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Abstract

The application of Deep Learning methodologies to Non-Intrusive Load Monitoring
(NILM) gave rise to a new family of Neural NILM approaches which increasingly
outperform traditional NILM approaches. In this extended abstract describing our
ongoing research, we analyze recent Neural NILM approaches and our findings
imply that these approaches have difficulties in generating valid, reasonably-shaped
appliance load profiles. We propose to enhance Neural NILM approaches with appliance
load sequence generators trained with a Generative Adversarial Network to mitigate the
described problem. The preliminary results of our experiments with Generative
Adversarial Networks show the potential of the approach, albeit there is no strong
evidence yet that this approach outperforms the examined end-to-end-trained Neural
NILM approaches. In the progress of our investigations, we generalize energy-based
NILM performance metrics and establish the complete classification confusion matrix
based on the estimated energy in appliance load profiles. This enables the adaption of
all known classification scores to their energy-based counterparts.

Keywords: Non-intrusive load monitoring, Generative adversarial networks, Neural
NILM, Generative modeling, Deep Learning

Introduction
Non-Intrusive Load Monitoring (NILM) (Hart, 1992) describes a source separation

problem: the energy usage of single appliances is inferred from the aggregated load of

the household measured at the household connection point (mains) (Mauch & Yang,

2016). Another term for NILM is energy disaggregation and in this abstract, we call a

technique that implements NILM a disaggregator. Visualizing energy usage using

NILM techniques raises awareness of the energy consumption, without the need of in-

dividual meters for each household appliance. However, whether this facilitates energy

efficiency and reduces energy cost is disputed (Kelly & Knottenbelt, 2016).

Inspired by the successes of Deep Neural Networks (DNNs) in the fields of computer

vision, audio, and natural language processing, DNNs have been applied to NILM

(Kelly & Knottenbelt, 2015a; Mauch & Yang, 2015; do Nascimento, 2016; Zhang et al.,

2016; Barsim & Yang, 2018), which Kelly coined as Neural NILM (Kelly & Knottenbelt,
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2015a). Recently, Bonfigli (Bonfigli et al., 2018) showed that Kelly’s Neural NILM

approach is able to outperform state-of-the-art NILM approaches which are not based

on DNNs like Additive Factorial Approximate Maximum A Posteriori estimation (AFA-

MAP) by Kolter and Jaakkola (Kolter & Jaakkola, 2012).

(Fig. 1) depicts how Neural NILM disaggregation is performed: Assume we have

recorded c electrical features (channels) from mains with a fixed temporal resolution

for a limited period of time such that we obtain a history of T measurements.

Consequently, the measured values LM ∈ℝc × T form a time series with c channels.

Current Neural NILM approaches split this time series into segments of fixed length S

and run the disaggregation once for each segment, respectively. Later, the partial disag-

gregation results for each segment have to be merged to form the final result. Neural

NILM approaches usually perform the splitting with overlapping sliding windows.

For each appliance type a, a specific disaggregator Ya is used. This is in contrast to

traditional NILM approaches (cf. (Kolter & Jaakkola, 2012; Zeifman & Roth, 2011; Zoha

et al., 2012)) where appliance models are merged into a household model before disag-

gregation is conducted.

Analysis
The quality of NILM approaches can be assessed in two ways. Firstly, whether the

disaggregator can correctly detect the time intervals when the target appliance

consumes energy. Secondly, the degree of precision with which the disaggregator

reproduces the shape of the target appliance load.

With regard to the first criterion, Kelly’s denoising autoencoder (Kelly & Knottenbelt,

2015a) already achieves good results. In most cases, his approach can correctly identify

and localize the energy consumption of the target appliance within the aggregated load

sequence. However, with regard to the second criterion, the autoencoder has noticeable

difficulties.

(Fig. 2) shows the disaggregation result for the autoencoder of the washing machine

on a test data window. We show load sequences of the washing machine, as they are

complex and consist of multiple stages (heating, washing, spinning, rinsing). Kelly’s

approach uses a sliding window with a stride of 16 samples in order to split mains into

input sequences and applies the autoencoder on each sequence (cf. (Fig. 1)). In (Fig. 2),

we see that the disaggregated estimate (left plot) differs from reasonably-shaped appli-

ance load sequences like the measured appliance load. Kelly uses averaging to merge

partial disaggregation results (sliding windows). Zhang et al. (Zhang et al., 2016)

Fig. 1 Information Flow in Neural NILM: The load profile of mains is split into sequences and fed to appliance-
specific disaggregators. Later, the partial results have to be merged to form the final result. The gray area
highlights the additional generator Ga of the Generative Adversarial Network that we use as appliance
load sequence generator in our Neural NILM approach
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criticize this practice and propose that the DNN should only estimate single time

points (Sequence-to-Point) instead for a whole target sequence (Sequence-to-Se-

quence). This eliminates the need of merging multiple estimates for one point in time.

