KIT | KIT-Bibliothek | Impressum | Datenschutz

Waves of maximal height for a class of nonlocal equations with homogeneous symbols

Bruell, Gabriele; Dhara, Raj Narayan

We discuss the existence and regularity of periodic traveling-wave solutions of a class of nonlocal equations with homogeneous symbol of order -r, where r > 1. Based on the properties of the nonlocal convolution operator, we apply analytic bifurcation theory and show that a highest, peaked, periodic traveling-wave solution is reached as the limiting case at the end of the main bifurcation curve. The regularity of the highest wave is proved to be exactly Lipschitz. As an application of our analysis, we reformulate the steady reduced Ostrovsky equation in a nonlocal form in terms of a Fourier multiplier operator with symbol m(k) = k$^{-2}$. Thereby we recover its unique highest 2π-periodic, peaked traveling-wave solution, having the property of being exactly Lipschitz at the crest.

Open Access Logo

Volltext §
DOI: 10.5445/IR/1000086914
Veröffentlicht am 24.10.2018
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht
Jahr 2018
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000086914
Verlag KIT, Karlsruhe
Umfang 25 S.
Serie CRC 1173 ; 2018/26
Schlagworte highest wave, singular solution, fractional KdV equation, nonlocal equation with homogeneous symbol
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page