, 2 and 2∗. Assuming a KS reference with local exchange-correlation
functionals and fixed amplitudes, the final working equations for intermediate B thus reduce to the single
diagram no. [5]. Note that the diagrams for ansatz 1 and 2∗ are identical - the two approaches solely differ
due to the corresponding definitions of Q̂12 which only effects the explicit evaluation of intermediates V and
B. Ansatz 2, however, leads not only to a second contribution to the F12 intermediate B, but also to an addi-
tional term in the F12 residual, given in Eq. (E.8) and represented in terms of diagram [6] (see Appendix E).
In contrast to ansatz 1 and 2∗, ansatz 2 thus requires an iterative update of the conventional MP2 amplitudes.
To combine RPA with the explicitly correlated wave-function ansatz in analogy to the established MP2-F12
approaches, the connection to CC and many-body perturbation theory can be exploited: Based on the equiva-
lence of drCCD/rCCD and dRPA/RPAX approaches, it can be shown that the dMP2/MP2 correlation energy
is obtained when truncating the dRPA/RPAX energy after first-order perturbation theory,

EdMP2
C = 1

2 tr [BdRPATdRPA(1)] , (2.104)

EMP2
C = 1

2 tr [BRPAXTRPAX(1)] , (2.105)

with the corresponding residual equations for the first-order amplitudes T(1),

BdRPA + A(0)TdRPA(1) + TdRPA(1)A(0) = 0 , (2.106)
BRPAX + A(0)TRPAX(1) + TRPAX(1)A(0) = 0 . (2.107)

The zeroth-order contribution to matrix A is given for both dRPA and RPAX as (A(0))AB
I J = (εA − ε I)δI JδAB.

Due to this connection, perturbative dRPA+F12 and RPA+F12 methods can be set up by taking into account
the F12 contribution of the presented dMP2-F12 and MP2-F12 methods [181],

EdRPA+F12
C = EdRPA

C − EdMP2
C + EdMP2-F12

C , (2.108)
ERPAX+F12

C = ERPAX
C − EMP2

C + EMP2-F12
C . (2.109)

Explicit equations for closed- and open-shell references are given in Appendix C. Moreover, the ”+F12”
correction can be universally applied to beyond-RPA methods, which require — depending on the underlying
method — either just the Coulomb or both Coulomb and exchange contributions. Of course, RPA variants
whose second-order limits yield standard MP2 theory should be corrected by the F12 contribution of MP2-
F12 while the analogous contribution from dMP2-F12 theory should be added to those methods which yield
the dMP2 result to second order. As an example, the promising exchange methods ACSOSEX [145, 182] and
AXK [8] can be corrected according to

EACSOSEX+F12
C = EdRPA

C + E∆ACSOSEX
C − EMP2

C + EMP2-F12
C , (2.110)

EAXK+F12
C = EdRPA

C + E∆AXK
C − EMP2

C + EMP2-F12
C . (2.111)

Working equations for both correction terms ∆AXK and ∆ACSOSEX are summarized in Appendix C, em-
phasizing that the latter approach has to be distinguished from the CC-formulation of second-order screened
exchange, standardly referred to as SOSEX [45, 52]. Furthermore, the equations of Appendix C reveal that
both ACSOSEX and AXK contain exchange contributions to higher-order perturbation theory. In comparison,
the perturbative F12 correction, as derived from MP2 theory, includes Coulomb and exchange contributions

25



2. The starting point — a summary on achievements in the field of RPA and F12 theories

only to second-order perturbation theory, lacking a consistent screening as included for the conventional
counterparts.

Correlation energy E(d)MP2-F12
C Residual equation Ω

(d)MP2-F12 Coupling contribution

[1] [2] [3] [4] [5] [6]

Fig. 2.5: Diagrams [1] to [5] represent the (d)MP2-F12 correlation energy and amplitude equations within
ansatz 2∗, referring to Eqs. (2.98) and (2.99) or Eqs. (2.102) and (2.103), respectively. For ansatz 2, an additional
coupling contribution has to be considered, see Eq. (E.8). Algebraic expressions for the MP2-F12 approach can
be obtained by applying the standard translation rules for antisymmetrized Goldstone diagrams representing
spin orbitals. The dMP2-F12 ansatz however requires a non-antisymmetrized definition of the two-electron
interaction operator, resulting in an additional factor of 2.

However, due to the fact that higher-order terms are small in magnitude, the perturbative +F12 correction
is promising for all RPA and beyond-RPA methods: As depicted in Figure 2.6, basis-set convergence of the
correlation contribution to the atomization energy is significantly accelerated for the aug-cc-pVXZ basis sets
[183, 184]. Results are shown for 10 small molecules, namely CH4, CN, CO, C2H2, C2H4, F2, H2, N2, NH3, O2,
as well as 3 dimers, the H2O, CH4 and NH3 dimers. For the latter, the geometries were taken from the S22 test
set [36]; all other geometries refer to Ref. [185]. Aug-cc-pVXZ basis sets [183, 184] were chosen together with
the aug-cc-pwCV(X+1)Z [186, 187] and the aug-cc-pV(X+1)Z [188] basis sets as cbas and jkbas, respectively.
In addition, the optimized aug-cc-pVXZ/OPTRI basis sets were used as CABS [189]. Basis-set convergence
is investigated for double-zeta to quintuple-zeta size and the conventional results are extrapolated to the
basis-set limit using the two-point formula of Helgaker et al. [190],

EC(XY) =
X3EC(X)−Y3EC(Y)

X3 −Y3 , (2.112)

where EC(X) and EC(Y) denote correlation energies obtained in basis sets of cardinal numbers X and Y.
The following discussion is restriced to mean errors per valence electron with the corresponding standard
deviations as error bars in kJ/mol; explicit numbers and further statistical measures including mean abso-
lute errors and root-mean-square errors are given in Table C.2. The errors were calculated with respect to
the corresponding +F12 calculation performed within the aug-cc-pV5Z basis, in the following abbreviated
as +F12/aug-cc-pV5Z. The deviations of the chosen reference from the extrapolated aug-cc-pV(Q5)Z result
only amount up to 0.05 kJ/mol with a maximum standard deviation of 0.06 kJ/mol. All computations were
performed using PBE orbitals, ansatz 2∗ was chosen for the F12 calculations and the geminal amplitudes
were kept fixed. This choice enables a simple additive scheme; optimized amplitudes as well as the inclusion
of coupling contributions would require an iterative update of the conventional amplitudes. It should be
furthermore noted that hydrogen has a non-zero dRPA and dMP2 correlation energy and thus contributes to
the depicted atomization energies.
The plot is split in two parts: on the left-hand side, the direct RPA and MP2 approaches are compared with
the corresponding explicitly correlated schemes and on the right-hand side, the two different beyond-RPA
variants AXK and ACSOSEX are assessed with respect to the related, conventional and explicitly correlated
MP2 approaches. For all five conventional methods, the basis-set limit is reached from below. Mean errors
are slowly decreasing, starting in the range of -9.2 to -6.2 kJ/mol and declining up to a deviation of -0.7 to
-0.4 kJ/mol for the aug-cc-pV5Z basis. The extrapolated limits are as already mentioned in close agreement
with the +F12/aug-cc-pV5Z results. The similar convergence behavior of MP2 and RPA is not astonishing as
it was already shown by Furche [40] and Eshuis [80] that RPA correlation energies show an asymptotic X−3

basis-set dependence with respect to the cardinal number X, as standardly found for all orbital-dependent
wave-function methods [190]. In comparison, the explicitly correlated approaches are converging much faster,
even though the dMP2-F12 results within the aug-cc-pVDZ basis still show a mean error of -1.2 kJ/mol, which
is only slightly smaller than the conventional aug-cc-pVTZ errors. However, convergence to within 99 % of
the basis-set limit can already be achieved for the triple-zeta basis set, even outrivalling conventional aug-
cc-pV6Z results. Comparable trends are found for MP2-F12 including exchange. The corresponding +F12
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schemes for RPA and beyond-RPA approaches are corrected in the same manner, shifting the conventional re-
sults by the additive F12 contribution. Due to the slightly differing slopes of conventional MP2 and RPA, the
double-zeta +F12 results are already converged to within 99 % of the basis-set limit for all three approaches
dRPA+F12, ACSOSEX+F12 and AXK+F12. Convergence is however not smooth: the error increases when
expanding the basis to triple-zeta quality and in the case of AXK and ACSOSEX, the aug-cc-pVQZ error is
even larger in magnitude than the +F12/aug-cc-pVDZ result.
Next to atomization energies, it is interesting to take a look at interaction energies as geminals were shown
to compensate the lack of diffuse basis functions [191]. Diffuse functions are of particular importance for an
accurate description of binding energies [192], generally accelerating basis-set convergence when added in
the important bonding regions [193, 194]. Conventional methods were furthermore shown to require basis
sets of augmented quintuple-zeta quality to achieve accurate binding energies [195]. Moreover, wave-function
methods suffer from the basis-set superposition error (BSSE), leading to an overestimation of the binding en-
ergy and requiring to be corrected for by the counterpoise (CP) approach [82]. The BSSE was however shown
to be reduced due to the explicitly correlated wave-function ansatz, leading to much smaller counterpoise
corrections [191]. CP corrections are in general of particular importance when regarding interactions between
weakly bound dimers as the BSSE causes a stabilization of the dimer relative to the individual monomers,
caused by the additional basis functions of the neighboring monomer.
Figures 2.7 and 2.8 show the mean errors per valence electron in the interaction energies of the water, the am-
monia and the methane dimers, with and without counterpoise correction. For both graphs the counterpoise-
corrected +F12/aug-cc-pV5Z result serves as reference which agrees with the extrapolated counterpoise-
corrected aug-cc-pV(Q5)Z result to within 0.01 kJ/mol. Note that the interaction energies were calculated
without considering optimized geometries for the isolated monomers. The examined monomer geometries
were identical to the geometry that the monomer possesses in the dimer. Deformation energies were thus ne-
glected and the calculated energies have to be referred to as interaction energies instead of binding energies.
Conventional results without counterpoise correction converge for both direct and exchange methods smooth-
ly from above, with mean errors of 0.31-0.61 kJ/mol for the aug-cc-pVDZ basis to 0.04-0.09 kJ/mol for
the aug-cc-pV5Z basis. This systematic convergence is lost when including the perturbative F12 correction:
double-zeta results overestimate the interaction energy by roughly -0.32 to -0.17 kJ/mol, while triple-zeta
results overshoot the basis-set limit by a maximum of 0.10 kJ/mol. However, percentage errors show that
triple-zeta basis sets are sufficient to achieve convergence to within 97.1 to 99.6 % of the basis-set limit, being
comparable to the conventional auf-cc-pV5Z results with 95.2 to 98.6 %. Including the counterpoise correc-
tion, all conventional methods overestimate the interaction energy and the mean errors with respect to the
basis-set limit are comparable to the non-corrected results, now approaching the reference value from below.
Thus even though the counterpoise correction removes the basis-set superposition error, it does not diminish
the basis-set incompleteness error. The magnitude of the CP correction for the conventional methods is in the
range of 0.74 to 1.25 kJ/mol for the aug-cc-pVDZ basis. In comparison, the +F12 results are, as expected,
much less sensitive to the BSSE: the CP correction only amounts up to a maximum value of 0.2 kJ/mol for
dRPA+F12 within the aug-cc-pVDZ basis. Nevertheless, the inclusion of the CP correction has the advantage
that the so-obtained results converge smoothly to the basis-set limit, a necessary requirement for basis-set
extrapolation techniques [172]. Furthermore, the results suggest the hypotheses that it is more accurate to
correct the BSSE by adding a perturbative F12 correction than applying the usual counterpoise correction
scheme.
Regarding both results for atomization and interaction energies, it can be concluded that the perturbative
+F12 approaches accelerate basis-set convergence in the same manner as for the well-established MP2-F12
method, achieving convergence to within 99% of the basis-set limit for aug-cc-pVDZ or aug-cc-pVQZ results,
respectively. The gain is about more than three cardinal numbers for atomization energies; for interaction
energies conventional aug-cc-pV5Z results are comparable to explicitly correlated aug-cc-pVTZ calculations,
reducing the required cardinal number by two. However, convergence to the basis-set limit is not systematic
and relies on fortuitous error cancellation, as shown in Figure 2.6 for atomization energies when expanding
the basis set from double- to triple-zeta size. A comparable kink in the plotted error lines can also be ob-
served for correlation energies, as depicted in Figure C.2 of Appendix C. Nevertheless, the +F12 schemes
demonstrate that efficiency can be tuned and that the required basis-set size can be reduced by adding a
perturbation correction to the conventional correlation energy. The F12 contribution is cost-efficient with a
scaling of N5, requiring — for fixed geminal amplitudes — solely the diagonal contributions of the F12 in-
termediates V and B. It can thus be expected that more sophisticated explicitly correlated RPA approaches
yield the same benefit in terms of efficiency while being more rigorous and robust, not suffering from the
disadvantages of many-body perturbation theory.

27



2. The starting point — a summary on achievements in the field of RPA and F12 theories

-10

-8

-6

-4

-2

 0

D T Q 5 (Q5)

M
ea

n 
er

ro
r 

pe
r 

va
le

nc
e 

el
ec

tr
on

 [k
J/

m
ol

]

Basis set aug-cc-pVXZ

dMP2
dRPA

dMP2-F12
dRPA+F12

-12

-10

-8

-6

-4

-2

 0

D T Q 5 (Q5)

MP2
AXK

ACSOSEX
MP2-F12
AXK+F12

ACSOSEX+F12

Fig. 2.6: Basis-set convergence of the correlation contribution to the atomization energies for selected +F12
approaches, the underlying dMP2-F12 and MP2-F12 methods as well as the corresponding conventional
counterparts.
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Fig. 2.7: Basis-set convergence of interaction energies (without counterpoise correction) for selected +F12
approaches as well as the underlying dMP2-F12 and MP2-F12 methods.
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Fig. 2.8: Basis-set convergence of counterpoise-corrected interaction energies for selected +F12 approaches as
well as the underlying dMP2-F12 and MP2-F12 methods.

Accelerating basis-set convergence of the Kohn-Sham reference determinant

When considering the convergence of total energies with respect to the size of the chosen basis set, it is
important to distinguish between basis-set convergence of the correlation contribution and the underlying
reference energy [190]. While it has been shown that the truncation error in the correlation energy converges
as L−3 with L as the maximum angular momentum number [196–198], the convergence of the reference
energy is significantly faster and can be well described by an exponential function [96, 199, 200]. Nevertheless,
the basis-set incompleteness error in the reference energy is still significant for small basis sets and gains
particular importance when the correlation energy is already converged to the basis-set limit, as in the case
of F12 methods. Adding geminals in the wave-function expansion as done within F12 theory only accelerates
convergence in the double-excitation space, omitting an equally extensive parameterization of the HF or
KS orbitals in terms of single excitations. To reduce the basis-set error in the reference determinant, it
was thus proposed to include single excitations into the CABS basis, yielding a perturbative second-order
energy correction which is standardly abbreviated as ”CABS-singles correction” [201, 202]. It was shown for
HF references that the CABS-singles correction reduces the HF basis-set error by one order of magnitude,
allowing to reach chemical accuracy with double-zeta basis sets for total reaction energies [203]. In general,
the CABS-singles correction ensures that the error in the HF energy is smaller than the corresponding error
in the correlation energy while the computation time is negligible, being comparable to a single HF iteration
within the combined MO and CABS basis. Regarding the following Chapter 3, it is also interesting to note that
the impact of the CABS-singles correction onto the singles correlation contribution is unimportant [202, 204].
Detailed equations for HF references are e.g. given in Refs. [105, 178]. For KS references, the singles residual
equation is evaluated analogously, now based on the KS matrix FKS,

ta ′
i (ansatz 2) = −

∑

b ′
[FKS

a ′b ′ − δa ′b ′ ε
KS
i ]

−1FKS
b ′ i , (2.113)

while the correction to the reference energy is calculated using the Fock matrix FHF from HF theory,

E∆CABS(ansatz 2) = 2
∑

a ′i

FHF
a ′it

a ′
i . (2.114)

Still, the Fock matrix is built from KS orbitals, thus neither the extended nor the generalized Brioullin con-
dition hold. Eqs. (2.113) and (2.114), which refer to ansatz 2 including excitations into the combined virtual
and CABS basis {p ′, q ′, . . . }, thus consider coupling contributions of the virtual-virtual and the CABS-virtual
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block. In contrast, ansatz 2∗ only accounts for singles excitations into the CABS space,

ta ′′
i (ansatz 2∗) = −

∑

b ′′
[FKS

a ′′b ′′ − δa ′′b ′′ ε
KS
i ]

−1FKS
b ′′ i , (2.115)

E∆CABS(ansatz 2∗) = 2
∑

a ′′i

FHF
a ′′it

a ′′
i . (2.116)

The CABS-singles correction for Kohn-Sham references was implemented by Dr. David Tew from the Univer-
sity of Bristol in the program part RICCTOOLS of the TURBOMOLE program package [180]. Details on the
required keywords are given in Appendix E. Note that the reference energy is calculated as defined within
Eq. (2.63). Figure 2.9 visualizes the impact of the CABS-singles correction on the basis-set convergence of
the reference energy, depicting mean errors in kJ/mol for the earlier presented test set of 10 molecules, 3
dimers as well as the corresponding atoms C, N, O, H, and F. HF and PBE references are examined for the
Dunning aug-cc-pVXZ basis sets, revealing that the basis-set incompleteness error is most prominent for the
double-zeta basis, amounting up to 2.0 and 2.2 kJ/mol, respectively. Including the CABS-singles correction,
denoted as HF+CABS and PBE+CABS, reduces the error in the HF (PBE) reference energy to 0.2 (0.4) kJ/mol.
The double-zeta +CABS result is thus comparable to conventional aug-cc-pVTZ errors, demonstrating that
the required basis-set size is reduced by one cardinal number. Further benchmark studies for PBE references
are published in Ref. [180].
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Fig. 2.9: Impact of the CABS-singles correction on the basis-set convergence of the reference energy.
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3. RPA-F12 based on the hypervirial
theorem

The promising performance of the perturbative RPA+F12 approach motivates to take further interest in other
possible variants of explicitly correlated RPA. While some derivations of conventional RPA are based on the
density, emphasizing the connection of the correlation method to (time-dependent) density-functional the-
ory, a wave-function ansatz, as given by the equations of motion presented at the beginning of Chapter 2, is
most suitable in order to enable a straightforward inclusion of F12 geminals, defined in Section 2.3. More
precisely, the explicitly correlated dRPA approach as outlined in the following follows the ansatz of Bouman
and Hansen, specifying the projection manifolds of ground and excited states in terms of single and double
excitation amplitudes [117, 118]. To highlight the difference between the so introduced F12 contributions,
the derivation of the corresponding eigenvalue problem is split in two parts, first adding geminals to the
double excitation space and secondly including singles excitations into the CABS basis. Possible ansätze for
the correlation energy are investigated, showing that the density matrix formulation still holds, requiring to
compute the energy contribution via numerical integration over the frequency and implying a subsequent or-
thogonalization of the eigenvectors. Exemplary results demonstrate that the so-obtained explicitly correlated
dRPA method, in the following denoted ”dRPA-F12”, can be interpreted or compared to a corresponding
dual basis-set approach where the orbital basis is extended by the complementary auxiliary basis for the
correlation treatment. This result is in line with the general idea of RPA which is to describe the correlation
energy in terms of single excitations.

3.1 Adding geminals to the double excitation space

As geminals can be parameterized in terms of double excitations, it is straightforward to extend the double
excitation space only, including geminals in the description of the ground state,

|0〉 = N0[|HF〉+ 1
2

∑

aibj

tab
ij |

ab
ij 〉+ 1

2

∑

xyij

∑

αβ

c
xy
ij 〈αβ|Q̂12 f12|xy〉|αβ

ij 〉] , (3.1)

and the resolution of the identity,

1 = |HF〉〈HF|+
∑

ai

|ai 〉〈a
i |+

1
2

∑

abij

|ab
ij 〉〈ab

ij |+
1
2

∑

vwxyij

|
xy
ij 〉(X−1)

xy
vw〈vw

ij |+ . . . . (3.2)

To highlight that the manifold of excited states |n〉 is still restricted to the conventional orbital space and thus
spans a dimension of NOCC × NVIR, the subscript V is added to indicate the dimension of excited states, nV.
Throughout the chapter, NOCC denotes the number of occupied orbitals, NVIR the number of virtual orbitals,
NGEM the size of the geminal space and NCABS the dimension of the CABS space. Normalization of the geminal
part is conserved by the overlap matrix X ,

X xy
vw = 〈xy| f12Q̂12 f12|vw〉 , (3.3)

which is evaluated analogously to the F12 intermediate V (see Appendix B). In the following, the projection
operator Q̂12 is chosen as defined within ansatz 2 (see Appendix B), thus it ensures orthogonalization of the
geminal space with respect to the conventional orbital basis, taking into account mixed double excitations
into the CABS and virtual basis. To evaluate the right-hand side of the equations of motion, Eq. (2.3), the
generalized Brillouin condition is assumed (see Appendix B), implying that 〈HF|Ĥ|a

′
i 〉 cancels to zero within
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the entire combined virtual and CABS block, denoted as {a ′, b ′, . . . }. Hence, three different contributions to
the transition moment are obtained,

∑

ai

〈0|Ô|ai 〉tnV
ai =

∑

ai

XnV
ai 〈HF|Ô|ai 〉+

∑

ai

YnV
ai 〈a

i |Ô|HF〉+
∑

p ′′i

(YF12)nV
p ′′i〈

p ′′
i |Ô|HF〉 , (3.4)

parametrized by the conventional amplitudes XnV
ai and YnV

ai , given in Eqs. (2.8) and (2.9), as well as the
explicitly correlated excitation vector (YF12)nV ,

(YF12)nV
p ′′i =

∑

ckxy

N0tnV
ck c

xy
ki f

xy
cp ′′ . (3.5)

(Y)nV
p ′′i is defined in analogy to the conventional amplitude YnV

ai as the contraction of single excitation ampli-

tudes tnV
ck with the explicitly correlated double excitation amplitudes, partitioned into geminal coefficients c

xy
kj

and the corresponding integrals over the correlation factor f
xy
cq ′′ . The dimension of the explicitly correlated

excitation vector differs from its conventional counterpart, spanning the space (NOCC × (NVIR + NCABS)). A sec-
ond label is therefore added whenever the specific orbital indices are omitted, referring to (YF12)nV

nC
where nC

indicates the dimension (NOCC × NCABS). Evaluating the commutator on the left-hand side of the hyperviri-
altheorem (Eq. (2.3)) and partitioning the equations subsequently according to the three transition moments

〈HF|Ô|ai 〉, 〈b
j |Ô|HF〉 and 〈p ′′

j |Ô|HF〉 gives a set of coupled eigenvalue equations, which can be summarized in
matrix form as



A B BF12
nV,nC

AnC,nV BF12
nC,nV

BF12
nC,nC

B A AnV,nC(
BF12

nC,nV

)†
AnC,nV AnC,nC







XnV

YnV

(YF12)nV
nC


 = ΩnV




1nV,nV 0 0
0 0 0
0 −1nV,nV 0
0 0 −1nC,nC







XnV

YnV

(YF12)nV
nC


 , (3.6)

depending on the generalized definition of matrix A,

Aa ′b ′
ij = Fa ′b ′δij − Fijδa ′b ′ + 2g

a ′ j
ib ′ , (3.7)

and including the intermediate BF12,

(BF12)a ′b ′
ij =

∑

xyvw

2 f a ′b ′
xy (X−1)

xy
vwVvw

ij , (3.8)

((BF12)†)
ij
a ′b ′ =

∑

xyvw

2(V†)
ij
xy(X

−1)
xy
vw f vw

a ′b ′ . (3.9)

Analogously to the explicitly correlated amplitude YF12, the dimensions of matrices A and BF12 are specified
by adding pairs of indices corresponding to the different subblocks. For the sake of convenience, superscripts
are in the following omitted for the conventional contributions A and B, referring to the dRPA variant of
Eqs. (2.11) and (2.12). Introducing geminals in the RI and the definition of the ground-state thus increases
the size of the matrix eigenvalue problem, yielding (NOCC × NVIR) positive and negative excitation energies
which are parameterized in an orbital space of dimension (NOCC × (NVIR + NCABS)). The matrices are however
not symmetric, highlighting that the evaluation of the commutator on the left-hand side of Eq. (2.3) gives

terms including a fourth transition moment, 〈HF|Ô|
p ′′

i 〉, while analogous contributions are lacking on the
right-hand side of the hyperviriral theorem. Furthermore, it should be stressed that an explicitly correlated
analog to XnV does not occur, emphasizing that the amplitude parameterizes single excitations only. Detailed
equations are given in Appendix D.

3.2 Expanding the excitation manifold to the CABS basis

Aiming for a more symmetric eigenvalue problem, it is thus necessary to describe the excited states in terms
of the combined orbital and CABS basis,

|n〉 =
∑

bj

tnV
bj |

b
j 〉+

∑

q ′′ j

tnC
q ′′ j|

q ′′

j 〉 , (3.10)
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and to further include single excitations into the CABS basis within the resolution of the identity,

1 = |HF〉〈HF|+
∑

ai

|ai 〉〈a
i |+
∑

p ′′i

|
p ′′

i 〉〈p ′′
i |+ . . . . (3.11)

The corresponding transition moment,

∑

ai

〈0|Ô|ai 〉tnV
ai +

∑

p ′′i

〈0|Ô|
p ′′

i 〉tnC
p ′′i =

∑

ai

XnV
ai 〈HF|Ô|ai 〉+

∑

p ′′i

XnC
p ′′i〈HF|Ô|

p ′′

i 〉

+
∑

ai

(
YnV

ai + (YF12)nC
ai

)
〈a

i |Ô|HF〉+
∑

p ′′i

(
(YF12)nV

p ′′i + (YF12)nC
p ′′i

)
〈p ′′

i |Ô|HF〉 , (3.12)

comprises all contributions of Eq. (3.4) and three further terms, parameterized by the amplitudes XnC , (YF12)nC
nV

and (YF12)nC
nC

. It should be noted that both (YF12)nC
nV

and (YF12)nC
nC

imply an inner contraction over the CABS
basis,

(YF12)nC
a ′i =

∑

r ′′kxy

N0tnC
r ′′kc

xy
ki f

xy
r ′′a ′ , (3.13)

while (YF12)nV
nC

is obtained by an analogous summation over the virtual orbital space, see Eq. (3.5). Finally, the
four coupled eigenvalue equations can be summarized in terms of a single matrix equation,



A AnV,nC B BF12
nV,nC

AnC,nV AnC,nC BF12
nC,nV

BF12
nC,nC

B
(
BF12

nV,nC

)†
A AnV,nC(

BF12
nC,nV

)† (
BF12

nC,nC

)†
AnC,nV AnC,nC







XnV

XnC(
Y + YF12

nC

)nV

(
YF12

nV
+ YF12

nC

)nC




= Ωn




1nV,nV 0 0 0
0 1nC,nC 0 0
0 0 −1nV,nV 0
0 0 0 −1nC,nC







XnV

XnC

(Y + YF12
nC
)nV

(YF12
nV

+ YF12
nC
)nC


 . (3.14)

As for standard dRPA, the normalization condition




XnV

XnC(
Y + YF12

nC

)nV

(
YF12

nV
+ YF12

nC

)nC




†


1nV,nV 0 0 0
0 1nC,nC 0 0
0 0 −1nV,nV 0
0 0 0 −1nC,nC







XmV

XmC(
Y + YF12

mC

)mV

(
YF12

mV
+ YF12

mC

)mC


 = δnm (3.15)

is an additional constraint. Given that Eqs. (3.14) and (3.15) rely on the conventional dRPA eigenvalue
problem and imply no approximations regarding the treatment of explicitly correlated terms, the approach
is in the following denoted dRPA-F12.

