
Exploiting Transaction Accumulation and
Double Spends for Topology Inference in Bitcoin

Matthias Grundmann, Till Neudecker, and Hannes Hartenstein

Institute of Telematics, Karlsruhe Institute of Technology, Karlsruhe, Germany
matthias.grundmann@kit.edu, till.neudecker@kit.edu

hannes.hartenstein@kit.edu

Abstract. Bitcoin relies on a peer-to-peer network for communication
between participants. Knowledge of the network topology is of scientific
interest but can also facilitate attacks on the users’ anonymity and the
system’s availability. We present two approaches for inferring the network
topology and evaluate them in simulations and in real-world experiments
in the Bitcoin testnet. The first approach exploits the accumulation of
multiple transactions before their announcement to other peers. Despite
the general feasibility of the approach, simulation and experimental re-
sults indicate a low inference quality. The second approach exploits the
fact that double spending transactions are dropped by clients. Exper-
imental results show that inferring the neighbors of a specific peer is
possible with a precision of 71 % and a recall of 87 % at low cost.

1 Introduction

Bitcoin [9] is a digital currency system that stores transactions in a blockchain.
Participants are connected via a peer-to-peer (P2P) network in order to exchange
transactions and blocks. The topology of the P2P network is an important as-
pect in ensuring anonymity of users and robustness against denial of service
attacks [5], double spending attacks [6], and attacks on mining [3, 10]. For in-
stance, knowledge of the network topology can enable network based attacks on
anonymity [4, 1, 7].

In this work we present and analyze two approaches that aim at inferring the
topology of the publicly reachable Bitcoin network. Peers that are not reachable
(e.g., peers that do not accept incoming connections) as well as private networks
such as FIBRE1 or mining pool networks are not covered by our work. Neither
of the presented approaches rely on the existence of side channels (e.g., peer
discovery), because they exploit properties of the implementation of the flooding
protocol used for transaction propagation.

2 Related Work

Topology inference in Bitcoin has been the subject of several previous works.
Peer discovery in Bitcoin allows clients to query their neighbors for IP addresses

1 http://bitcoinfibre.org/

of other peers in order to establish connections to them. The queried neighbor
then sends a list with IP addresses along with a lastseen timestamp. Until
March 2015 the timestamp was not randomized sufficiently and allowed Miller
et al. [8] to exploit this mechanism and infer the network topology. Peer discovery
can also be exploited for topology inference by sending marker IP addresses to
remote peers [1].

Neudecker et al. [11] performed a timing analysis of the propagation of trans-
actions in order to infer the network topology. By connecting to all reachable
peers of the network and observing the timestamps of receptions of certain trans-
actions, the path of the transaction and thereby the connections between peers
can be inferred. This approach requires connections to all reachable peers and
requires the adversary to actively create transactions if he is unable to deter-
mine the creator of a transaction. Furthermore, changes made to the propagation
mechanism of the reference client Bitcoin Core2 in 2015 render this method much
more difficult nowadays.

3 Fundamentals

For this work the networking code and especially the forwarding of transactions
is relevant. After a peer creates or receives a transaction, it sends an INV message
containing the hash of the transaction to each of its neighbors. A peer receiving
an INV message checks whether it has already received the transaction, and, if
the transaction is new, sends a GETDATA message to the peer it received the INV

message from. This peer then replies with a TX message containing the actual
transaction.

When a peer receives a transaction, it validates the correctness of the trans-
action. This includes checking the correct format, checking whether the sum of
input values is at least as large as the sum of output values, and checking whether
the inputs of the transaction are actually spendable. Because every transaction
output can only be spent once, a transaction with an input that was already
spent by a transaction received earlier is regarded invalid and dropped silently.
We will demonstrate how to exploit this behavior regarding double spends for
topology inference in Section 6.

