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Exponential convergence in H1 of hp-FEM for

Gevrey regularity with isotropic singularities∗

M. Feischl and Ch. Schwab

Abstract For functions u ∈ H1(Ω) in a bounded polytope Ω ⊂ Rd , d = 1,2,3
which are Gevrey regular in Ω\S with point singularities concentrated at a set

S ⊂ Ω consisting of a finite number of points in Ω , we prove exponential rates of

convergence of hp-version continuous Galerkin finite element methods on families

of regular, simplicial meshes in Ω . The simplicial meshes are geometrically refined

towards S but are otherwise unstructured.

1 Introduction

Many nonlinear PDEs admit solutions which are smooth in a bounded, physical do-

main Ω ⊂ R, but exhibit isolated point singularities at a set S ⊂ Ω . We mention

only nonlinear Schrödinger equations with self-focusing, density functional models

in electron structure calculations (eg. [14, 3, 6, 7] and the references there), non-

linear parabolic PDEs with critical growth (eg. [25, 19] and the references there, or

continuum models of crystalline solids with isolated point defects (eg. [21] and the

references there).

We prove an exponential convergence result for C0-conforming hp-FEM on reg-

ular, simplicial mesh families with isotropic, geometric refinement towards the sin-

gular point(s) c ∈ S . These meshes are in addition required to be shape-regular.

This type of mesh arises for example in adaptive bisection-tree refinements. Specif-

ically, for singular solutions u ∈ H1(Ω) in the bounded domain Ω ⊂ Rd , d = 2,3
which belong, in addition, to a countably normed space with non-homogeneous, ra-

dial weights as introduced, for example, in [4, 10], and with Gevrey-regular growth

∗ Research performed in part while the authors were visiting the Erwin Schrödinger Institute

(ESI) in Vienna, Austria, during the ESI thematic term “Numerical Analysis of Complex PDE

Models in the Sciences” from June-August 2018. CS was supported in part by the Swiss Na-

tional Science Foundation and MF was supported by the Deutsche Forschungsgemeinschaft (DFG)

through CRC 1173
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2 M. Feischl and Ch. Schwab

of derivatives in Ω\S , we construct a sequence {I
hp
N }N of continuous, piecewise

polynomial (quasi-)interpolation operators on sequences of regular, simplicial par-

titions that are geometrically refined towards S with exponential convergence in

H1(Ω): for a bounded domain Ω ⊂ Rd and for functions u ∈ H1(Ω)∩G δ (Ω), a

class of δ -Gevrey-regular functions in Ω\S (to be defined in (8) below), there exist

constants b,C > 0 which depend on Ω and on u, such that

‖u− Ihpu‖H1(Ω) ≤C

{
exp(−bN

1
1+δ d ) δ ≥ 1,

Γ (N
1

1+δ d )−b(1−δ ) 0 < δ < 1 .
(1)

Here, d = 2,3 denotes the space dimension and N denotes the number of degrees of

freedom in the hp-FE approximation, Γ () denotes the Gamma function and δ > 0

denotes the Gevrey regularity parameter. Note that δ = 1 corresponds to functions

which are analytic in Ω\S .

The rate (1) coincides, in the cases d = 1,2 and for analytic solutions, i.e. when

δ = 1, with the exponential convergence rate bounds obtained in [15, 16] for corner

singularities on structured geometric meshes (consisting of axiparallel quadrilater-

als with inserted triangles to remove irregular nodes). In space dimension d = 3, (1)

generalizes the hp-approximations in [26, Sec. 5.2.2] in the case of vertex singular-

ities, for meshes of axiparallel hexahedra to unstructured, tetrahedral meshes with

geometric refinement towards S . For 0 < δ < 1 the rate is super-exponential, thus

benefiting from the higher regularity of u.

The structure of the note is as follows: in Section 2, we introduce a model prob-

lem, the geometric assumptions on the singularities, and precise the analytic regu-

larity in countably normed, weighted Sobolev spaces with radial weight functions.

In Section 3, we introduce the hp-version FEM; we specify in particular the assump-

tions on the simplicial, geometric meshes, on the elemental polynomial degrees, and

on the definition of the hp FE spaces. Section 4 contains a proof of the exponential

convergence bound in H1(Ω) on regular, simplicial geometric mesh families.

2 Analytic Regularity

Analytic regularity is characterized in countably normed weighted Sobolev spaces

which have been introduced and used in exponential convergence estimates in a

number of references; we only mention [15, 16, 2, 17, 18, 10] and the references

there. Here, we denote by S ⊂ Ω the set of singular points c; we consider solutions

u ∈ H1(Ω) which are smooth in Ω\S so that the singular support of u coincides

with S . We work under the following separation assumption on S .

The singular set S consist of a finite number of isolated points c ∈ Ω . (2)
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Assumption (2) implies ε(Ω ,S ) := min{dist(c,c′) : c,c′ ∈ S ,c 6= c′} > 0, and

allows to partition the set Ω into |S | many disjoint neighborhoods ωc of the singu-

larities c ∈ S . We set denote Ω0 := Ω\⋃c∈S ωc.

2.1 Weighted Sobolev Spaces. Gevrey Classes

We characterize analytic regularity of singular solutions by weighted Sobolev

spaces. To define these, we introduce distance functions:

rc(x) = dist(x,c) , x ∈ Ω , c ∈ S . (3)

With c ∈ S we collect all singular exponents βc ∈ R in the “multi-exponent”

β = {βc : c ∈ S } ∈R|S | . (4)

We assume for d = 3 (β > s and β ± s being understood componentwise for s ∈R)

b :=−1−β ∈ (0,1/2) , ie. − 3/2 < β < −1 . (5)

For d = 2, we assume for some ε > 0 that

b :=−1−β ∈ (0,ε) , ie. − 1− ε < β < −1 . (6)

Consider the inhomogeneous, weighted semi-norms |u|
Nk

β
(Ω) given by (cp. [10, Def-

inition 6.2 and Equation (6.9)], [2] and [17]),

|u|2
Nk

β
(Ω)

= |u|2
Hk(Ω0)

+ ∑
c∈S

∑
α∈Nd

0
|α|=k

∥∥r
max{βc+|α |,0}
c D

α u
∥∥2

L2(ωc)
, k ∈ N0 .

(7)

We define the inhomogeneous weighted norm ‖u‖Nm
β
(Ω) by ‖u‖2

Nm
β
(Ω) =∑m

k=0 |u|2Nk
β
(Ω)

.

Here, |u|Hm(Ω0) signifies the Hilbertian Sobolev semi-norm of integer order m on Ω0,

and D
α denotes the weak partial derivative of order α ∈ Nd

0 . The space Nm
β (Ω) is

the weighted Sobolev space obtained as the closure of C∞
0 (Ω) with respect to the

norm ‖·‖Nm
β
(Ω).

Remark 1. (i) Under (5), for Ω ⊂ R3 holds N2
β (Ω) ⊂ H1+θ (Ω) for some θ > 1/2:

choose θ (β ) = 1− βm − ε in [17, Thm. 3.5] with βm := −1− βc ∈ (0,1/2), and

0 < ε < 1/2−βm = 3/2+βc.

