Progress in nuclear analyses of the ITER TBM Port Plug with Dummy TBMs

Dieter Leichtle ${ }^{1}$, Bastian Weinhorst ${ }^{1}$, Anton Travleev ${ }^{1}$, Lei Lu ${ }^{1}$, Ulrich Fischer ${ }^{1}$, Byoung-Yoon Kim ${ }^{2}$, Jaap van der Laan ${ }^{2}$
${ }^{1}$ Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Germany ${ }^{2}$ ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, St. Paul Lez Durance Cedex, France

1. Introduction

- Test Program for Tritium Breeding Modules (TBM) in ITER equatorial ports.
- TBM-sets (TBM + shield) to be replaced by Dummy-TBMs in case a TBM-set is not available.
- Maintenance within Port Interspace areas require hands-on operations.
- Nuclear analysis to compute Shutdown Dose Rates (SDDR) at $10^{6} \mathrm{~s}$ (ca. 12 days) after shutdown, with respect to $100 \mu \mathrm{~Sv} / \mathrm{h}$ limit.

Main equipment of Test Blanket System, with Bioshield Plug (BP), Pipe Forest (PF), maintenance corridor and TBM Port Plug (Frame and TBM-Set or Dummy-TBM)

3. Computational Methodology

- R2S calculations of SDDR using MCNP6 and FISPACT-II, global model
- Superimposed Cartesian mesh of $3 \mathrm{~cm} / 15 \mathrm{~cm}$ spacing (in equatorial port) and 30 cm (in tokamak)
Weight Window mesh for variance reduction by ADVANTG3 simulations.
- Operational scenarios:
- Short TBM relevant operation (first 4 years of nuclear operation)
- Full ITER SA2 operation (14 years of nuclear operation, $0.3 \mathrm{MWyr} / \mathrm{m}^{2}$)

4. SDDR calculations

- Responses in human-body size tallies in maintenance corridor and as 3D radiation maps.
Significant contribution, up to $\sim 85 \%$, by external structures, e.g. port duct walls.
Minor contributions by Dummy-TBM ($\sim 2 \mu \mathrm{~Sv} / \mathrm{h})$ and TBM-frame ($\sim 20 \mu \mathrm{~Sv} / \mathrm{h})$.
SDDR in PF corridor is above limit, also for short scenario, except in PF entry area.

Neutron flux distribution across
TBM port (C2)

Peak SDDR in position 1 of the maintenance corridor

2. Neutronics Models

- Reference model of ITER tokamak sector, C-Model V1 R2.1.
- New MCNP model of TBM Port Plug, Dummy-TBM, Pipe Forest \#02 ($\mathrm{HCCB}(\mathrm{CN})+\operatorname{LLCB}(\mathrm{IN})$ piping), and Bioshield Plug from CAD models.
- Simplification and conversion to MCNP geometry according to established ITER guidelines with high-level of details.
- Configurations (for Equatorial Port \#02):
- C1: Empty Port-Interspace (+ BP with pipe-sections \& air gaps)
- C2: With Pipe Forest (connected to BP with pipe-sections \& air gaps)

Configuration C1 schematic

Configuration C2 schematic
 of human-body size tallies

Part of model	Position 1	Position 2	Position 3
Equatorial port	161	133	83
Components			
2 Dummy TBMs	2	1	0.5
TBM frame	20	8	4
Rest		139	124
External structures	30	41	16
Total	$\mathbf{1 9 1}$	$\mathbf{1 7 4}$	$\mathbf{9 9}$

Contributions to SDDR [$\mu \mathrm{Sv} / \mathrm{h}]$ in empty Port Interspace (C1)

SDDR map (C2) with PF \#02 in PI, short irradiation

SDDR map (C2) with PF \#02 in PI, full ITER SA2 irradiation

SDDR map (C1) for empty PI, full ITER SA2 irradiation

5. Conclusions

- Models and analyses at pre-PDR maturity are provided for SDDR relevant for hands-on maintenance operations within Port Interspace of TBM Port
SDDR in PF entry area are compliant with ITER limit; in other areas higher by about a factor of 2.
Contribution of the TBM Port Plug is only up to 15% of total SDDR.
Further reduction of SDDR by appropriate design choices and additional shielding structures is still required.

Acknowledgements and Disclaimer

This work was funded by the ITER Organization under contract IO/17/CT/4300001445. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.