3.3 Calculating the correlation energy based on single-particle transition

densities

When dividing the supermatrices of Eq. (3.14) into four blocks of dimension (NOCC × (NVIR + NCABS)), e.g.
according to

AdRPA-F12 =

(
A AnV,nC

AnC,nV AnC,nC

)
and BdRPA-F12 =

(
B BF12

nV,nC

BF12
nC,nV

BF12
nC,nC

)
, (3.16)

it becomes apparent that the so-obtained dRPA-F12 eigenvalue problem with the supermatrix(
AdRPA-F12 BdRPA-F12

(BdRPA-F12)† AdRPA-F12

)
has the same structure as conventional dRPA, enlarging the dimension of each ma-

trix by the size of the CABS basis. However, in contrast to the conventional scheme, only the full matrix
AdRPA-F12 is still symmetric for real orbitals, while the matrix BdRPA-F12 is neither symmetric nor Hermitian due to
the additional F12 contributions. Hence, both BF12 and the adjoint (BF12)† need to be calculated. The structure
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of BdRPA-F12 has to be taken into account when aiming for the dRPA-F12 correlation energy: Standardly, the
derivation of the plasmon formula, summarized in Eqs. (2.46) and (2.47), starts from the conventional dRPA
eigenvalue problem and exploits the equality of the two-electron integral contributions to the matrices A and
B. In the case of dRPA-F12, however, AdRPA-F12 and BdRPA-F12 differ in the first-order terms and it is therefore not
possible to derive an equivalent plasmon formula for dRPA-F12. Moreover, the density-matrix formulation
based on the matrix Pζ , as defined within Eqs. (2.42) and (2.43), is no longer possible, requiring that the two-
electron integral contributions to Aζ

−Bζ cancel, reducing to a positive definite diagonal matrix which solely
contains the zeroth-order Fock (or KS) matrix elements. This is again not the case for dRPA-F12 due to the
non-diagonal and asymmetric structure of the difference matrix AdRPA-F12

− BdRPA-F12. However, a density-matrix
formulation based on one-particle transition densities ρ

ζ
0n and the related excitation vectors X and Y can be

set up in analogy to Eqs. (2.32) and (2.41): The conventional formula is derived starting from the coupling-
strength integral as defined within the adiabatic connection, introducing the electron-electron interaction
through the coupling-strength parameter ζ and expressing the correlation energy in terms of one-particle
transition densities. As such an ansatz implies no symmetry constraints, it is possible to derive the dRPA-F12
equivalent using the already introduced definitions for the ground and excited states, (Eqs. (3.1) and (3.10)),
yielding

ρ
ζ
0n(r) = 〈Ψζ

0|ρ̂(r)|Ψ
ζ
n〉 =

∑

a ′i

(XdRPA-F12 + YdRPA-F12)nζ
ia ′φi(r)φa ′(r) . (3.17)

The density operator ρ̂(r) is defined in Eq. (2.32). Inserting the dRPA-F12 transition density into the coupling-
strength integral of Eq. (2.36) gives the final expression for the correlation energy, analoguously to Eq. (2.41),

EdRPA-F12
C = 1

2

∫ 1

0
dζ
∑

ia ′ jb ′
ga ′b ′

ij


∑

n 6=0

(XdRPA-F12 + YdRPA-F12)
nζ
ia ′ (X

dRPA-F12 + YdRPA-F12)
nζ
jb ′ − δijδa ′b ′


 , (3.18)

with the dRPA-F12 eigenvectors

(XdRPA-F12)nζ =

(
XnVζ

XnCζ

)
and (YdRPA-F12)nζ =

(
(Y + YF12

nC
)nVζ

(YF12
nV

+ YF12
nC
)nCζ

)
. (3.19)

Assuming the adiabatic connection Hamiltonian, the dRPA-F12 eigenvalue problem and the therein obtained
matrices depend on the coupling-strength parameter ζ according to

(Aζ)a ′b ′
ij = Fa ′b ′δij − Fijδa ′b ′ + 2ζg

a ′ j
ib ′ , (3.20)

(Bζ)ab
ij = 2ζgab

ij , (3.21)

(BF12ζ)a ′b ′
ij =

∑

xyvw

2ζ f a ′b ′
xy (X−1)

xy
vwVvw

ij . (3.22)

3.4 Evaluation of the dRPA-F12 approach

The dRPA-F12 method, based on the coupled eigenvalue problem of Eq. (3.14) and the presented density-
matrix formulation for the correlation energy, given in Eq. (3.18), was implemented in the KOALA program
package [205]. The Fock matrix in the combined orbital and CABS basis is constructed and the CABS-CABS
block is diagonalized in order to obtain canonical CABS orbitals. F12 intermediates V and X are calculated
within ansatz 2 (see Appendix B). The coupling-strength integration is performed numerically using a seven
point Gauss-Legendre quadrature. For each quadrature step, the dRPA-F12 eigenvalue problem (Eq. (3.14))
is solved and to ensure normalization for degenerate orbitals (Eq. (3.15)), the eigenvectors XdRPA-F12 and YdRPA-F12

are subsequently orthogonalized. It should be noted that only the subspace of positive eigenvalues is taken
into account (see Appendix D). All integrals are evaluated using resolution of the identity techniques. For
comparison, the implementation also enables to compute the dRPA eigenvalue problem in the combined
orbital and CABS basis, based on a HF calculation which is still restricted to the conventional orbital basis.
The so-obtained correlation energy is denoted "dRPA+CABS". If both the reference and the correlation energy
are obtained within the combined basis, the results are labeled as "dRPA/basis+CABS".
Performance of the dRPA-F12 approach is assessed regarding a test set of 20 small molecules taken from
Ref. [206], which includes small molecules of the first and second period (see Appendix D). The number
of valence electrons ranges from 2 (H2) to 18 (O2), with a mean value of 10 electrons. All calculations were
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3.4. Evaluation of the dRPA-F12 approach

performed using a HF reference and the hierarchy of def2-SVP, def2-TZVPP and def2-QZVPP basis sets of
Ahlrichs and co-workers [207]. For convenience, the acronym def2- is neglected in the following discussion
and RPA calculations performed within a def2-SVP basis are abbreviated as dRPA/SVP. Core orbitals were
kept frozen for the correlation treatment. Given that no optimized CABS basis sets are available for the def2-
basis sets, they are chosen identically to the auxiliary basis for density fitting (cbas). An optimization could
of course improve results and remains to be investigated.

Basis-set convergence of correlation energies
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Fig. 3.1: Basis-set convergence of the dRPA-F12 correlation energy for a testset of 20 molecules.

Figure 3.1 depicts the mean error per valence electron in the correlation energy with the corresponding
standard deviations as error bars for the hierarchy of def2-basis sets. The corresponding statistical measures
are given in Appendix D. Errors are calculated with respect to the dRPA-F12/QZVPP results assuming that
the presented dRPA-F12 approach is most accurate and close to the basis-set limit. The accuracy of the dRPA-
F12/QZVPP reference is validated by extrapolation, as proposed by Schwenke [208] and applied in Ref.
[180]: First, extrapolation factors FXY are calculated for all test molecules by inverting the general two-point
extrapolation formula between subsequent basis sets of cardinal numbers X and Y,

EC(∞) = [EC(Y)− EC(X)]FXY + EC(X) . (3.23)

dRPA-F12/QZVPP results are taken as reference for the basis-set limit EC(∞), while conventional dRPA
calculations obtained within the def2-TZVPP and the def2-QZVPP basis were used as data points for the
correlation energies EC(Y) and EC(X). The mean average of all FXY factors is calculated by linear regression
and, in a second step, used to extrapolate the basis-set limit EC(∞) according to Eq. (3.23) taking the same ref-
erence values for EC(X) and EC(Y). As noted in Ref. [180], the deviation of the extrapolated EC(∞) limit with
respect to the dRPA-F12/QZVPP result reflects the inherent error of the extrapolation scheme and should
thus allow to assess the accuracy of the chosen dRPA-F12/QZVPP reference. The corresponding standard
deviation σ amounts up to 0.217 mEh per valence electron and is depicted as a yellow bar in Figure (3.1),
indicating the range from −σ to σ.
Figure 3.1 illustrates the slow basis-set convergence of dRPA, with mean errors decreasing from 14.6 over
6.2 to 2.5 mEh when going from SVP to QZVPP basis-set size. Enlarging the basis set by the corresponding
CABS basis pushes results closer to the basis-set limit, however, dRPA/SVP+CABS results cannot reach the
dRPA/QZVPP mark, still showing an error of 4.8 mEh. Nevertheless, the deviation of the corresponding
dRPA/QZVPP+CABS calculations lies within the accuracy of the dRPA-F12/QZVPP basis-set limit. Compa-
rable basis-set convergence is found for the dual basis-set approach dRPA+CABS, which differs only for the
SVP basis by 0.5 mEh from the dRPA/basis+CABS result. For the two larger basis sets, deviations are still
one magnitude smaller and the close-lying results coincide for both TZVPP and QZVPP calculations. Further
improvement by 1.6 (0.5) mEh for the SVP (TZVPP) basis sets can be achieved when taking into account ex-
plicit correlation. The mean error for dRPA-F12/SVP still lies 0.8 mEh above the conventional dRPA/QZVPP
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3. RPA-F12 based on the hypervirial theorem

result and it is thus necessary to enlarge the basis to triple-zeta size to converge to the conventional QZVPP
limit.

Dependence on the correlation factor γ

Up to now, basis-set convergence was investigated keeping the exponent of the Slater-type geminals fixed at
γ = 1.4 a−1

0 for all basis-set sizes. However, Höfener et al. showed that optimal γ values can lie around 0.7 a−1
0

for CCS(F12) and that the correlation energy depends strongly on the correlation coefficient, at least for fixed
amplitudes [206]. Within CCS(F12), the conventional correlation energy is captured via singles excitations;
explicit correlation is introduced through geminals which are parameterized by double excitations into the
infinite basis. dRPA-F12 can be interpreted in a similar way: the conventional dRPA correlation energy is
also described by single excitations only (Eq. (2.15)) and explicit correlation is taken into account by adding
geminals to the wave-function expansion of the ground state. In analogy to CCS(F12), an optimization of the
correlation factor could thus improve the explicitly correlated dRPA ansatz.
In Figure 3.2, exemplary results for the molecules HF (left-hand side) and CH2 (right-hand side) are depicted,
showing the correlation energy in dependence of the correlation factor γ for the series of def2-basis sets.
Optimal γ values are marked in red, ranging with increasing basis-set size from 2.6 a−1

0 to 3.9 a−1
0 for HF and

from 1.7 a−1
0 to 2.7 a−1

0 for CH2, respectively. Thus, the optimal γ exponent is shifted towards larger values
which can be, as shown for the two tested molecules, approximately twice as large as the standardly used
exponent of 1.4 a−1

0 . Furthermore, the dependence on the correlation factor decreases when enlarging the
basis set from def2-SVP to def2-QZVPP size, resulting in flatened curves with constantly declining slopes.
This is in line with earlier findings of Tew and Klopper [166]. In comparison to Ref. [206], it is moreover
important to note that the dependence on the correlation factor is much less pronounced for dRPA-F12 than
for CCS(F12): the change in the correlation energy with varying γ is about one magnitude smaller, indicating
the relatively small impact of the F12 correction on the dRPA correlation energy.
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Fig. 3.2: Dependence of the correlation energy on the correlation factor γ for hydrogen fluoride (left-hand
side) and methylene (right-hand side). The optimal γ values for HF amount up to 2.6 (SVP), 3.3 (TZVPP) and
3.9 (QZVPP) a−1

0 ; for CH2, an exponent of 1.7 (SVP), 2.3 (TZVPP) and 2.7 (QZVPP) a−1
0 was found.

Basis-set convergence of excitation energies

Calculating the dRPA ground-state correlation energy according to Eqs. (2.7) and (2.47) requires the explicit
computation of all excited states, characterized by the eigenvectors X and Y as well as the eigenvalues Ω. This
connection is highlighted for conventional dRPA by the plasmon formula (Eq. (2.47)), which directly relates
the excitation energies of the correlated and uncorrelated system with the ground-state energy. Regarding
dRPA-F12, one might therefore not only assume an improved basis-set convergence for the ground state, but
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also for the excited states. A thorough investigation of this hypothesis would of course require a detailed anal-
ysis of the excited states allowing to assign each excitation energy to a specified transition between occupied
and virtual orbitals. Only such a precise assignment allows to compare all excitation energies for different
basis sets as not only the number but also the energetic ordering of states changes with basis-set size. The
following investigation can however not rely on a robust classification and, when comparing different basis
sets, the discussion is therefore restricted to the lowest lying excited states which are well separated in energy.
Within a given basis set, it is furthermore possible to match excited states for the three different approaches
dRPA, dRPA-F12 and dRPA+CABS. Each excitation n is therefore characterized by a conventional and an
explicitly correlated weight, wconv and wf12, which are defined based on the corresponding eigenvectors,

1 = wconv + wf12

= (XnV)†XnV − ((Y + YF12
nC
)nV)†(Y + YF12

nC
)nV + (XnC)†XnC − ((YF12

nV
+ YF12

nC
)nC)†(YF12

nV
+ YF12

nC
)nC . (3.24)

Those excitations with dominating wconv can be assigned as transitions between the occupied and the con-
ventional virtual orbital basis and hence be compared with corresponding dRPA calculations - enduring the
assumption that the mixing between orbital and CABS basis is negligible.
Regarding the five lowest excited states of HF, as depicted in Figure 3.3, falsifies the hypothesis of equally
fast convergence for ground and excited states: Independent of the basis-set size, the states are well separated
in energy with the first and the third one being doubly degenerate. Assuming thus a comparison between
the different basis sets as justified, it can be concluded that the excitation energies decrease equally fast with
increasing cardinal number for both dRPA, dRPA+CABS and dRPA-F12. The total energies differ only by a
maximum of 1 mEh when comparing the three different methods, while the basis-set incompleteness error
for the SVP basis amounts up to 0.5 Eh. The corresponding conventional weights are in the range of 99.7 to
99.9%, supporting the conclusion that the influence of the CABS basis and the effect of explicit correlation is
negligible. This analysis is of course restricted to the lowest excitation energies and might not be transferable
to higher lying states.
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Fig. 3.3: Basis-set convergence of the five lowest lying excited states for hydrogen fluoride.

3.5 Conclusions

The presented dRPA-F12 approach improves basis-set convergence of the correlation energy in comparison to
conventional dRPA, in particular, the gain is about one cardinal number for the def2-basis sets. Convergence
to within 97% of the basis-set limit is achieved for the def2-TZVPP basis, corresponding to a mean error of
1 mEh per valence electron. Results could still be improved when optimizing the CABS basis as well as the
correlation factor. Explicit correlation is included in the virtual-CABS, CABS-virtual and CABS-CABS block
of the orbital rotation Hessian BdRPA-F12. As visualized in Figure 3.4, the calculation of the intermediate BdRPA-F12
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3. RPA-F12 based on the hypervirial theorem

implies an inner contraction over four geminal indices, resulting in a matrix of dimension (NOCC × (NVIR +
NCABS))2. AdRPA-F12, in contrast, comprises no F12 intermediates and is a generalization of the conventional
matrix A, now considering excitations into the conventional virtual as well as the CABS basis. In consequence,
the dimension of the total eigenvalue problem is analogously enlarged to the combined orbital and CABS
space, increasing the computation time and therefore limiting the applications to moderately sized (CABS)
basis sets. Equally large matrices are obtained for the dual basis-set approach dRPA+CABS as well as for
corresponding calculations in the combined basis, dRPA/basis+CABS. The overall gain of all three methods,
dRPA-F12, dRPA+CABS and dRPA/basis+CABS is comparable in magnitude, with mean errors deviating by
at most 1.5 mEh. Even though dRPA-F12 shows a slightly faster convergence then dRPA+CABS, it requires
the additional calculation of the F12 intermediate BdRPA-F12. The ratio between accuracy and computational
cost can thus regarded as equal for both dRPA-F12 and dRPA+CABS. Contrary results are obtained for other
wave-function methods: In the case of MP2, for example, dual basis-set approaches [209–211] are standardly
discarded due to the more efficient, explicitly correlated alternative MP2-F12. It is furthermore interesting to
note that Köhn and Tew found for CC methods that the improvement of the singles correlation energy by
adding single excitations into the CABS basis is negligible, at least when considering single-reference closed-
shell molecules [204]. However, in the context of response theory, the contribution of single excitations to the
correlation energy gains in importance, demanding for iterative CABS singles approaches [212, 213]. In case
of dRPA-F12 correlation energies, the presented results show that the expansion of the excitation manifold to
the CABS basis is more effective than adding geminals to the double excitation space. This is however not
astonishing as RPA is standardly interpreted as a single excitation approach, which is, as outlined in Chapter
2, related to TDHF and CIS.

Aa ′b ′
ij Bab

ij (BF12)a ′b ′
ij

Fig. 3.4: Contributions to matrices AdRPA-F12 and BdRPA-F12, referring to Eqs. (3.7) and (3.8).
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coupled-cluster doubles theory

The hypervirial theorem allows to combine RPA and F12 by introducing geminals in the description of the
ground state and the resolution of the identity. The resulting equations are however expressed in terms
of single excitation amplitudes, which follows the original idea and interpretation of RPA, but hinders, as
shown in Chapter 3, an efficient incorporation of two-particle quantities as needed for a corresponding F12
approach. This bottleneck can be circumvented when exploiting the connection between RPA and CC theory:
As outlined in Section 2.2, the coupled RPA eigenvalue problem can be rewritten as an amplitude equation
and the correlation energy can be expressed in terms of the so-defined double excitation amplitudes. The
ring coupled-cluster doubles (rCCD) ansatz reproduces the RPA correlation energy, even though it is based
on a different formalism [140].
The connection to coupled-cluster theory was already exploited to construct range-separated DFT functionals,
describing the long-range part of the electron-electron interaction within density-functional theory and in-
corporating the drCCD correlation energy for the short-range part [86–89]. Range-separated RPA approaches
correct the poor description of correlation energies inherent to standard RPA and can accurately describe van
der Waals systems, mending an important shortcoming of density-functional theory [214]. Toulouse et al.
for example demonstrated that the interaction energy curve of Be2 shows an unphysical bump within RPA
[40, 215], but is correctly described when applying range separation due to the short-range functional [214]. In
comparison to standard wave-function methods, range-separated RPA approaches were furthermore proven
to exhibit fast basis-set convergence with exponential asymptotics for both the short- and the long-range part
[90]. The reduced basis-set dependence also entails a smaller basis-set superposition error. However, it has to
be kept in mind that the improvement comes with a change of the basis-set limit due to the range-separated
definition of the Hamiltonian.
In contrast, F12 theory allows to set up an explicitly correlated rCCD approach which converges to the con-
ventional RPA basis-set limit by including geminals in the wave-function expansion. Both the direct variant as
well as the RPAX approach including exact exchange can be formulated based on the corresponding drCCD
or rCCD schemes. The approaches are in the following denoted (d)rCCD(F12) in order to distinguish them
from the dRPA-F12 ansatz of Chapter 3 and to indicate the underlying ring coupled-cluster formalism. The
close relation and similarity to already established explicitly correlated coupled-cluster approaches enables to
exploit earlier implementations in the TURBOMOLE program package (see e.g. Refs. [91, 216]). The results
of the following chapter were published in Refs. [156, 180, 217]. Figures 4.5 and 4.10 are taken from Ref. [180];
Figure 4.9 is adapted from Ref. [156]. The following sections summarize briefly the results reported therein,
detailed information and explicit numbers can be found in the references as well as the corresponding sup-
plementary information. Statistical measures which are not published in the cited references are given in
Appendix E.

4.1 From CCD(F12) to (direct) rCCD(F12) — a diagrammatic approach

In analogy to conventional drCCD and rCCD, the derivation of the corresponding drCCD(F12) and rCCD(F12)
equations requires to start with explicity correlated coupled-cluster doubles theory, given that the ring
coupled-cluster amplitudes do not correspond to an appropriate wave function and cannot be derived from
a similarity transformed Hamiltonian [155]. The equations can however be obtained when starting from the
underlying CCD-F12 approach [106, 144, 218, 219]: For the latter, the wave-function is well-defined, given
as the sum of the conventional expansion of doubly excited determinants and the additional manifold of
geminals, which can be parameterized by the double excitation operator T̂2 ′ ,

|ΨCCD-F12〉 = exp(T̂2 + T̂2 ′)|Ψ0〉 . (4.1)
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As outlined in Eqs. (2.61) and (2.94) of Section 2.2, the excitation operators T̂2 and T̂2 ′ are defined in terms
of the conventional and the geminal amplitude tAB

I J and dXY
I J , which are both required to determine the

correlation energy according to

ECCD-F12
C = 〈HF|Ĥ|ΨCCD-F12〉 = 1

4 tr [BRPAXTCCD-F12] + 1
4 tr
[
(V −V

X)† D
]

. (4.2)

The diagrammatic representation of the conventional and the explicitly correlated energy contributions is
given in terms of antisymmetrized Goldstone diagrams in Figure 4.9. Analogously to MP2-F12 theory, the
energy expression can be formulated as a Lagrangian including the geminal residual when using fixed am-
plitudes.
The geminal residual as well as the conventional amplitude equations are obtained by projecting the Schrö-
dinger equation on the double excitation manifold of the conventional orbital and the geminal space,

(ΩCCD-F12)AB
I J = 〈AB

I J | exp
(
−T̂2 − T̂2 ′

)
Ĥ exp

(
T̂2 + T̂2 ′

)
|HF〉 = 0 , (4.3)

(ΩF12(CCD-F12))XY
I J = 〈XY

I J | exp
(
−T̂2 − T̂2 ′

)
Ĥ exp

(
T̂2 + T̂2 ′

)
|HF〉 = 0 . (4.4)

Due to the projection technique, the amplitude equations are truncated, but comprise nevertheless a series of
higher-order terms, as illustrated in Figure 4.2. The depicted antisymmetrized Goldstone diagrams represent
spin orbitals and the subset of conventional CCD diagrams from [1] to [10] on the left-hand side is identical
to Figure 2.2. Explicitly correlated contributions can be derived from the conventional terms by substituting
the double excitation amplitude T with its explicitly correlated counterpart T ′, for instance according to

→ .
Moreover, the projection onto the geminal space has to be taken into account for the geminal residual,

→ .
Drawing all possible combinations according to the different commutator contributions of Eqs. (4.3) and
(4.4) and taking into account standard contraction rules leads to the depicted diagrams. As for conventional
CC, it is important to bear in mind that some terms can be represented by more than one diagram which
differ in shape, but are nevertheless identical: In analogy to the equality of 1

2 [[φ, T̂2], T̂2 ′ ] = 1
2 [[φ, T̂2 ′ ], T̂2],

diagram [8f12t_a] can e.g. be equally depicted as . In addition, it should be noted that the
orthogonality of the conventional virtual and the CABS space is ensured by the projection operator Q̂12,
implying Q̂12|ab〉 = 0. This explains for example why the series of diagrams in row [9] do not comprise a
contribution to the geminal residual which still includes two conventional doubles amplitudes and which

would look like . For the same reason, the conventional diagram [10] leads to three F12
contributions in the conventional amplitudes equation, [10f12t_a], [10f12t_b] and [10f12t_c], whereas diagram
[9] only has one explicitly correlated counterpart. Following these rules yields 38 diagrams in addition to the
conventional CCD contributions. Incorporating all terms in the residual equations is however tedious and
unneccessary since it was shown that the impact of higher-order contributions on the correlation energy is
negligible [220, 221]. It is thus justified to introduce the so-called "(F12)" approximation [112, 222, 223]: All
terms that are higher than second order in perturbation theory are neglected within the conventional and the
F12 residual. Splitting the Hamiltonian into the zeroth-order Fock operator F̂ and the first-order fluctuation
potential φ̂, considering all possible contractions with the zeroth-order T̂2 and the first-order T̂2 ′ amplitudes
and projecting onto the zeroth-order 〈AB

I J | and the first-order 〈XY
I J | double-excitation manifold, the CCD(F12)

residual equations are obtained as

(ΩCCD(F12))AB
I J = 〈AB

I J |[F̂, T̂2 + T̂2 ′ ] + φ̂ + [φ̂, T̂2 + T̂2 ′ ] + [[φ̂, T̂2], T̂2 ′ ] + 1
2 [[φ̂, T̂2], T̂2]|HF〉 , (4.5)

(ΩF12(CCD(F12)))XY
I J = 〈XY

I J |[F̂, T̂2 + T̂2 ′ ] + φ̂ + [φ̂, T̂2]|HF〉 . (4.6)

Those diagrams of Figure 4.2, which are neglected within the (F12) approximation, are marked in blue, il-
lustrating that the number of higher-order terms is drastically reduced, especially for the geminal residual.
Equations are simplified even further for the desired rCCD(F12) variant, which solely incorporates ring di-
agrams corresponding to particle-hole interactions. Ring diagrams are highlighted in red, comprising the
zeroth- and first-order driver contributions of row [1] to [3] as well as the higher-order terms of row [6] and
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[8] containing the characteristic closed loops. Diagrams [6f12c_b], [8f12t_b], [8f12c_a] and [8f12c_b] thus rep-
resent ring terms, which would contribute to a rCCD-F12 approach, but are in the following neglected due to
the (F12) approximation. Concerning rCCD approaches, it is important to keep in mind that the red-colored
ring diagrams correspond to particle-hole terms only if labels are added to the relevant diagrams, analogously
to the conventional counterpart depicted in Figure 2.2. Alternatively, interpretation rules can be modified, as
explained in Section 2.2 and Appendix A. Furthermore, a specific nomenclature is required when aiming for
drCCD(F12) neglecting all exchange contributions. In terms of diagrams, this can be achieved analogously
to dMP2-F12 by assuming that the dashed line now corresponds to non-antisymmetrized two-electron inte-
grals. Also note that ordinary Goldstone diagrams for closed-shell drCCD(F12) are identical in shape to the
set of antisymmetrized diagrams depicted in Figure 4.2, solely referring to different algebraic expressions.
However, in contrast to the open-shell case, the closed-shell diagrams require no further labeling and stick to
the standard interpretation rules. For both rCCD(F12) and drCCD(F12) diagrams, closed- and open-shell, it
should be kept in mind that common translation rules based on creation and annihilation operators are inap-
propriate. Instead, a direct assignment of amplitude matrix elements and two-electron integrals is required.
Taking a closer look, the F12 contributions to the conventional and the geminal residual of (d)rCCD(F12)
can be classified according to the three different ansätze for the projection operator Q̂12: when choosing
fixed amplitudes, the simplest ansatz 1 is represented by the two second-order contributions [1f12c] and
[3f12_b]. If the geminal amplitudes are optimized, diagram [2f12c] yields an additional contribution to the
F12 intermediate B, as explained in Section 2.3 and Appendix B for the MP2-F12 residual. (d)rCCD(F12)
within ansatz 2∗ furthermore takes into account mixed excitations into the virtual and CABS basis, result-
ing in diagrams [6f12t], [8f12t_a] and [6f12c_a]. Coupling between conventional and geminal amplitudes is
considered within ansatz 2, represented by diagrams [3f12t] and [3f12c_a]. In comparison to the perturbative
RPA+F12 approach, which comprises diagrams [1f12c] and [3f12c_b], (d)rCCD(F12) thus includes three addi-
tional higher-order terms and, depending on the chosen ansatz, further coupling contributions.
A variety of other related F12 approaches [201, 203, 224] next to the presented (F12) approximation can be
constructed in terms of the given diagrams. As discussed in Ref. [180], the two approaches (d)rCCD[F12] and
(d)rCCD(F12∗) are identical within ring coupled-cluster theory and can be obtained by neglecting diagram
[8f12t_a]. The more simplified approximations (d)rCCD-F12a and (d)rCCD-F12b also reduce to equivalent
formulations, both omitting the higher-order contributions [6f12t], [8f12t_a] and [6f12c_a]. It is furthermore
interesting to note that diagrams [4], [5] and [7] comprise the so-called ladder contributions, yielding —
in addition to the corresponding F12 contributions [4f12t], [4f12c_a] and [7f12t] as well as the driver dia-
grams of the entire row [1], [2] and [3] — a particle-particle RPA(F12) approach [44, 225]. An analogous
third RPA(F12) variant without clear physical meaning can be identified when taking into account all of the
so-called crossed-ring terms.