In order to enhance privacy by impeding timing analysis, INV messages are
not sent out immediately after receiving and validating a transaction, but are
delayed according to a non-deterministic function. Bitcoin Core maintains one
outgoing queue for each connected peer. When a new transaction is received or
created, this transaction is added to all queues. Therefore, each queue contains
all transactions that are to be announced to that peer. At certain times all
messages in a queue are announced to the neighbor via a single INV message.3

These times are chosen according to an exponential distribution4 to model a

2 https://github.com/bitcoin/bitcoin
3 If there are more than 35 transactions in the queue (which occurs only infrequently),

only 35 transactions are announced at once.
4 The next time is calculated as: current time + ln

(
1 + X · −1

248

)
·

average interval seconds · −1000000 + 0.5 (all timestamps are in microsec-

Poisson process. Every time the elements of the queue are sent to the neighbor,
a new sending time is determined. This mechanism has the property that all
transactions received between two sending timestamps are sent in one single INV

message. We will demonstrate how to exploit this transaction accumulation for
topology inference in Section 5.

4 Problem Statement & Assumptions

Let G = (V,E) be the undirected graph modeling the peers (V) and connections
(E) of the Bitcoin network. Given a subset R ⊆ V of the reachable peers of
the network, the adversary tries to infer all connections between all peers in R.
The inference can lead to false positives (i.e., inferring a connection although no
connection exists) and false negatives (i.e., not inferring a connection although
a connection exists). We will use precision (i.e., the share of inferred connections
that are true positives) and recall (the share of existing connections that were
inferred) as metrics to describe the success of the inference.

We assume that the adversary can run a small number of peers, which can
connect to as many other peers as possible. This number is limited by the number
of reachable peers and the network capabilities of the adversary.5 We also assume
that the adversary is able to precisely estimate the latency between its own
peers and remote peers, e.g., based on the observation of Bitcoin ping messages
or ICMP ping messages. Furthermore, we assume that the adversary is able
to create a large number of transactions. These transactions can transfer funds
between addresses controlled by the adversary, however, transaction fees still
have to be paid. The adversary is not assumed to have information that an ISP or
state actor organization might have about connections and traffic of other peers.
We do not consider stronger adversary models (e.g., ISPs), as these adversaries
could simply monitor the network traffic in order to infer the network topology.

5 Exploiting Transaction Accumulation

We will now describe how the transaction accumulation mechanism implemented
in Bitcoin Core (cf. Section 3) can be used for topology inference.

5.1 Description

Assume for now that the adversarial monitor peer vM is connected to all peers
vI ∈ V of the network. The adversary creates one transaction tI ∈ T for each
connected peer vI . All transactions are independent and not conflicting in any
way (i.e., they are spending different outputs). All transactions are sent to the
peer they were created for (i.e., tI to vI) so that they arrive at all peers at the

onds, X ∈ U [0 : 248 − 1], average interval seconds is 5 s for incoming connections
and 2 s for outgoing connections).

5 Our measurements show that maintaining connections to ≈10,000 peers consumes
about 20 Mbit/s.

vM

vBvA vC

tA tB tC

tCtB, tC

tB, tC

Fig. 1. Exploiting transaction accumulation for topology inference. Dashed lines indi-
cate existing connections. Solid lines indicate the transmission of transactions.

same time. Afterwards the adversary monitors the first INV messages that will
be received by vM from all connected peers, and infers information about the
topology by using the following inference rules:

1. If the first INV message that peer vA sends to vM contains only tB (i.e., the
transaction sent to vB) and no other transaction from the set of created
transactions T , then vA and vB are connected.

2. If the first INV message that peer vA sends to vM contains more than one
transaction from the set of created transactions T , at least one of the peers
associated with the announced transactions is connected to vA.

Let us consider the scenario depicted in Fig. 1 to demonstrate the correctness
of the rules. vM is connected to vA, vB, and vC. vA is connected to vB, vB is
connected to vC. After the transactions were sent by the adversary, each peer
has only the transaction designated for itself (and transactions created by other
participants, which can be ignored). Statement 1 is equal to If vA and vC are
not directly connected, then vA will not send an INV message that contains only
tC and no other transaction from the set of created transactions T .

Because vA and vC are not connected, tC has to be relayed by another peer
(vB) to vA. As we assumed that the adversary is connected to all peers, the
adversary is also connected to vB and has sent a transaction tB to vB. Because of
the queuing mechanism described in Section 3, vB’s queue for vA already contains
tB. Therefore, tB and tC will be announced together to vA, which announces them
together to vM. It is also possible that tB will be sent earlier than tC, because
the queue at vB is sent between the reception of tB and tC by vB. However, it is
not possible that tC arrives earlier than tB at vA.