(ii) In dimension d = 2, ie. for Ω ⊂ R2, we find under the assumption (5) that

N2
β (Ω) ⊂ H1+θ (Ω) for some θ > 0, so that for d = 2 holds N2

β (Ω) ⊂C0(Ω) with

continuous embedding.
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(iii) The spaces Nm
β (Ω) are closely related to the nonhomogeneous, weighted

spaces of type Jm
γ (Ω) which arise in connection with the Mellin transformation of

elliptic problems in conical domains. We refer to [9] for a definition and properties

of the spaces Jm
γ (Ω).

With Nk
β (Ω) as defined in (7), for δ > 0 we define the δ -Gevrey regular class of

solutions with point singularities at S by

G
δ
β (S ;Ω) =

{
u ∈

⋂

k≥0

Nk
β (Ω) : ∃Cu > 0 s.t. |u|Nk

β
(Ω) ≤Ck+1

u (k!)δ ∀k ∈N0

}
.

(8)

We mention that in the case δ = 1, the norm in the definition (8) of the Gevrey class

G δ
β (S ;Ω) coincides with the norm for the analytic class Bβ (S ;Ω) introduced

in [10, Definition 6.9–6.11] in three space dimensions. In two space dimensions, it

equals the weighted analytic classes introduced in [16, 17]. All ensuing approxima-

tion results in particular apply for this analytic solution class, as has been indicated

in [27, 28]. Naturally, the present construction parallels earlier constructions in par-

ticular cases; for example, the polynomial trace lifting in Section 4.2.6 is identical

to the analytic case in [28].

2.2 Examples of Boundary Value Problems with Gevrey-regular

solutions

Large classes of linear and nonlinear elliptic boundary value and eigenvalue prob-

lems with analytic input data admit solutions in the analytic class G δ
β (S ;Ω) with

δ = 1. We refer to, e.g., [4, 10, 18] and also [14] for electron structure models,

[18, 2, 10] for elliptic problems in polyhedral domains, and [23] and the references

there for nonlinear Schrödinger eigenvalue problems.

2.2.1 Linear Elliptic boundary value problems in Polygons

In space dimension d = 2, let Ω denote a polygon with straight sides. Consider the

model Dirichlet boundary value problem

−∇ · (A(x)∇u) = f in Ω ,u|∂Ω = 0 . (9)

In (9), we assume that A(x) = (ai j(x))1≤i, j≤2 and f (x) are analytic in Ω and that the

matrix function x 7→ A(x) ∈ R2×2
sym is uniformly positive definite: there exists α > 0

such that for every ξ ∈R2 holds

ess inf
x∈Ω

ξ⊤A(x)ξ ≥ α|ξ |2 .
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The unique, weak solution u ∈ V = H1
0 (Ω) of (9) exists by the Lax-Milgram

Lemma, and satisfies the weak form of (9): find

u ∈V a(u,v) = ( f ,v) ∀v ∈V . (10)

For a closed subspace VN ⊂ V , approximate solutions uN ∈VN of (10) are obtained

by Galerkin projection: find

uN ∈VN a(uN ,v) = ( f ,v) ∀v ∈VN . (11)

The approximate solutions uN exist, are unique and quasioptimal:

‖u− uN‖V ≤C inf
v∈VN

‖u− v‖V . (12)

Convergence rates of sequences {uN}N of approximate solutions thus depend on a)

the choice of VN and b) on the solution regularity.

For problem (10), it has been shown in [16] that the solution u ∈ G 1
δ (Ω). For

{VN}N being a sequence of so-called hp-FE spaces (to be defined in the next sec-

tion), we recover from (12) and (1) (with δ = 1 and d = 2) the exponential con-

vergence rate exp(−b
3
√

N) already obtained in [27]. Gevrey regularity in conical

domains for Gevrey-regular data A and f for solutions u of (10) was first obtained

in [4].

2.2.2 Three-dimensional problems

For the analog of (9) in polyhedral domains Ω , the regularity classes G δ
β (Ω) are not

adequate, as even for analytic data A and f , the solutions are locally analytic in Ω ,

but exhibit apart from corner singularities also so-called edge-singularities. Their

precise mathematical description mandates more sophisticated function spaces (see,

e.g., [17, 10] and the references there and [26] for exponential convergence results

for hp-FEM.

However, in large classes of applications, solutions are Gevrey regular with point

singularities only. We mention only the source problem (10) in domains Ω which

exhibit isolated vertices, e.g. conical domains with a smooth (analytic) base, such

as circular cones with apex c.

Another important class of problems arises from mathematical models of quan-

tum chemistry (see, e.g., [6, 7] and the references there). For instance, consider the

nonlinear Schrödinger EVP: find λ ∈ R and 0 6= u ∈ H1(R3) such that

Lu =−∆u+Vu+ |u|u= λ u in R3 . (13)

Here, for analytic potentials V which become singular at a finite set S ⊂ R3 of

isolated points, eigenfunctions u belong to G 1
β (Ω) for compact sets Ω ⊂ R3 con-
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taining S in their interior, see [22] and [23, Thm. 7]. Quasioptimality in H1(Ω) of

Galerkin-FEM for the EVP (13) can be found, for example, in [6, 7].

3 hp-Finite Element spaces

The hierarchies of FE spaces which underlie the hp-FEM are based on two key

ingredients: (i) geometric mesh families Mκ ,σ = {M (ℓ)}ℓ≥0 and (ii) simultaneous

refinement of meshes and polynomial degree distributions. They also exhibit (iii) a

layer-structure among the Finite Elements T ∈ M (ℓ) which we describe next.

3.1 Geometric Mesh Families Mκ,σ

For two parameters 0 < κ ,σ < 1, we consider in the bounded domain Ω geometric

mesh families Mκ ,σ = {M (ℓ)}ℓ≥1 of geometric meshes M (ℓ) ∈Mκ ,σ . The meshes

M ∈Mκ ,σ are regular partitions of the polyhedron Ω into a finite number of open

simplices (triangles in space dimension d = 2, tetrahedra in space dimension d =
3) T ∈ M (ℓ). Here, regular means that for every M ∈ Mκ ,σ , the intersections of

closures of any two distinct T,T ′ ∈ M are either empty, a vertex v, an entire edge

e or an entire face f . We assume the family Mσ to be uniformly κ-shape regular:

for a simplex T ∈ M (ℓ), we denote by hT = diam(T ) its diameter and by ρT =
sup{ρ > 0|Bρ ⊂ T}, the radius of the largest ball Bρ that can be inscribed into T .

For a regular, simplicial mesh M , the (nondimensional) shape parameter κ(M ) =
max{hT/ρT |T ∈ M } is well defined. A collection {M (ℓ)}ℓ≥1 of regular, simplicial

meshes is called κ-shape regular, if supℓ≥1 κ(M (ℓ))≤ κ < ∞.

Each simplex T ∈Mℓ is the affine image of the reference simplex, i.e, it is defined

by T̂ := {x̂ ∈ R3 : x̂i > 0,∑d
i=1 x̂i < 1}, under the affine element map FT , ie.