[E1] [E2]

Fig. 4.1: Antisymmetrized Goldstone diagrams representing the conventional and the explicitly correlated
contribution to the CCD-F12 correlation energy.

4.1.1 Explicit working equations for the direct rCCD(F12) approach

As shown in Figure 4.2, the inclusion of F12 geminals in the wave-function expansion leads to additional
contributions to the amplitude and energy equations, which bare close analogy to the conventional counter-
parts. Also the algebraic equations can be formulated similarly to the drCCD Riccati equation, Eq. (2.58),
summarizing the supplementary F12 terms of the conventional drCCD(F12) residual according to

Ω
drCCD(F12) ← AdRPAT ′ + T ′AdRPA + TBdRPAT ′ + T ′BdRPAT . (4.7)

The amplitude matrix T ′ refers to the double excitation operator T̂2 ′ , describing excitations into the infi-
nite virtual basis as defined within Eq. (2.94). The F12 contribution to the drCCD(F12) correlation energy,
corresponding to the non-antisymmetrized version of diagram [E2] of Figure 4.9, can be traced back to the
conventional expression of Eq. (2.59),

EdrCCD(F12)
C = EdrCCD

C + 1
2 tr
[
BdRPAT ′] = EdrCCD

C + 1
2 tr
[
V

†C
]

. (4.8)
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Residual for conventional amplitudes Residual for geminal amplitudes

Conventional F12

[1] [1f12c]

[2] [2f12c]

[3] [3f12t] [3f12c_a] [3f12c_b]

[4] [4f12t] [4f12c_a] [4f12c_b]

[5] [5f12c]

[6] [6f12t] [6f12c_a] [6f12c_b]

[7] [7f12t] [7f12c_a] [7f12c_b]

[8] [8f12t_a] [8f12t_b] [8f12c_a] [8f12c_b]

[9] [9f12t_a] [9f12c_c] [9f12c_d]

[10] [10f12t_a] [10f12t_b] [10f12c_a] [10f12c_b]

[10f12t_c] [10f12c_c]

.
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4.1. From CCD(F12) to (direct) rCCD(F12) — a diagrammatic approach

Fig. 4.2: (On page 42:) Antisymmetrized Goldstone diagrams representing spin orbitals for the CCD-F12
residual equation. Neglecting all blue diagrams yields the CCD(F12) approach. Diagrams contributing to
rCCD(F12) and drCCD(F12) are highlighted in red. For the direct approach, a non-antisymmetrized definition
of the two-electron integrals over r−1

12 and f12 is required, introducing an additional factor of two.

Open-shell equations implying cXY
I J = δIXδJY :

EdrCCD(F12)
C = 1

2

∑

ABI J

tAB
I J g

I J
AB + 1

2

∑

XYI J

cXY
I J

(
V

†
)I J

X̃Y
+ 1

2

∑

XYI J

cXY
I J (ΩF12(drCCD(F12)))X̃Y

I J , (4.9)

(ΩdrCCD(F12))AB
I J = gAB

I J + P̂AB
I J

[
∑

C

tAC
I J FBC −

∑

K

tAB
IK FKJ +

∑

CK

tBC
JK

(
gKA

CI + 1
2

∑

DL

tAD
IL gKL

CD

)

+
∑

P ′′KXY

cXY
JK f BP ′′

X̃Y

(
gKA

P ′′ I +
∑

DL

tAD
IL gKL

P ′′D

)]
+
∑

XY

C(I J)

AB,X̃Y
cXY

I J , (4.10)

(ΩF12(drCCD(F12)))X̃Y
I J =

∑

VW

B(I J)

X̃Y,ṼW
cVW

I J + V X̃Y
I J + P̂XY

I J

∑

P ′′B

f X̃Y
P ′′B

(
∑

CK

tBC
JK gKP ′′

CI

)
+
∑

AB

C(I J)

X̃Y,AB
tAB

I J . (4.11)

with P̂XY
I J AXY

I J = AXY
I J + AYX

JI .
.

Closed-shell equations implying c
xy
ij = δixδjy:

EdrCCD(F12)
C = 2

∑

aibj

tab
ij g

ij
ab + 2

∑

xiyj

c
xy
ij (V

†)
ij
x̃y

+ 2
∑

xiyj

c
xy
ij (Ω

F12(drCCD(F12)))
x̃y
ij , (4.12)

(ΩdrCCD(F12))ab
ij = gab

ij + P̂ab
ij

[
∑

c

tac
ij Fbc −

∑

k

tab
ik Fkj + 2

∑

ck

tbc
jk

(
gak

ic +
∑

dl

tad
il glk

dc

)

+ 2
∑

p ′′kxy

c
xy
jk f

bp ′′

x̃y

(
gka

p ′′i + 2
∑

dl

tad
il gkl

p ′′d

)
+
∑

xy

C(ij)
ab,x̃y

c
xy
ij , (4.13)

(ΩF12(drCCD(F12)))
x̃y
ij =

∑

vw

B(ij)
x̃y,ṽw

cvw
ij + V x̃y

ij + 2P̂
xy
ij

∑

p ′′b

f
x̃y
p ′′b

∑

ck

tbc
jk g

kp ′′

ci +
∑

ab

C(ij)
x̃y,ab

tab
ij . (4.14)

with P̂ab
ij Aab

ij = Aab
ij + Aba

ji .

Fig. 4.3: Explicit equations for drCCD(F12) within ansatz 2.
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Assuming fixed geminal amplitudes, the residual Ω
F12(drCCD(F12)) is furthermore added as a constraint to the

Lagrangian formulation of the correlation energy,

EdrCCD(F12)
C ←− 1

2 tr [ΩF12(drCCD(F12))CLAG] , (4.15)

with

Ω
F12(drCCD(F12)) = BC +V + fTA + ATf . (4.16)

f denotes the bare integrals over the Slater-type correlation factor f12. Analogously to dMP2-F12, the gemi-
nal amplitude equations are calculated only once and added to the correlation energy as a constant term at
the end of the iterative CC procedure [176]. Furthermore, the Lagrange multipliers CMP2-F12 are chosen as for
dMP2-F12, keeping them fixed according to CLAG = C = δIXδJY [178]. It is interesting to note that, in contrast
to MP2-F12 theory, a similar procedure, deriving the connection by solving a set of linear equations, would
break orbital invariance [176]. Note that Eqs. (4.7) and (4.16) refer to ansatz 2∗, neglecting coupling con-
tributions between conventional and geminal amplitudes. The complete working equations for drCCD(F12)
within ansatz 2 are given for closed- and open-shell systems in Figure 4.3. Notes on the corresponding imple-
mentation in the CCSDF12 module of the TURBOMOLE program package [71] are summarized in Appendix
E.

4.2 Assessment of the drCCD(F12) approach

As shown in Ref. [80], basis-set convergence of the dRPA approach differs significantly for non-covalent and
covalent interactions. More precisely, quadruple-zeta basis sets were found to be sufficiently accurate for
medium- and short-range correlation, while basis sets of quintuple-zeta size are required to obtain reliable
results for binding energies. Additionally to the slow basis-set convergence, calculations on long-range inter-
actions are most affected by the BSSE, influencing the basis-set dependence and often hindering a systematic
convergence to the basis-set limit [226]. The drCCD(F12) approach is therefore validated regarding both
atomization and interaction energies: Atomization energies are examined for a test set of 106 molecules,
that was set up in Ref. [227] in order to assess F12 methods. It contains small molecules which repre-
sent a wide range of bonding situations, comprising the first- and second-row elements H, C, N, O, and
F. Calculations are performed using the augmented correlation-consistent aug-cc-pVXZ basis sets [183, 184]
with the aug-cc-pwCV(X+1)Z [186, 187] and aug-cc-pV(X+1)Z [188] basis sets as cbas and jkbas, respectively.
Aug-cc-pVXZ/OPTRI basis sets [189] are taken as CABS basis for the F12 integrals and the CABS-singles cor-
rection. Interaction energies are in contrast evaluated for the S22 test set [36], a benchmark database including
hydrogen-bonded, dispersion-dominated and mixed complexes. Due to the scaling of the drCCD(F12) ap-
proach, the tests were limited to the 10 smallest dimers, which nevertheless still cover all different bonding
motifs in a balanced ratio. Furthermore, the comparatively small seasonal basis sets jun-cc-pV(X+d)Z are
used [228, 229] and auxiliary basis sets are chosen as for the aug-cc-pVXZ basis-set series. The calculations
for both the test set of 106 molecules and the S22 test set are performed using a PBE reference and excluding
core orbitals from the correlation treatment. Convergence is examined regarding the error relative to the
drCCD(F12) result within ansatz 2 and the largest basis set, i.e. for the aug-cc-pV5Z or the jun-cc-pV(Q+d)Z
basis. As for the dRPA-F12 approach of Chapter 2, the chosen basis-set limits are validated by applying the
two-point extrapolation scheme of Schwenke [208]. Details on the estimated trust region and the so deter-
mined scaling factors are reported in Ref. [180]. The corresponding standard deviations σ are indicated in
Figures 4.4 and 4.5 as a yellow bar around the basis-set limit, ranging from −σ to σ. The deviation amounts
up to 0.02 kJ/mol per valence electron for the test set of 106 molecules while a threshold of 0.005 kJ/mol per
valence electron is obtained for the 10 molecules of the S22 test set. The following discussion is restricted
to mean errors, mean percentage errors and the corresponding standard deviations, all reported per valence
electron to eliminate the dependence on the basis-set size. For the test set of 106 molecules, the number of
valence electrons ranges between 2 and 36 with a mean value of 18; the complexes of the S22 test set compre-
hend 16 to 38 valence electrons, in average 28.

Correlation and atomization energies

Figure 4.4 is split in two parts: On the left-hand side, the mean error in the correlation energy is plotted with
respect to the cardinal number of the basis set. Conventional drCCD results are shown to converge slowly,
yielding errors of −46.2, −19.2 and −8.9 kJ/mol for double-, triple- and quadruple-zeta basis sets. Even the
aug-cc-pV5Z and aug-cc-pV6Z calculations are still off by −4.7 and −2.7 kJ/mol, respectively. drCCD(F12)
within ansatz 1 only achieves a minor improvement, reducing the error by about a factor of two and thus gain-
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Fig. 4.4: Test set of 106 molecules: Basis-set convergence of the correlation energy contribution to the total
and atomization energies for the aug-cc-pVXZ basis sets.

ing approximately one cardinal number. More effective is ansatz 2∗, for which the double-zeta results already
outpace the conventional aug-cc-pV5Z calculations, reducing the error to −3.4 kJ/mol. Calculations within
the medium-sized aug-cc-pVTZ basis yield the desired 99 % of the reference limit with a mean error of less
than 1 kJ/mol. Even though the result is compelling, it should be noted that including coupling between
conventional and geminal amplitudes, as defined within ansatz 2, slightly increases the error, revealing that
the performance of ansatz 2∗ relies to a small percentage on spurious error cancellation. The effect is however
small and coupling between conventional and geminal amplitudes can be regarded as negliglible, given that
the maximum deviation between ansatz 2 and 2∗ does not exceed 0.3 kJ/mol. The perturbative RPA+F12
ansatz performs surprisingly well, yielding double-zeta results which show even smaller errors than corre-
sponding drCCD(F12) calculations within the larger aug-cc-pVTZ basis. Basis-set convergence is smooth as
demonstrated by the gradually declining mean errors of −0.8, −0.4 and −0.1 kJ/mol for double-, triple- and
quadruple-zeta basis sets. However, it should be kept in mind that the good performance of RPA+F12 relies
on fortuitous error cancellation, as mentioned in Chapter 2.3.
The presented conclusions for correlation energies can be transferred to atomization energies, as shown on
the right-hand side of Figure 4.4. Again, conventional results bear the slowest convergence, reaching errors
of −6.1 to −2.1 kJ/mol for the aug-cc-pVDZ and aug-cc-pVTZ basis sets. Even the largest aug-cc-pV6Z
basis still deviates by 0.3 kJ/mol from the aspired reference value. While ansatz 1 is again insufficient, the
more sophisticated ansätze 2∗ and 2 are converged to within 99% of the basis-set limit for double-zeta basis
sets, deviating solely by −0.2 and 0.3 kJ/mol. However, in contrast to correlation energies, convergence is
not smooth for ansatz 2∗: the error changes sign and increases to 0.2 kJ/mol when enlarging the basis to
triple-zeta size. An analogous unsystematic behavior can be found for RPA+F12, where the aug-cc-pVDZ
result is 0.5 kJ/mol below the reference limit while triple-zeta calculations overshoot by 0.1 kJ/mol. Only
the inclusion of coupling contributions ensures smooth convergence, yielding steadily decreasing errors of
0.26, 0.22 and 0.17 kJ/mol for aug-cc-pVDZ, aug-cc-pVTZ and aug-cc-pVQZ calculations, respectively. For
both correlation and atomization energies it should be furthermore mentioned that standard deviations are
drastically reduced for drCCD(F12), not only in comparison to conventional drCCD, but also with respect to
the perturbative RPA+F12 approach. Error distributions are thus both narrower and closer to zero, as shown
in detail in Ref. [180].

Interaction energies

Since RPA is known to describe dispersion accurately, it is worth testing the benefit of explicitly correlated
drCCD regarding long-range forces. In Figure 4.5, interaction energies for 10 molecules of the S22 test set
are depicted analyzing the mean error per valence electron with increasing cardinal number for the jun-cc-
pV(X+d)Z basis sets. More precisely, the plot shows the bare total interaction energies on the left, opposed to
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Fig. 4.5: 10 molecules of the S22 test set: Basis-set convergence of interaction energies with and without
counterpoise correction for the jun-cc-pV(X+d)Z basis sets.

the graph on the right where the energies include the CP correction to cure the BSSE. For both plots, the
CP-corrected drCCD(F12) result within ansatz 2, including the CABS-singles correction for the reference en-
ergy and using the jun-cc-pV(Q+d) basis, is taken as reference. No systematic convergence is found for the
non-corrected interaction energies: all methods are within the same error range of −0.005 to 0.04 kJ/mol
for the smallest jun-cc-pV(D+d)Z basis. Triple-zeta results are comparable in magnitude, but the deviation
between the different methods is reduced and the range of values is limited to 0.03 to 0.02 kJ/mol. However,
even the largest jun-cc-pVQZ basis is not sufficient to reach the basis-set limit. The results are thus in agree-
ment with earlier findings, indicating that the CP correction is crucial to secure a monotonic convergence
behavior [230]. The conclusion is also confirmed by the plot on the right-hand side of Figure 4.5: Here, the
CP-corrected results approach the basis-set limit smoothly from below. Errors of the conventional drCCD
approach reduce e.g. stepwise when enlarging the basis set from double- to quadruple-zeta size, starting at
−0.25 kJ/mol, followed by −0.10 kJ/mol for the medium-sized basis and ending with a deviation of −0.04
kJ/mol for the jun-cc-pVQZ results. In comparison, all explicitly correlated approaches improve the basis-set
convergence even though the gain of about one cardinal number is much less pronounced than for correla-
tion and atomization energies. Deviations between the different F12 approaches are of at most 0.006 kJ/mol,
emphasizing that both the CABS-singles correction for the reference energy (indicated by the additional
acronym ”+CABS”) as well as the coupling contributions of ansatz 2 are negligible. Solely the standard devi-
ations for the double-zeta basis are in comparison reduced by a factor of two for the drCCD(F12)[A2]+CABS
and drCCD(F12)[A2∗]+CABS approaches, resulting in tighter normal distributions, as shown in detail in Ref.
[180]. All approaches finally reach the basis-set limit within the trust region of 0.005 kJ/mol for the jun-cc-
pVQZ basis. It should be furthermore stated that the CP correction for all explicitly correlated approaches is
about a factor of 2 smaller than for the corresponding conventional methods, indicating that F12 analogues
are less sensible to the BSSE, reflecting their reduced basis-set dependence.

4.3 Including exchange: explicitly correlated rCCD, rCCD-SO1 and

rCCD-SO2

The deficiencies of dRPA or drCCD are well known: Due to the insufficient description of short-range inter-
actions [231, 232], correlation energies are in general overestimated resulting in a poor description of total
energies which are far too negative [233, 234]. Furthermore, atomization energies were found to be too low
[28, 40], sometimes referred to as the RPA atomization puzzle [235]. Even binding energies of van-der-Waals
systems are often underestimated. Most strikingly, the dissociation curves of several diatomics, like e.g. the
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Be2 dimer, show an erroneous bump at intermediate distances [236]. A self-consistent treament helps in
lowering the energy, but cannot reduce the unphysical maximum in the interaction curve [237, 238]. Finally,
energies are flawed by the self-interaction error, which becomes most apparent in the non-zero correlation
energy of the hydrogen atom, see Ref. [7] for example.
Even though RPA can be considered as a promising post-KS approach, the specified shortcomings point out
the need for corrections. As outlined in the introduction, a range of beyond-RPA methods have been pro-
posed in the last decades. One ansatz is to include exact exchange (in different flavours), shown to improve
correlation and total energies [239, 240] as well as dissociation curves and the related delocalisation error
[241], even though it should be noted that the improvement comes hand in hand with an inferior description
of static correlation. The repulsive bump in the interaction curve of diatomics is reduced or even cured [64].
Moreover, the one-electron self-interaction error is eliminated for several approaches, as e.g. demonstrated in
the case of SOSEX [64] and AXK [8].
Aiming for analogous improvements, the concept of including exchange can be transferred to ring coupled-
cluster schemes: as already introduced in Chapter 2 and outlined in the previous sections, the rCCD approach
can be set up as an equivalent formulation to RPAX, including exchange in the residual equations and the
correlation energy. Such an ansatz requires spin adaptation for closed-shell equations, partitioning the corre-
lation energy into singlet and triplet contributions according to Eq. (2.83). While Eq. (2.83) is exact, it leads to
severe triplet instabilities, as shown by Klopper et al. [146]. As a remedy, Toulouse and Mussard et al. [86, 164]
revived an initial idea of Szabo and Ostlund [21, 151], setting up two approximate schemes called rCCD-SO1
and rCCD-SO2 in order to develop the corresponding range-separated approaches [86, 164]. Their tests on
rare-gas dimers and the S22 set showed that the approaches give the most accurate interaction energies when
compared to direct and exact rCCD including exchange. rCCD-SO2 was pointed out to be most promising
since it solely relies on singlet excitations and thus avoids triplet instabilities. Furthermore, Mussard et al.
proved that open-shell equations can only be formulated for rCCD-SO2 and not for the related rCCD-SO1
approach [164]. Open-shell rCCD-SO2 avoids both triplet and spin-flipped amplitudes, improving not only
the stability but also reducing the computation times in comparison to exact rCCD. These results motivate
the development of analogous explicitly correlated rCCD approaches as presented in the following.

4.3.1 Working equations for explicitly correlated ring coupled-cluster doubles ap-
proaches including exchange

Following Ref. [86], three different rCCD(F12) approaches are summarized in Table 4.6, labeled accordingly
as rCCD(F12)-SO2, rCCD(F12)-SO1 and rCCD(F12). Only rCCD(F12) and rCCD(F12)-SO2 are defined for
open-shell systems: both approaches rely on the same residual equation for the conventional amplitudes
T, which depends — in contrast to drCCD(F12) — on the antisymmetrized matrices ARPAX and BRPAX. The
additional F12 terms can hence be summarized as

Ω
rCCD(F12) ← ARPAXT ′ + T ′ARPAX + TBRPAXT ′ + T ′BRPAXT . (4.17)

The correlation energy is obtained in analogy to Eqs. (2.65) and (2.87), incorporating an additional F12 and
the constant geminal residual term,

ErCCD(F12)
C = 1

4 tr [BRPAXTrCCD(F12)] + 1
4 tr
[
(V −V

X)† D
]
+ 1

4 tr [ΩF12(rCCD(F12))DLAG] , (4.18)

ErCCD(F12)-SO2
C = 1

2 tr [BdRPATrCCD(F12)] + 1
2 tr
[
V

†D
]
+ 1

2 tr [ΩF12(rCCD(F12)-SO2)DLAG] , (4.19)

where V
X denotes the exchange contribution to the F12 intermediate V and the geminal residuals are given

as

Ω
F12(rCCD(F12)) = BD +V −V

X + fTARPAX + ARPAXTf , (4.20)
Ω

F12(rCCD(F12)-SO2) = BC +V + fTAdRPA + AdRPATf . (4.21)

Analogously to the conventional schemes, the F12 variants are constructed in such a way that they reproduce
the MP2-F12 correlation energy if truncated at second-order perturbation theory. Including exchange, the
coalescence conditions imply antisymmetrized geminal amplitudes. Thus, in contrast to drCCD(F12), where
the geminal amplitudes are chosen according to cXY

I J = δIXδJY for both same and opposite spin, the rCCD
amplitudes are kept fixed at dXY

I J = δIXδJY − δIYδJX . Again, the Lagrange multipliers are defined by the rela-
tion DLAG = D. Note that the rCCD(F12)-SO2 approach assumes antisymmetrized amplitudes in combination
with non-antisymmetrized integrals. Consistently, a non-antisymmetrized geminal residual is required and
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the method thus implies both geminal amplitudes D and C.
For closed-shell systems, spin-adapted rCCD equations can be obtained by applying the orthogonal transfor-
mation M ′ = UTMU [86], assuming the following spin block structure for the symbolic matrix M,

M =




Mαα
αα M

αβ
αβ 0 0

M
βα
βα M

ββ
ββ 0 0

0 0 M
ββ
αα M

βα
αβ

0 0 M
αβ
βα Mαα

ββ




, (4.22)

and defining the transformation matrix U as

U =
1√
2




1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1


 . (4.23)

The transformation leads to a decomposition into singlet and triplet contributions; the transformed anti- and
non-antisymmetrized geminal amplitude matrices D ′ and C ′ are e.g. given as

D ′ =




1D 0 0 0

0 3D 0 0

0 0 3D 0

0 0 0 −
3D


 , C ′ =




1C 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 , (4.24)

with the singlet and triplet amplitudes 1d
xy
ij = 2δixδjy − δiyδjx, 3d

xy
ij = −δiyδjx and 1c

xy
ij = 2δixδjy. Accord-

ingly, all other antisymmetrized matrices can be decomposed into singlet and triplet blocks, while the non-
antisymmetrized counterparts only lead to a contribution from singlet excitations.
The structure of the so-obtained closed-shell rCCD(F12), rCCD(F12)-SO2 and rCCD(F12)-SO1 variants re-
sembles the conventional approaches of Eqs. (2.80), (2.81) and (2.82): While rCCD(F12) and rCCD(F12)-SO1
require the calculation of singlet and triplet amplitudes,

ErCCD(F12)
C = 1

4 tr
[

1TrCCD(F12)1BRPAX + 3 3TrCCD(F12)3BRPAX
]
+ 1

4 tr
[

1D1
V

† + 3 3D3
V

†
]

+ 1
4 tr
[

1D1
Ω

F12(rCCD(F12)) + 3 3D3
Ω

F12(rCCD(F12))
]

, (4.25)

ErCCD(F12)-SO1
C = 1

2 tr
[

1BRPAX
(

1TrCCD(F12)
−

3TrCCD(F12)
)]

+ 1
2 tr
[

1
V

†
(

1D −
3D
)]

+ 1
2 tr
[

1
Ω

F12(rCCD(F12))
(

1D −
3D
)]

, (4.26)

the rCCD(F12)-SO2 approach is solely based on singlet contributions,

ErCCD(F12)-SO2
C = 1

2 tr
[

1BdRPA1TrCCD(F12)
]
+ 1

2 tr
[(

2V†
)

1D
]
+ 1

2 tr
[

1
Ω

F12(rCCD(F12)-SO2)1D
]

. (4.27)

Note that for both open- and closed-shell systems the conventional amplitude equations are identical for all
rCCD(F12) variants, differing only in the formulation of the correlation energy. This aspect can be high-
lighted e.g. for the open-shell variants of rCCD(F12) and rCCD(F12)-SO2 when drawing the corresponding
antisymmetrized Goldstone diagrams, depicted in Figure 4.7. As for conventional rCCD, the diagrams either
require a specific labeling of all non-contracted external lines or a redefinition of standard interpretation rules.
More precisely, an additional factor of 2 has to be associated with non-antisymmetrized integrals or geminal
amplitudes and all distinct permutations of inequivalent external lines have to be considered by including
the permutation operator P̂AB

I J MAB
I J = MAB

I J + MBA
JI (instead of the often employed P̂−

I J and P̂−

AB operators
with P̂−

I J MAB
I J = MAB

I J − MAB
JI ). Furthermore, in order to summarize both rCCD(F12) and rCCD(F12)-SO2 in

terms of a single set of diagrams, it is necessary to redefine two symbols introducing a twofold nomencla-
ture which discriminates between the two approaches, see Figure 4.8. By doing so, the connection between
rCCD(F12), rCCD(F12)-SO2 and drCCD(F12) becomes apparent: rCCD(F12) can be described by solely as-
suming antisymmetrized integrals and geminal amplitudes. drCCD(F12) diagrams look identical, reqiring
however non-antisymmetrized definitions for both integrals and amplitudes. rCCD(F12)-SO2 is a mixed vari-
ant: while the residual equation for the conventional doubles amplitudes refers to antisymmetrized quanti-
ties, the geminal residual requires non-antisymmetrized two-electron integrals and geminal coefficients. The
final expression for the correlation energy, depicted in terms of diagrams [E1] to [E5], thus assumes antisym-
metrized amplitudes, but non-antisymmetrized integrals and consistently a non-antisymmetrized geminal
residual. Analogously to Eq. (4.21), diagram [E4] thus implies both D and C.
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4.3. Including exchange: explicitly correlated rCCD, rCCD-SO1 and
rCCD-SO2

Open-shell equations implying cXY
I J = δIXδJY and dXY

I J = δIXδJY − δIYδJX :
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ErCCD(F12)-SO2
C = 1

2

∑

ABI J

tAB
I J g

I J
AB + 1

2

∑

XYI J

dXY
I J

(
V

†
)I J

X̃Y
+ 1

2

∑

XYI J

dXY
I J (ΩF12(rCCD(F12)-SO2))X̃Y

I J , (4.29)

(ΩrCCD(F12))AB
I J = gAB

I J − gAB
JI + P̂AB

I J

[
∑

C

tAC
I J FBC −

∑

K

tAB
IK FKJ +

∑

CK

tBC
JK

(
gAK

IC − gAK
CI

)

+ 1
2

∑

DLCK

tAD
IL tBC

JK

(
gLK

DC − gLK
CD

)
+
∑

P ′′KXY

dXY
JK f BP ′′

X̃Y

(
gKA

P ′′ I − gKA
IP ′′ +

∑

DL

tAD
IL

(
gKL

P ′′D − gKL
DP ′′

))]
,

(4.30)
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with P̂AB
I J MAB

I J = MAB
I J + MBA

JI .
.