This scenario also explains the second statement: If vA sends an INV message
that contains tB and tC, the adversary does not know whether vB, vC, or both
are directly connected to vA. The transactions initially sent to all peers serve
as identifiable flags that the remote peers attach to the first group of transac-
tions they forward after receiving their transaction. This allows the adversary
to reconstruct the path of transactions and thereby infer connections between
peers.

5.2 Discussion & Variants

While this topology inference approach is possible under perfect conditions, there
are several issues that can arise when not all assumptions are met.

If there are peers on the network that the adversary is not connected to,
false positives can occur. Consider again the scenario depicted in Fig. 1, but let
us assume that vM is not connected to vB. Then, vB would not have received a
transaction tB, and the INV message sent by vA would only include tC, which
would lead to the wrong conclusion that vA and vC were directly connected.

False positives can also occur when the adversary cannot guarantee that all
transactions arrive at all peers at the same time. While the latency measurement
might be precise in general, temporal changes, e.g., due to bandwidth peaks,
are possible and hard to foresee by the adversary. Furthermore, sending several
thousand transactions within a few hundred milliseconds in a coordinated way
can require much bandwidth and computational effort.

Even when all assumptions are met, the success of the approach depends on
the order in which the remote peers forward transactions to their neighbors. This
order is determined by the sending times of the respective queues and is unknown
to the adversary. Therefore, repeating the approach many times is required in
order to infer a large number of connections.

Another issue with the approach is that it is not possible to explicitly target
a specific remote peer in order to infer the connections of that peer only. Instead,
the inferred connections are a mostly random subset of all existing connections,
which cannot be influenced by the adversary.

Variant DS : We will now present a variant of the discussed approach that
reduces the cost by reducing the incurring transaction fees. Assuming 10,000
peers on the network and transaction fees of $1 per transaction, the cost for
one run of the approach is $10,000.6 A possibility to reduce this cost is to still
create one transaction per peer, but to create these transactions so that they
are all double spends of only a few different outputs. The number of different
inputs among all transactions is a parameter freely chosen by the adversary (e.g.,
DS 3 denotes variant DS with three different inputs). Each transaction is still
unique (e.g., by having different outputs), which enables the mapping of one
transaction to one remote peer. That way, the adversary has to pay only for
those transactions that get included in the blockchain. However, this approach
can cause transactions to be dropped, which can cause false positives. We will
evaluate the effect of double spendings on this approach in the next subsection.

5.3 Simulation Results

We will now briefly describe the used simulation setup before the results of
the simulation are presented and discussed. Simulations were performed using
a discrete event simulation. The network topology was generated by creating
eight outbound connections to uniformly chosen peers for each simulated peer.

6 Due to extreme fluctuations in transaction fees and exchange rates, this calculation
is just an example.

 0

 5

 10

 15

 20

 50 100 150 200 250 300 350 400 450 500

T
P
 C

o
u
n
t,

 F
P
 C

o
u
n
t

Number of monitored peers

TP Count, Base
FP Count, Base
TP Count, DS3
FP Count, DS3

Fig. 2. Number of true positives and false positives per run for the base approach and
the variant DS with three different inputs.

This results on average in eight incoming and 16 total connections per peer.
The adversary was modeled as a specific peer that establishes a large number
of connections (depending on scenario) and sends and receives the transactions
according to the presented inference strategy.

While the simulation matches the general behavior of the Bitcoin client,
several simplifications were made. First, we model the three-step transaction
propagation process (INV - GETDATA - TX) as one single event. Secondly, the
latencies between peers are chosen according to a normal distribution (µ =
100 ms, σ = 50 ms, truncated to [1 ms, 6000 ms]). Thirdly, when peers forward
transactions and have more than 35 transactions in their queue, they choose the
transactions to forward uniformly at random, but prefer transactions created by
the adversary7. Therefore, our simulation is not a precise model of the Bitcoin
network or testnet and the results should be seen as a proof of concept.