To conclude our analysis, we observe that Kelly’s Neural NILM approach is successful

at deciding whether the target appliance is active in the aggregate load and is able to

localize it, whereas it shows poor performance when the exact appliance load must be es-

timated. From the human perspective, the result does not seem to be a reasonably-shaped

and valid appliance load sequence.

Concept
We propose to mitigate the problem stated in the previous section by using a genera-

tive neural model for appliance load sequence generation. We pre-train this model

using a Generative Adversarial Network (GAN) (Goodfellow et al., 2014) architecture

and integrate it into the Neural NILM disaggregation process.

The functional principle of GAN is depicted in (Fig. 3). GAN consists of two neural

networks, a generator G and a discriminator D. During disaggregation, we want G to

generate load sequences La of a specific appliance a. Thereby, the distribution of the

generated appliance load sequences La should match the distribution of measured

appliance load sequences LMa as close as possible. For the generation process, G uses a

source of randomness Z to express the variations in the distribution of LMa . The dimen-

sionality of Z should be high enough to portray all the variations that real appliance

load sequences may exhibit. We empirically choose z = 100 as an upper bound for the

Fig. 2 Application of the disaggregation approaches on an exemplary appliance load sequence of the
washing machine from the test data set. The output of the Kelly’s autoencoder is compared to the output
of our DC-GAN based approach

Fig. 3 A Generative Adversarial Network to generate appliance load sequences
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number of variance dimensions. During training, the input for the discriminator D are

real appliance load sequences observed in the training data (LMa ) as well as appliance

load sequences generated by G (La). D’s objective is to determine whether the load

sequences were drawn from the training data (V≔ 1) or generated by G (V≔ 0).

If the GAN training converges, both D and G internalize the distribution of the train-

ing data implicitly. Then, Z can be interpreted as a latent representation of an appliance

load sequence. G and D are trained simultaneously in an unsupervised manner, where

they play a minimax game against each other, hence the name Adversarial Networks.

The objective of G is to deceive D, i.e. to generate data samples which make D believe

that they were drawn from the real data set. D, on the contrary, strives to classify the

data samples generated by G as fake samples and the data samples drawn from the

training data set as real samples.

To provide an intuition for the proposed approach, we apply the manifold assump-

tion for appliance load sequences: We assume that reasonably-shaped appliance load

sequences span a connected low-dimensional subspace (manifold) embedded in ℝS,

where S is the length of the load sequences we want as output from each disaggregation

step.

The training of the generator in the GAN architecture ensures that the output of the

generator is located on the manifold of appliance load sequences with high probability.

As we integrate the pre-trained generator to the disaggregation process, we force the

output of the disaggregator to be located on the manifold of reasonably-shaped load

sequences.

As depicted in (Fig. 1), our approach consists of two main components, a disaggrega-

tor Ya and generator Ga for a specific appliance a. During training, Ga learns a

self-defined latent representation of the variations in the appliance load sequences. Ga

is used to map from that latent representation into the space of reasonably-shaped ap-

pliance load sequences.

Compared to previous Neural NILM approaches, the disaggregator Ya is relieved

from the task to generate appliance load sequences. It can focus on the detection and

representation tasks, which are already performed sufficiently well by the existing

Neural NILM approaches.

In contrast to the works of Barker et al. (Barker et al., 2013) and Buneeva and Rein-

hardt (Buneeva & Reinhardt, 2017), this approach does not need manual engineering of

the characteristics of appliance load sequences. Instead, our approach relies on the abil-

ity of DNNs to find load sequence characteristics automatically.

Energy-based performance evaluation metrics
To compare different NILM approaches, we need to define informative metrics that

capture specific performance aspects of these approaches. Binary classification metrics

are very commonly used in NILM literature (Kelly & Knottenbelt, 2015a; Barsim &

Yang, 2018; Bonfigli et al., 2015; Makonin & Popowich, 2015; Faustine et al., n.d.). The

practice is to quantize both the appliance load ground truth and the estimate using

appliance-specific on/off-thresholds. Unfortunately, these parameters allow to trade-off

recall with precision and lead to hardly-comparable results between various NILM ap-

proaches. Also, because of the quantization, the information of the detailed load shape
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gets lost. The metric does not take into account that the shape of the estimated load

should match the shape of the ground truth. Therefore, Bonfigli et al. (Bonfigli et al.,

2018) propose energy-based precision and recall scores based on the correctly esti-

mated amount of energy in each time interval. We generalize this idea and establish

the complete energy-based binary confusion matrix in the following way:

Let ymax > 0 be the upper load limit of the appliance, y(t) ≥ 0 be the true appliance

load at time t and ŷðtÞ≥0 be the load estimate at time t. Then the elements of the con-

fusion matrix are:

TPE ¼
XT

t¼1
min ŷ tð Þ; y tð Þð Þ ; FPE ¼

XT

t¼1
max ŷ tð Þ−y tð Þ; 0ð Þ ;