Closed-shell equations implying 1d
xy
ij = 2δixδjy − δiyδjx, 3d

xy
ij = −δjxδiy and 1c

xy
ij = 2δixδjy:
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with s = 1, 3 indicating singlet and triplet intermediates, defined as 1Mab
ij = 2Mab

ij − Mba
ij and 3Mab

ij = −Mba
ij .

Fig. 4.6: Working equations for rCCD(F12), rCCD(F12)-SO1 and rCCD(F12)-SO2 within ansatz 2∗.
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Residual for conventional amplitudes Residual for geminal ampl. Correlation energy

Conventional F12

[1] [1f12c] [E1]

[2] [E2]

[3] [2f12c] [E3]

[4] [4f12t] [3f12c] [E4]

[5] [5f12t] [E5]

Fig. 4.7: Antisymmetrized Goldstone diagrams visualizing open-shell rCCD(F12) variants within ansatz 2∗

using fixed geminal amplitudes. The conventional residual equations comprise diagrams [1] to [5] as well as
the two F12 contributions [4f12t] and [5f12t]. The geminal residual, represented by diagrams [1f12c] to [3f12c],
requires a specific nomenclature for the non-antisymmetrized two-electron integrals and geminal amplitudes,
given in Figure 4.8. Due to the fixed-amplitude approach, it contributes as a constant term to the correlation
energy, depicted in terms of diagrams [E1] to [E5].

〈KL|MN〉 for drCCD and rCCD-SO2

〈KL||MN〉 for rCCD

cXY
I J = δIXδJY for drCCD and rCCD-SO2

dXY
I J = δIXδJY − δIYδJX for rCCD

Fig. 4.8: Specific nomenclature for the rCCD diagrams of Figure 4.7. In addition to the standard interpretation
rules for antisymmetrized Goldstone diagrams representing spin orbitals (see Appendix A), an additional
factor of 2 has to be associated with non-antisymmetrized two-electron integrals or geminals amplitudes and
distinct permutations of inequivalent external lines are accounted for by including the permutation operator
P̂AB

I J with P̂AB
I J MAB

I J = MAB
I J + MBA

JI . {K, L, . . . } denote spin orbitals of the complete infinite basis, comprising
the complete virtual as well as the occupied basis.
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4.4 Validation of the different rCCD(F12) approaches

The presented rCCD(F12) variants were implemented in the KOALA program package [205] and validated
for a small test set of 18 closed-shell molecules containing elements of the first and second row of the pe-
riodic table. Geometries were taken from Ref. [206]. For the sake of convenience, basis-set convergence is
investigated for the relatively small def2-basis sets of Ahlrichs and co-workers, ranging from double-zeta
to quadruple-zeta quality [207]. As no optimized CABS basis is available for the def2-series, it is chosen
identically to the auxiliary basis for density fitting (cbas). Core orbitals are excluded from the correlation
treatment. HF, PBE and PBE0 references were tested, however, convergence could in general not be achieved
for the latter two Kohn-Sham determinants, regardless of the employed rCCD(F12) approach. Using HF
references instead, improves the performance even though triplet instabilities still hampered rCCD(F12) and
rCCD(F12)-SO1 calculations for the molecules BN, C2, C2H4, CH2, CN+, and O3, even when modifying
the DIIS algorithm or adding a shift to the quasi-Newton update. Furthermore, convergence could not be
achieved for atomic oxygen and fluorine in the case of all three rCCD(F12) approaches. Thus, the following
statistical measures comprise different sets of molecules depending on the chosen method: rCCD(F12)-SO2
correlation energies include the full test set of 18 molecules, while the corresponding results for rCCD(F12)
and rCCD(F12)-SO1 are restricted to a total sum of 12 test cases. Atomization energies refer to C2H2, C2H+

3 ,
CH4, H2 and N2 in the case of rCCD(F12); the molecules BN, C2H4, CH2 and CN+ are additionally included
for rCCD(F12)-SO2. Nevertheless, the comparison between the different rCCD(F12) approaches is considered
to be reliable since the remaining test molecules all showed analogous convergence behavior with similar
statistical measures. Detailed results and explicit statistical data including mean errors, mean absolute devi-
ations, root-mean-square errors, standard deviations and percentage errors are published in Ref. [156]. For
the following validation, it is however sufficient to restrict the discussion to mean errors and corresponding
standard deviations, as depicted in Figure 4.9.
On the left-hand side of Figure 4.9, basis-set convergence of the correlation energy is depicted for the three
closed-shell methods, rCCD, rCCD-SO1 and rCCD-SO2 as well as the corresponding explicitly correlated
(F12) and +F12 schemes. Mean errors are calculated with respect to the corresponding (F12) result using the
def2-QZVPP basis. Hence, rCCD(F12)-SO1/def2-QZVPP calculations serve e.g. as reference for conventional
rCCD-SO1 and the perturbative rCCD+F12-SO1 approach. Analogously to Chapter 3.4, the trust region of the
chosen reference is estimated by the outlined two-step procedure based on Schwenke’s extrapolation formula
of Eq. (3.23). The so-obtained standard deviations σ amount up to a maximum value of 0.36 kJ/mol per
valence electron for the rCCD(F12)-SO2/def2-QZVPP limit. This accuracy limit is indicated in Figure 4.9 as a
yellow bar around the basis-set limit, ranging from −σ to σ.
All three conventional methods — rCCD, rCCD-SO1 and rCCD-SO2 — converge slowly to the basis-set limit,
manifesting mean errors of -35.8 to -29.5 kJ/mol for the def2-SVP basis which decrease gradually by about
20 and then by another 7 kJ/mol when enlarging the basis-set size to triple- and quadruple-zeta quality.
Extrapolation is required to reach the basis-set limit with a remaining deviation of 0.1-0.3 kJ/mol for the
def2-(TQ)ZVPP result. In comparison, the explicitly correlated approaches accelerate convergence: the error
of the def2-SVP basis set is reduced to -7.4 to -4.3 kJ/mol, lying in the range of the conventional def2-QZVPP
result. Triple-zeta calculations are already converged to within 99% of the basis-set limit, even though the
errors of -0.8 to -1.3 kJ/mol are still out of the trust region of the (F12)/def2-QZVPP reference. The perfor-
mance of the perturbative +F12 ansatz is comparable to the corresponding (F12) approaches, showing either
slightly smaller (rCCD+F12-SO1 and rCCD+F12-SO2) or larger (rCCD+F12) mean errors. When opposing
the different (F12) schemes, the results of Figure 4.9 might give the impression that all SO2 variants possess
the fastest convergence. However, mean percentage errors indicate a different ranking, relating the smallest
deviations to the rCCD approach, followed by the SO1 ansatz.
On the right-hand side of Figure 4.9, convergence of the correlation contribution to the atomization energy
is illustrated for both rCCD and rCCD-SO2, the two variants which provide open-shell equations. In accor-
dance with the findings for correlation energies, rCCD-SO2 and rCCD approaches show similar convergence
behavior, differing by at most 1.3 kJ/mol. Both conventional schemes approach the basis-set limit slowly, with
mean errors of -9.8 to -8.5 kJ/mol for the def2-SVP basis and of -4.3 to -3.8 kJ/mol for the def2-TZVPP basis.
Def2-QZVPP results are still off by -1.7 kJ/mol; the expolated def2-(TQ)ZVPP limit finally coincides with the
chosen reference, showing a maximum deviation of -0.2 kJ/mol. As expected, all explicitly correlated ap-
proaches outperform the conventional counterparts, however, in contrast to correlation energies, convergence
is not smooth: for rCCD(F12), double-zeta results overshoot the basis-set limit by about 0.2 kJ/mol while
triple-zeta results lie nearly equally far below the reference value with a mean error of -0.3 kJ/mol. +F12
and (F12) variants are again comparable, deviating by at most 0.7 kJ/mol. For both schemes, convergence to
within 99% of the basis-set limit is reached for triple-zeta basis sets.
Further benchmark studies on rCCD(F12)-SO2 within the larger aug-cc-pVXZ [183, 184] and cc-pVXZ-F12
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4. Explicitly correlated ring coupled-cluster doubles theory

[242] basis sets are summarized in Ref. [156], based on the rCCD(F12)-SO2 implementation in the TURBO-
MOLE program package by Christof Holzer. In summary, the therein reported calculations indicate that the
findings from above can be transferred to the correlation consistent basis sets, proving that triple-zeta results
recover 99% of the basis-set limit and can thus be considered as reliable, independent of the chosen basis set.
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Fig. 4.9: Basis-set convergence of the correlation contribution to total and atomization energies for conven-
tional and explicitly correlated rCCD(F12) variants.

4.5 Conclusions

The connection between RPA and ring coupled-cluster theory was exploited to set up explicitly correlated
ring coupled-cluster approaches which accelerate basis-set convergence and allow to reach the RPA basis-set
limit with medium-sized basis sets. Mean percentage errors, as depicted in Figure 4.10 and 4.11, demonstrate
that atomization energies are converged to within 99% of the basis-set limit for both drCCD(F12) and the
selected rCCD(F12) approaches including exchange when using triple-zeta basis sets. This corresponds to a
gain of about 4 cardinal numbers for the aug-cc-pVXZ basis sets and of about 2 cardinal numbers for the def2-
basis sets, respectively. The result is in line with other established explicitly correlated CC methods, yielding
in general quintuple-zeta quality for triple-zeta basis sets [112, 223]. Interaction energies in contrast require
basis sets of quadruple-zeta size, as shown on the right-hand side of Figure 4.10, reflecting the fact that the
F12 wave-function ansatz was not designed to capture long-range phenomena like dispersion [172, 243]: The
more efficient description of the monomers relative to the dimer leads to large errors in the binding energy.
The scaling of the drCCD(F12) implementation in TURBOMOLE is proportional to N6, however, is should be
noted that computation times can be reduced to N5 for the direct scheme when applying Cholesky decompo-
sition and using fixed geminal amplitudes [43]. rCCD(F12) approaches including exchange are less efficient
from the computational point of view, requiring the calculation of both singlet and triplet amplitudes in case
of closed-shell references and the determination of spin-flipped amplitudes for open-shell systems. Efficiency
can be increased when approximating the exact rCCD formalism according to the SO2 ansatz: rCCD(F12)-
SO2 only relies on either same- and opposite-spin or singlet amplitudes in case of UHF or RHF references.
Instabilities which occur in rCCD theory due to the calculation of triplet or spin-flipped amplitudes are thus
avoided, improving convergence and expanding the applicability. In general, the perturbative +F12 correction
is recommended for both drCCD and rCCD as a cost-efficient alternative to the corresponding (F12) variant,
given the fact that deviations between the two approaches are negligible for both atomization and interaction
energies. Higher-order terms can thus be considered as unimportant when regarding the effective basis-set
dependence. However, the contributions are necessary to ensure smooth convergence and to avoid spurious
error cancellation. The results of the preceding sections thus prove once more that the additive second-order
correction, which was introduced in Chapter 2, is promising, accelerating convergence while the computation
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4.5. Conclusions

times are insignificant in comparison to the otherwise required self-consistent HF or KS calculation within the
larger basis set. To ensure that the basis-set error in the reference energy is of the same order of magnitude
than the error in the correlation energy, the +F12 schemes should furthermore be applied in combination
with the CABS-singles correction, see Section 2.3.
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5. Diagnostics for random-phase
approximation methods

It is well-known that single-reference methods, which are designed to capture dynamic correlation, fail for
systems where static correlation plays a significant role, leaving the field to multireference approaches. The
latter are however restricted to applications on small systems due to the larger computational costs. It is there-
fore desirable to set up robust diagnostic schemes which allow to quantify the multireference character of
the examined system and thus falsify the applicability of single-reference schemes. Several approaches have
been developed in the last decades, which range from density-functional theory [244, 245] to wave-function
methods including Møller-Plesset perturbation [246], coupled-cluster [247–249] or configuration interaction
approaches [250]. The strategies of the various diagnostics are versatile:
Some approaches rely on characteristic features of the examined single-reference method. The T1 and D1
diagnostics e.g. are based on different norms of the single excitation amplitudes [247, 249, 251]; analogous
T2 and D2 diagnostics refer to the corresponding double excitation vectors [248, 252]. Closely related is the
%T1 measure for the contribution of single excitations to the norm of the excitation amplitudes [253] and
the energy-based %TAE diagnostics, analyzing the importance of triple, quadruple or quintuple excitations
[254, 255]. To quantify static correlation within density-functional theory, the B1 diagnostics was proposed
to ascertain the multireference character in a bond, taking the difference between two binding energies, one
calculated with a GGA functional, the other with a hybrid functional [256]. It is thus assumed that the
impact of exact exchange in hybrid functionals indicates multireference character, based on the knowledge
that HF exchange is inaccurate for multi-configurational systems. A similar diagnostic for density-functional
approaches regarding total atomization energies was suggested by Martin et al. [244].
A second ansatz for diagnostic schemes is to base the examination not on a single-reference, but rather a
multiconfigurational approach as only the latter can capture static correlation and therefore help to gauge
other quantities or methods. A common diagnostic is the square of the leading CI coefficient in CISD or
CASSCF calculations [257, 258]. Appart from the mentioned diagnostics, a variety of other popular schemes
exist, based e.g. on natural orbital occupation numbers [259–262] or orbital entanglement [263–265]. The spec-
trum of mentioned diagnostics indicates that none of the approaches is sufficient to detect and quantitatively
predict static correlation. As shown e.g. by Wilson et al., a composite scheme comprising several diagnostics
is required to enable a robust classification [266, 267]. Several recommendations on how to combine or com-
plement the existing analysis schemes can be found in the literature, see e.g. Refs. [248, 268]. The aim of the
following chapter is thus not to set up a new diagnostics which can be regarded as sufficiently accurate, but
to investigate if the diagnostic tools of coupled-cluster theory can be transferred to random-phase approxi-
mation methods. The focus is on the D1 and D2 diagnostics as suggested by Nielsen and Janssen [247, 248].
The scheme is implemented in the CCSDF12 module of TURBOMOLE and in the KOALA program package
to allow first benchmark calculations on the original test set of Nielsen and Janssen.

5.1 D1 and D2 diagnostics based on dRPA excitation amplitudes

The motivation for taking the singly-excited amplitudes as central quantity in D1 diagnostics is based on
the fact that the amplitudes describe orbital relaxation [269] and therefore the appropriateness of the utilized
molecular orbitals. As this concept assumes that multireference character can be associated with the choice of
molecular orbitals (in contrast to other definitions of static correlation which define this characteristic feature
as an intrinsic trait of multireference systems that cannot be cured by orbital relaxation), the diagnostics
schemes cannot yield, by definition, a sufficiently extensive analysis to capture and detect all problematic
systems. The D1 diagnostics would, e.g., fail if not singly but higher excited determinants are required to
describe the wave function. Nielsen and Janssen therefore suggested a complementary D2 diagnostics [248],
based on the double-excitation amplitudes as provided within the underlying CCD or CCSD method. The
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density matrix of the single or double excitation amplitudes, ta
i or tab

ij , is constructed and diagonalized to
obtain the root of the largest eigenvalue λmax,
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Due to the connection of dRPA and CC theory, the single excitation amplitudes X and Y can be related to
the doubles amplitude matrix T, see Eq. (2.10) of Chapter 2. Since Eq. (5.2) is not restricted to a specific
CC approach, it can be applied using the drCCD amplitudes. Analogously, D1 diagnostics can be based on
matrix Y,
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. (5.3)

Note that ground-state correlation is standardly related to the contribution of Y, as Y cancels to zero within
the Tamm-Dancoff approximation, but not within dRPA. From a conceptual point of view, it is thus more
well-founded to use the eigenvector Y instead of X. Nevertheless, a corresponding diagnostics based on ma-
trix X was tested and proven to yield meaningless values. Results for X are thus not reported in the following
and D1(dRPA) always refers to Y.

Evaluation for main-group compounds and comparison with standard CC diagnostics

To validate the performance of the proposed D1 and D2 analysis, Nielsen and Janssen performed test cal-
culations on a set of 34 closed-shell molecules, selected to represent both dynamical and non-dynamical
correlation effects. A list of the examined compounds comprising the main-group elements C, O, N, F, Cl, H,
P, S, and Si is given in Appendix F. Both bond distances and harmonic vibrational frequencies at the level of
MP2 and CCSD theory were compared to CCSD(T) results, premising that the latter agree with experiment
and thus exploiting that errors due to basis-set deficiency, neglect of core correlation or anharmonicity are
abstracted. It was shown that the percentage error for bond lengths and vibrational frequencies in compari-
son to CCSD(T) results corresponds to the so-obtained D1 and D2 values. More precisely, large errors were
only encountered for large diagnostics, not excluding large diagnostics for test cases with small errors. The
thresholds of D1(MP2) < 0.015, D1(CCSD) < 0.020, D2(MP2) < 0.15 and D2(CCSD) < 0.15 are proposed
as limits which guarantee a reliable performance, ensuring errors of less than 0.6% (0.7% for MP2 (CCSD)
bondlengths and of less than 3.0% (1.3%) for MP2 (CCSD) vibrational frequencies. Inadequate values were
found for D1(MP2) > 0.040, D1(CCSD) > 0.050, D2(MP2) > 0.17 and D2(CCSD) > 0.18, respectively. In
summary, the authors of Refs. [247, 248] also note that a stronger correlation between performance and the
size of the diagnostic can be assigned to CCSD than to MP2 theory.
To assess the performance of the proposed dRPA diagnostics, Eqs. (5.3) and (5.2) were implemented in the
KOALA program package [205] and in the CCSDF12 and MPGRAD module of the TURBOMOLE program
package [71]. To enable highly accurate KS calculations using the KOALA program, numerical integration
grids were extended to the finest grid 7 [270]. Apart from efficiency, both implementations in TURBOMOLE
and KOALA only differ slightly when comparing D1 diagnostic resuls obtained with KOALA and the MP-
GRAD module, given that the latter does not exploit resolution of the identity approximations. For the sake
of consistency, the presented D2 values were therefore obtained with the implementation in TURBOMOLE,
while D1 values were calculated with KOALA. CCSD, CCSD(T) and CCSDT geometry optimizations as well
as the corresponding analytical frequency calculations were performed with the CFOUR program package
[271, 272] using tight convergence criteria for both geometry optimizations as well as SCF and CC calcula-
tions. dRPA geometries were obtained with the RIRPA gradient module of TURBOMOLE [273]. Due to the
restriction of the RIRPA gradient code, core correlation had to be taken into account and, consistently, the
cc-pwCVTZ basis set [274] was chosen for the presented benchmark study. Harmonic vibrational frequen-
cies were calculated from finite differences of the analytical dRPA gradients using the NUMFORCE module
[275, 276]. HF, PBE and PBE0 references were tested as input for the dRPA correlation treatment; the so-
obtained results are indicated as dRPA/PBE and dRPA/PBE0, respectively. Detailed results are summarized
in Tables F.1 to F.3 of Appendix F, reporting bond distances and vibrational frequencies as well as the corre-
sponding D1 and D2 measures.
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5.1. D1 and D2 diagnostics based on dRPA excitation amplitudes

Figure 5.1 shows the correlation of D2(dRPA) diagnostics with respect to the percentage error of bond lengths
and vibrational frequencies using a HF reference determinant. Results corresponding to molecules containing
elements of the 2nd row of the periodic table are coloured in light red in order to distinguish them from the
3rd row analogues, indicated with black crosses. The plot highlights that small D2 values up to a threshold
of 0.09 ensure a percentage error of less than 0.2% for bond lengths. Comparatively large errors are found
for the same threshold when regarding vibrational frequencies, on the right-hand side of Figure 5.1. Here,
an error of 7.3% is found for ammonia already for the relatively small D2 reference of 0.09. Furthermore,
the error increases quickly, reaching a hight of 9.9% for BeO at D2 = 0.10 and maximum errors of up to
23.5 % for flourine. The latter result even exceeds the plotted error range. These huge values might appear
questionable, however, it is already stated in Ref. [247] that the halogens show relatively large errors in the
analogous D2(CCSD) study. Off-scale values are also equally found for some test cases, amounting e.g. up
to an error of 94% for O3 when regarding harmonic frequencies. Of course, the data of Ref. [247] refers to
the cc-pVTZ basis and a straight comparison of D2(CCSD) and D2(dRPA) diagnostics should be based on the
same basis set. CCSD results within the cc-pwCVTZ basis are therefore reported in Table F.4 of Appendix
F; the corresponding plots are given in Figure F.1. In comparison, the D2(CCSD) diagnostics are shifted to
larger values in the range of 0.12 < D2(CCSD) < 0.37, while D2(dRPA) lies between 0.08 and 0.14, indicating
that new trust regions have to be defined for the dRPA variant. The scattering of the data points however is
comparable for both methods, lacking indeed a straight, linear correlation between D2 values and percentage
errors, but allowing to define D2 limits which guarantee a reliable performance. Indeed, a nearly linear de-
pendence between D2(CCSD) and D2(dRPA) diagnostics is found, as shown on the right-hand side of Figure
5.3.
The analysis of the D1 diagnostics appears more biased: In Figure 5.2, the D1(dRPA) results are plotted
against the already discussed percentage errors in bond lengths (left-hand side) and vibrational frequencies
(right-hand side). While the error in the bond distance appears to be correlated with the D1(dRPA) values,
the plot for harmonic frequencies gives the impression of randomly scattered data points. Nevertheless, the
agreement between D1(dRPA) and D2(dRPA) diagnostics is reasonable, as shown by the scattering plot of
Figure 5.4. The corresponding graphs for D1(CCSD), given in Figure F.2 of Appendix F, show a better cor-
relation between D1(CCSD) and the magnitude of the corresponding percentage errors. A scattering plot
contrasting D1(dRPA) with D1(CCSD) is furthermore flawed by two outliers, coloured in green. Based on
the presented results, which indicate on the one side an arbitrary scattering and on the other side a clear
correlation between D1(dRPA) and D2(dRPA), the appropriateness of the D1(dRPA) diagnostics cannot be
falsified for harmonic frequencies and thus remains to be investigated. For bond lengths, however, it seems
to be reasonable to define a D1(dRPA) threshold of 0.03 corresponding to percentage errors of less than 2%.
Since dRPA is standardly applied using KS references, a short discussion of an analogous study using PBE
and PBE0 references suggests itself. The corresponding data is depicted in Figures F.3, F.4, F.5, and F.6 in
Appendix F. In summary, PBE references perform best, allowing to set up D2(dRPA) and D1(dRPA) thresh-
olds for both bond lengths and vibrational frequencies. PBE0 results are comparable to the corresponding
HF values: while the error in the bond lengths seems to be reflected by the D1 and D2 diagnostics, no clear
correlation can be found for vibrational frequencies. In general, D1(dRPA) and D2(dRPA) values increase in
magnitude when going from HF over PBE0 to PBE.
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Fig. 5.1: D2 diagnostics for bond lengths (left-hand side) and vibrational frequencies (right-hand side) using
a HF reference, corresponding to Table F.1 of Appendix F. Due to the large error range for vibrational
frequences, the following test cases with [Error(%)/D2(dRPA)] are not included in the plot on the right-hand
side: O3 with [18.0%/0.14], F2 with [23.5%/0.11], FOH with [15.7%/0.10] and Cl2O with [19.2%/0.10].
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5. Diagnostics for random-phase approximation methods
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Fig. 5.2: D1 diagnostics for bond lengths (left-hand side) and vibrational frequencies (right-hand side) using
a HF reference, corresponding to Table F.1 of Appendix F. Analogously to Figure 5.1, the following test
cases are omitted in the plot on the right-hand side: O3 with [18.8%/0.07], F2 with [23.5%/0.06], FOH with
[15.7%/0.04] and Cl2O with [19.2%/0.03].
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Fig. 5.3: Scattering plot of D2(dRPA) versus D2(CCSD) and D1(dRPA) versus D1(CCSD) diagnostics. The
slope of the trendline for the comparison of D2 (D1) diagnostics is 0.21 (0.43) with an intercept of 0.066
(0.024). The trendline on the left-hand side is obtained without considering the green-coloured data points.
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Fig. 5.4: Scattering plot contrasting the D1(dRPA) and D2(dRPA) diagnostics. The slope of the trendline is
0.73 with an intercept of −0.038.
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5.2. Conclusions

5.2 Conclusions

Based on the presented results, it is possible to define thresholds for the D2(dRPA) and D1(dRPA) diagnostics,
as summarized in Table 5.1. To allow a straightforward comparison with the established diagnostic limits of
MP2 and CCSD theory, the MP2 and CCSD error ranges as well as the corresponding D2 or D1 thresholds are
reported as well, taken from Refs. [247, 248]. Nielsen and Janssen assigned a trust region for each diagnostic
scheme by specifying minimum and maximum D1 or D2 measures. However, for dRPA diagnostics, it seems
in most cases more appropriate to define one threshold only, given that the corresponding percentage errors
do not rise gradually but rather abruptly with increasing D2 and D1 values. Regarding the limits in detail, it
can be concluded that D2(dRPA) and D1(dRPA) diagnostics do not seem to be redundant and moreover that
a stronger correlation between performance and the size of the diagnostics is found when treating double
excitations as done within D2(dRPA). The results for PBE references are most convincing, allowing to set up
tresholds for both D1(dRPA) and D2(dRPA) contemplating bond lengths as well as vibrational frequencies. In
particular, a final trust region of < 0.16 / 0.6% and > 0.18 / 1.5% is obtained when regarding bond distances;
thr error in vibrational frequencies is less than 3.0% for diagnostic measures smaller than 0.15. The latter can
thus be defined as general threshold for D2(dRPA) when using PBE references. For the related D1(dRPA)
diagnostics, a limiting value of 0.050 ensures errors that differ less than 0.6% or 2.5% from the reference
value for bond lengths or harmonic frequencies, respectively. However, given that only a relatively small test
set of main-group compounds was investigated, it is necessary to perform more extensive studies regarding
for instance diradicals and bond dissociation to allow for a more robust and well-founded calibration. It
also remains to be investigated if it is sufficient to base the analysis on correlation energies and if a reliable
prediction based on dRPA diagnostics is possible when treating geometries within density-functional theory
and solely performing a subsequent dRPA single-point calculation. If that were the case, the diagnostics
could help to validate and establish RPA applications on small-gap systems over the entire periodic table.