Fig. 2 shows the true positive (TP) and false positive (FP) count depending
on the number of connected peers for the base variant and variant DS with three
different inputs for one run of the approach. The total number of peers on the
network is 500. If the adversary is connected to all remote peers, one run of the
approach results in about 21 correctly detected connections for variant DS, and
in about 13 correctly detected connections for the base variant. Reduction of
the share of connected peers leads to a decline in the true positive count. While
we expected the false positive count of variant DS to be higher than that of the
base variant, variant DS also results in a higher true positive count compared to
the base variant. Double spends limit the propagation of individual transactions,
because they are dropped at all peers that already received another transaction
with the same input. This limitation of propagation is actually beneficial for the
approach, because only single-hop propagation of each transaction (i.e., from
one remote peer to another and back to vM) is required and leads to the correct
detection of a connection.

7 This models the scenario that the adversary pays higher transaction fees than the
fees for the other transactions.

Simulations of larger network sizes showed a linear relationship between the
number of peers and the TP and FP counts, i.e., a network with twice the number
of peers results in about twice the number of true positives and false positives
(cf. Appendix Fig. 7).

5.4 Experimental Results

In order to perform a ground truth validation of our simulation results, we set
up several peers on the Bitcoin testnet: Two peers perform the role of the adver-
sarial peers and connect to all reachable public peers (around 520 connections
during the experiments in November 20178). Another five peers running Bitcoin
Core (0.15.0.1) serve as validation targets. These peers establish eight outgoing
connections and are reachable to the adversarial peers via IPv4 and IPv6. In
this setup the adversarial peers are connected to all neighbors of the validation
targets, which is a best-case scenario for inference.

During the experiments one of the adversarial peers sends transactions to
other peers so that they arrive at the same time. The latency to remote peers
was measured using ICMP ping, TCP SYN packets, and Bitcoin ping messages.

We performed 50 runs of variant DS of the described inference approach us-
ing transactions with three different inputs. A total of 632 unique connections
were detected, which roughly conforms to our simulation results. Out of these
632 connections, only 9 connections were connections from or to one of our vali-
dation peers. From these 9 detected connections, only 6 actually existed, which
corresponds to an observed precision of 67 %.9 Roughly estimating the total
number of connections on the testnet to be 4,16010, and assuming a precision of
67 % results in a recall (with respect to all connections of the network) of about
10 % after 50 runs for a total cost of 50 ∗ 3 = 150 transaction fees.

Although the small sample size only allows very rough estimates of the real
quality to be expected, and a more extensive ground truth validation could result
in more precise estimations of the expected precision and recall, the results still
help in assessing the topology inference approach. While the discussed approach
is in fact possible to perform, we believe its execution to be hardly practical. For
scientific purposes the approach is too invasive and lacks validation possibilities.
For adversarial purposes the lack of influence on which connections are inferred
prevents targeted attacks, especially taking into account that topology inference
is only an intermediate goal for further attacks.

6 Exploiting Double Spends

One major drawback of the approach presented in Section 5 is that it is not
possible to infer the connections of a specific peer only, rather than inferring

8 Peers were found using https://github.com/ayeowch/bitnodes/
9 Because of the small sample size, the real precision can strongly deviate from the

observed precision.
10 520 peers with 8 connections each.

vM

vTvA vB vC

tA tB
tC

tA tB tC

tB

Fig. 3. Exploiting double spends for topology inference. Dashed lines indicate existing
connections. Solid lines indicate the transmission of transactions. Dotted lines indicate
dropping of transactions by the receiver because of an earlier reception of a conflicting
transaction.

random connections of the network. This is not only problematic for adversaries,
but also makes validation a challenge. We will now describe and analyze an
approach that allows inferring the connections of a specific peer vT by exploiting
the fact that clients drop transactions that double spend bitcoins.

6.1 Description

Again, assume for now that the adversarial monitor peer vM is connected to all
peers vI ∈ V of the network. One of the connected peers is the target peer vT,
the connections of which the adversary wants to infer. The adversary creates
one transaction tI ∈ T for each connected peer vI , except for the target peer
vT. All transactions have the same input, i.e., they are double spends, but all
transactions are unique, e.g., by specifying different output addresses. Again, all
transactions are sent to the peer they were created for (i.e., tI to vI) so that
they arrive at all peers at the same time. Then the adversary monitors which
transaction the target peer vT forwards to the monitor peer vM and can conclude
that the peer associated with the forwarded transaction is directly connected to
the target peer vT.

