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Abstract

Electric vehicles (EV) show huge potentials in terms of reducing greenhouse gas emissions.
However, the integration of EV into power systems may also bring challenges, such as demand
increase during peak hours. Therefore, charging behaviors of EV should be scheduled
appropriately.

This paper proposes an optimization model to address the charging management problem of EV.
The EV charging management problem is formulated as a stochastic linear programming model.
The objective of the model is to minimize the distance between the EV total charging demand
and a pre-defined reference demand curve within a one-day period. With this objective, the true
task of the model depends on the setting of the reference demand, which makes the model easily
applicable for different purposes. These reference demands might focus on integrating local
renewables, arbitrage trading on different electricity markets or load management from the local
grid perspective. As future arrivals of EV are uncertain but contribute to the total charging demand
in future periods, the model considers these uncertainties by a stochastic term in their arrival time,
departure time and electricity demand (i.e. state of charge). Hence, EV usage patterns are
simulated with inhomogeneous Markov chains and scenario reduction technique is applied to
reduce the number of scenarios considered and to guarantee feasible computing times. The
simulation results demonstrate that the controlled charging strategy outperforms the uncontrolled
charging in terms of demand decrease during peak hours and that the proposed model manages
to distribute the EV charging demand throughout the day.
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1. Introduction

Electric vehicles (EV) show huge potentials in terms of reducing greenhouse gas emissions and
improving energy efficiency (Teixeira et al., 2018). Many countries take EV as a promising option
for the transition of the energy system (Bauer et al., 2018; Bubeck et al., 2016; Du et al., 2017).
In Germany, one of the energy transition targets is to have 40% less greenhouse gas emissions by
2020 compared to 1990 (BMWi, 2017). As a result of policy support, registrations of EV have



been notably increased in recent years in many countries (IEA, 2017). The adoption of EV can
help to achieve this target.

Large integration of EV may bring both challenges and benefits to the power systems (Jochem,
2016). When customers are of their own will to charge EV, this is often referred to as uncontrolled
charging, uncoordinated charging or instant charging. Green et al. (2010) analyze the impact of
EV on distribution networks. For uncontrolled charging, Schill et al. (2015) find that charging
load will further increase the peak load, which may be a problem for grid capacity and power
plant operation. Babrowski et al. (2014) and Kaschub et al. (2013) point out the potential and
necessity of controlling the charging processes of EV.

Recent literature has also discussed about controlling EV charging behavior in diverse ways and
for different purposes. Sarker et al. (2016) develop an optimization model for an EV aggregator
to participate in day-ahead energy and reserve markets and considers the probability of acceptance
and deployment. Sundstrém et al. (2012) optimize the charging behaviors for multiple EV while
considering distribution grid constraints. The availability of EV is both assumed to be known in
advance in Sarker et al. (2016) and Sundstrom et al. (2012). Jian et al. (2015) consider the
stochastic EV connection with an event-triggered charging scheduling scheme. He et al. (2012)
apply rolling window approach for real-time charging scheduling problem of multiple EV and
compares the difference between a global EV charging scheduling optimization problem and a
local one. The local optimum does not take future EV arrivals into consideration.

Upcoming EV have an influence on the total charging demand in future periods. However, in the
real world future arrivals are hard to predict. Therefore, this paper contributes to the current
literature in considering the uncertainties from future EV arrival with a scenario-based stochastic
linear programming model. This proposed model optimizes charging scheduling problem for
multiple EV in real-time and considers the uncertainty of EV information in the future, i.e., their
arrival time, departure time and electricity demand (i.e. state of charge). Scenarios for EV usage
patterns are simulated by inhomogeneous Markov chains. Scenario reduction technique is further
applied to reduce the number of scenarios considered and to guarantee suitable computing times.

The rest of the paper is organized as follows. Section 2 presents the proposed model for optimal
EV charging management. Section 3 explains the setting of parameters and scenarios. Section 4
demonstrates the proposed charging strategy with simulation results. Section 5 concludes the

paper.
2. Model formulation
2.1 Centralized charging scheduling

The model proposed in this paper schedules the EV charging behaviors in a centralized way,
which means that an entity or an aggregator schedules the charging for a group of EV. This
aggregator might be the electricity utility itself or a third party that can benefit by providing such
kind of demand side management service (cf. Ensslen et al., 2018). The aggregator collects EV
information, optimizes EV charging strategy and communicate with EV to manage corresponding
charging solutions. A centralized model can include EV connected to one location, e.g. one
charging infrastructure or one charging station.