T = FT (T̂ ), T ∋ x = FT (x̂) = BT x̂+ bT , x̂ ∈ T̂ . (14)

For a regular, simplicial triangulation M of Ω with κ(M ) < ∞, the affine ele-

ment maps are nondegenerate: the jacobians BT = DFT in (14) are nonsingular,

and ‖BT‖F ≤ κ(M ), see, eg., [5, Sec. II]. The reference simplex T̂ is contained

in the unit cube K̂ = (0,1)d ; with each T ∈ M , we associate a parallelepiped via

KT = FT (K̂) and assume that KT ⊂ Ω .

3.2 Local Polynomial Spaces

For T ∈ M the local polynomial approximation space Pp(T ) = span{xα : |α| ≤ p}
is the linear space of all multivariate polynomials on T ∈ M whose total degree
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does not exceed p. The space Pp(T ) is invariant under the affine mapping FT , i.e.

u ∈ Pp(T ) if and only if û := u ◦FT ∈ Pp(T̂ ). On parallelepipeds K, Qp(K) is the

affine image of Qp(K̂), K̂ = Îd with Î = (0,1),

Qp(K̂) = span{ x̂α : 0 ≤ αi ≤ p, 1 ≤ i ≤ d } . (15)

For each parallelepiped KT associated with a tetrahedron T ∈ M (resp. a triangle

if Ω ⊂ R2), with associated affine element mapping FT : K̂ → KT and polynomial

degree p ≥ 0, we set

Qp(KT ) =
{

v ∈ L2(KT ) : (v|KT
◦FT ) ∈Qp(K̂)

}
. (16)

For polynomial degree p ≥ 1, and for a family of regular, simplicial triangulations

M (ℓ) ∈ Mκ ,σ of Ω , we introduce finite element spaces of continuous, piecewise

polynomial functions of total degree p on M (ℓ), i.e.

Sp(M (ℓ)) =
{

u ∈ H1(Ω) : u|T ∈ Pp(T ), T ∈ M
(ℓ)

}
. (17)

Typically, hp-FEMs are obtained when the level ℓ of geometric mesh refinement is

tied to the polynomial degree p.

3.3 Mesh layers

A key ingredient in exponential convergence proofs of hp-FEM is geometric mesh

refinement towards the set S of singularities. For a parameter 0 < σ < 1, we call

a regular, simplicial mesh family Mκ ,σ = {M (ℓ)}ℓ≥1 σ -geometrically refined to-

wards S ⊂ Ω if there exists 0 < σ < 1 such that for every T ∈ M (ℓ) : T ∩S = /0,

ℓ= 1,2, ... holds

0 < σ < ρ(T ;S ) :=
diam(T )

dist(T,S )
<

1

σ
. (18)

We tag members of a σ -geometric familyMκ ,σ by a subscript σ , i.e. we write M
(ℓ)
σ .

Proposition 1. For S ⊂ Ω , and for some 0 < σ < 1 and κ > 1, consider a regular,

nested and σ -geometrically refined (towards S ) κ-shape regular simplicial mesh

family Mκ ,σ in Ω .

Then, all elements T ∈ M
(ℓ)
σ for every ℓ ≥ 1, can be grouped in mesh-layers:

there exists a partition ⋃

ℓ≥1

M
(ℓ)
σ = L1

.∪ L2

.∪ .... (19)

and a constant c(Mκ ,σ )≥ 1 with

∀k ≥ 1 : #(Lk)≤ c(Mκ ,σ ) (20)
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and such that, for every T ∈ Lk and every k ≥ 1,

0 <
1

c(Mκ ,σ )
≤ diam(T )

σ k
≤ c(Mκ ,σ ) . (21)

Proof. The proof is by induction over ℓ.

Based on Proposition 1, we may assume that M
(ℓ)
σ consists of O(ℓ) layers. Then,

for ℓ sufficiently large, and for any constant cT(κ) > 0 which is independent of ℓ,

every mesh M
(ℓ)
σ ∈Mκ ,σ may be partitioned into

M
(ℓ)
σ =O

(ℓ)
σ

.∪ T
(ℓ)
σ , (22)

where

O
(ℓ)
σ :=O

(ℓ−1)
σ

.∪ Lℓ−1 = L1

.∪ L2

.∪ ...
.∪ Lℓ−1 ,

and there exists cT > 0 being independent of ℓ such that for all ℓ holds

S ⊂
⋃

T∈T(ℓ)
σ

T , dist(S ,O(ℓ))≥ cTσ ℓ . (23)

The terminal layers T
(ℓ)
σ ⊂ M

(ℓ)
σ in (22) satisfy the following properties.

Proposition 2. There exists a constant cT(κ ,σ) > 0 such that for every M
(ℓ)
σ ∈

Mκ ,σ , the set T
(ℓ)
σ has the following properties: for all ℓ≥ 1 holds

(i) #(T
(ℓ)
σ )≤ cT(κ ,σ),

(ii) ∀c ∈ S : |T(ℓ)
σ ∩ωc| ≤ cT(κ ,σ)σdℓ,

(iii) ∀T ∈ T
(ℓ)
σ : hT ≤ cT(κ ,σ)σ ℓ.

Proof. Assertion (i) follows from (20). Property (23) implies that for every T ∈T
(ℓ)
σ ,

dist(T,S )≤ cT(κ ,σ)σ ℓ. This implies, with the shape regularity of T , that for every

T ∈ T
(ℓ)
σ holds |T | ≤ cT(κ ,σ)σdℓ. This, in turn, implies assertion (ii). Since T

(ℓ)
σ is

just the terminal layer Lℓ, Proposition 1 implies (i) and (iii).

Remark 2. (i) We do not assume that the singular supports c ∈ S comprise nodes

of some triangulation M (ℓ) ∈ Mκ ,σ . This implies, in particular, that the ensuing

exponential convergence proofs remain valid for “nearly coalescing” singular sup-

ports c,c′ ∈ S : for c,c′ ∈ S such that dist(c,c′)< σ p, both c and c′ are contained

in the terminal layers T
(ℓ)
σ . There, a low-order quasi interpolant of Clément (resp.

Scott-Zhang) type is used, see Section 4.2.8 ahead. The constants in the exponen-

tial convergence bound are uniform in w.r. to dist(c,c′). (ii) Due to Prop. 2, item

(iii), geometric mesh refinement implies that dist(c,c′) is resolved with geometric

refinements with ℓ≥ O(| log(dist(c,c′))|) many mesh layers.
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4 Exponential Convergence

4.1 Statement of the Exponential Convergence Result

Theorem 1. Suppose given a weight vector β as in (5) in a bounded polytope Ω ⊂
Rd , d = 2,3, with plane sides resp. faces.

Then, for every sequence Mκ ,σ (S ) of nested, regular simplicial meshes in Ω
which are σ -geometrically refined towards S and which are κ shape-regular, there

exist continuous projectors Π
p
κ ,σ : N2

−1−β (Ω) → Sp(M
(ℓ)
σ ) with ℓ ≃ p1/δ and, for

every u ∈ G δ
β (S ;Ω)) there exist constants b,C > 0 (depending on κ , Cu, du in (8)

and on σ ) such that there holds the error bound

∥∥u−Π p
κ ,σu

∥∥
H1(Ω)

≤C





exp(−bN
1

1+δ d ) δ ≥ 1,(
Γ
(

N
1

1+δ d

))−b(1−δ )
0 < δ < 1.