Let us consider the scenario depicted in Fig. 3 to demonstrate the correctness
of the strategy. The monitor peer vM is connected to vA, vT, vB, and vC. The
target peer vT is connected to vA and vB, while vB is also connected to vC. After
the transactions were sent by the adversary, every peer only has the transaction
designated for itself, and vT has no transaction received yet. Every peer will
only accept and forward exactly one of the created transactions, because they
are all double spends of the same output. Therefore, if vC forwards tC to vB
(dotted line), vB will drop tC because of the earlier reception of the conflicting
transaction tB. Because the target peer vT has not yet received any of the con-
flicting transactions, it will accept exactly one transaction forwarded by one of
its neighbors (transaction tB in Fig. 3). This transaction gets forwarded to the
monitor peer vM and indicates a neighbor of the target peer vT.

6.2 Discussion & Variants

If the adversary is not connected to all peers of the network, or if the transac-
tions are not received by all peers at the same time, false positives can occur. The
reason is basically the same as for the approach exploiting transaction accumu-
lation discussed in Section 5.2: A neighbor of vT that did not receive its double
spending transaction from vM will accept another double spending transaction
tI from its neighbor vI and forward that transaction to vT, which may forward
tI to the adversary causing the false inference of a connection between vT and
vI . Obviously, if the adversary cannot establish a connection to vT, the connec-
tions of vT cannot be inferred using the discussed approach. We will now discuss
three variants of the presented approach that aim at optimizing the inference
even when not all assumptions are met.

Variant Count : When repeating the approach several times, one would
expect the transactions associated with real neighbors (true positives) to be sent
to the adversary by vT more often than those of peers that are not connected
to vT (false positives), because those transactions have to be relayed by another
peer and should be slower. In order to reduce false positives, the approach can
be repeated and connections are only identified, if the number of transactions
indicating a specific peer as a neighbor of vT is larger than a certain threshold.

Variant Ignore: Assume that tA is forwarded by vT to vM. If the adversary
was unable to synchronize the reception of all transactions at all remote peers
(e.g., due to bad latency estimation or bandwidth limitation), it is possible that
tA is also forwarded to vM by another peer, say, vB. As such a reception indi-
cates the violation of a key assumption and vT might have received tA from vB
rather than directly from vA, the adversary can opt to ignore the result without
concluding a connection between vT and vA.

Variant Suppress: The cost for a single run of the approach is one trans-
action fee. However, one single run reveals at most one connection of the target
peer. In order to infer more connections, additional runs are necessary, which
each come at the cost of one transaction fee. Which connection can be inferred
depends on which transaction arrives first at vT, which is determined by the
sending times of the remote peers and the latencies between peers. With bad
luck (or single clients being very fast), multiple runs of the approach can all
result in inference of the same, already known, connection. Variant Suppress
slightly modifies the approach to eliminate the repeated inference of the same
connection. Consider again the example depicted in Fig. 3 and assume that the
adversary inferred the connection between vT and vB in the first run of the ap-
proach. For the next run, we (1) want the transaction tB to be dropped at vT
and (2) we do not want vB to forward any other transaction tI . While simply
not sending any transaction to vB would satisfy the first requirement, it would
make vB a hidden node and violate the second requirement. Therefore, we mod-
ify the way the double spending transactions are created. Assume there are two
unspent outputs o1 and o2 that will be used as inputs to the transactions in the
following way:

– All peers vI , except for vT and vB, receive transactions tI spending o1 only.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

P
ro

b
a
b

ili
ty

Number of runs

Precision, half connected
Recall, half connected

Precision, fully connected
Recall, fully connected

Fig. 4. Precision and recall depending on the number of runs with vM being connected
to 250 (half connected) and 500 (fully connnected) of 500 peers.

– vT receives a transaction tT spending o2 only.
– vB receives a transaction tB spending o1 and o2.

This approach satisfies both requirements: vT will drop tB because it is a double
spend of o2. Any transaction tI will be dropped by vB because they are double
spending o1. Yet, any transaction tI will be accepted by vT because they are
spending a different output than tT (o1 and o2).

6.3 Simulation Results

We simulated the approach exploiting double spends with the same simulation
setup as described in Section 5.3. Fig. 4 shows how recall and precision develop
depending on the number of runs for the base version of the approach. If the
monitor peer vM is connected to all peers of the network, the recall reaches
95% after 100 runs while the precision decreases slowly. The precision decreases
because once all neighbors of the target are detected, the precision can only fall
by detecting more false positives. Detecting the same neighbor multiple times is
used in the variant Count. While variant Count can maintain a high precision,
the recall is worse than for other variants (cf. Appendix Fig. 8).