Tab. 5.1: Percentage errors and corresponding D2 and D1 thresholds, calibrated for main-group compounds
based on the test set of Refs. [247, 248].

Diagnostics Percentage error
Bond lengths

D2(MP2)a
< 0.15 / 0.6% and > 0.17 / 2.0%

D2(CCSD)a
< 0.15 / 0.7% and > 0.18 / 1.2%

D2(dRPA)/HF < 0.09 / 0.2%
D2(dRPA)/PBE < 0.16 / 0.6% and > 0.18 / 1.5%
D2(dRPA)/PBE0 < 0.13 / 1.0%
D1(MP2)b

< 0.015 / 0.6% and > 0.040 / 1.3%
D1(CCSD)b

< 0.020 / 0.3% and > 0.050 / 1.5%
D1(dRPA)/HF > 0.030 / 2.0%
D1(dRPA)/PBE < 0.050 / 0.6% and > 0.080 / 1.5%
D1(dRPA)/PBE0 > 0.060 / 1.5%

Vibrational frequencies
D2(MP2)a

< 0.15 / 3.0% and > 0.17 / 8.0%
D2(CCSD)a

< 0.15 / 1.0% and > 0.18 / 7.0%
D2(dRPA)/HF < 0.04 / 2.0%
D2(dRPA)/PBE < 0.15 / 3.0%
D2(dRPA)/PBE0 —
D1(MP2)b

< 0.015 / 2.9% and > 0.040 / *
D1(CCSD)b

< 0.020 / 1.3% and > 0.050 / *
D1(dRPA)/HF —
D1(dRPA)/PBE < 0.050 / 2.5%
D1(dRPA)/PBE0 —

a taken from Ref. [248]; b taken from Ref. [247].
*The corresponding error threshold is not specified in Ref. [247].
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6. Summary

The aim of this thesis was to tackle an important drawback of a wave-function method called random-phase
approximation (RPA): RPA suffers as all orbital-based methods from the slow convergence of the correla-
tion energy with respect to the size of the basis set. The unfavorable basis-set dependence implicates the
need for large basis sets with high angular momentum quantum numbers in order to ensure reliable results.
Furthermore, the basis-set superposition error can become dominant, in particular when regarding weakly
interacting systems, a research field for which RPA is known to perform best. Applications on larger systems
throughout the periodic table are thus hindered even though the method was proven to be a promising post-
Kohn Sham approach capturing long-range dynamic as well as static correlation. The topic of the presented
thesis was therefore focused on overcoming these shortcomings by combining RPA with the explicitly corre-
lated wave-function ansatz of F12 theory.
In Chapter 2, perturbative +F12 approaches [180, 181, 217] were presented based on the well-established
MP2-F12 method. The additive correction proved to be efficient, exhibiting a scaling proportional to N5 with
respect to the system size N. It can be combined with various beyond-RPA approaches, as demonstrated for
the exchange methods AXK+F12 and ACSOSEX+F12. The additive scheme was implemented in the RICC2
and CCSDF12 modules of the TURBOMOLE program package. Test calculations regarding correlation, at-
omization and interaction energies demonstrated that explicitly correlated triple- or quadruple-zeta results
outperform conventional quintuple-zeta calculations, being comparable to extrapolated limits obtained from
basis sets of quadruple- and quintuple-zeta quality. Furthermore, it was shown that the error in the Kohn-
Sham reference energy can be reduced by one order of magnitude when taking into account singles excitations
into the complementary auxiliary basis (CABS), standardly referred to as CABS-singles correction [180].
A disadvantage of the perturbative +F12 correction can be seen in the unsteady basis-set convergence of the
correlation energy reflecting that the convincing performance of the +F12 ansatz relies on error cancellation.
To overcome such shortcomings, more sophisticated explicitly correlated RPA variants were investigated:
In Chapter 3, the RPA-F12 method was derived starting from the equations of motion and explicit correlation
was introduced by incorporating the geminal excitation manifold in the chosen reference state. It was shown
that single excitations into the CABS basis are required to obtain a symmetric eigenvalue problem. The ansatz
was validated based on a pilot implementation in the KOALA program package for a small test set of closed-
shell main-group compounds, indicating that an overall gain of about one cardinal number can be achieved
for the def2-basis sets. The ansatz was thus shown to be comparable to a dual basis-set approach, if the latter
implies a Hartree-Fock calculation within the conventional orbital basis and a correlation treatment within
the combined orbital and CABS basis.
Various explicitly correlated ring coupled-cluster (rCC) approaches were outlined in Chapter 4 [156, 180]. The
presented ansätze exploit the fact that the RPA eigenvalue problem can be recast into a residual equation for
double excitation amplitudes and that the so-defined ring coupled-cluster doubles (rCCD) approach yields an
equivalent expression for the RPA correlation energy. A diagrammatic interpretation of the rCC approxima-
tion enables a consistent derivation of the working equations for both direct rCCD(F12) and the corresponding
rCCD(F12) ansatz including exchange. The drCCD(F12) implementation in the CCSDF12 module of the TUR-
BOMOLE program package was based on the already available explicitly correlated coupled-cluster singles
doubles (CCSD(F12)) code. Benchmark calculations for a test set of 106 molecules and the S22 database on
weakly interacting dimers showed that triple-zeta basis sets are sufficient to achieve convergence to within
99% of the basis-set limit for atomization energies, while quadruple-zeta basis sets are required when inves-
tigating long-range forces. The (F12) method proved to be more robust than the perturbative +F12 correction,
demonstrating smooth convergence to the basis-set limit when coupling between conventional and geminal
amplitudes is taken into account. In addition to drCCD(F12), three different rCCD(F12) methods were set
up to investigate the impact of exchange: Whereas the inclusion of exchange is straight-forward for open-
shell references, it necessitates spin adaptation in terms of singlet and triplet amplitudes for an analogous
closed-shell formulation. The exact rCCD(F12) variant as well as two approximate schemes, rCCD(F12)-SO1
and rCCD(F12)-SO2, were derived and implemented in the KOALA program package for both open- and
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closed-shell systems supporting Hartree-Fock as well as Kohn-Sham references. Results for correlation and
atomization energies demonstrated that rCCD(F12)-SO2 outperforms both rCCD(F12) and rCCD(F12)-SO1,
showing equally fast basis-set convergence while being at the same time insensible to triplet instabilities
and most efficient in terms of computation times. In analogy to drCCD(F12), all three explicitly correlated
rCCD(F12) approaches accelerate basis-set convergence in comparison to the conventional schemes, reaching
99% of the basis-set limit for triple-zeta basis sets.
To assess the applicability of RPA methods and to outline possible applications of the developed rCCD(F12)
approaches, two wave-function diagnostic schemes were presented in Chapter 5. It was shown that estab-
lished diagnostic tools, which are standardly used within coupled-cluster theory to validate the performance
of truncated wave-function approaches like MP2 or CC2, are transferable to direct RPA. D2 and D1 diagnos-
tics were implemented and the reliability was proven for direct RPA based on a small test set of closed-shell
molecules, representing both dynamic and static correlation effects. Regarding the accordance between the
diagnostic measures and the percentage errors in bond lengths and vibrational frequencies allowed to cali-
brate threshold values for Hartree-Fock, PBE and PBE0 references.
The developed wave-function approaches outline possible strategies on how to improve the efficiency and
to clarify the applicability of RPA, an approximation which combines three ambitious qualities of the ideal
wave-function method — efficiency, accuracy and applicability — in a favorable ratio. As the research field
of beyond-RPA approaches is growing rapidly, the presented explicitly correlated RPA ansätze might be of
further use, e.g. in combination with local correlation methods or symmetry-adapted perturbation theory.
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7. Zusammenfassung

Das Ziel dieser Arbeit war es, ein wesentliches Problem einer Wellenfunktionsmethode namens Random-
Phase-Approximation (RPA) zu bearbeiten: Wie alle Methoden, die auf Orbitalen basieren, leidet auch RPA
unter der langsamen Konvergenz der Korrelationsenergie hinsichtlich der Größe des Basissatzes. Durch
diese unvorteilhafte Basissatzabhängigkeit bedarf es großer Basissätze mit hohen Drehimpulsquantenzahlen
um zuverlässliche Ergebnisse zu gewährleisten. Zudem kann der Fehler durch die Überlagerung von Basis-
sätzen an Bedeutung gewinnen, insbesondere wenn schwach wechselwirkende Systeme betrachtet werden
— ein Forschungsgebiet, für das RPA bekanntlich am besten geeignet ist. Anwendungen an größeren Sys-
temen innerhalb des gesamten Periodensystems werden dadurch erschwert, obwohl sich die Methode als
vielversprechender Post-Kohn-Sham-Ansatz erwiesen hat, der langreichweitige dynamische als auch stati-
sche Korrelation beschreibt. Gegenstand der vorgestellten Arbeit war es daher, diese Nachteile durch die
Kombination von RPA mit dem explizit korrelierten Wellenfunktionsansatz der F12-Theorie zu überwinden.
In Kapitel 2 wurden störungstheoretische +F12-Ansätze [180, 181, 217] vorgestellt, welche auf der bewährten
MP2-F12-Methode basieren. Die additive Korrektur erweist sich als effizient und skaliert proportional zu N5

mit zunehmender Systemgröße N. Sie kann mit verschiedenen, auf RPA aufbauenden Ansätzen kombiniert
werden, wie für die Austauschmethoden AXK+F12 und ACSOSEX+F12 gezeigt wurde. Der additive Ansatz
wurde in die Module RICC2 und CCSDF12 des TURBOMOLE-Programmpakets implementiert. Testrechnun-
gen zu Korrelations-, Atomisierungs- and Wechselwirkungsenergien zeigten, dass explizit korrelierte triple-
zeta- und quadruple-zeta-Ergebnisse die konventionellen quintuple-zeta-Berechnungen übertreffen und ver-
gleichbar sind mit extrapolierten Grenzwerten, welche mit Basissätzen von quadruple- und quintuple-zeta-
Qualität erhalten wurden. Zudem wurde gezeigt, dass der Fehler in der Kohn-Sham-Referenzenergie um eine
Größenordnung reduziert werden kann, wenn Einfachanregungen in die komplementäre Hilfsbasis (comple-
mentary auxiliary basis, CABS) berücksichtigt werden. Dieses Verfahren wird standardmäßig als CABS-Singles-
Korrektur bezeichnet [180].
Ein Nachteil der störungstheoretischen +F12-Korrektur kann in der unsteten Basissatzkonvergenz der Korre-
lationsenergie gesehen werden, welche verdeutlicht, dass die überzeugenden Ergebnisse des +F12-Ansatzes
auf Fehlerkompensation beruhen. Um diese Defizite zu überwinden, wurden technisch aufwändigere ex-
plizit korrelierte RPA-Varianten untersucht:
In Kapitel 3 wurde die RPA-F12-Methode ausgehend von den Bewegungsgleichungen hergeleitet und ex-
plizite Korrelation eingeführt, indem Anregungen in den Geminalraum in der Beschreibung des gewählten
Referenzzustandes berücksichtigt wurden. Es wurde gezeigt, dass Einfachanregungen in die CABS-Basis er-
forderlich sind um ein symmetrisches Eigenwertproblem zu erhalten. Der Ansatz wurde anhand einer Pilot-
Implementierung im KOALA-Programmpaket für einen kleinen Testsatz von geschlossenschaligen Verbindun-
gen der Hauptgruppenelemente getestet. Es zeigte sich, dass im Falle der def2-Basissätze ein Gewinn von
einer Kardinalzahl erzielt werden kann. Der Ansatz erwies sich damit als vergleichbar mit einem Dual-Basis-
Set-Ansatz (Ansatz unter Verwendung zweier Basissätze), wenn letzterer eine Hartree-Fock-Rechnung mit
konventioneller Orbitalbasis und eine Korrelationsrechnung mit kombinierter Orbital- und CABS-Basis um-
fasst.
In Kapitel 4 wurden mehrere explizit korrelierte Ring-Coupled-Cluster-Verfahren (rCC-Verfahren) behandelt
[156, 180]. Die vorgestellten Ansätze machen von der Tatsache Gebrauch, dass das RPA-Eigenwertproblem
in eine Residuengleichung für Zweifachanregungsamplituden umformuliert werden kann und dass die so
definierte Ring-Coupled-Cluster-Doubles-Methode (rCCD-Methode) einen äquivalenten Ausdruck für die
RPA-Korrelationsenergie liefert. Eine Darstellung der rCC-Näherung in Form von Diagrammen ermöglicht
hierbei eine konsistente Herleitung der Arbeitsgleichungen für sowohl direktes rCCD(F12) als auch die
entsprechenden rCCD(F12)-Ansätze unter Berücksichtigung der Austauschwechselwirkung. Die drCCD(F12)-
Implementierung in das CCSDF12-Modul des TURBOMOLE-Programmpakets wurde aufgebaut auf den
bereits vorhandenen, explizit korrelierten Coupled-Cluster-Singles-Doubles-Code (CCSD(F12)). Benchmark-
Rechnungen für einen Testsatz von 106 Molekülen und für die S22-Datenbank über schwach wechselwir-
kende Dimere zeigten, dass triple-zeta-Basissätze ausreichen, um Atomisierungsenergien bis zu 99% des
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Basissatzlimits zu konvergieren. Für die Betrachtung von langreichweitigen Kräften werden dahingegen
quadruple-zeta-Basissätze benötigt. Im Vergleich zur störungstheoretischen +F12-Korrektur erwies sich die
(F12)-Methode als robuster, da sie, bei Berücksichtigung der Kopplung zwischen konventionellen und Gemi-
nal-Amplituden, eine regelmäßige Konvergenz zum Basissatzlimit aufweist. Zusätzlich zu drCCD(F12)
wurden drei verschiedene rCCD(F12)-Methoden entwickelt um den Einfluss der Austauschwechselwirkung
zu untersuchen: Während für offenschalige Referenzen der Austausch ohne weitreichende Änderungen
berücksichtigt werden kann, benötigt man für eine analoge geschlossenschalige Formulierung eine Spin-
Adaptierung in Form von Singlet- und Triplet-Amplituden. Die exakte rCCD(F12)-Variante als auch zwei
Näherungen, rCCD(F12)-SO1 und rCCD(F12)-SO2, wurden hergeleitet und im KOALA-Programmpaket im-
plementiert, für offen- als auch geschlossenschalige Systeme sowie Hartree-Fock und Kohn-Sham-Referenzen.
Ergebnisse für Korrelations- und Atomisierungsenergien zeigten, dass rCCD(F12)-SO2 sowohl rCCD(F12)
als auch rCCD(F12)-SO1 übertrifft, da der Ansatz eine vergleichbar schnelle Basissatzkonvergenz aufzeigt,
gleichzeitig aber auch unanfällig für Triplett-Instabilitäten und am effizientesten hinsichtlich der Rechen-
zeiten ist. Wie im Falle von drCCD(F12) beschleunigen alle drei explizit korrelierten rCCD(F12)-Ansätze die
Basissatzkonvergenz im Vergleich mit den konventionellen Varianten und erreichen 99% des Basissatzlimits
für triple-zeta-Basissätze.
Um die Anwendbarkeit der RPA-Methoden zu überprüfen und mögliche Anwendungen der entwickelten
rCCD(F12)-Verfahren aufzuzeigen, wurden in Kapitel 5 zwei Wellenfunktionsdiagnostiken vorgestellt. Es
wurde gezeigt, dass etablierte Diagnostik-Verfahren, welche standardmäßig im Rahmen der Coupled-Cluster-
Theorie verwendet werden um genäherte Wellenfunktionsansätze wie MP2 oder CC2 zu überprüfen, auch
auf direktes RPA angewendet werden können. D2- und D1-Diagnostiken wurden implementiert und die Zu-
verlässigkeit für direktes RPA anhand eines kleinen Testsatzes für geschlossenschalige Moleküle bewiesen.
Die Testsysteme beschrieben dabei sowohl dynamische als auch statische Korrelationseffekte. Anhand der
Übereinstimmung der Diagnostik-Werte mit den prozentualen Fehlern in Bindungslängen und Schwingungs-
frequenzen konnten Grenzwerte für Hartree-Fock-, PBE- und PBE0-Referenzen festgelegt werden.
Die entwickelten Methoden skizzieren mögliche Strategien zur Steigerung der Effizienz und Untersuchung
der Anwendbarkeit von RPA, einer Näherung, welche drei anspruchsvolle Eigenschaften der idealen Wellen-
funktionsmethode — Effizienz, Genauigkeit und Anwendbarkeit — vorteilhaft vereint. Da das Forschungs-
gebiet der auf RPA aufbauenden Methoden rasch an Bedeutung gewinnt, könnten die vorgestellten explizit
korrelierten RPA-Ansätze von weiterem Nutzen sein, zum Beispiel in Kombination mit lokalen Korrelations-
methoden oder symmetrieadaptierter Störungstheorie.
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Appendix

A. Notation

Symbols and Intermediates

{i, j, k, l, . . . } and {a, b, c, d, . . . } indicate occupied and virtual orbitals, respectively. {x, y, v, w, . . . } denote the
geminal basis, {p, q, r, s, . . . } the complete MO basis, {p ′′, q ′′, r ′′, s ′′, . . . } the CABS basis and {p ′, q ′, r ′, s ′, . . . }
the combined MO and CABS basis. {a ′, b ′, c ′, d ′, . . . } correspond to orbitals of the combined virtual and
CABS basis. The complete virtual space is indicated as {α, β, γ, δ, . . . } when referring to spatial orbitals and
as {A, B, C, D, . . . } when referring to spin orbitals. Accordingly, {K, L, M, N, . . . } denote spin orbitals of the
complete infinite basis and {κ, λ, µ, ν, . . . } the corresponding spatial orbitals. In general, spatial orbitals are
indicated by lower case letters, {i, j, a, b, . . . }, spin orbitals by capital letters {I, J, A, B, . . . }.
The biorthogonal basis is chosen as defined in Ref. [144],

〈a
i | =

1
2
〈a

i | , (A.1)

〈ab
ij | =

1
3
〈ab

ij |+
1
6
〈ab

ji | , (A.2)

ensuring normalization of the overlap integrals,

〈a
i |

c
k〉 = δacδik , (A.3)

〈ab
ij |

cd
kl 〉 = δacδbdδjlδik + δbcδadδilδjk . (A.4)

|ai 〉 and |ab
ij 〉 assign singly and doubly excited determinants, which are obtained by applying the corresponding

excitation operators Êpq on the chosen reference state |Ψ0〉,

|ai 〉 = Êai|Ψ0〉 , (A.5)

|ab
ij 〉 = ÊaiÊbj |Ψ0〉 . (A.6)

The excitation operators Êpq are defined as a linear combination of creation and annihilation operators, â†
p

and âp, allowing a short notation for closed-shell references by summing over the two spin cases α and β,

Êpq = â†
pα âqα + â†

pβ âqβ . (A.7)

In accordance, the two-electron excitation operator is defined as êpqrs = ÊpqÊrs − δrqÊps. Throughout the
thesis, this notation is restricted to the spin-free representation of closed-shell references; â†

P and âP are
used when referring to spin orbitals and open-shell references. Based on these definitions, the Hamiltonian
operator can be written in the form

Ĥ
UHF
=
∑

PQ

hPQâ†
P âQ + 1

2

∑

PQRS

gPR
QS â†

P â†
R âS âQ + hnuc , (A.8)

RHF
=
∑

pq

hpqÊpq +
1
2

∑

pqrs

g
pr
qs êpqrs + hnuc , (A.9)

when referring to open- and closed-shell references, respectively. hnuc denotes the constant nuclear-nuclear
contribution, hpq and g

pr
qs the molecular one- and two-electron integrals.

The latter are defined as

g
pr
qs =

∫ ∫

φ∗
p(r1)φ

∗
r (r2)ĝ12φq(r1)φs(r2)dr1dr2 = 〈pr|qs〉 , (A.10)

with the two-electron operator ĝ12 = r−1
12 .

f12 is the correlation factor; the integral over the Slater function is denoted f
xy
pq = 〈xy| f12|pq〉. Spin-flipped

functions are defined in terms of the rational generator Ŝxy,

|x̃y〉 = Ŝxy|xy〉 = 3
8 |xy〉+ 1

8 P̂
flip
xy |xy〉 , (A.11)

where the permutation operator P̂
flip
xy flips the spatial part of the geminal while keeping the spin functions

the same,

P̂
flip
xy |xσyσ ′〉 = |xσyσ ′〉+ |yσxσ ′〉 . (A.12)
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Throughout the thesis, F12 integrals are summarized in terms of the following intermediates,

V xy
ij = 〈xy| f12Q̂12 ĝ12|ij〉 , (A.13)

(V†)
ij
xy = 〈ij|ĝ12Q̂12 f12|xy〉 , (A.14)

X xy
vw = 〈xy| f12Q̂12 f12|vw〉 , (A.15)

B(ij)
xy,vw = 〈xy| f12Q̂12(F̂1 + F̂2 − ε i − ε j)Q̂12 f12|vw〉 , (A.16)

C(ij)
ab,xy = 〈ab|(F̂1 + F̂2 − ε i − ε j)Q̂12 f12|xy〉 , (A.17)

w
αβ
xy = 〈αβ|Q̂12 f12|xy〉 , (A.18)

(w†)
xy
αβ = 〈xy| f12Q̂12|αβ〉 , (A.19)

with the Fock or KS operator F̂ and the projection operator Q̂12. .

Diagrams

For a basic introduction into diagrammatics, the reader is referred to Refs. [121], [152] and [106] as well as
the therein cited references. The notation and the algebraic assignment used for the diagrams of this thesis
is chosen accordingly, explained in Figure A.1 for both ordinary and antisymmetrized Goldstone diagrams.
Note that the reference state is not drawn explicitly. An incoming line is associated with an annihilation oper-
ator and an outgoing line with a creation operator, so that the two-electron integrals and double amplitudes
are given as

g
left-out right-out
left-in right-in ; t

left-out right-out
left-in right-in . (A.20)

Standardly, closed-shell equations based on RHF references are represented by ordinary Goldstone diagrams
referring to non-antisymmetrized two-electron integrals and depicting all exchange contributions separately
(see for example Figure 2.4). However, in analogy to the identity

1
2 g

pr
qs êpqrs =

1
4 (g

pr
qs − g

pr
sq )êpqrs , (A.21)

it is also possible and often more convenient to work with antisymmetrized Goldstone diagrams, representing
the corresponding antisymmetrized two-electron integrals (see for example Figure 2.2). The rules to obtain
the algebraic expressions for these two types of diagrams differ. For ordinary Goldstone diagrams, they can
be summarized in four bullet points:

1. There is a weight factor 2 for each closed loop.

2. There is a weight factor 1
2 for diagrams with left-right symmetry.

3. The phase factor is defined by the total number of holes (h) and loops (l), given as (−1)h−l.

4. The permutation operator P̂ab
ij accounts for the symmetry of spin-free amplitudes tab

ij .

For antisymmetrized Goldstone diagrams representing spin orbitals, the phase factor is obtained analogously
by rule 3. Furthermore, the following rules hold:

1. A weight factor of 1
2 is assigned for each pair of equivalent lines as well as for each pair of equivalent

operators.