(24)

Here,

N = dim(Sp(M
(ℓ)
σ )) = O(ℓpd) = O(pd+1/δ ).

If, moreover, u|∂Ω = 0, then (Π
p
κ ,σ u)|∂Ω = 0 and (24) holds.

4.2 Proof

The proof of the approximation result Theorem 1 is based on constructing the pro-

jectors Π p
κ ,σ ; our construction will proceed in several steps and we detail it for d = 3,

the case d = 2 being a (minor) modification. First, we review from [26, Section 5] a

family of univariate hp-projections with error bounds which are explicit in the poly-

nomial degree as well as in the regularity of the functions to be approximated. A cor-

responding family of polynomial projectors on the unit cube K̂ = (0,1)3 with analo-

gous consistency error bounds is then obtained as in [26, Section 5] by tensorization

and scaling. We shall use these bounds for a tetrahedron T ∈O
(ℓ)
σ ⊂ M

(ℓ)
σ ∈Mκ ,σ

as follows. By Proposition 1, T ∈ Lk for some 1 ≤ k ≤ ℓ−1. The (up to orientation)

unique parallelepiped KT = FT (K̂) associated with T ∈ Lk has the same scaling

properties as T , in particular (21) also holds for KT . For u belonging to the analytic

class (8) with weight vector satisfying (5), u ∈ C0(Ω )∩C∞(Ω\S ). For T ∈ O
(ℓ)
σ ,

the pullback ûT = u|KT
◦FT satisfies on K̂ the same analytic derivative bounds as

u|T ◦FT on T̂ (with possibly larger constant Cu, depending on κ , but independent

of ℓ and of T ). The tensorized hp interpolation operator from [26] on K̂ is therefore

well-defined and allows to construct a polynomial approximation û
p
T ∈Qp(K̂) with

analytic consistency error bounds on K̂; since T̂ ⊂ K̂, and since Qp(T̂ ) ⊂ Ppd(T̂ ),
the pushforwards of the restrictions û

p
T |T̂ under the affine mapping FT : T̂ → T will
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be local polynomial approximations of degree pd with exponential convergence es-

timates in H1(T ). Moreover, since the tensorized interpolant is nodally exact in the

vertices of K̂, and since the set of vertices of T̂ is a subset of the set of vertices of

K̂, the pushforwards of û
p
T |T̂ under FT are nodally exact in the vertices of T .

For elements T ∈ T
(ℓ)
σ , we only require a first order approximation property, as

the geometric refinement guarantees the necessary convergence rate. We can not

use nodal interpolation as functions u ∈ G δ
β (S ;Ω) may not be bounded near a

singularity c ∈ S . Thus, we construct a quasi interpolation operator on elements in

the terminal layers T ∈ T
(ℓ)
σ that interpolates at those vertices of T which are not in

S .

By the continuity of u ∈ G δ
β (S ;Ω) on Ω\S , the resulting global, piecewise

polynomial approximation is nodally exact in all vertices of M
(ℓ)
σ except those

which coincide with singularities c ∈ S . Particularly, the resulting piecewise poly-

nomial hp-approximation is globally continuous at all vertices of M
(ℓ)
σ . However,

it still has polynomial jump discontinuities across edges and (in space dimension

d = 3) faces of T ∈M
(ℓ)
σ which we remove by polynomial trace liftings, preserving

the exponential convergence estimates.

4.2.1 Univariate hp-Projectors and hp Error Bounds

Let I = (−1,1) be the unit interval. For any k ≥ 1, we write Hk(I) for the usual

Sobolev space endowed with norm ‖u‖Hk(I). For q ≥ 0, we denote by π̂q,0 : L2(I)→
Pq(I) the L2(I)-projection. The following Ck−1-conforming and univariate projector

has been constructed in [11, Section 8].

Lemma 1. For any p,k ∈ N with p ≥ 2k− 1, there is a projector π̂p,k : Hk(I) →
Pp(I) that satisfies (π̂p,ku)(k) = π̂p−k,0(u

(k)), and (π̂p,k)
( j)u(±1) := u( j)(±1), for

any j = 0, . . . ,k− 1.

Moreover, there holds:

(i) For every k ∈ N, there exists a constant Ck > 0 such that

∀u ∈ Hk(I) ,∀p ≥ 2k− 1 : ‖π̂p,ku‖Hk(I) ≤Ck‖u‖Hk(I) . (25)

(ii)For integers p,k ∈ N with p ≥ 2k− 1, κ = p− k+ 1 and for u ∈ Hk+s(I) with

any k ≤ s ≤ κ there holds the error bound

‖(u− π̂p,ku)
( j)‖2

L2(I) ≤
(κ − s)!

(κ + s)!
‖u(k+s)‖2

L2(I), j = 0,1, . . . ,k. (26)

We refer to [11, Proposition 8.4] and [11, Theorem 8.3], respectively, for proofs,

and further references.
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4.2.2 Tensor projector on the unit cube

Based on the univariate projectors π̂p,k, we constructed in [26] polynomial projec-

tion operators on Id = (0,1)d by a) translation and scaling of the projectors π̂p,k to

(0,1) and b) by tensorization, as follows: for integers k ≥ 0 and d > 1, we define

Hk
mix(I

d) = Hk(I) ⊗·· ·⊗︸ ︷︷ ︸
d−times

Hk(I), (27)

where ⊗ denotes the tensor-product of separable Hilbert spaces. These spaces are

isomorphic to Bochner spaces, ie. Hk
mix(I

d)≃Hk(I;Hk
mix(I

d−1))≃Hk
mix(I

d−1;Hk(I)).
In Id of dimension d > 1 and for p ≥ 2k− 1, we define the projector

Π̂ d
p,k =

d⊗

i=1

π̂
(i)
p,k : Hk

mix(I
d)→Qp(Id) (28)

where π̂
(i)
p,k denotes the univariate projector in Lemma 1, applied in coordinate 1 ≤

i ≤ d. For d,k ≥ 1 there exists a constant Ck,d > 0 such that for all p ≥ 2k− 1 there

holds the stability bound

‖Π̂ d
p,kv‖

Hk
mix(I

d) ≤Ck,d‖v‖
Hk

mix(I
d) (29)

and ∥∥∥v− Π̂ d
p,kv

∥∥∥
Hk

mix(I
d)
≤Ck,d

d

∑
i=1

‖v− π̂
(i)
p,kv‖Hk(I;Hk

mix(I
d−1)) . (30)

We choose throughout what follows k = 2 as in [26], and obtain from (30), (26)

Proposition 3. [26] Assume that the polynomial degree p ≥ 5. Then, for any inte-

gers 3 ≤ s ≤ p, and for v ∈ Hs+5(K̂), there holds

‖v− Π̂ 3
p,2v‖2

H2
mix(K̂)

.Ψp−1,s−1

s+5

∑
m=s

|v|2
m,K̂

(31)

where the constant implied in . is independent of s and of p, and where

Ψq,r = 22(r+3)Γ (q+ 1− r)

Γ (q+ 1+ r)
, 0 ≤ r ≤ q . (32)

Moreover, Π̂ 3
p,2v is nodally exact in the vertices of K̂ = (0,1)3:

(Π̂ 3
p,2v)(x1,x2,x3) = v(x1,x2,x3) ∀xi ∈ {0,1} . (33)
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4.2.3 Transformation Formula

For u ∈ Hk(Ω), and for a simplex T ∈ O
(ℓ)
σ , ûT = u|T ◦FT ∈ Hk(T̂ ) for every k ≥

0. Quantitative bounds on derivatives under affine transformations FT in (14) are

provided by the transformation formula (eg. [5, Section II.6.6]).