FNE ¼
XT

t¼1
max y tð Þ−ŷ tð Þ; 0ð Þ ; TNE ¼

XT

t¼1
min ymax−ŷ tð Þ; ymax−y tð Þð Þ :

Now we can define arbitrary energy-based binary classification metrics which do not

need an appliance-specific on/off-threshold. Energy-based precision PE, recall RE and

F1-score can be determined as follows:

PE ¼
PT

t¼1 min ŷ tð Þ; y tð Þð Þ
PT

t¼1ŷ tð Þ ; RE ¼
PT

t¼1 min ŷ tð Þ; y tð Þð Þ
PT

t¼1y tð Þ ; FE
1 ¼ 2 � P

E � RE

PE þ RE :

As Barsim (Barsim & Yang, 2018) points out, the F1-score does not account for the

true negatives and they propose to use Matthews Correlation Coefficient (MCC). An

energy-based pendant of MCC can be derived analogously.

Another metric that is able to cope with data imbalances is the balanced accuracy

(BACC). Energy-based BACC is defined as follows:

BACCE ¼ 1
2
� TPE

TPE þ FNE þ
TNE

TNE þ FPE

� �
:

Results
We evaluate our approach using the UK-DALE data set (Kelly & Knottenbelt, 2015b)

which consists of electric meter recordings of up to 1.8 years duration from 5 house-

holds, sampled at 1/6 Hz. We use the same pre-processing, artificial data augmentation

approach, and data partitioning into train, validation and test data folds as described in

(Kelly & Knottenbelt, 2015a). Based on Kelly’s own re-write of his denoising autoenco-

der,1 we re-implemented the neural networks using PyTorch.2 Our first GAN imple-

mentation is based on the Deep Convolutional GAN topology (DC-GAN) by Radford

et al. (Radford et al., 2015). The generator and discriminator networks contain five con-

volutional layers and one fully-connected layer each. The generator uses transposed

convolutional layers, which reflects the convolutions of the discriminator. For the dis-

aggregator’s topology, we replaced the last layer of Kelly’s autoencoder (Kelly & Knot-

tenbelt, 2015a) in order to map to the latent space ℝz. The loss function is binary cross

entropy for the discriminator and mean squared error for the disaggregator. We use

the Adam optimizer (Kingma & Ba, 2014) when training the generator and discrimin-

ator. For the disaggregator, we use Stochastic Gradient Descent with Nesterov

Momentum.

At first, we tried to train DC-GAN with appliance load data, where each training

sample contained an arbitrarily placed load sequence. The training did not converge
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properly and the DC-GAN could only output sequences with zero load. To mitigate

this mode collapse, we trained the DC-GAN only on load sequences which contained a

complete appliance activation cycle.

(Fig. 2) shows an example output of our DC-GAN-based disaggregator compared

with Kelly’s autoencoder (Kelly & Knottenbelt, 2015a), both evaluated on a single ob-

servation window. As can be seen, our approach has the potential to reproduce appli-

ance load sequence more accurately than the autoencoder. Because the generator has

learned to solely output valid load sequences, its output is more consistent. However,

when we compare the F1 and BACC metrics in (Fig. 4), the overall performance of our

DC-GAN-based disaggregator is worse than the autoencoder. As we were forced to

train DC-GAN with complete appliance activation cycles, a cause for the worse per-

formance is the inability of DC-GAN to output sequences with zero load. To solve this

problem, we applied Auxiliary Classifier GAN (AC-GAN) (Odena et al., 2016).

AC-GAN is an extension of GAN, where the generator is conditioned to additional

class information. We supply the additional information whether the load sequence has

zero load. The F1-score in (Fig. 4) shows that our approach based on an AC-GAN can

improve disaggregation on washing machines in building 2 and 5. Disaggregation in

building 1, however, did not outperform Kelly’s autoencoder. Also, the balanced accur-

acy scores do not show a clear advantage of our approach.

Conclusion
In this work, we analyzed Kelly’s Neural NILM approach and noticed that it has dif-

ficulties in the reproduction of reasonably-shaped appliance load sequences. Based

on this insight, we proposed to integrate the generator of a Generative Adversarial

Network into the Neural NILM disaggregation process to support a more accurate

reproduction of appliance load sequences. To this end, we stated the manifold

hypothesis for appliance load sequences and provided a generalization of

energy-based NILM performance metrics by defining the complete energy-based

confusion matrix. We showed the preliminary results of our ongoing research,

which do not yet provide strong evidence that our approach effectively improves

Neural NILM. However, we identify promising indications of the potential of the

proposed approach.

Fig. 4 Energy-based F1 and balanced accuracy scores for the proposed and Kelly’s (Kelly & Knottenbelt,
2015a) Neural NILM approaches for the appliances washing machine and fridge. The approaches were only
trained on the buildings with solid bars, i.e., training did not use data of building 2 for the washing
machine model and building 5 for the fridge model
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Endnotes
1https://github.com/JackKelly/neuralnilm
2https://pytorch.org
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