2. All distinct permutations of open lines are considered by introducing permutation operators.

It should be noted that the drCCD and rCCD diagrams require special interpretation rules due to the fact
that the energy and amplitude equations cannot be derived starting from an appropriate wave function and
applying Wick’s theorem [155]. Therefore, standard notations which assign operators to graphical features, as
done in Figure A.1, are unsuitable. However, a direct assignment relating lines and vertices to the correspond-
ing integrals and amplitudes is possible, as done in Refs. [156, 180]. Furthermore, standard interpretation
rules for antisymmetrized Goldstone diagrams referring to open-shell systems can only be applied when
a) associating an additional factor of 2 with non-antisymmetrized integrals or geminal amplitudes and b)
considering all distinct permutations of inequivalent external lines by including the permutation operator
P̂AB

I J MAB
I J = MAB

I J + MBA
JI instead of the standardly used P̂−

I J and P̂−

AB operators with P̂−

I J MAB
I J = MAB

I J − MAB
JI
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and P̂−

ABMAB
I J = MAB

I J − MBA
I J . For closed-shell systems, the interpretation rules of ordinary Goldstone di-

agrams can be used to extract the algebraic expressions for the drCCD energy and amplitude equations
without requiring any further changes.

Feature Algebraic expression
ordinary antisymmetrized

i a
;

i α
|ai 〉, 〈a

i | ; |αi 〉, 〈α
i | |AI 〉, 〈A

I | ; |AI 〉, 〈A
I |

FpqÊpq FPQ â†
P âQ

1
2 g

pr
qs êpqrs

1
4 (gPR

QS − gPR
SQ)â†

P â†
R âS âQ

1
2 tab

ij ÊaiÊbj
1
4 tAB

I J â†
A â†

B âJ âI

f
xy
αβ〈

αβ
ij |

1
2 ( f XY

AB
− f XY

BA
)〈AB

I J |

1
2 c

xy
ij f

αβ
xy ÊαxÊβy

1
4 cXY

I J ( f AB

XY − f AB

YX )â†
A

â†
B

âY âX

Fig. A.1: Nomenclature for ordinary and antisymmetrized Goldstone diagrams representing spatial and spin
orbitals, respectively.
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B. Commonly used approximations within F12

Ansatz 1, 2∗ and 2: Projection operators and Brillouin conditions

The projection operators Q̂12 within ansatz 1 and ansatz 2 are defined as

Q̂12(Ansatz 1) = (1 − P̂1)(1 − P̂2)

CABS
= 1 − P̂1P̂ ′′

2 − P̂ ′′
1 P̂2 − P̂1P̂2 = P̂ ′′

1 P̂ ′′
2 , (B.1)

Q̂12(Ansatz 2) = (1 − Ô1)(1− Ô2)− V̂1V̂2

CABS
= 1 − Ô1P̂ ′′

2 − P̂ ′′
1 Ô2 − P̂1P̂2 = P̂ ′′

1 V̂2 + V̂1P̂ ′′
2 + P̂ ′′

1 P̂ ′′
2 , (B.2)

where V̂ is the projector onto the finite virtual space, Ô the projector onto the occupied space, P̂ the projector
onto the finite basis and P̂ ′′ the projector onto the CABS basis. In contrast to ansatz 1, ansatz 2 thus considers
mixed double excitations into the CABS and virtual basis. Eqs. (B.1) and (B.2) imply that the projection
onto the occupied space includes both inactive and active orbitals within the frozen-core approximation.
Regarding the evaluation of matrix elements, it should be kept in mind that Q̂12|ab〉 is zero for both ansatz 1
and 2 because the CABS basis is chosen to be orthogonal to the orbital basis, 〈p ′′|a〉 = 0.
Concerning the evaluation of Fock or KS matrix elements, it is furthermore common to distinguish between
ansatz 2 and ansatz 2∗, relying on the definition of the generalized and the extended Brillouin condition. The
generalized Brillouin condition (GBC) [277] implies that the off-diagonal elements of the occupied-complete
virtual space vanish and that the occupied orbitals are eigenfunctions of the Fock or KS operator in the
combined MO and CABS basis (in case of canonical orbitals),

Fip ′′ ≈ 0 ; Fip ′ = δp ′iε i . (B.3)

Ansatz 2∗ additionally avoids coupling terms between the virtual and the CABS basis, based on the extended
Brillouin condition (EBC),

Fpp ′′ ≈ 0 ; Fpp ′ = δp ′pεp . (B.4)

It should be furthermore noted that ansatz 2 is often dubbed ansatz 3 in the literature, see e.g. Ref. [278],
reserving the first acronym for the projection onto (1 − Ô1)(1 − Ô2). .

Approximations for matrix B - implications for KS references

As explained in Refs. [105, 178, 179] for HF references, the F12 intermediate B, as given in Eq. (A.16), has
to be evaluated approximately in order to avoid numerical instabilities. Common approaches are denoted as
ansätze A, A’, and B, specifying the treatment of exchange contributions, as well as approximations [T+V]
and [J+K], labelling the different transformations for the kinetic energy term [92, 277]. It should be noted that
ansatz C is also a common acronym in the literature, see e.g. Refs. [278, 279], however as it only differs from
ansatz B in the treatment of RI and GBC, it is not discussed in particular. All other approximations are in the
following briefly explained in order to highlight the differences for KS references.
Applying commutator rules (see Ref. [179]), matrix B can be partitioned into three contributions,

B(ij)
xy,vw = 〈xy| 12 f12Q̂12[F̂12, f12]|vw〉+ 〈xy| 12 f12Q̂12[F̂12, Q̂12] f12|vw〉

+ 〈xy| 12
[

f12Q̂12 f12(F̂12 − ε ij) + (F̂12 − ε ij) f12Q̂12 f12
]
|vw〉 . (B.5)

For local KS references where the KS operator is given as the sum of the kinetic energy, the electron-core,
the Coulomb and the exchange-correlation potential, F̂KS = T̂ + V̂ + Ĵ + V̂local

xc , the first term of Eq. (B.5)
simplifies due to the fact that both Ĵ, V̂ and V̂local

xc are local and therefore commute with the correlation factor
f12. Solely the commutator over the kinetic energy operator T̂12 remains,

〈xy| 12 f12Q̂12[F̂12, f12]|vw〉 local KS
= 〈xy| 12 f12Q̂12[T̂12, f12]|vw〉 = T

xy
vw . (B.6)

Approximations A’ and B are therefore identical, being originally defined for HF references in order to
discriminate between the neglect (approximation A’) and the inclusion (approximation B) of the non-local
exchange potential. The remaining kinetic energy term of Eq. (B.6) is evaluated analytically by inserting the
chosen definition for the projection operator Q̂12 and by approximating the integral over the commutator
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[T̂12, f12] introducing an additional resolution of the identity, as explained in Ref. [178]. The so-obtained
one-electron integrals over T̂ are numerically instable, and the kinetic energy operator T̂ is therefore either
replaced by T̂ + V̂ or T̂ + V̂ + Ĵ = F̂ + K̂, two approximations which are accordingly denoted [T+V] and
[F+K]. For local exchange-correlation functionals, both treatments are however identical as

[F̂ + K̂, f12] = [T̂ + V̂ + Ĵ + V̂local
xc , f12] = [T̂ + V̂, f12] . (B.7)

Thus, for KS references with local exchange-correlation potentials, the discrimination between approximation
A’ and B as well as [T+V] and [F+K] is obsolete.
Within ansatz 2 assuming the GBC, the projection manifold of occupied orbitals represents eigenfunctions of
the Fock or KS operator, reducing the second and the third term of Eq. (B.5) for both HF and KS references to

〈xy| 12
[

f12Q̂12 f12(F̂12 − ε ij) + (F̂12 − ε ij) f12Q̂12 f12
]
|vw〉 GBC

= 1
2 (εv + εw + εx + εy − 2ε i − 2ε j)X xy

vw , (B.8)

〈xy| 12 f12Q̂12[F̂12, Q̂12] f12|vw〉 GBC
= (Cf)

xy
vw , (B.9)

where matrices X and C are defined as in Eqs. (A.15) and (A.17). f denotes the integral matrix over the
correlation factor; Cf is the corresponding contracted matrix over C and f. In comparison to the already
presented variant A’, the third approximation A omits not only the exchange contributions in the kinetic
energy term, but also the commutator term of Eq. (B.8). This contribution however cancels anyway — despite
the underlying reference determinant — when implying fixed geminal amplitudes as defined in Eq. (B.24).
Eq. (B.5) can be even more simplified by choosing ansatz 2∗ for the projection operator, which assumes the
EBC and therefore neglects the coupling contribution of Eq. (B.9). .

Working equations for matrices B, V and X

As outlined in the last section, the three different ansätze A, A’ and B and the approximations [T+V] and
[F+K] turn out to be identical when assuming local KS references and fixed amplitudes. Within ansatz 2∗,
coupling contributions are furthermore neglected and matrix B is given by the kinetic energy term of Eq.
(B.6). The final working equations — for local KS references and fixed geminal amplitudes within ansatz 2∗

— are thus given as

Bx̃y,ṽw = 1
2


( f 2r2)

x̃y
ṽw

−

∑

pq

f
x̃y
pq t

pq
ṽw

−

∑

p ′′i

f
x̃y
p ′′it

p ′′i
ṽw

−

∑

p ′′i

f
x̃y
ip ′′t

ip ′′

ṽw


 , (B.10)

with the integrals

( f 2r2)
x̃y
ṽw

= 〈x̃y| 12 [ f12, [T̂12, f12]]|ṽw〉 , (B.11)

t
pq
xy = f

pq
xr ′T

r ′
y − T

q
r ′ f

pr ′
xy + f

pq
r ′yTr ′

x − T
p
r ′ f

r ′q
xy , (B.12)

Tr ′
l = 〈r ′|T̂ + V̂|l〉 . (B.13)

Note that the Einstein summation convention is implied. Working equations for the F12 intermediates V and
X within ansatz 2 (and 2∗) are obtained by inserting the corresponding projection operator in Eqs. (A.13) and
(A.15),

V x̃y
ij = ( f g)

x̃y
ij −

∑

pq

f
x̃y
pq g

pq
ij −

∑

p ′′k

f
x̃y
p ′′kg

p ′′k
ij −

∑

p ′′k

f
x̃y
kp ′′g

kp ′′

ij , (B.14)

X x̃y
ṽw

= ( f 2)
x̃y
ṽw

−

∑

pq

f
x̃y
pq f

pq
ṽw

−

∑

p ′′i

f
x̃y
p ′′i f

p ′′i
ṽw

−

∑

p ′′i

f
x̃y
ip ′′ f

ip ′′

ṽw
, (B.15)

with the integrals

( f g)
x̃y
ij = 〈x̃y| f12 ĝ12|ij〉 , (B.16)

( f 2)
x̃y
ṽw

= 〈x̃y| f 2
12|ṽw〉 . (B.17)

It should be noted that the projection on the occupied orbital space includes within the frozen-core approxi-
mation both active and frozen occupied orbitals. .

Optimized, fixed and spin-flipped geminal amplitudes

Two main strategies to determine the geminal amplitudes exist: they are either optimized iteratively (invari-
ant ansatz) [277] or kept fixed according to the s- and p-wave cusp conditions (rational generator approach
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or SP ansatz) [99].
For closed-shell systems, where the pair functions are parametrized as

uij =
∑

ab

tab
ij |ab〉+

∑

xy

c
xy
ij Q̂12 f (r12)|xy〉 , (B.18)

the optimization of the amplitudes requires the calculation of the corresponding residual equation (ΩF12)
xy
ij

(see e.g. the drCCD(F12) residual of Eq. (4.16)) as well as an update of the so-defined amplitudes c
xy
ij , given

as

c
xy(new)
ij = c

xy(old)
ij +

∑

vw

[B−1]
(ij)
xy,vw(Ω

F12)vw
ij . (B.19)

(Note that optimized MP2-F12 geminal amplitudes for ansatz 2∗ are simply given as c
xy
ij =

∑
vw[B

−1]
(ij)
xy,vwVvw

ij ,
representing the exact solution which minimizes the Hylleraas functional [105, 178]. For other approaches,
the preconditioner B

−1 for the iterative update can be chosen freely; standardly not the full matrix B as
defined in Eq. (A.16) is taken into account.) Alternatively, fixed amplitudes can be chosen according to the
coalescence conditions [171, 280],

c
xy
ij =

3
8

δixδjy +
1
8

δiyδjx . (B.20)

For open-shell systems, it was shown that spin-flipped geminals have to be included in the wave-function
manifold in order to fulfill the cusp conditions, to accelerate basis-set convergence from X−3 to X−7 and to
give a balanced treatment of closed- and open-shell molecules [173, 174]. In the case of optimized amplitudes,
this can be achieved by introducing contracted geminals [103],

uI J =
∑

A<B

tAB
I J |AB〉+

∑

X<Y

cXY
I J Q̂12 f (r12)(c|XY〉+ c̄|X̃Y〉) , (B.21)

with the contraction coefficients

c = 1
4 , c̄ = 0 for the same-spin case and (B.22)

c = 3
8 , c̄ = 1

8 for the opposite-spin case . (B.23)

Fixed open-shell amplitudes are in contrast obtained by generalizing Eq. (B.20), implying

cXY
I J = δIXδJY or dXY

I J = δIXδJY − δIYδJX , (B.24)

and introducing the rational generator ŜXY [99],

|X̃Y〉 = ŜXY |XY〉 = (
3
8
+

1
8

P̂flip

XY)|XY〉 . (B.25)

The permutation operator P̂flip

XY flips the spatial part of the orbitals X and Y keeping the spin functions σX and
σY the same, P̂flip

XYϕXσX ϕYσY = ϕYσX ϕYσY. Concerning fixed open-shell amplitudes, it should be noted that
various other approaches exist which exclude the manifold of spin-flipped functions, setting up constraints
for the different spin cases to fit the cusp conditions (see e.g. Ref. [202]). It was for instance shown that
variationally optimized amplitudes tend in the limit of a large basis to

cXY
I J = 1

4 δIXδJY for the same-spin case , (B.26)

cXY
I J = 3

8 δIXδJY + 1
8 δIYδJX for the opposite-spin case and doubly occupied orbitals , (B.27)

cXY
I J = 1

2 δIXδJY for the opposite-spin case and singly occupied orbitals . (B.28)

These limits allow to assess or even set up alternative, fixed formulations, e.g. by defining the geminal
coefficients depending on the MO overlap matrix SXY = 〈φX |φY〉 [103],

cXY
I J = 1

4 δIXδJY for the same-spin case , (B.29)

cXY
I J = 1

2 δIXδJY −
1
8

∑

MN

SINSXNSMJSMY + 1
8 SIYSXJ for the opposite-spin case . (B.30)
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The latter, computationally less demanding approach is also implemented in TURBOMOLE, obtained when
choosing fixed, non-spin-flipped amplitudes for open-shell molecules.
However, in summary, spin-flipped amplitudes as defined within Eqs. (B.24) and (B.25) are the most rigor-
ous ansatz: they fulfill the cusp conditions exactly in contrast to other approaches and accelerate basis-set
convergence to X−7. Comparing optimized to fixed amplitudes, the latter are standardly preferred being
computationally less demanding, numerically more stable and free from geminal BSSE [172] while the loss
of accuracy is slight [103]. It should be noted that direct methods require a non-antisymmetrized definition
of the geminal amplitudes, cXY

I J = δIXδJY, reflecting that the coalescence conditions are equal for both same
and opposite spin, while correlation methods including exchange have to refer to dXY

I J = δIXδJY − δJXδIY, as
already indicated in Eq. (B.24).
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C. Perturbative +F12 methods and RPA approaches including exchange

Open-shell equations implying cXY
I J = δIXδJY and dXY

I J = δIXδJY − δIYδJX:

EF12(dMP2-F12)
C = 1

2

∑

XYI J

cXY
I J

(
V

†
)I J

X̃Y
+ 1

2

∑

XYI J

(CLAG)XY
I J (ΩF12(dMP2-F12))X̃Y

I J , (C.1)

EF12(MP2-F12)
C = 1

4

∑

XYI J

dXY
I J

((
V

†
)I J

X̃Y
−

(
V

†
)I J

ỸX

)
+ 1

4

∑

XYI J

(DLAG)XY
I J (ΩF12(MP2-F12))X̃Y

I J ,

= 1
2

∑

XYI J

dXY
I J

(
V

†
)I J

X̃Y
+ 1

2

∑

XYI J

(DLAG)XY
I J (ΩF12(dMP2-F12))X̃Y

I J , (C.2)

(ΩF12(dMP2-F12))X̃Y
I J = V X̃Y

I J +
∑

VW

B(I J)

X̃Y,ṼW
cVW

I J , (C.3)

(ΩF12(MP2-F12))X̃Y
I J = V X̃Y

I J − V X̃Y
JI +

∑

VW

B(I J)

X̃Y,ṼW
dVW

I J , (C.4)

with the Lagrangian multipliers (CLAG)XY
I J = cXY

I J and (DLAG)XY
I J = dXY

I J . .

Closed-shell equations implying c
xy
ij = δixδjy, 1d

xy
ij = 2δixδjy − δiyδjx and 3d

xy
ij = −δiyδjx:

EF12(dMP2-F12)
C =

∑

xyij

c
xy
ij

(
2V†

)ij

x̃y
+
∑

xyij

(CLAG)
xy
ij (ΩF12((d)MP2-F12))

x̃y
ij , (C.5)

EF12(MP2-F12)
C = 1

4

∑

xyij

(
1d

xy
ij

(
1
V

†
)ij

x̃y
+ 3 3d

xy
ij

(
3
V

†
)ij

x̃y

)

+ 1
4

∑

xyij

((
1DLAG

)xy

ij

(
1
Ω

F12(MP2-F12)
)x̃y

ij
+ 3

(
3DLAG

)xy

ij

(
3
Ω

F12(MP2-F12)
)x̃y

ij

)
, (C.6)

=
∑

xyij

c
xy
ij

(
2
(
V

†
)ij

x̃y
−

(
V

†
)ij

ỹx

)
+
∑

xyij

(DLAG)
xy
ij (ΩF12((d)MP2-F12)

x̃y
ij , (C.7)

(s
Ω

F12(MP2-F12))
x̃y
ij = sV x̃y

ij +
∑

vw

B(ij)
x̃y,ṽw

sdvw
ij , (C.8)

(ΩF12((d)MP2-F12))
x̃y
ij = V x̃y

ij +
∑

vw

B(ij)
x̃y,ṽw

cvw
ij , (C.9)

with the Lagrangian multipliers (CLAG)
xy
ij = 2c

xy
ij , (DLAG)

xy
ij = 2c

xy
ij − c

xy
ji ,
(1DLAG

)xy

ij
= 1d

xy
ij and

(3DLAG
)xy

ij
= 3d

xy
ji .

Fig. C.1: Perturbative second-order F12 correction for ansatz 2∗, neglecting coupling between conventional
and explicitly correlated amplitudes. Note that the lengthy formulations might appear cumbersome, but are
especially chosen to highlight that Eq. (C.6) for the closed-shell case is derived by implying antisymmetrized
integrals and non-antisymmetrized coefficients in analogy to Eq. (2.98). This explains why the geminal
coefficients c

xy
ij in Eq. (C.9) differ by a factor of two from the Lagrangian multipliers CLAG of Eq. (C.5). The

derivation of the Lagrangian multipliers CLAG and DLAG is explained in detail in Ref. [178].

The idea of the +F12 schemes is to add a perturbative F12 correction to the RPA or beyond-RPA correlation
energy which is obtained by truncating the explicitly correlated rCCD approach at second-order perturbation



Appendix

theory. Analogously to the conventional methods, where the truncation of drCCD/rCCD amplitudes yields
the dMP2/MP2 result (Eqs. (2.104) to (2.107)), the explicitly correlated approaches drCCD(F12)/rCCD(F12)
lead to the corresponding dMP2-F12/MP2-F12 methods. Working equations for closed- and open-shell sys-
tems are given in Figure C.1, according to Ref. [105]. Note that the closed-shell formulation of the explicitly
correlated contribution from MP2-F12 theory, as given in Eqs. (C.6) and (C.7), can be parametrized either in
terms of singlet and triplet amplitudes or based on the non-antisymmetrized and antisymmetrized coeffi-
cients C and DLAG = D. Both formulations are equivalent, representing first-order contributions to the rCCD
correlation energy. A closed-shell rCCD scheme analogous to Eq. (C.7) is not possible due to the reduced
symmetry of the rCCD amplitudes. Open-shell rCCD equations thus have to rely on a singlet-triplet formu-
lation analogously to Eq. (C.6), including higher-order contributions.
The different +F12 schemes are defined in Eqs. (2.108), (2.109), (2.111), and (2.110), correcting both conven-
tional dRPA and RPA as well as the beyond-RPA approaches SOSEX and AXK. The second-order screened
exchange (SOSEX) can be based on the rCC formulation of the correlation energy (see Eq. (2.64)) [45, 52],

E∆SOSEX
C = −

1
2 tr [BXTdRPA] , (C.10)

or it can be defined in the framework of the adiabatic connection [182] according to

E∆ACSOSEX
C = −

1
2

∫ 1

0
tr
(

BXP
ζ
dRPA

)
dζ . (C.11)

P
ζ
dRPA is given in Eq. (2.43) and BX indicates the pure exchange contribution to the standard RPAX matrix BRPAX,

BX = gAB
JI . Working equations for the approximate exchange kernel (AXK) are derived in Refs. [8, 51] and can

be summarized as

E∆AXK
C = −

∫ 1

0
tr
(

BXP
ζ(2)
dRPA

)
dζ , (C.12)

with the second-order pair density

P
ζ(2)
dRPA =

ζ

Ω
ζdRPA
n + Ω

ζdRPA
m

∑

nm

((
X

nζ
dRPA + Y

nζ
dRPA

) (
X

nζ
dRPA + Y

nζ
dRPA

)T
BdRPA

(
X

mζ
dRPA + Y

mζ
dRPA

) (
X

mζ
dRPA + Y

mζ
dRPA

)T
)

. (C.13)

Both approaches outperform the SOX variant, which simply adds second-order exchange to the dRPA correla-
tion energy, overcorrecting the self-interaction error and inheriting the problems of MP2 theory for small-gap
systems [233, 281],

E∆SOX
C = −

1
2 tr[BXTMP2] = −

1
2

∑

ABI J

gAB
I J g

I J
BA

εA + εB − ε I − ε J
. (C.14)

SOSEX and ACSOSEX remove the self-interaction error, but still suffer from numerical instabilities for small-
gap systems. AXK in contrast is fully screened, removing most of the self-interaction while capturing strong
static correlation. However, SOSEX is computationally more efficient. Note that ACSOSEX and SOSEX cor-
relation energies differ only slightly due to the inaccurateness of the numerical integration (for a comparison
see Ref. [51]), even though the perturbation expansions reveal subtle differences [145, 182]. Refs. [63], [46] and
[51] summarize a comparison of all four methods, SOX, ACSOSEX, SOSEX, and AXK, in terms of Goldstone
diagrams. A detailed description on how to derive diagrammatic representations of perturbation expansions
is given in Refs. [121, 282]. SOX is thereby represented by all second-order diagrams, which are identical
for AXK, SOSEX and ACSOSEX. The latter three methods contain further higher-order contributions, which
differ already at third order perturbation theory.

Basis-set convergence of +F12 schemes

To validate the proposed +F12 schemes, basis-set convergence with respect to the +F12/aug-cc-pV5Z limit
is depicted in Figures 2.6, 2.7, 2.8, and 2.9 of Chapter 2.3 for the Dunning basis sets aug-cc-pVXZ. The cor-
responding statistical measures, including mean errors (ME), mean absolute deviations (MAD), root-mean-
square errors (RMS), standard deviations (STD) and mean percentage errors (MPE), are given in Table C.1,
C.2, C.3, and C.4 regarding correlation, atomization, interaction, and reference energies, respectively.
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Tab. C.1: Valence-shell correlation energies: Statistical measures for the basis-set error per valence electron
with respect to the +F12/aug-cc-pV5Z result (in mEh).

Basis set ME MAD RMS STD MPE

dMP2
aug-cc-pVDZ 16.04 16.04 16.54 4.02 −22.90
aug-cc-pVTZ 6.64 6.64 6.92 1.97 −8.73
aug-cc-pVQZ 3.11 3.11 3.27 1.01 −3.93
aug-cc-pV5Z 1.62 1.62 1.71 0.53 −2.00
aug-cc-pV(Q5)Z 0.06 0.06 0.07 0.04 −0.02

dMP2-F12
aug-cc-pVDZ −0.40 0.44 0.58 0.41 −2.30
aug-cc-pVTZ 0.17 0.17 0.21 0.12 0.70
aug-cc-pVQZ 0.06 0.06 0.07 0.03 0.17

dRPA
aug-cc-pVDZ 16.04 16.04 16.54 4.02 −28.74
aug-cc-pVTZ 6.64 6.64 6.92 1.97 −11.79
aug-cc-pVQZ 3.11 3.11 3.27 1.01 −5.50
aug-cc-pV5Z 1.62 1.62 1.71 0.53 −2.86
aug-cc-pV(Q5)Z 0.06 0.06 0.07 0.04 −0.10

dRPA+F12
aug-cc-pVDZ −0.40 0.44 0.58 0.41 0.62
aug-cc-pVTZ 0.17 0.17 0.21 0.12 −0.32
aug-cc-pVQZ 0.06 0.06 0.07 0.03 −0.12

MP2
aug-cc-pVDZ 11.08 11.08 11.34 2.42 −21.59
aug-cc-pVTZ 3.91 3.91 4.05 1.03 −7.58
aug-cc-pVQZ 1.70 1.70 1.77 0.49 −3.28
aug-cc-pV5Z 0.84 0.84 0.88 0.24 −1.62
aug-cc-pV(Q5)Z −0.06 0.06 0.06 0.02 0.12

MP2-F12
aug-cc-pVDZ 1.38 1.38 1.40 0.23 −2.71
aug-cc-pVTZ 0.33 0.33 0.35 0.12 −0.64
aug-cc-pVQZ 0.08 0.08 0.08 0.03 −0.15

ACSOSEX
aug-cc-pVDZ 9.49 9.49 9.71 2.06 −27.85
aug-cc-pVTZ 3.68 3.68 3.80 0.96 −10.74
aug-cc-pVQZ 1.66 1.66 1.72 0.48 −4.83
aug-cc-pV5Z 0.84 0.84 0.88 0.24 −2.45
aug-cc-pV(Q5)Z −0.02 0.02 0.02 0.01 0.05

ACSOSEX+F12
aug-cc-pVDZ −0.20 0.26 0.35 0.28 0.54
aug-cc-pVTZ 0.09 0.09 0.11 0.06 −0.27
aug-cc-pVQZ 0.04 0.04 0.04 0.02 0.11

AXK
aug-cc-pVDZ 10.08 10.08 10.30 2.11 −26.09
aug-cc-pVTZ 3.82 3.82 3.94 0.90 −9.83
aug-cc-pVQZ 1.68 1.68 1.75 0.48 −4.32
aug-cc-pV5Z 0.84 0.84 0.88 0.24 −2.16
aug-cc-pV(Q5)Z −0.04 0.04 0.04 0.02 0.11

AXK+F12
aug-cc-pVDZ 0.38 0.40 0.45 0.24 1.07
aug-cc-pVTZ 0.23 0.23 0.25 0.09 −0.61
aug-cc-pVQZ 0.06 0.06 0.06 0.02 0.16
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Tab. C.2: Correlation contribution to the atomization energy: Statistical measures for the basis-set error per
valence electron with respect to the +F12/aug-cc-pV5Z result (in kJ/mol).