Lemma 2. Let G ⊂ Rd , d ≥ 2, denote a bounded polyhedron which is affine equiv-

alent to Ĝ via (14), ie. G = FT (Ĝ). For v ∈ Hk(G) and for any k ∈ N, the pullback

v̂T := v|G◦FT satisfies with |v|2m,T =∑|α |=m ‖Dαv‖2
L2(G)

and with the Frobeniusnorm

‖BT‖F of the matrix BT in (14) the bound

|v̂|
m,Ĝ ≤ dm‖BT‖m

F |det(BT )|−1/2|v|m,G . (34)

4.2.4 Element Interpolants

For any simplex T ∈O
(ℓ)
σ , the function u ∈ G δ

β (S ;Ω) the polynomial approxima-

tion of u|T , u ∈ G δ
β (S ;Ω) is obtained by applying Proposition 3 to ûT := u|KT

◦FT :

∀T ∈O
(ℓ)
σ : u

p
T :=

(
Π̂ 3

p,2(u|KT
◦FT )

)
|
T̂
◦F

(−1)
T . (35)

With u
p
T as in (35) we define the hp-base interpolant Ĩ p in O

(ℓ)
σ by

∀T ∈O
(ℓ)
σ ⊂ M

(ℓ)
σ : (Ĩ pu)|T := u

p
T . (36)

The bound (23) with cT > 0 sufficiently large, independent of ℓ ensures that there

exists c(κ ,σ)> 0 such that the associated KT satisfies

∀ℓ ∈N ∀T ∈O
(ℓ)
σ : dist(KT ,S )/diam(KT )≥ 1/c . (37)

4.2.5 Exponential Convergence in Broken Sobolev Norms

Proposition 4. For u ∈ G δ
β (S ;Ω) with (5), there are b,C > 0 (depending on u)

such that for every p ≥ 1 and for Ĩ p from (36) holds with ℓ≥ 1

‖u− Ĩ pu‖
H1(O

(ℓ)
σ )

≤C

{
exp(−bp1/δ ) δ ≥ 1,

(p!)b(δ−1) δ < 1.
(38)

Here C > 0 depends on u and σ , but is independent of p, and H1(O
(ℓ)
σ ) denotes the

broken H1 space over O(ℓ), with corresponding norm.

Proof. Since S consists of finitely many singular points c, by localization and

superposition, we may assume wlog. S = {c} and denote by β = βc > −2. For
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1 ≤ k ≤ ℓ < p, consider a simplex T ∈ Lk ∩ωc ⊂ M
(ℓ)
σ and the associated paral-

lelepiped KT = FT (K̂)⊃ T . It satisfies

0 < σ/c(Mκ ,σ )< rc(x)|KT
/σ k < c(Mκ ,σ )/σ , x ∈ KT .

By assumption, KT ⊂Ω and, by (23), dist(KT ,S )≥ cTσ k. Then, for u∈G δ
β (S ;Ω)

and for this T ∈Lk, ûT := u|KT
◦FT is smooth in K̂ and satisfies, by (34) with G=KT

and Ĝ = K̂,

∀m ∈N : |ûT |m,K̂ ≤ dm‖BT‖m
F |det(BT )|−1/2|u|m,KT

.

We obtain for |u|m,KT
using (18) and (21)

|u|2m,KT
= ‖Dmu‖2

L2(KT )
. ‖r

β+m
c σ−k(β+m)Dmu‖2

L2(KT )

≤ σ−2k(β+m)‖r
β+m
c Dmu‖2

L2(KT )
≤ σ−2k(β+m)C

2(m+1)
u (m!)2δ .

We define u
p
T ∈Qp(T )⊂ Ppd(T ) as in (35). From (31), for every integer 3 ≤ s ≤ p

and with Ψq,r as in (32) and for j = 0,1,2,

‖D j(û− û
p
T )‖2

L2(T̂ )
≤ ‖D j(û− û

p
T )‖2

L2(K̂)
≤Ψp−1,s−1

s+5

∑
m=s

|ûT |2m,K̂
.

Using the κ-shape regularity of T ∈Lk ⊂M
(k)
σ ∈Mκ ,σ , we find hT . ‖BT‖F ≤ κhT

(eg. [5, (Chap. II, (6.9)]) and, by (21) and (34), that hT ≃ κσ k so that for every m∈N

|ûT |2m,K̂
≤ (κdσ k)2m

|det(BT )|
|u|2m,KT

≤ (κdσ k)2m

|det(BT )|
σ−2k(β+m)C

2(m+1)
u (m!)2δ .

We obtain for j = 0,1,2 the bound

‖D̂ j(û− û
p
T )‖2

L2(T̂ )
≤Ψp−1,s−1

s+5

∑
m=s

(κdσ k)2m

|det(BT )|
σ−2k(β+m)C

2(m+1)
u (m!)2δ .

Transporting to T = FT (T̂ ) ∈ Lk, we find for βc =−1− bc and j = 0,1,2.

‖D j(u− u
p
T )‖2

L2(T )
. Ψp−1,s−1

s+5

∑
m=s

(κdσ k)2(m− j)σ−2k(β+m)C
2(m+1)
u (m!)2δ

. Ψp−1,s−1(κdCu)
2sσ2k(1+bc− j)Γ (s+ 6)2δ .

(39)

For T ∈ O(ℓ), we define the piecewise polynomial interpolant Ĩ pu|T by (35). Then

Ĩ pu coincides with u in the vertices of all T ∈O(ℓ) and is in particular continuous

in these vertices; it is, however, in general discontinuous across edges and faces.

Using the finite cardinality (20), and summing the bound (39) with j = 0,1 over

layers L1, ...,Lℓ−1, we obtain with C̄ :=Cuκd and βc =−1− bc, 0 < bc < 1
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‖u− Ĩ pu‖H1(O(p)) ≤C(κ ,σ)Ψp−1,s−1C̄
2sΓ (s+ 6)2δ

ℓ−1

∑
k=1

σ2kbc

=C(κ ,σ)Ψp−1,s−1C̄
2sΓ (s+ 6)2δ σ2bc

1−σ2bc
.

(40)

We have for s < p with the recursion formula Γ (z+ 1) = zΓ (z) that

Γ (p− s+ 1)Γ (s+ 6)2δ

Γ (p+ s− 1)
. (p− s)−2ss2δ s (41)

Choosing p= csδ with c> 1 to be selected (this ensures s< p in the upper bound

(41)) we obtain in the case δ ≥ 1

Γ (p− s+ 1)Γ (s+ 6)2δ

Γ (p+ s− 1)
.
( sδ

csδ − s

)2s

.