If the adversary is connected to only half of the peers of the network, the
maximum possible recall is 50 %, because the adversary is on average only con-
nected to half of the neighbors of vT. As described above, the target’s neighbors
being not connected to the adversary cause false positives and thus the precision
is lower than for the fully connected scenario.

Fig. 5 shows precision and recall of the approach when using the variant
Suppress with vM being connected to all peers. Using only this variant results
in the recall growing faster, because this variant prevents neighbors from being
detected multiple times. However, not only true neighbors are detected faster,
but also false positives, which results in a faster declining precision. If vM is not
connected to all peers, the precision falls even faster, because the likelihood that
a detection is a false positive is higher.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

P
ro

b
a
b

ili
ty

Number of runs

Precision, Suppress
Recall, Suppress

Precision, Suppress + Ignore
Recall, Suppress + Ignore

Fig. 5. Precision and recall depending on the number of runs for variants Suppress and
Suppress + Ignore with vM being connected to 500 of 500 peers (fully connected).

The precision can be improved by combining the variants Suppress and Ig-
nore, for which precision and recall are also shown in Fig. 5. Combining both
variants results in a recall of 96 % after 25 runs with a precision of about 94 %
if the monitor is connected to all peers.

6.4 Experimental Results

We validated the approach in the testnet with the setup described in Section 5.4
with the exception that the adversarial peers did not send any transactions to
the IPv6 addresses of the validation targets. The reason for this exception is
that otherwise the presented approach infers connections between the IPv4 and
IPv6 addresses of the validation target. While this might also be an interesting
application for the approach, it would impair our validation.

We ran the approach six times against each of the five validation targets
with 50 runs each using the combination of the variants Suppress and Ignore.
Analyzing the data generated during the experiments in different ways results
in various combinations of precision and recall. Two of them using Suppress and
Ignore are shown in Fig. 6. The combination of the variants Suppress and Ignore
results in a recall of 60 % and a precision of 97 %. The recall can be improved
though by relaxing the restrictions imposed by Ignore by using only the variant
Suppress. This combination results in a recall of 87 % and a precision of 71 %
(also shown in Fig. 6) for a total cost of 99 transaction fees.

While these results indicate a high inference quality, we emphasize again that
the adversarial peer was connected to all neighbors of the validation peers in our
experiments and hidden neighbors could impair the inference quality.

Because not only our validation peers were dual-stacked (i.e., connected via
IPv4 and IPv6 to the network) but also other peers on the network are, it is
possible that a peer vN is connected via IPv4 to one of our validation targets
and via IPv6 to the adversary peer. In this situation the approach might infer a
connection between vN ’s IPv6 address and the validation target’s IPv4 address.
While this is technically a false positive, it is still correct that both peers are
connected. As this situation might have occurred several times, some connections
that were categorized as false positives might actually be correctly inferred.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10 20 30 40 50

P
ro

b
a
b

ili
ty

Number of runs

Precision, Suppress + Ignore
Recall, Suppress + Ignore

Precision, Suppress
Recall, Suppress

Fig. 6. Experimental Result: Precision and recall depending on the number of runs
using variant Suppress and Suppress+Ignore.

7 Conclusion

While the presented approach exploiting transaction accumulation is likely not
suitable for topology inference, the approach exploiting double spends showed
sufficient detection quality at reasonable cost. We emphasize that transaction
accumulation still leaks information that might be exploited in more advanced
approaches. A simple countermeasure that prevents these kinds of attacks would
be to mix the order of transactions, e.g., by regularly sending only a subset of
the transactions in the outgoing queues.

An obvious countermeasure against the approach exploiting double spends
would be to forward double spends, which, however, would create the potential
for DoS attacks. Another countermeasure could be to not always forward the
transaction that was received first, but to decide randomly which double spend-
ing transaction will be forwarded, which could affect security against double
spending attacks in fast payments [6, 2]. Furthermore, individual peer opera-
tors may choose to deny incoming connections, which prevents the discussed
approaches from working, but is not desirable from an overall network’s per-
spective. On the other hand, operating a reachable peer with a large number of
incoming connections from unreachable peers also impedes the presented infer-
ence approaches. Finally, because of the large number of transactions created,
such attacks can be observed by monitoring large parts of the network.