2.2 Implementation assumptions
The EV considered fall into two categories: EV that are currently connected to the grid and EV

that will arrive in the future. As discussed, the uncertainties of the model stem from the future EV.
The following assumptions are made for the formulation of the model:



1) Upon arrival, EV are connected to the grid and will inform the aggregator about their
departure time.

2) The departure time is guaranteed by EV users and the actual departure time cannot be
earlier than the guaranteed departure time.

3) Upon arrival, EV also inform the aggregator about their desired battery state of charge
(SOC).

4) This desired SOC is guaranteed by the aggregator.

Although EV users will have less convenience by guaranteeing their departure time, the
assumptions above can be reasonable when profitable charging tariff is offered (cf. Ensslen et al.
2018).

2.3 Objective function

The objective function (1) aims to have the total EV charging demand operated at a certain level
(cf.eq. 1).

Minimize: YW w,,  |Dyoy — DFT| + X2 7 * |(Dpw — DY) — (De_r. — DI™SN)|

)

Indices/Sets:
m(EVY) EV that are available for charging at period i

t Time periods

) Scenarios for EV arrival patterns

Parameters:

i Starting period of the optimization model

wt Ending period of the optimization model

Ty, Probability of scenario w

prres Preferred total EV charging demand in period t [kW]

Variables:

D¢ » EV total charging demand assumed in period ¢t in scenario w [kW]

In eq. 1, the first term is the distance between the total charging demand D, . and the preferred

charging demand DP™®/. The second term is the difference of that distance in two consecutive
periods. With these two terms in eg. 1, the model minimizes the total distance between the total
charging demand and the preferred charging and also tries to avoid changes over time. Please note
that all variables in this paper are non-negative variables.

2.4 Constraints for total EV charging demand

The constraint in eq. 2 limits the total EV charging demand.

Dty = ZmeEViPm,t + Yosiv1 Ps’,t,w ist< Wi,Vw 2)

Indices/Sets:
s Time periods (arrival periods for future EV)



Variables:
Pt Charging demand of currently-connected EV m in period t [KW]
PS o Charging demand in period t of future EV from period s in scenario w [KW]

As categorized in Section 2.2, the currently-connected EV refer to EV that are currently connected
to the grid and are being scheduled by the model. Obviously, all information about these EV are
deterministically considered by the model. The future EV refer to EV that the model assumes to
arrive in a future period within the optimization horizon. The information about future EV are all
considered by scenarios.

For the starting period i, the total charging demand D, ,, is only from currently-connected EV P,,,,.
For future periods, D, , also considers the demand Pg ., by future EV. Although currently-
connected EV are considered individually, future EV are considered in an aggregated way. Index
s marks all EV that arrive in this future period s. Index t is for a charging period of this
aggregated EV.

2.5 Constraints for currently-connected EV

Eqg. 3-7 constrain the charging processes of currently-connected EV.

SOCp; * Cap = SOCpp—1 * Cap + Py x € x At meEVL,i+1<t<wW' (3)
SOCp * Cap = SOCH x Cap + Py ¢ * € % At meEV,t=i (4)
SOCp,; < SOC™* meEVLi+1<t<W' (5
S0Cpy = SOCHTI" (1 — Ady) meEVit=w! (6)
Ppe < P™* 5 A, meEVLi+1<t<W' (7)
Parameters:

Cap Battery capacity of an EV [kWh]

e EV charging efficiency [%)]

At Length of a time interval [hour]

soci Initial SOC of EV m before charging [%]
soc™*  Maximum SOC of EV [%]

S0Ct* 9t SOC target of EV m when charging ends [%)]
m g ging

pmax Maximum EV charging power of an EV [kW]
A Availability of EV m in period t [binary]
AA,, Availability of EV m after W [binary]
Variables:

SO0Cp,+ SOC of EV m in period t [%]

Eq. 3 and 4 present the SOC change in two consecutive periods. Eq. 5 limits the SOC in any
period t with a maximum value. Eq. 6 guarantees that the charging target of each EV m is met.
However, this does not apply to EV whose departure time is later than the ending period W of
the optimization model. A4,, is a binary indicator for EV availability beyond W'. AA,, is equal
to 1 when EV m is still available after W*. Eq. 7 limits the charging power of each EV. Ancisa
binary indicator for EV m in period t. A, ; is equal to 1 when EV m is available in period ¢.



2.6 Constraints for future EV

Eqg. 8 to 12 constrain the charging process of future EV.