Choosing c = 2C̄+ 1 > 1 this implies for s & 1 sufficiently large the bound

Ψp−1,s−1C̄
2sΓ (s+ 6)2δ .

( 2C̄sδ

csδ − s

)2s

.
( 2C̄

2C̄+ 1

)2c−1/δ p1/δ

(42)

where the constant hidden in . is independent of the polynomial degree p.

In the case 0 < δ < 1, we choose s = p/2 in (41) and obtain

Γ (p− s+ 1)Γ (s+ 6)2δ

Γ (p+ s− 1)
. s−(1−δ )2s . (p!)−b(1−δ )

for some 0 < b < 1. Inserting this bound into (40) completes the proof. �

4.2.6 Polynomial Trace Lifting in O
(p)
σ

By the nodal exactness (33), the hp base interpolant Ĩ p constructed in (36) of Propo-

sition 4 is exact, and hence continuous in vertices of simplices T ∈O
(ℓ)
σ , but has in

general discontinuities across interelement edges E ∈ ET of simplices T ∈O
(ℓ)
σ (in

dimensions d = 2,3) and across interelement faces F ∈FT of simplices T ∈O
(ℓ)
σ (in

dimension d = 3). The jumps of interpolant across edges and faces are polynomial,

i.e. [[Ĩ p]]E and [[Ĩ p]]F .

For each T ∈ O
(ℓ)
σ , the nodal exactness (33) of the base hp-interpolant Ĩ pu im-

plies for each E ∈ ET that [[Ĩ pu]]E ∈ P
pd
0 (E) := (Ppd ∩H1

0 )(E), d = 2,3, and, for

d = 3 and each F ∈ FT , [[Ĩ pu]]F ∈ Ppd(F). We build a continuous, piecewise poly-

nomial interpolant by successively lifting these polynomial trace jumps of Ĩ p while

retaining its consistency, in particular the analytic estimates (31).
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First, we lift jumps on interelement edges E ∈ ET and, second, in dimension

d = 3 also for all interelement faces F ∈ FT , for every T ∈O
(ℓ)
σ . Since T ∈O

(ℓ)
σ ⊂

M
(ℓ)
σ ∈Mκ ,σ is κ shape-regular, so are all F ∈FT . For E ∈ ET , let FE ∈FT denote

any face in FT with E ⊂ ∂F .

We recapitulate from [24, Lemma 15, Thm. 1] the required lifting and the stabil-

ity estimates. Consider the reference simplex T̂ ⊂ Rd , d = 2,3. Given a piecewise

polynomial function ĝp of degree p on each F̂ ∈ F
T̂

that is continuous on ∂ T̂ ,

in [24, Lemma 15, Thm. 1], a polynomial trace lifting v̂p = L
T̂ ,∂̂T

(ĝp) ∈ Pp(T̂ )

is constructed which satisfies on the reference simplex T̂ in space dimension

d = 2,3 the bound ‖v̂p‖H1(T̂) ≤ Ĉ‖ĝp‖H1/2(∂ T̂ ) (with Ĉ > 0 independent of p). As

H1/2(T̂ ) = (L2(T̂ ),H1(T̂ ))1/2, we have the interpolation inequality ‖ĝp‖H1/2(∂ T̂ ) ≤
Ĉ‖ĝp‖1/2

L2(∂ T̂ )
‖ĝp‖1/2

H1(∂ T̂ )
. With the polynomial inverse inequality (see, e.g., [29]) on

each face F̂ ⊂ ∂ T̂ we get (with a possibly different constant Ĉ > 0 which is inde-

pendent of p)

‖v̂p‖H1(T̂ ) ≤ Ĉp‖ĝp‖L2(∂ T̂) . (43)

Squaring this and scaling T̂ to T = FT (T̂ ) ∈O
(p)
σ we find

‖LT,∂T (gp)‖2
L2(T )+ h2

T‖D1
LT,∂T (gp)‖2

L2(T) ≤C(κ)p2hT‖gp‖2
L2(∂T ) . (44)

Iterating (43) twice, from Ê ⊂ ∂ F̂ to F̂ ⊂ ∂ T̂ to T̂ , we obtain for ĝp ∈ P
p
0(Ê) a

polynomial edge lifting L̂
T̂ ,Ê(ĝp) ∈ Pp(T̂ ) on the reference simplex T̂ ⊂ R3 with

‖L̂T̂ ,Ê(ĝp)‖H1(T̂ ) ≤ Ĉp2‖ĝp‖L2(Ê) . (45)

Squaring (45) and scaling to T = FT (T̂ ) ∈O
(p)
σ yields for gp ∈ P

p
0(E) on E ∈ ET

h−2
T ‖LT,E(gp)‖2

L2(T)+ ‖D1
LT,E(gp)‖2

L2(T ) ≤C(κ)p4‖gp‖2
L2(E) . (46)

Let now d = 3 and let F,F ′ ∈ FT be two distinct faces which share edge Ē =
F ∩ F ′. Using (43) in dimension d = 2 and scaled to T , we lift gp = [[Ĩ pu]]E ∈
P

pd
0 (E) twice, once into F and once into F ′, resulting in a vp ∈ C0(F ∪F ′), vp ∈

Ppd(F)∪Ppd(F ′), and vp |∂F∪F ′= 0 which satisfies (44) with F in place of T . We

may therefore extend this continuous, piecewise polynomial function vp from F ∪F ′

by zero to a function ṽp ∈C0(∂T ) which is, on each F ∈ FT , a polynomial of total

degree at most pd. There exists a lifting LT,F(ṽp) ∈ Ppd(T ) such that for each

F ∈ FT we have LT,F(ṽp) |F= vp |F on F ∈ FE , (LT,F(ṽp) |F) |E≡ gp on E and

such that (46) holds. For each edge E in O
(p)
σ , we lift the polynomial jump in this

way into all T ∈O
(p)
σ for which E ∈ ET by the edge-lifting operator

LE(gp) := ∑
T :E∈ET

LT,E(gp) . (47)
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By κ shape regularity, #{T ∈O
(p)
σ : E ∈ ET} is bounded independently of p and of

the particular edge E by an absolute constant depending only on κ . With Ĩ p in (36),

we define

Ĭ pu := Ĩ pu−∑
E

LE([[Ĩ
pu]]E) . (48)

Then, Ĭ pu is continuous across edges E ∈ ET for every T ∈ O
(p)
σ , and [[Ĭ pu]]F ∈

P
pd
0 (F) := (Ppd ∩H1

0 )(F) for all F ∈ FT .

We next lift, for each face F ∈ FT , the face jump [[Ĭ pu]]F ∈ P
pd
0 (F) by extending

first by zero to all other faces F ′ ∈ FT\{F}, then lift polynomially by referring to

[24, Theorem 1]. By construction, this lifting LT,F([[Ĭ
pu]]F) ∈ Pp(T ) will vanish

on all F ′ ∈ FT : F ′ 6= F . For each face F , we repeat this lifting at most twice for

T,T ′ ∈O
(p)
σ such that F ∈ FT ∩FT ′ . We define the continuous interpolant

I pu := Ĭ pu− ∑
F∈FT :T∈O(p)

σ

LT,F([[Ĭ
pu]]F)

= Ĩ pu− ∑
E∈ET :T∈O(p)

σ

LE([[Ĩ
pu]]E)− ∑

F∈FT :T∈O(p)
σ

LT,F([[Ĭ
pu]]F) .