Basis set ME MAD RMS STD MPE

dMP2
aug-cc-pVDZ −7.471 7.471 7.716 1.927 −10.40
aug-cc-pVTZ −2.207 2.207 2.286 0.594 −3.02
aug-cc-pVQZ −0.754 0.754 0.793 0.246 −1.00
aug-cc-pV5Z −0.393 0.393 0.415 0.135 −0.52
aug-cc-pV(Q5)Z −0.013 0.041 0.046 0.044 −0.02

dMP2-F12
aug-cc-pVDZ −1.163 1.163 1.240 0.428 −1.53
aug-cc-pVTZ −0.014 0.118 0.134 0.133 0.00
aug-cc-pVQZ 0.065 0.077 0.094 0.068 0.10

dRPA
aug-cc-pVDZ −6.213 6.213 6.505 1.928 −6.21
aug-cc-pVTZ −2.042 2.042 2.127 0.595 −2.04
aug-cc-pVQZ −0.732 0.732 0.769 0.236 −0.73
aug-cc-pV5Z −0.393 0.393 0.415 0.135 −0.39
aug-cc-pV(Q5)Z −0.036 0.062 0.073 0.063 −0.04

dRPA+F12
aug-cc-pVDZ 0.095 0.328 0.369 0.357 0.09
aug-cc-pVTZ 0.151 0.151 0.165 0.067 0.15
aug-cc-pVQZ 0.087 0.087 0.096 0.041 0.09

MP2
aug-cc-pVDZ −9.260 9.260 9.657 2.740 −12.22
aug-cc-pVTZ −3.279 3.279 3.411 0.940 −4.28
aug-cc-pVQZ −1.343 1.343 1.405 0.413 −1.74
aug-cc-pV5Z −0.692 0.692 0.725 0.216 −0.90
aug-cc-pV(Q5)Z −0.010 0.019 0.025 0.023 −0.01

MP2-F12
aug-cc-pVDZ −1.161 1.161 1.204 0.319 −1.51
aug-cc-pVTZ −0.227 0.227 0.238 0.073 −0.29
aug-cc-pVQZ −0.018 0.024 0.033 0.028 −0.02

ACSOSEX
aug-cc-pVDZ −8.091 8.091 8.470 2.506 −19.08
aug-cc-pVTZ −3.104 3.104 3.232 0.903 −7.38
aug-cc-pVQZ −1.314 1.314 1.375 0.404 −3.14
aug-cc-pV5Z −0.692 0.692 0.725 0.216 −1.66
aug-cc-pV(Q5)Z −0.040 0.044 0.058 0.042 −0.11

ACSOSEX+F12
aug-cc-pVDZ 0.008 0.086 0.119 0.119 0.05
aug-cc-pVTZ −0.052 0.052 0.054 0.017 −0.13
aug-cc-pVQZ 0.011 0.011 0.014 0.009 0.02

AXK
aug-cc-pVDZ −8.118 8.118 8.478 2.443 −18.96
aug-cc-pVTZ −3.075 3.075 3.200 0.885 −7.21
aug-cc-pVQZ −1.305 1.305 1.365 0.401 −3.06
aug-cc-pV5Z −0.692 0.692 0.725 0.216 −1.63
aug-cc-pV(Q5)Z −0.049 0.050 0.063 0.038 −0.12

AXK+F12
aug-cc-pVDZ −0.019 0.112 0.154 0.153 −0.08
aug-cc-pVTZ −0.023 0.028 0.035 0.027 −0.07
aug-cc-pVQZ 0.020 0.020 0.024 0.013 0.04
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Tab. C.3: Interaction energies with and without counterpoise correction: Statistical measures for the basis-set
error per valence electron with respect to the +F12/aug-cc-pV5Z result (in kJ/mol).

Basis set without CP with CP

ME MAD RMS STD MPE ME MAD RMS STD MPE

dMP2
aug-cc-pVDZ 0.609 0.609 0.624 0.137 30.55 −0.644 0.644 0.739 0.364 −18.41
aug-cc-pVTZ 0.345 0.345 0.374 0.144 12.79 −0.255 0.255 0.304 0.164 −7.06
aug-cc-pVQZ 0.178 0.178 0.201 0.093 6.08 −0.105 0.105 0.126 0.069 −2.84
aug-cc-pV5Z 0.093 0.093 0.114 0.065 2.94 −0.055 0.055 0.066 0.036 −1.47
aug-cc-pV(Q5)Z 0.004 0.032 0.036 0.036 −0.35 −0.002 0.002 0.003 0.002 −0.03

dMP2-F12
aug-cc-pVDZ −0.225 0.259 0.348 0.266 −4.26 −0.160 0.160 0.178 0.080 −4.76
aug-cc-pVTZ 0.096 0.096 0.115 0.063 2.91 −0.021 0.021 0.023 0.007 −0.76
aug-cc-pVQZ 0.061 0.061 0.071 0.037 1.88 −0.008 0.008 0.009 0.004 −0.23
aug-cc-pV5Z 0.027 0.027 0.033 0.019 0.81 — — — — —

dRPA
aug-cc-pVDZ 0.511 0.511 0.527 0.126 63.55 −0.586 0.586 0.684 0.353 −24.41
aug-cc-pVTZ 0.285 0.285 0.306 0.111 21.74 −0.250 0.250 0.299 0.164 −10.07
aug-cc-pVQZ 0.162 0.162 0.181 0.080 10.63 −0.102 0.102 0.123 0.068 −3.99
aug-cc-pV5Z 0.088 0.088 0.108 0.062 4.81 −0.055 0.055 0.066 0.036 −2.11
aug-cc-pV(Q5)Z 0.011 0.036 0.044 0.042 −1.30 −0.004 0.004 0.006 0.004 −0.13

dRPA+F12
aug-cc-pVDZ −0.322 0.322 0.430 0.284 −12.20 −0.102 0.102 0.122 0.067 −3.44
aug-cc-pVTZ 0.037 0.037 0.048 0.031 0.98 −0.015 0.015 0.017 0.008 −1.05
aug-cc-pVQZ 0.044 0.044 0.051 0.025 2.46 −0.005 0.005 0.006 0.003 −0.27
aug-cc-pV5Z 0.022 0.022 0.027 0.015 1.06 — — — — —

MP2
aug-cc-pVDZ 0.369 0.369 0.383 0.102 19.39 −0.480 0.480 0.542 0.253 −13.17
aug-cc-pVTZ 0.181 0.181 0.198 0.082 6.31 −0.166 0.166 0.194 0.101 −4.35
aug-cc-pVQZ 0.096 0.096 0.109 0.051 3.10 −0.061 0.061 0.072 0.038 −1.54
aug-cc-pV5Z 0.048 0.048 0.058 0.033 1.38 −0.030 0.030 0.036 0.019 −0.75
aug-cc-pV(Q5)Z −0.003 0.016 0.016 0.016 −0.42 0.002 0.002 0.003 0.001 0.08

MP2-F12
aug-cc-pVDZ −0.166 0.200 0.262 0.203 −2.14 −0.159 0.159 0.174 0.072 −4.69
aug-cc-pVTZ 0.050 0.050 0.064 0.041 1.15 −0.020 0.020 0.021 0.006 −0.71
aug-cc-pVQZ 0.035 0.035 0.041 0.021 1.02 −0.006 0.006 0.006 0.002 −0.17
aug-cc-pV5Z 0.014 0.014 0.016 0.009 0.39 — — — — —

ACSOSEX
aug-cc-pVDZ 0.308 0.308 0.324 0.101 40.13 −0.433 0.433 0.498 0.247 −18.50
aug-cc-pVTZ 0.145 0.145 0.156 0.059 10.58 −0.163 0.163 0.193 0.103 −6.78
aug-cc-pVQZ 0.086 0.086 0.096 0.042 5.57 −0.059 0.059 0.070 0.038 −2.35
aug-cc-pV5Z 0.044 0.044 0.054 0.031 2.30 −0.030 0.030 0.036 0.019 −1.17
aug-cc-pV(Q5)Z 0.000 0.019 0.020 0.020 −1.12 0.001 0.001 0.001 0.001 0.07

ACSOSEX+F12
aug-cc-pVDZ −0.227 0.227 0.314 0.216 −6.35 −0.112 0.112 0.129 0.064 −4.56
aug-cc-pVTZ 0.014 0.021 0.024 0.019 −0.44 −0.017 0.017 0.019 0.008 −1.15
aug-cc-pVQZ 0.025 0.025 0.028 0.013 1.42 −0.004 0.004 0.004 0.002 −0.22
aug-cc-pV5Z 0.010 0.010 0.012 0.007 0.51 — — — — —

AXK
aug-cc-pVDZ 0.332 0.332 0.348 0.104 41.32 −0.445 0.445 0.513 0.254 −18.96
aug-cc-pVTZ 0.162 0.162 0.175 0.066 11.53 −0.167 0.167 0.198 0.106 −6.92
aug-cc-pVQZ 0.091 0.091 0.101 0.045 5.72 −0.060 0.060 0.071 0.038 −2.38
aug-cc-pV5Z 0.046 0.046 0.056 0.033 2.35 −0.030 0.030 0.036 0.019 −1.18
aug-cc-pV(Q5)Z −0.001 0.019 0.020 0.020 −1.19 0.001 0.001 0.002 0.001 0.09

AXK+F12
aug-cc-pVDZ −0.203 0.214 0.297 0.216 −3.90 −0.124 0.124 0.144 0.072 −5.02
aug-cc-pVTZ 0.031 0.031 0.041 0.026 0.80 −0.021 0.021 0.024 0.011 −1.25
aug-cc-pVQZ 0.030 0.030 0.034 0.016 1.66 −0.005 0.005 0.005 0.002 −0.24
aug-cc-pV5Z 0.012 0.012 0.014 0.008 0.58 — — — — —
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Tab. C.4: Reference energies and CABS-singles correction: Statistical measures for the basis-set error per
valence electron with respect to the +F12/aug-cc-pV5Z result (in kJ/mol).

Basis set ME MAD RMS STD

HF
aug-cc-pVDZ −2.014 2.014 2.207 0.903
aug-cc-pVTZ −0.264 0.269 0.292 0.125
aug-cc-pVQZ −0.037 0.037 0.043 0.023
aug-cc-pV5Z −0.009 0.009 0.009 0.003

HF+CABS
aug-cc-pVDZ −0.262 0.309 0.392 0.291
aug-cc-pVTZ −0.037 0.052 0.063 0.051
aug-cc-pVQZ −0.003 0.010 0.012 0.012

PBE
aug-cc-pVDZ −2.202 2.202 2.392 0.934
aug-cc-pVTZ −0.326 0.329 0.354 0.137
aug-cc-pVQZ −0.101 0.101 0.115 0.054
aug-cc-pV5Z 0.019 0.019 0.022 0.012

PBE+CABS
aug-cc-pVDZ −0.395 0.617 0.756 0.645
aug-cc-pVTZ −0.071 0.094 0.132 0.111
aug-cc-pVQZ −0.079 0.079 0.093 0.048
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Fig. C.2: Basis-set convergence of the correlation energies, referring to Table C.1.
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D. Derivation of dRPA-F12 based on the hypervirial theorem

Regarding the derivation of the conventional dRPA eigenvalue problem, it should be mentioned that the
algebraic evaluation of Eq. (2.16) results in an additional factor of 2 for RHF references in comparison to the
corresponding UHF formulation,

〈HF|[Q̂n, Q̂†
m]|HF〉 = 〈HF|


∑

ai

(X†)n
iaÊia +

∑

ai

(Y†)n
iaÊai,

∑

bj

Xm
bj Êbj +

∑

bj

Ym
bj Êjb


 |HF〉

= 2
∑

abij

δabδij((X†)n
iaXm

bj −Ym
bj (Y

†)n
ia) , (D.1)

as spin summation implies

〈HF|[Êia, Êbj]|HF〉 = 〈HF|Êijδab|HF〉 = 2δijδab . (D.2)

Normalization to unity (Eq. (2.16)) can however be conserved when introducing a metric (see Refs. [41, 42])
or by rewriting the equations in terms of the biorthogonal basis where the projection manifolds {〈a

i |, 〈ab
ij |, ...}

are defined according to Eqs. (A.1) and (A.2).

Derivation of conventional dRPA according to Bouman and Hansen [117, 118]

Starting from the hypervirial theorem (Eq. (2.3)) and assuming the projection manifold for ground and ex-
cited state as proposed in Eqs. (2.4) and (2.5), the transition moment of the one-electron operator Ô can be
summarized as

〈0|Ô|n〉 = N0

[
〈HF|Ô|ai 〉tn

ai +
1
2 tab

ij 〈ab
ij |Ô|ck〉tn

ck

]

= N0

[
tn
ai〈HF|Ô|ai 〉+ 1

2 tab
ij tn

ck

[
〈a

i |Ô|HF〉δbcδjk + 〈b
j |Ô|HF〉δacδik

]]

= Xn
ai〈HF|Ô|ai 〉+Yn

ai〈a
i |Ô|HF〉 , (D.3)

depending on the amplitudes Xn and Yn as defined within Eqs. (2.8) and (2.9). For the sake of convenience,
the Einstein summation convention is assumed in Eq. (D.3) and in the following. Introducing the resolution
of the identity,

1 = |HF〉〈HF|+ |ai 〉〈a
i |+

1
2 |

ab
ij 〉〈ab

ij |+ . . . , (D.4)

on the left-hand side of the hypervirial theorem gives

〈0|[Ô, Ĥ]|n〉 = Xn
ai〈HF|[Ô, Ĥ]|ai 〉+ Yn

ai〈a
i |[Ô, Ĥ]|HF〉

= Xn
ai

[
〈HF|Ô|bj 〉〈b

j |Ĥ|ai 〉
]
− Xn

ai

[
〈HF|Ĥ|HF〉〈HF|Ô|ai 〉+ 1

2 〈HF|Ĥ|bc
jk 〉〈bc

jk |Ô|ai 〉
]

+Yn
ai

[
〈a

i |Ô|HF〉〈HF|Ĥ|HF〉+ 1
2 〈a

i |Ô|bc
jk 〉〈bc

jk |Ĥ|HF〉
]
−Yn

ai

[
〈a

i |Ĥ|bj 〉〈b
j |Ô|HF〉

]
. (D.5)

Note that the matrix elements 〈HF|Ĥ|ai 〉 vanish due to Brillouin’s theorem and that the projection onto the
doubly excited determinants 〈HF|Ô|ab

ij 〉 equally cancels to zero as Ô represents a one-electron operator. Based
on the dRPA definitions for matrices A (Eq. (2.11)) and B (Eq. (2.12)), Eq. (D.5) can be reformulated, exploiting
the fact that both A and B are symmetric when assuming real orbitals,

〈0|[Ô, Ĥ]|n〉 = Xn
ai〈HF|Ô|bj 〉Aab

ij − Xn
ai〈b

j |Ô|HF〉Bab
ij

−Yn
ai〈b

j |Ô|HF〉Aab
ij +Yn

ai〈HF|Ô|bj 〉Bab
ij . (D.6)

For the sake of convenience, the superscript ”dRPA” is omitted in the following when referring to matrices
A and B. As Ô was defined to be an arbitrary Hermitian operator, Eq. (D.6) can be split into two parts
corresponding to the transition moments 〈HF|Ô|ai 〉 and 〈a

i |Ô|HF〉,

〈HF|Ô|ai 〉→ Aab
ij Xn

bj + Bab
ij Yn

bj = ΩnXn
ai (D.7)

〈a
i |Ô|HF〉→ Aab

ij Yn
bj + Bab

ij Xn
bj = −ΩnYn

ai , (D.8)
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yielding the requested matrix eigenvalue problem of Eq. (2.7).

Evaluation of dRPA-F12 matrix elements

When adding geminals to the double excitation space and expanding the singles excitation manifold by
means of the CABS basis, the transition moment is given as

〈0|Ô|n〉 = N0

[
tnV
ai 〈HF|Ô|ai 〉+ tnC

p ′′i〈HF|Ô|
p ′′

i 〉+ 1
2 tnV

ai tcd
kl 〈cd

kl |Ô|ai 〉+ 1
2 tnV

ai c
xy
kl (w

†)
xy
αβ〈

αβ
kl |Ô|ai 〉

+ 1
2 tnC

p ′′ic
xy
kl (w

†)
xy
αβ〈

αβ
kl |Ô|

p ′′

i 〉
]

= XnV
ai 〈HF|Ô|ai 〉+ XnC

p ′′i〈HF|Ô|
p ′′

i 〉+ YnV
ai 〈a

i |Ô|HF〉+ (YF12)nV
p ′′i 〈

p ′′
i |Ô|HF〉

+ (YF12)nC
ai 〈a

i |Ô|HF〉+ (YF12)nC
p ′′i〈

p ′′
i |Ô|HF〉 . (D.9)

nV indicates the dimension (NOCC × NVIR) and nC the dimension (NOCC × NCABS), respectively. Four commutators
corresponding to the four different contributions to the transition moment 〈0|Ô|n〉 have to be evaluated,

〈HF|[Ô, Ĥ]|ai 〉 = 〈HF|Ô|bj 〉〈b
j |Ĥ|ai 〉+ 〈HF|Ô|

q ′′

j 〉〈q ′′
j |Ĥ|ai 〉− 〈HF|Ĥ|HF〉〈HF|Ô|ai 〉

−
1
2 〈HF|Ĥ|cd
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kl |Ô|ai 〉− 1

2 〈HF|Ĥ|
xy
kl 〉(X

−1)
xy
vw〈vw

kl |Ô|ai 〉
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ji 〈HF|Ô|bj 〉+ A

q ′′a
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q ′′

j 〉− B
ji
ba〈b

j |Ô|HF〉− ((BF12)†)
ji
q ′′a〈

q ′′
j |Ô|HF〉 , (D.10)
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It should be noted that matrix BF12 is neither symmetric nor Hermitian, BF12 6= (BF12)†. Moreover, the equation
for 〈HF|Ô|HF〉 is a priori fulfilled by assuming the GBC. Arranging Eqs. (D.10) to (D.13) according to the

therein obtained left and right transition moments, 〈HF|Ô|ai 〉, 〈HF|Ô|
p ′′

i 〉, 〈a
i |Ô|HF〉 and 〈p ′′

i |Ô|HF〉, gives the
extended dRPA-F12 eigenvalue problem of Eq. (3.14).

Orthogonalization of the eigenvectors

To ensure normalization, the eigenvectors (XF12)n and (YF12)n are orthogonalized in the subspace of positive
eigenvalues. First, the metric U of dimension (NOCC × (NVIR + NCABS), NOCC × (NVIR + NCABS)),

U =

(
1 0
0 −1

)
, (D.14)

is transformed with that part of the eigenvectors that corresponds to the subspace of positive eigenvalues,
being of dimension n/2,

U ′ =
(

Wn/2
)T

UWn/2 with Wn/2 =

(
(XF12)n/2

(YF12)n/2

)
. (D.15)
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Subsequently, the orthogonalized vectors ((XF12)n/2) ′ and ((YF12)n/2) ′ of dimension (NOCC × (NVIR + NCABS)/2,
NOCC × (NVIR + NCABS)) are obtained according to

Wn/2(U ′)−1/2 =

(
((XF12)n/2) ′

((YF12)n/2) ′

)
. (D.16)

.

Test results

The investigated test set contains 20 closed-shell molecules, namely BeH2, CH2, HF, F2, N2, CO, C2H+
3 ,

NO+, BeO, C2, O3, CN+, BN, C2H2, C2H4, CH4, CO2, H2, H2O, H2O2. Detailed information on the
chosen geometries can be found in Ref. [178]. Energies were converged up to 1 nHartree, except for the
dRPA/QZVPP+CABS calculations of molecules N2 and BeH2 where convergence could only be achieved up
to 0.1 mHartree. A summary of mean (ME), mean absolute (MAD), root mean square (RMS) and percent-
age errors (PE) as well as the corresponding standard deviations (STD) is given in Table D.1. All errors are
reported with respect to the dRPA-F12/def2-QZVPP result and are given per valence electron; the number
of valence electrons ranges from 2 to 18 with a mean value of 10 electrons. To estimate the accuracy of the
chosen dRPA-F12/def2-QZVPP reference, a trust region was extrapolated as described in Section 3.4. For
the correlation energy contribution, an extrapolation factor of FTQ = 1.6520 with a standard deviation of
0.217 mEh per valence electron is obtained when performing the extrapolation based on the def2-TZVPP and
def2-QZVPP results.

Tab. D.1: Statistical measures for the basis-set error per valence electron in the correlation energy for dRPA-
F12 within ansatz 2, dRPA, dRPA/basis+CABS, and dRPA+CABS. Errors are calculated with respect to the
dRPA-F12/def2-QZVPP result and are given in mEh.

Basis set ME MAD RMS STD MPE (STD)

dRPA
def2-SVP 14.589 14.589 15.030 3.612 −32.740 (4.823)

def2-TZVPP 6.169 6.169 6.417 1.766 −13.704 (2.541)
def2-QZVPP 2.468 2.468 2.590 0.786 −5.430 (1.207)

dRPA/basis+CABS
def2-SVP 4.803 4.803 4.920 1.069 −10.82 (1.348)

def2-TZVPP 1.700 1.700 1.755 0.437 −3.79 (0.589)
def2-QZVPP 0.285 0.285 0.308 0.117 −0.63 (0.252)

dRPA-F12
def2-SVP 3.217 3.217 3.318 0.814 −7.31 (1.969)

def2-TZVPP 1.215 1.215 1.261 0.335 −2.83 (0.991)

dRPA+CABS
def2-SVP 4.336 4.336 4.417 0.841 −9.87 (1.773)

def2-TZVPP 1.710 1.710 1.740 0.321 −3.94 (0.941)
def2-QZVPP 0.234 0.234 0.251 0.091 −0.54 (0.215)
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E. Notes on the drCCD(F12) implementation in TURBOMOLE and vali-

dation of the drCCD(F12) and rCCD(F12) approaches

ccsdint

ccf12_solve_t0

ccr12_coupl

ccr12_bfr12

ccf12vecfun

cc_energy

cc_rccdaddmp2

ccsd_ring ccr12_cxt

rir12ccsd_amps

cc_cdint

cc_cdterm

rir12mp2 rir12grt

rir12_bv_logic
bvdirect

ccr12_prep

rir12energy

cc4idxint

rir12_asyvirtuals

cc_mp2en

Fig. E.1: Program sketch summarizing the modified routines of the CCSDF12 module in the TURBOMOLE
program package.

The drCCD(F12) method was implemented in the CCSDF12 program part of the TURBOMOLE program
package for closed- and open-shell systems supporting ansatz 1, 2∗ and 2. The underlying CCSD(F12) imple-
mentation is documented in Refs. [216, 283]. In Figure E.1, a sketch of the CCSDF12 module in TURBOMOLE
is given, including the most important subroutines that were changed for the drCCD(F12) implementation.
Starting from CCD(F12), drCCD(F12) is obtained when neglecting all ladder terms and exchange contribu-
tions. The conventional ladder terms can be identified as explained in Figure 2.4, where all ring contributions
to CCD are highlighted in red and labeled according to Ref. [216] as E, F, and D intermediates. The E and F
terms are calculated in the especially for drCCD written routines cc_rccdaddmp2 and cc_addt2e; for the
D term the routine ccsd_ring of the already available CCSD(F12) implementation is used and modified ac-
cordingly. As exchange is neglected for the direct approach, all antisymmetrization steps are skipped. In the
case of closed-shell systems, where antisymmetrization yields the typical ”2 × Coulomb - Exchange” combi-
nation for amplitudes and integrals, an additional prefactor is introduced to account for the thus neglected,
but still required double counting of the Coulomb contribution. It should be further noted that exchange
contributions are sometimes included by exploiting the symmetry of the amplitudes. For spin orbitals,

tBA
I J = −tAB

I J , (E.1)
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and, therefore, the calculation of the conventional CCD correlation energy can be rewritten as
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The UHF CCD implementation in TURBOMOLE is based on Eq. (E.3), while the RHF implementation refers
to Eq. (E.4). For drCCD, Eq. (E.1) does not hold, exclusion-principle violating terms do not vanish and both
the drCCD amplitudes and the drCCD energy expression are not symmetric with respect to the permutation
of indices A and B and I and J. Thus, an antisymmetrized reformulation as given in Eq. (E.2) is not possible,
instead the drCCD energy is formulated as
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ij g

ij
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In consequence, the summations do not run over the triangle, but the complete matrices. This is also true for
the implementation of the F12 part, especially for the calculation of the F12 intermediates B and V . It should
be furthermore noted that the original MP2-F12 implementation partitions all intermediates into singlet and
triplet contributions, which is not possible for dMP2(F12) and drCCD(F12).