While we presented some optimizations and variants of the approaches, many
more variants and combinations (e.g., including timing information, making use
of more than one adversarial peer, continuous sending of transactions, further
combination of double spending inputs) are possible and might result in bet-
ter inference quality. Although the validation in the Bitcoin testnet gives an
idea of the general feasibility, a validation in the real Bitcoin network promises
more insights, but is currently not feasible for the presented approaches due to
high transaction fees. Finally, while our approaches aimed at topology inference,
similar approaches exploiting the same mechanisms might be used against the
anonymity of users.

Acknowledgements

This work was supported by the German Federal Ministry of Education and Research
(BMBF) within the project KASTEL IoE in the Competence Center for Applied Secu-
rity Technology (KASTEL). The authors would like to thank the anonymous reviewers
for their valuable comments and suggestions.

References

1. Biryukov, A., Khovratovich, D., Pustogarov, I.: Deanonymisation of clients in Bit-
coin P2P network. In: Proceedings of the 2014 ACM SIGSAC Conference on Com-
puter and Communications Security. ACM (2014)

2. Decker, C., Wattenhofer, R.: Information propagation in the Bitcoin network. In:
Peer-to-Peer Computing (P2P), 2013 IEEE Thirteenth International Conference
on. pp. 1–10. IEEE (2013)

3. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. In:
International Conference on Financial Cryptography and Data Security. pp. 436–
454. Springer (2014)

4. Fanti, G., Viswanath, P.: Anonymity properties of the Bitcoin P2P network. arXiv
preprint arXiv:1703.08761 (2017)

5. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on Bitcoin’s
peer-to-peer network. In: 24th USENIX Security Symposium (USENIX Security
15). pp. 129–144 (2015)

6. Karame, G.O., Androulaki, E., Capkun, S.: Double-spending fast payments in Bit-
coin. In: Proceedings of the 2012 ACM conference on Computer and communica-
tions security. pp. 906–917. ACM (2012)

7. Koshy, P., Koshy, D., McDaniel, P.: An analysis of anonymity in Bitcoin using
P2P network traffic. In: Financial Cryptography and Data Security. Lecture Notes
in Computer Science, vol. 8437, pp. 469–485. Springer Berlin Heidelberg (2014),
http://dx.doi.org/10.1007/978-3-662-45472-5_30

8. Miller, A., Litton, J., Pachulski, A., Gupta, N., Levin, D., Spring, N., Bhattachar-
jee, B.: Discovering Bitcoin’s public topology and influential nodes (2015)

9. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008)
10. Nayak, K., Kumar, S., Miller, A., Shi, E.: Stubborn mining: Generalizing selfish

mining and combining with an eclipse attack. In: Security and Privacy (EuroS&P),
2016 IEEE European Symposium on. pp. 305–320. IEEE (2016)

11. Neudecker, T., Andelfinger, P., Hartenstein, H.: Timing analysis for inferring the
topology of the Bitcoin peer-to-peer network. In: 2016 Intl IEEE Conference on
Advanced and Trusted Computing (ATC). pp. 358–367 (July 2016)

Appendix

 0

 2

 4

 6

 8

 10

 12

 14

 100 200 300 400 500 600 700 800 900 1000

T
P
 C

o
u
n
t,

 F
P
 C

o
u
n
t

Peers in the network

TP Count
FP Count

Fig. 7. Exploiting transaction accumulation: Number of true positives and false posi-
tives depending on the network size for vM being connected to half of the peers.

Fig. 7 shows that the approach exploiting the accumulation of transactions scales
linearly with the network size.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

P
ro

b
a
b

ili
ty

Number of runs

Precision
Recall

Fig. 8. Precision and recall depending on the number of runs for variant Count and
vM being connected to 375 of 500 peers.

Fig. 8 shows precision and recall for the variant Count of the approach exploiting
double spends. As can be seen, the recall increases in steps. These steps are caused by
adjusting the threshold for the required number of receptions. While this variant can
be used to reach high precision, the recall is limited even after more than 200 runs.