(49)

To verify exponential convergence in submesh O
(ℓ)
σ , we estimate in (49)

‖u− I pu‖
H1(O

(ℓ)
σ )

≤ ‖u− Ĩ pu‖
H1(O

(ℓ)
σ )

+

∥∥∥∥∥∥ ∑
E∈ET :T∈O(ℓ)

σ

LE([[Ĩ
pu]]E)

∥∥∥∥∥∥
H1(O

(ℓ)
σ )

+

∥∥∥∥∥∥ ∑
F∈FT :T∈O(ℓ)

σ

LT,F([[Ĭ
pu]]F)

∥∥∥∥∥∥
H1(O

(ℓ)
σ )

.

(50)

The first term was bound in Prop. 4. We bound the second term.

For T ∈O
(p)
σ , we write, using [[u]]E = 0 for E ∈ ET

h−2
T ‖LT,E([[Ĩ

pu]]E)‖2
L2(T )+ ‖D1

LT,E([[Ĩ
pu]]E)‖2

L2(T )

≤ C(κ)p4‖[[Ĩ pu]]E‖2
L2(E) =C(κ)p4‖[[u− Ĩ pu]]E‖2

L2(E) .
(51)

The multiplicative trace inequality implies for a κ-shape regular simplex T ⊂ Rd

with diameter hT that for every F ∈ FT and for every ϕ ∈ H1(T ) holds

‖ϕ |F‖2
L2(F) ≤C(κ)

(
h−1

T ‖ϕ‖2
L2(T )+ hT‖D1ϕ‖2

L2(T )

)
. (52)

Iterating this for T ∈O
(ℓ)
σ from E ∈ ET to F ∈ FT gives, for ϕ ∈ H2(T ),

‖ϕ |E‖2
L2(E) . h−2

T ‖ϕ‖2
L2(T )+ ‖D1ϕ‖2

L2(T )+ h2
T‖D2ϕ‖2

L2(T ) (53)

where the implied constant depends only on κ .
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Using (53) with ϕ = (u− Ĩ pu)|T = u|T − u
p
T ∈ H2(T ) for T ∈O

(ℓ)
σ in (51) gives

h−2
T ‖LT,E([[Ĩ

pu]]E)‖2
L2(T)+‖D1

LT,E([[Ĩ
pu]]E)‖2

L2(T ) . p4
2

∑
j=0

h
2( j−1)
T ‖D j(u−u

p
T )‖2

L2(T ) .

Using (39) and that hT ∼ σ k for T ∈ Lk we obtain

‖LT,E([[Ĩ
pu]]E)‖2

H1(T )
. p4Ψp−1,s−1(κdCu)

2sΓ (s+ 6)2δ σ2kbc . (54)

Finally, we bound the third term in (50), ie. ‖LT,F([[Ĭ
pu]]F)‖H1(T ) for F ∈FT . Since

LT,F([[Ĭ
pu]]F) = 0 on ∂T\F , by the Poincaré inequality in {v∈H1(T ) : v|∂T\F = 0}

it suffices to bound ‖D1LT,F([[Ĭ
pu]]F)‖L2(T). Since [[u]]F = 0, using (48) we obtain

h−1
T ‖LT,F([[Ĭ

pu]]F)‖L2(T ) . ‖D1
LT,F([[Ĭ

pu]]F)‖L2(T) = ‖D1
LT,F([[u− Ĭ pu]]F)‖L2(T ) .

We estimate further, using the stability of the lifting LT,F and (52),

‖D1LT,F([[u− Ĭ pu]]F)‖2
L2(T )

. p2‖u− Ĭ pu‖2
L2(F)

. p2(h−1
T ‖u− Ĭ pu‖2

L2(T)
+ hT‖D1(u− Ĭ pu)‖2

L2(T )
) .

(55)

Recalling (48), we bound for j = 0,1

‖D j(u− Ĭ pu)‖2
L2(T )

= ‖D j(u− Ĩ pu+∑E LT,E([[Ĩ
pu]]E))‖2

L2(T )

. ‖D j(u− Ĩ pu)‖2
L2(T )

+∑E ‖D j(LT,E([[Ĩ
pu]]E))‖2

L2(T )
.

We use (39) for the first term, and (54) for the second term to conclude for j = 0,1

‖D j(u− Ĭ pu)‖2
L2(T ) . p4Ψp−1,s−1(κdCu)

2sΓ (s+ 6)2δ σ2k(1+bc− j) .

Using again that T ∈ Lk satisfies hT ∼ σ k, we insert into (55) and arrive at

‖D1
LT,F([[u− Ĭ pu]]F)‖2

L2(T ) . p6Ψp−1,s−1(κdCu)
2sΓ (s+ 6)2δ σ2kbc .

Inserting this and the bound (54) into (50), we obtain for ‖u− I pU‖
H1(O

(ℓ)
σ )

exactly

once more the bound (40) (with a slightly higher power of p). Absorbing the poly-

nomial factor into the exponential, we conclude the exponential error bounds from

Proposition 4, i.e.,

‖u− I pu‖
H1(O

(ℓ)
σ )

≤C

{
exp(−bp1/δ) δ ≥ 1,

(p!)b(δ−1) δ < 1.
(56)

also for the resulting continuous hp-interpolant I pu defined in (49) in O
(p)
σ using

again (42).
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4.2.7 Enforcement of homogeneous Dirichlet boundary conditions

The preceding polynomial trace liftings allow to obtain interpolation operators

{I
hp
N }N which preserve homogeneous Dirichlet boundary conditions on ∂Ω . For

simplicity, we discuss this only for the case of global homogeneous Dirichlet

boundary conditions, i.e., for u|∂Ω = 0 (the argument being local, i.e., element-

by-element, allows to treat homogeneous Dirichlet boundary conditions also on

a proper subset ΓD ⊂ ∂Ω , as long as ΓD coincides with the closure of a set of

boundary faces). In space dimension d = 3, for T ∈ O
(ℓ)
σ with F ∈ FT satisfy-

ing F ⊂ ∂Ω , it holds u|F = 0. Hence, on T we may adjust the (nodally exact) hp

(quasi-)interpolant (Ĩ pu)|T by lifting its trace (Ĩ pu)|F =−(u− Ĭ pu)|F on the bound-

ary face F ∈ FT ∩ ∂Ω exactly as in (49), in particular preserving the exponential

convergence bound (56). In space dimension d = 2, a corresponding polynomial

edge-lifting can like wise be applied. In space dimension d = 1, Ω is a bounded

interval on R. The nodal exactness of the hp (quasi-)interpolant (Ĩ pu) implies that is

satisfies the zero Dirichlet boundary conditions, so that trace lifting is not necessary

in space dimension d = 1.

