

Machine Learning-Aided Numerical Linear Algebra: Convolutional Neural Networks for the Efficient Preconditioner Generation

Markus Götz, Hartwig Anzt

ScalA'18: 9th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems, WS at SC18

Steinbuch Centre for Computing (SCC)

Motivation: Block Jacobi Preconditioning

- Jacobi method based on diagonal scaling: P = diag(A)
- Can be used as
 - Iterative solver

$$x^{(k+1)} = x^{(k)} + P^{-1}b - P^{-1}Ax^{(k)}$$

- Preconditioner
- $\tilde{A} = P^{-1}A, \qquad \tilde{b} = P^{-1}b$
- $Ax = b \Leftrightarrow \tilde{A}x = \tilde{b}$

Motivation: Block Jacobi Preconditioning

- Jacobi method based on diagonal scaling: P = diag(A)
- Can be used as
 - Iterative solver

$$x^{(k+1)} = x^{(k)} + P^{-1}b - P^{-1}Ax^{(k)}$$

Preconditioner

$$\tilde{A} = P^{-1}A, \qquad \tilde{b} = P^{-1}b$$

$$Ax = b \Leftrightarrow \tilde{A}x = \tilde{b}$$

- Extension: block-Jacobi: $P=diag_B(A)$
 - Set of diagonal blocks
 - Treat each block as linear system
 - Larger blocks
 - better convergence,
 - more expensive to compute

Karlsruhe Institute of Technology

Motivation: Block Jacobi Preconditioning

- Jacobi method based on diagonal scaling: P = diag(A)
- Can be used as
 - Iterative solver

$$x^{(k+1)} = x^{(k)} + P^{-1}b - P^{-1}Ax^{(k)}$$

Preconditioner

$$\tilde{A} = P^{-1}A, \qquad \tilde{b} = P^{-1}b$$

- $Ax = b \Leftrightarrow \tilde{A}x = \tilde{b}$
- Extension: block-Jacobi: $P=diag_B(A)$
 - Set of diagonal blocks
 - Treat each block as linear system
 - Larger blocks
 - better convergence,
 - more expensive to compute

Motivation: Block-Jacobi Preconditioning

- Determination of block necessary
- Unproblematic if information about system is known apriori

Cluster Analysis

- Works well
- Highly expensive to compute

Motivation: Block-Jacobi Preconditioning

- Determination of block necessary
- Unproblematic if information about system is known apriori

Cluster Analysis

- Works well
- Highly expensive to compute

Supervariable Agglomeration (SVA)

- State-of-the-art
- Results are okay
- Sequential by definition

Motivation: Block-Jacobi Preconditioning

- Determination of block necessary
- Unproblematic if information about system is known apriori

Cluster Analysis

- Works well
- Highly expensive to compute

Supervariable Agglomeration (SVA)

- State-of-the-art
- Results are okay
- Sequential by definition

"Looking at it"

- Heuristic
- Feeling for natural blocks

Crash course: Convolutional Neural Networks (CNN)

© https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/

- Mimics behaviour of biological eyes
- Efficient in detecting recurring patterns

Idea – Let CNN "look at" sparsity pattern

- Interpret matrix as image
- Mainly interested in non-zero patterns close to main diagonal

Idea – Let CNN "look at" sparsity pattern

- Interpret matrix as image
- Mainly interested in non-zero patterns close to main diagonal
- Need dataset with labels
 - Other algorithms set upper bound
 - No credit card for Amazon Mturk

Idea – Let CNN "look at" sparsity pattern

- Interpret matrix as image
- Mainly interested in non-zero patterns close to main diagonal
- Need dataset with labels
 - Other algorithms set upper bound
 - No credit card for Amazon Mturk
- Generate artificial data
 - Boundaries known
 - 3000 matrices
 - Uniform size, 128x128
 - *w* = 10
 - Random block + gaussian noise ($\mu = 10$)

Implementation

- Single block **ResNet** architecture
 - 4 Convolutional layers
 - 1 Fully-connected prediction layer
 - Dropout and L2 regularization
- **Open-source** script in Python
 - https://github.com/Markus-Goetz/block-prediction
 - Keras + TensorFlow for CNN
 - HDF5 I/O
- Processing performance
 - Single nVidia K80
 - Batch size=1, 3000 matrices in 2.5s
 - Batch size=1500, 3000 matrices in 0.6ms

CNN Training Process

• Loss function:
$$\mathcal{L}(y, \hat{y}) = -\sum_{s=1}^{S} \sum_{i=1}^{n} y_{s,i} * log(\hat{y}_{s,i}) + (1 - y_{s,i}) * log(1 - \hat{y}_{s,i}).$$

Prediction Performance Evaluation

			Actual		CNN
	Acc.:	0.9617	no block	block	precision
$precision(y, \hat{y}) = \frac{tp(y, \hat{y})}{tp(y, \hat{y}) + fp(y, \hat{y})}$	Pred.	no block block	68010 2389	553 5848	0.9919 0.7100
		recall	0.9661	0.9136	F1: 0.7990
$recall(y, \hat{y}) = \frac{tp(y, \hat{y})}{f(x, \hat{y}) + f(y, \hat{y})}$					
tp(y,y) + fn(y,y)			Actual		SVA10
	Acc.:	0.8261	no block	block	precision
$F1(y, \hat{y}) = 2 * \frac{precision(y, \hat{y}) * recall(y, \hat{y})}{precision(y, \hat{y}) + recall(y, \hat{y})}$	Pred.	no block block	62105 6895	6458 1342	0.9107 0.1547
		recall	0.9001	0.1721	F1: 0.1673
y Labels					
\hat{y} Prediction			Actual		SVA25
0	Acc.:	0.8695	no block	block	precision
tp True-positives	Pred.	no block block	65872 7328	2691 909	0.9608 0.1103
fp False-positives		recall	0.8998	0.2525	F1: 0.1535
fn False-negatives					

High-level Performance Analysis

- Used predicted block boundaries in a Jacobi preconditioner
- 600 test matrices
- Average iteration count
- ~22% less iteration with CNN compared to no blocks

Summary and Outlook

Summary

- Used CNN to predict blocks for Jacobi block preconditioners
- Reduction in solver iterations
- Parallel and fast prediction of blocks, usable on GPUs

Next Steps

- Manually label matrices
- Adaptability to other preconditioners (ILU/ILUT)
- Robustness study of CNN architecture and input data