Coupling terms and KS Fock matrix

The drCCD(F12) method was implemented for ansatz 1, 2∗ and 2. While ansatz 1 and 2∗ assume the EBC and
thus neglect coupling between conventional and geminal amplitudes, two additional coupling terms have to
be considered within ansatz 2, contributing to the conventional and the geminal residuals,

(ΩdrCCD(F12))ab
ij ← 〈ab

ij |[F̂, T̂2 ′]|HF〉 =
∑

xy

C(ij)
ab,xyc

xy
ij , (E.7)

(ΩF12(drCCD(F12)))
xy
ij ← 〈xy

ij |[F̂, T̂2]|HF〉 =
∑

ab

C(ij)
xy,abtab

ij . (E.8)

Furthermore, a third coupling contribution needs to be added to the F12 intermediate B, as outlined in
Appendix B. The intermediate C is calculated in the routine ccr12_cxt using the Fock or KS matrix F,

Cxy,ab =
∑

q ′′
f

aq ′′
xy Fq ′′b +

∑

p ′′
f

p ′′b
xy Fap ′′ . (E.9)

In TURBOMOLE, the KS matrix for the combined basis is generated in the program part RICCTOOLS, as
implemented by David Tew [180]. For the CABS-singles correction, the CABS-CABS block of the KS matrix
is required when assuming ansatz 2∗, while further coupling contributions of the virtual-virtual and CABS-
virtual block need to be considered within ansatz 2. Note, that for HF references, the virtual-virtual block of
the Fock matrix is calculated without RI approximation while all other blocks are evaluated including RI. For
KS references, in contrast, all blocks are calculated without RI.
Note that Eqs. (E.7) and (E.8) refer to diagrams [3f12t] and [3f12c_a] of Figure 4.2.
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Performing drCCD(F12) calculations with TURBOMOLE

The keywords needed to perform a drCCD(F12) calculation are listed in Table E.1. In analogy to other CC
methods, the $ricc2 keyword has to be added to the control file when requesting an (explicitly correlated or
conventional) CC calculation and the desired CC approach has to be specified beneath. The F12 input section
starts with the keyword $rir12. Open-shell drCCD(F12) calculations require spin-flipped amplitudes, which
can be selected by choosing examp fixed flip. Furthermore, the keyword cofock needs to be added
when using a KS reference and omitting the optional CABS-singles correction with cabssingles off. It
should be noted that choosing ansatz 2 as an option in the $rir12 keyword section yields drCCD(F12) within
ansatz 2∗, consistent with the underlying CCSD(F12) implementation. Performing a drCCD(F12) calculation
also yields the dMP2(F12) result that is needed e.g. to set up the additive dRPA+F12 scheme. Note that
it is often necessary to apply a shift to the quasi-Newton update and to modify the DIIS algorithn (direct
inversion of the iterative subspace) in order to accelerate convergence to the ground state.

Tab. E.1: Required keywords to run a drCCD(F12) calculation.

keyword description

$non-canonical MOs calculation of KS Fock matrix without assuming GBC or EBC,
necessary for KS references

$ricc2 keyword for conventional drCCD calculation
drccd

$rir12 additional keyword for drCCD(F12)
ansatz ......1/2 chosen ansatz for Q̂12, possible options: 1,2
ccsdapprox ..rccd(f12) ring approximation to CCSD(F12)
examp .......fixed noflip/flip chosen approximation for geminal amplitudes
cabssingles off/ks CABS-singles correction with KS Fock matrix
cofock needed in case of cabssingles off

Validation of the drCCD(F12) approach

Statistical measures, which are needed for the discussion on drCCD(F12) and rCCD(F12) in Chapter 4 but not
given in the supplementary material of Refs. [156, 180], are summarized in the following Tables E.2 to E.8.

Tab. E.2: Ten molecules of the S22 test set: Statistical measures for the basis-set error per valence electron
with respect to drCCD(F12)/jun-cc-pV(Q+d)Z results for the correlation energy (in kJ/mol).

Basis set ME MAD RMS STD MPE (STD)

drCCD
jun-cc-pV(D+d)Z −43.970 43.970 44.338 5.697 −29.41 (2.18)
jun-cc-pV(T+d)Z −17.287 17.287 17.500 2.727 −11.54 (1.15)
jun-cc-pV(Q+d)Z −7.653 7.653 7.774 1.367 −5.10 (0.61)

drCCD(F12) — Ansatz 2∗

jun-cc-pV(D+d)Z −5.346 5.346 5.349 0.187 −3.60 (0.21)
jun-cc-pV(T+d)Z −1.013 1.013 1.019 0.102 −0.68 (0.03)
jun-cc-pV(Q+d)Z −0.007 0.017 0.021 0.020 −0.00 (0.01)

drCCD(F12) — Ansatz 2
jun-cc-pV(D+d)Z −5.994 5.994 5.999 0.244 −4.04 (0.34)
jun-cc-pV(T+d)Z −1.080 1.080 1.084 0.094 −0.72 (0.04)

RPA+F12 — Ansatz 2∗

jun-cc-pV(D+d)Z −3.412 3.412 3.444 0.467 −2.31 (0.42)
jun-cc-pV(T+d)Z −0.575 0.575 0.576 0.024 −0.39 (0.03)
jun-cc-pV(Q+d)Z 0.078 0.078 0.082 0.027 0.05 (0.02)
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Tab. E.3: Test set of 106 molecules: Statistical measures for the basis-set error per valence electron of the
correlation contribution to the atomization energy for the drCCD(F12) approach within ansatz 1. Errors are
calculated with respect to the drCCD(F12)[A2]+CABS/aug-cc-pV5Z result and are given in kJ/mol.

Basis set ME MAD RMS STD MPE (STD)

aug-cc-pVDZ −3.843 3.843 3.919 0.768 −10.29 (2.08)
aug-cc-pVTZ −0.976 0.976 1.005 0.236 −2.62 (0.68)
aug-cc-pVQZ −0.335 0.335 0.348 0.094 −0.89 (0.22)
aug-cc-pV5Z −0.228 0.228 0.235 0.055 −0.61 (0.15)

Tab. E.4: Test set of 106 molecules: Statistical measures for the basis-set error per valence electron of the
correlation energy. Errors are calculated with respect to the drCCD(F12)[A2]+CABS/aug-cc-pV5Z result and
are given in kJ/mol.

Basis set ME MAD RMS STD MPE (STD)

drCCD
aug-cc-pVDZ −46.161 46.161 46.640 6.664 −28.39 (2.46)
aug-cc-pVTZ −19.157 19.157 19.467 3.461 −11.75 (1.46)
aug-cc-pVQZ − 8.945 8.945 9.121 1.785 −5.48 (0.78)
aug-cc-pV5Z − 4.686 4.686 4.781 0.948 −2.87 (0.42)
aug-cc-pV6Z − 2.723 2.723 2.778 0.554 −1.67 (0.25)

drCCD(F12) — Ansatz 1
aug-cc-pVDZ −22.956 22.956 23.151 2.991 −14.13 (1.05)
aug-cc-pVTZ −8.966 8.966 9.139 1.769 −5.49 (0.79)
aug-cc-pVQZ −3.433 3.433 3.512 0.743 −2.10 (0.34)
aug-cc-pV5Z −1.434 1.434 1.466 0.309 −0.88 (0.14)

drCCD(F12) — Ansatz 2∗

aug-cc-pVDZ −3.320 3.320 3.405 0.758 −2.08 (0.56)
aug-cc-pVTZ −0.959 0.959 0.983 0.217 −0.59 (0.10)
aug-cc-pVQZ −0.227 0.227 0.240 0.078 −0.14 (0.04)
aug-cc-pV5Z 0.019 0.021 0.025 0.016 0.01 (0.01)

drCCD(F12) — Ansatz 2
aug-cc-pVDZ −3.661 3.661 3.699 0.524 −2.29 (0.46)
aug-cc-pVTZ −1.133 1.133 1.156 0.229 −0.70 (0.10)
aug-cc-pVQZ −0.313 0.313 0.325 0.087 −0.19 (0.04)

RPA+F12 — Ansatz 2∗

aug-cc-pVDZ −0.846 1.343 1.611 1.371 −0.57 (0.88)
aug-cc-pVTZ −0.410 0.410 0.420 0.092 −0.25 (0.05)
aug-cc-pVQZ −0.114 0.114 0.122 0.044 −0.07 (0.02)
aug-cc-pV5Z 0.040 0.041 0.045 0.020 0.02 (0.01)

Tab. E.5: Mean percentage errors and corresponding standard deviations for the total atomization energies
of the test set of 106 molecules, calculated for the aug-cc-pVXZ basis sets and given in kJ/mol.

D T Q 5 6

drCCD −8.49 (3.20) −2.47 (0.74) −0.95 (0.31) −0.52 (0.22) −0.34 (0.15)
dRPA+F12 [A2∗] −2.35 (1.39) −0.19 (0.12) −0.07 (0.03) −0.04 (0.03) —
drCCD(F12) [A1] −6.37 (3.00) −1.32 (0.41) −0.50 (0.12) −0.25 (0.10) —
drCCD(F12) [A2∗] −2.52 (1.61) −0.15 (0.12) −0.07 (0.03) −0.04 (0.03) —
drCCD(F12) [A2∗] + CABS −0.58 (0.39) 0.10 (0.10) −0.04 (0.04) −0.04 (0.02) —
drCCD(F12) [A2] + CABS −0.01 (0.18) 0.21 (0.16) 0.12 (0.15) — —
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Tab. E.6: Mean percentage errors and corresponding standard deviations for the CP-corrected interaction
energies of the S22 test set, calculated for the jun-cc-pV(X+d)Z basis sets and given in kJ/mol.

D T Q

drCCD −56.21 (28.37) −19.37 (7.48) −6.42 (1.41)
dRPA+F12 [A2∗] −31.36 (24.22) −6.75 (4.91) −0.40 (0.14)
drCCD(F12) [A2∗] −32.17 (24.55) −7.06 (5.00) −0.48 (0.16)
drCCD(F12) [A2∗] + CABS −33.58 (24.49) −6.54 (4.89) −0.44 (0.13)
drCCD(F12) [A2] + CABS −33.68 (24.34) −5.70 (4.61) —

Tab. E.7: Mean percentage errors and corresponding standard deviations for the correlation energies of the
test set given in Appendix E, calculated for the def2-X basis sets and given in kJ/mol.

SVP TZVPP QZVPP (TQ)ZVPP

rCCD −25.17 (5.15) −9.34 (2.17) −3.82 (0.93) 0.20 (0.24)
rCCD+F12 [A2∗] −6.10 (1.43) −1.19 (0.25) −0.08 (0.02) —
rCCD(F12) [A2∗] −5.43 (1.43) −0.96 (0.23) — —
rCCD-SO2 −28.87 (4.39) −11.60 (2.28) −5.05 (1.10) −0.27 (0.32)
rCCD+F12-SO2 [A2∗] −3.60 (2.05) −0.58 (0.22) 0.05 (0.03) —
rCCD(F12)-SO2 [A2∗] −4.44 (1.65) −0.78 (0.15) — —
rCCD-SO1 −26.36 (5.18) −10.34 (2.35) −4.37 (1.07) −0.01 (0.27)
rCCD+F12-SO1 [A2∗] −4.17 (1.67) −0.85 (0.17) −0.01 (0.01) —
rCCD(F12)-SO1 [A2∗] −4.51 (1.49) −0.90 (0.17) — —

Tab. E.8: Mean percentage errors and corresponding standard deviations for the correlation contribution to
the atomization energies of the test set given in Appendix E, calculated for the def2-X basis sets and given in
kJ/mol.

SVP TZVPP QZVPP (TQ)ZVPP

rCCD −14.36 (4.59) −6.18 (0.57) −2.46 (0.30) 0.25 (0.44)
rCCD+F12 [A2∗] −0.43 (3.88) −0.61 (0.30) 0.05 (0.03) —
rCCD(F12) [A2∗] 0.27 (3.86) −0.40 (0.38) — —
rCCD-SO2 −15.32 (4.51) −7.03 (1.65) −3.16 (0.86) −0.34 (0.52)
rCCD+F12-SO2 [A2∗] 0.74 (3.32) −0.28 (0.34) −0.14 (0.06) —
rCCD(F12)-SO2 [A2∗] 1.64 (3.37) 0.10 (0.43) — —
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Fig. E.2: Basis-set convergence of the reference energy for the test set of 106 molecules.
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Fig. E.3: Basis-set convergence of the correlation energy for 10 molecules of the S22 test set.
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F. D1 and D2 diagnostics

Evaluation for main-group compounds

Nielsen and Janssen tested their proposed D1 and D2 diagnostics on 34 small closed-shell molecules, com-
prising the molecules HF, H2O, NH3, CH4, HCl, SiH4, CO2 H2S, BeO, CO, HNC, N2, ClOH, Cl2, HCN,
CH2O, Cl2O, C2H2, FOH, FNO, CH2NH, C2H4, H2N2, ClNO, HNO, CH2, F2, P2, BF, BCl, O3, CN+, C2, and
C3. In Chapter 5, an analogous diagnostic scheme is set up using dRPA excitation amplitudes. HF, PBE and
PBE0 references were tested as input for the dRPA correlation treatment; corresponding results are listed in
Tables F.1 to F.3. Standardly, the test set includes the C3 molecule in its linear geometry. However, for dRPA
using a PBE reference, geometry optimization yields a non-linear alignment as ground-state structure pro-
hibiting a reliable comparison. As also HF and PBE0 results yield errors which are one magnitude larger than
the errors for the other test molecules (in accordance with Refs. [247, 248]), the C3 molecule was excluded
from the benchmark set. Furthermore, PBE reference calculations for the CN+ and the C2 molecule yielded
negative HOMO-LUMO gaps, favoring the triplet instead of the singlet ground state and prohibiting further
geometry optimizations at the RPA level. Results are therefore excluded in the corresponding Table F.2. To
allow a straightforward comparison with Refs. [247, 248], CCSD diagnostic data using the cc-pwCVTZ basis
is provided in Table F.4.

Tab. F.1: D1 and D2 diagnostics for HF references: dRPA bond distances r and harmonic vibrational frequen-
cies ω are compared to the corresponding CCSD(T) reference values. Only the frequency with the largest
percentage error is reported.

Molecule D2(dRPA) D1(dRPA) r [Å] ω [cm−1]

dRPA CCSD(T) Error [%] dRPA CCSD(T) Error [%]

HF 0.080551 0.028927 0.916 0.917 −0.10 4257.21 4178.09 1.89
H2O 0.085831 0.027375 0.957 0.958 −0.17 1723.23 1667.66 3.33
NH3 0.089069 0.021718 1.011 1.012 −0.13 1186.06 1105.10 7.33
CH4 0.090898 0.028039 1.087 1.087 −0.01 1403.35 1347.69 4.13
HCl 0.095041 0.033404 1.268 1.272 −0.35 3085.41 3013.67 2.38
SiH4 0.094243 0.022688 1.469 1.474 −0.33 984.30 936.50 5.10
CO2 0.095663 0.028249 1.156 1.163 −0.55 706.88 668.29 5.77
H2S 0.100631 0.032979 1.329 1.335 −0.45 1272.69 1214.00 4.83
BeO 0.099022 0.028598 1.315 1.338 −1.72 1612.64 1467.79 9.87
CO 0.096690 0.033651 1.124 1.131 −0.66 2258.92 2163.72 4.40
HNC 0.102053 0.035423 1.162, 0.989 1.171, 0.996 −0.79 2156.89 2056.97 4.86
N2 0.103671 0.044452 1.088 1.100 −1.07 2518.05 2357.28 6.82
ClOH 0.104131 0.025597 1.677, 0.959 1.696, 0.964 −1.12 801.30 736.03 8.87
Cl2 0.108418 0.039078 1.993 2.002 −0.43 583.40 552.49 5.59
HCN 0.106693 0.038920 1.145, 1.062 1.145, 1.066 −0.92 795.46 724.83 9.74
CH2O 0.104856 0.039627 1.200, 1.098 1.206, 1.102 −0.54 1272.03 1194.97 6.45
Cl2O 0.106933 0.029576 1.677 1.703 −1.52 843.98 708.00 19.21
C2H2 0.109138 0.039013 1.196, 1.058 1.206, 1.063 −0.83 644.15 589.84 9.21
FOH 0.104017 0.040038 1.402, 0.962 1.435, 0.966 −2.29 1073.80 928.45 15.65
FNO 0.105566 0.040759 1.437, 1.135 1.496, 1.138 −3.93 623.61 550.25 13.33
CH2NH 0.109969 0.044138 1.265, 1.088 1.273, 1.091 −0.62 1160.66 1084.22 7.05

1.084, 1.015 1.087, 1.020
C2H4 0.112178 0.045161 1.079, 1.328 1.082, 1.333 −0.33 1033.43 969.37 6.61
H2N2 0.110614 0.049127 1.024, 1.235 1.029, 1.250 −1.17 1673.23 1564.38 6.96
ClNO 0.116359 0.048779 1.132, 1.914 1.139, 1.971 −2.91 654.52 613.24 6.73
HNO 0.109424 0.048822 1.195, 1.043 1.211, 1.054 −1.33 1762.52 1600.20 10.14
CH2 (ã1A1) 0.097978 0.034400 1.103 1.108 −0.47 1469.15 1407.06 4.41
F2 0.108085 0.057004 1.367 1.413 −3.25 1142.66 925.43 23.47
P2 0.123169 0.047117 1.874 1.901 −1.44 850.85 778.29 9.32
BF 0.111334 0.037384 1.267 1.265 0.17 1418.36 1413.89 0.32
BCl 0.114675 0.037257 1.723 1.718 0.30 848.61 846.87 0.21
O3 0.135416 0.070177 1.236 1.273 −2.88 1252.49 1061.60 17.98
CN+ (ã1

Σ
+) 0.133582 0.053080 1.175 1.162 1.11 2029.34 1982.08 2.38

C2 0.142254 0.065515 1.254 1.245 0.73 1825.94 1859.20 −1.79
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Tab. F.2: D1 and D2 diagnostics for PBE references: dRPA bond distances r and harmonic vibrational frequen-
cies ω are compared to the corresponding CCSD(T) reference values. Only the frequency with the largest
percentage error is reported.

Molecule D2(dRPA) D1(dRPA) r [Å] Error [%] ω [cm−1] Error [%]

HF 0.111317 0.038990 0.922 0.59 4093.08 −2.03
H2O 0.118778 0.035127 0.964 0.58 3855.06 −2.33
NH3 0.125730 0.032970 1.018 0.52 1131.99 2.43
CH4 0.128820 0.038225 1.090 0.31 3110.74 −1.65
HCl 0.137207 0.044970 1.275 0.19 2977.72 −1.19
SiH4 0.144350 0.038473 1.474 0.03 2243.96 −0.90
CO2 0.152091 0.069138 1.170 0.64 625.88 −6.35
H2S 0.149523 0.048134 1.337 0.18 2693.10 −1.44
BeO 0.166871 0.076383 1.358 1.46 1388.73 −5.39
CO 0.156071 0.072803 1.138 0.58 2118.09 −2.11
HNC 0.156828 0.074014 1.177, 0.998 0.50 419.74 −11.01
N2 0.152013 0.086581 1.105 0.50 2319.99 −1.58
ClOH 0.169299 0.052918 1.720, 0.969 1.42 692.95 −5.85
Cl2 0.172780 0.074551 2.026 1.22 516.60 −6.50
HCN 0.159017 0.081863 1.161, 1.069 0.44 683.93 −5.64
CH2O 0.161370 0.085336 1.212, 1.105 0.49 1162.18 −2.74
Cl2O 0.185949 0.057875 1.725 1.33 667.68 −5.69
C2H2 0.164249 0.082493 1.209, 1.066 0.29 538.55 −8.69
FOH 0.182491 0.081106 1.459, 0.972 1.65 881.82 −5.02
FNO 0.187004 0.087779 1.541, 1.142 3.01 498.25 −9.45
CH2NH 0.169237 0.085535 1.279, 1.093 0.45 3385.05 −1.84

1.089, 1.025
C2H4 0.173629 0.099145 1.084, 1.336 0.27 918.31 −3.18
H2N2 0.178478 0.101637 1.034, 1.257 0.58 1299.06 −2.44
ClNO 0.205134 0.132531 1.143, 2.024 2.68 307.67 −10.68
HNO 0.211678 0.129142 1.221, 1.057 0.79 1491.52 −3.44
CH2 (ã1A1) 0.227483 0.194202 1.110 0.13 1301.19 −7.52
F2 0.208954 0.127542 1.437 1.66 883.08 −4.58
P2 0.197844 0.095907 1.907 0.31 766.88 −1.47
BF 0.199913 0.102910 1.272 0.53 1419.65 0.41
BCl 0.213495 0.102771 1.723 0.31 836.27 −1.25
O3 0.269978 0.164462 1.291 1.48 667.51 −7.24
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Tab. F.3: D1 and D2 diagnostics for PBE0 references: dRPA bond distances r and harmonic vibrational
frequencies ω are compared to the corresponding CCSD(T) reference values. Only the frequency with the
largest percentage error is reported.

Molecule D2(dRPA) D1(dRPA) r [Å] Error [%] ω [cm−1] Error [%]
HF 0.099973 0.036226 0.907 −1.00 4285.75 2.58
H2O 0.118778 0.033381 0.964 −1.01 4055.67 2.75
NH3 0.112273 0.030027 1.002 −1.03 1001.50 −9.38
CH4 0.115673 0.035315 1.079 −0.71 3219.68 1.80
HCl 0.122577 0.039021 1.264 −0.67 3072.21 1.94
SiH4 0.126918 0.030415 1.467 −0.47 2291.46 0.99
CO2 0.129445 0.054959 1.157 −0.49 1389.96 2.82
H2S 0.132356 0.042303 1.326 −0.65 1239.92 2.14
BeO 0.136051 0.048549 1.325 −0.99 1554.18 5.89
CO 0.132828 0.057684 1.125 −0.57 2230.14 3.07
HNC 0.133585 0.058659 1.166, 0.989 −0.61 439.34 −6.86
N2 0.134360 0.069832 1.092 −0.71 2125.51 3.93
ClOH 0.137020 0.040759 1.675, 0.954 −1.28 2450.00 5.74
Cl2 0.143149 0.054815 1.983 −0.96 778.27 3.70
HCN 0.139732 0.064179 1.147, 1.062 −0.80 572.93 7.41
CH2O 0.139821 0.065902 1.195, 1.101 −0.93 1851.85 3.65
Cl2O 0.142641 0.040060 1.679 −1.40 749.96 5.93
C2H2 0.144463 0.065565 1.202, 1.058 −0.49 757.60 28.44
FOH 0.141985 0.067865 1.411, 0.958 −1.67 1018.97 9.75
FNO 0.149174 0.058616 1.477, 1.131 −1.29 1936.82 4.21
CH2NH 0.169237 0.109035 1.279, 1.093 −0.92 1129.24 4.15

1.089, 1.025
C2H4 0.150159 0.076057 1.075, 1.320 −0.93 1004.46 5.91
H2N2 0.147224 0.078875 1.020, 1.237 −1.04 1614.04 3.17
ClNO 0.165282 0.092465 1.130, 1.947 −1.21 1915.51 4.56
HNO 0.149684 0.063626 1.196, 1.049 −1.31 1705.71 6.59
CH2 (ã1A1) 0.145090 0.077236 1.104 −0.35 2952.18 0.99
F2 0.155028 0.092750 1.384 −2.05 1067.04 15.30
P2 0.169187 0.073497 1.881 −1.06 826.66 6.21
BF 0.163347 0.074929 1.255 −0.77 1465.38 3.64
BCl 0.171168 0.072283 1.710 −0.48 871.98 2.97
O3 0.203907 0.119920 1.249 −1.89 1247.35 17.50
CN+ (ã1

Σ
+) 0.201529 0.109432 1.167 0.67 2107.56 6.33

C2 0.207375 0.109505 1.236 −0.71 1934.47 4.05
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Tab. F.4: D1 and D2 diagnostics for the CCSD method using HF references: Bond distances r and harmonic vi-
brational frequencies ω are compared with the corresponding CCSD(T) reference values. Only the frequency
with the largest percentage error is reported.

Molecule D2(CCSD) D1(CCSD) r [Å] Error [%] ω [cm−1] Error [%]

HF 0.117700 0.011520 0.914 −0.24 4215.05 0.88
H2O 0.125681 0.010717 0.956 −0.25 3881.21 0.97
NH3 0.130178 0.010545 1.010 −0.23 3513.67 0.90
CH4 0.134228 0.013188 1.086 −0.12 1360.36 0.94
HCl 0.142087 0.012529 1.270 −0.16 3037.24 0.78
SiH4 0.146649 0.018627 1.473 −0.08 946.02 1.03
CO2 0.148959 0.046280 1.156 −0.62 693.37 3.75
H2S 0.156152 0.018332 1.332 −0.17 1230.33 1.35
BeO 0.158392 0.100262 1.322 −1.18 1568.65 6.87
CO 0.159740 0.038816 1.124 −0.62 2233.87 3.24
HNC 0.169574 0.032089 1.164, 0.993 −0.61 494.06 4.74
N2 0.170482 0.027761 1.093 −0.65 2437.15 3.39
ClOH 0.166007 0.022927 1.682, 0.960 −0.83 772.18 4.91
Cl2 0.169091 0.022400 1.993 −0.45 570.90 3.33
HCN 0.179052 0.028904 1.149, 1.064 −0.64 752.17 3.77
CH2O 0.148636 0.059362 1.200, 1.100 −0.55 1836.59 2.80
Cl2O 0.175484 0.043992 1.686 −0.97 773.18 9.21
C2H2 0.180172 0.030047 1.199, 1.061 −0.54 634.25 7.53
FOH 0.184645 0.033657 1.416, 0.963 −1.33 1002.63 7.99
FNO 0.184613 0.057168 1.461, 1.133 −2.35 596.34 8.38
CH2NH 0.185920 0.053281 1.266, 1.089 −0.57 1725.41 2.58

1.085, 1.017
C2H4 0.193309 0.033521 1.080, 1.327 −0.45 978.68 3.19
H2N2 0.195891 0.034413 1.026, 1.239 −0.83 1626.32 3.96
ClNO 0.197000 0.061503 1.132, 1.935 −1.84 637.96 4.03
HNO 0.219408 0.038463 1.200, 1.050 −0.92 1673.42 4.58
CH2 (ã1A1) 0.205803 0.019483 1.107 −0.14 1423.45 1.16
F2 0.209785 0.028163 1.391 −1.55 1021.09 10.34
P2 0.206465 0.034593 1.884 −0.90 819.04 5.24
BF 0.222689 0.030087 1.262 −0.28 1430.03 1.14
BCl 0.237401 0.033045 1.716 −0.14 852.69 0.69
O3 0.257505 0.071522 1.247 −2.02 1272.87 19.90
CN+ (ã1

Σ
+) 0.365598 0.189252 1.175 1.09 2065.55 4.21

C2 0.371018 0.085734 1.242 −0.28 1894.99 1.92
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Fig. F.1: D2 diagnostics for bond lengths (left) and vibrational frequencies (right) for CCSD using a HF
reference, corresponding to Table F.4 of Appendix F.
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Fig. F.2: D1 diagnostics for bond lengths (left) and vibrational frequencies (right) for CCSD using a HF
reference, corresponding to Table F.4 of Appendix F.
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Fig. F.3: D2 diagnostics for bond lengths and vibrational frequencies for PBE reference determinants.
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Fig. F.4: D1 diagnostics for bond lengths and vibrational frequencies for PBE reference determinants.
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Fig. F.5: D2 diagnostics for bond lengths and vibrational frequencies for PBE0 reference determinants.
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Fig. F.6: D1 diagnostics for bond lengths and vibrational frequencies for PBE0 reference determinants.
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