4.2.8 Approximation in T
(ℓ)
σ

Exponential consistency errors for error contributions of the hp-interpolant from

the terminal layer will be obtained essentially by a Bramble-Hilbert style scaling

(“h-version FEM”) argument combined with the exponentially small meshwidth of

elements T ∈ T
(ℓ)
σ (see Proposition 2, items (ii), (iii)).

Under (5), for Ω ⊂ R3 holds N2
β (Ω) ⊂ H1+θ (Ω) for some θ > (d − 2)/2,

d = 2,3, by [17, Thm. 3.5]. Specifically, θ (β) = 1− βm − ε (cp. [17, Thm. 3.5]

with βm := −1− βc ∈ (0,1/2), and 0 < ε < 1/2− βm = 3/2+ βc). For Ω ⊂ R2,

N2
β (Ω)⊂H1+θ (Ω) for some θ > 0 (cp. [16]). which implies θ = 2+βc−ε > 1/2).

From Proposition 2 items (1)-(3), the collections Tc := {T ∈ T
(ℓ)
σ : T ∈ ωc}, c ∈ S

have uniformly bounded (w.r. to ℓ) cardinality and shape regularity. We construct

the approximation by use of a Scott-Zhang quasi-interpolating projection operator

Jc : H1(
⋃
Tc) → S1(Tc). This operator is constructed by choosing faces (edges) Fz

for each vertex of Tc via

Jc(v) := ∑
z vertex of Tc

φz

∫

Fz

φ⋆
z vdx,

where φz ∈ S1(Tc) denotes the hat function associated with the vertex z and φ⋆
z ∈

S1(Fz) denotes the unique dual basis function associated with φz. We define Γc :=

∂ (
⋃
Tc)∩Ω (the interface of Tc and O

(ℓ)
σ ) and choose Fz ⊆ Γc whenever z ∈ Γc.

The definition of Jc implies that Jc(·)|Γc : L2(Γc) → S1(Tc|ΓC
) is well-defined. The

result [1, Lemma 3] shows that Jc(·)|Γc is a H1/2-stable projection (with constants
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depending only on shape regularity of Tc) and hence is quasi-optimal in the sense

‖u− Jcu‖H1/2(Γc)
. min

vp∈S1(Tc)
‖u− vp‖H1/2(Γc)

≤ ‖u− I pu‖
H1/2(Γc)

. (57)

We construct the approximation uc ∈ S1(T
(ℓ)
c ) by setting uc = Jcu on vertices in⋃

Tc \Γc and uc = I pu on the remaining vertices in Γc. The estimate (57) allows us

to bound the difference

‖D1(uc − Jcu)‖
L2(

⋃
T
(ℓ)
c )

. ‖I pu− Jcu‖H1/2(Γc)
. ‖u− I pu‖H1/2(Γc)

. ‖u− I pu‖H1(Lℓ−1)
.

This leads to

‖D1(u− uc)‖
L2(

⋃
T
(ℓ)
c )

. ‖D1(u− Jcu)‖L2(
⋃
Tc)

+ ‖u− I pu‖H1(Lℓ−1)

. diam(
⋃

Tc)
θ‖u‖

H1+θ (
⋃
T
(ℓ)
c )

+ ‖u− I pu‖H1(Lℓ−1)
.

By Proposition 2, items (ii) and (iii) it holds that diam(
⋃
Tc) ≃ σ ℓ, we obtain

with (56) and uS := ∑c∈S uc

‖u− uS ‖
H1(

⋃
T
(ℓ)
σ )

≤ c(κ ,σ)σθℓ+C exp(−bp1/δ ). (58)

Combining this and (56) and applying a bounded (uniformly w.r. to p by Prop. 2,

item (1)) number of further polynomial edge- and face liftings at the interface of

O
(ℓ)
σ and T

(ℓ)
σ (note that the combination of I pu and uS is continuous at the vertices

of M
(ℓ)
σ ) completes the construction of Ihp in (1). Choosing p ≃ ℓδ concludes the

proof for δ ≥ 1.

For 0 < δ < 1, we additionally use the fact that σθ p1/δ
. (p!)b(δ−1) with some

b(θ )> 0 that is indepedent of p by Stirling’s approximation. �

5 Concluding Remarks

We have proved the exponential convergence rate (24) for continuous hp-FE ap-

proximations of κ shape-regular, simplicial meshes with geometric refinement to

analytic functions with isolated point singularities at a finite set S in a bounded

domain D ⊂ Rd , d = 1,2,3. Apart from κ-shape regularity and σ -geometric mesh

refinement the proof did not assume further structural assumptions on the triangula-

tions. In particular, simplicial partitions which are obtained by successive bisection

tree refinement in the course of adaptive subdivisions are admissible. The approx-

imation results imply the exponential convergence rate exp(−b 3
√

N) for second or-

der, elliptic PDEs in polygons D ⊂ R2 (where S denotes the set of corners of D)

where solutions belong to the analytic class (i.e., where δ = 1) which are considered,
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for example, in [2, 11, 18, 27, 28]. Theorem 1 also implies the exponential conver-

gence rate exp(−b
4
√

N) for hp-approximations of electron densities in DFT, due to

the quasioptimality of Galerkin approximations shown, for example, in [3, 6] and

the references there. In this application, S denotes the set of nuclei, whose centers

c∈S are assumed known. Furthermore, the extension of [27, 28] to Gevrey-regular

solutions is essential in this case, as analyticity of electron densities can not be ex-

pected, generally, in the presence of empirical potential functions constructed, for

example, from smooth partitions of unity.

Also, unlike other approaches such as plane waves, hp-approximations do not,

apriori, impose any specific functional form of the electron densities. Due to the

locality of approximation and the separation (2) of the points c ∈ S , we may ap-

ply Theorem 1 in each neighborhood ωc, c ∈ S , implying that the total number

of degrees of freedom to achieve accuracy ε > 0 in the norm H1(D) scales as

O(#(S )| logε|4), ie. linear scaling in the number #(S ) of nuclei and polyloga-

rithmic scaling in the target accuracy ε . This is analogous to what is reported re-

cently for discontinuous Galerkin discretizations in [20], where Proposition 4 can

be used a starting point of proof of an exponential convergence result on tetrahe-

dral meshes; for geometric meshes of hexahedra, analogous results can be found

in [26, Sec. 5.2.2]. Exponentially convergent quadrature algorithms for the (singu-

lar) electron-pair integrals are available in [8]. The results in the present note are

confined to space dimension d ≤ 3. The approach generalizes, however, directly to

hp-approximations of point singularities in any dimension d with exponential rate;

we remark that I
hp
N in the terminal layers T

(ℓ)
σ of the geometric meshes Mσ intro-

duced in Section 4.2.8 were built from low-order quasi-interpolants of Scott-Zhang

type, which do not require continuity of u near S . Likewise, the exponential con-

vergence rate bound (1) will remain true for linear polynomial degree vectors and,

more generally, for degree vectors of bounded variation as introduced in [26]. Also,

our construction of I
hp
N was based on a-priori knowledge of the singular support S .

In case S is not known a-priori, adaptive hp-approximations have to be used. The

details will be reported elsewhere.
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