SOCgs o *Cap * agy, = SOCgi_q 4 * Cap * ag, + Pgy oy ¥ € % At
i+1<t<W,i+1<s<tVo (8)

SOC} 4 *Cap * ag,, = SOCE* Cap * ag ey + Py xexAt  i+1<t<Wis=tVYo (9)

S0Ct < SOC™H i+1<t<WiLi+1<s<tVo (10)

SOC¢., = SOCS t=Wis>i+1vVe (11
stw < P x as, i+1<t<Wii+1<s<tvVo (12)

Parameters:

As 0 Number of EV that are estimated to arrive in future period s in scenario w

S0¢, Initial SOC for EV that are estimated to arrive in future periods [%)]

S0ct*9t SOC target of EV from future period s when charging ends [%]

Variables:
S0Cs¢ Forecast of SOC in period s in period t in scenario w [%]

The future estimated charging demand from EV is aggregated for each future period s. a; ,, is the
estimated number of future EV and varies among scenarios. Similar to Eq. 3 and 4, Eg. 8 and 9
show the SOC change in two consecutive periods for future EV. Eq. 10 limits the maximum SOC
level of these vehicles. Eq. 11 sets a charging target for this aggregated SOC and Eqg. 12 limits
the overall charging power demand.

2.7 Rolling window approach

As EV will arrive at all time and the charging of newly arrived EV should also be scheduled, the
proposed model runs on a rolling window basis. The model optimizes for a fixed time span and
iterates with updated parameters. Therefore, only the solution for the starting period of the model
will be actually implemented.

3. Parameter setting
3.1 Temporal setting

The model optimizes for a fixed time span of 24 hours with quarter hour resolution and iterates
quarter hourly. The rolling horizon is set to 24 hours because the total amount of energy that needs
to be charged greatly varies among different windows, which will have a negative impact on the
performance of the model.

3.2 EV setting
3.2.1 EV usage pattern

The model uses real EV usage data from a field test (iZeus 2017) to simulate EV availability data
and to generate scenarios a; ,,. The model applies inhomogeneous Markov chains to capture the
probability of EV state change in two consecutive periods (lversen et al., 2017; Widén et al.,
2009). As shown in Eq. 13, pj, denotes the probability of a state change from state j in period ¢



to state k in period t + 1. M(t) is called transition matrix which includes the probability of all
state changes. EV are more likely to remain parking or charging at night than during day time so
its probability of state change is time-dependent. Therefore, the model uses inhomogeneous
Markov chains instead of homogeneous.

P11(t) P12(6) Pp13(d)
M(t) = |p21(8) P22(t) Pp23(t) Pjk(t) = P(Xeyq = k|Xe =) (13)
p31(8) p32(t) Pp33(t)

The field test records usage data of 28 EV for 6 months. Four usage patterns are generated from
one transition matrix so that there are in total 112 EV included in the modelling. A relatively large
amount of EV helps to demonstrate the performance of the model. With inhomogeneous Markov
chains, simulated usage patterns from the same transition matrix are of high diversity. Therefore,
one scenario of a; ,, stems from availability patterns of 112 EV. A total number of 500 scenarios
are generated for the proposed model. Fig. 1 shows the number of parking EV of the 500 scenarios
within a day. As can be seen, most EV are available for charging before 6 a.m.. The number of
parking EV reaches the minimum in the middle of the day. Fig. 1 presents the uncertainty of EV
usage pattern. In order to consider such uncertainty, the scenario-based model should include as
many scenarios as possible. However, rolling window approach requires the timeliness of the
solution. Therefore, scenario reduction technique is needed to reduce the computation time while
maintaining the diversity of scenarios. A fast forward selection method is applied to select a
limited amount of representative scenarios out of a large scenario set (Feng et al., 2013; Wang
2010). After applying this scenario reduction technique, the model considers only 10
representative scenarios with weighted probabilities out of the 500 scenarios.
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Fig. 1. Number of parking EV in 500 scenarios (with median — curve; 25% & 75% quantile —
shade)

3.2.2 EV specifications
The specifications used in the model follows the specifications of the test EV (Daimler Smart) of

the field test used in Section 3.2.1. EV specifications of the proposed model are as follows:

Parameter  Setting Parameter  Setting

Cap 17.6 kWh e 90%
pmax 5 kw socn U(15%,75%)



soctaroet  90% socmax 100%
50C, 45% soctr9et min(SOCy + (W' = s) * 3%, 90%)

S0C} is assumed to be the average of SOC™. Considering the remaining periods of future EV
towards the end of the rolling window, SOC:*"9°" is set as shown above so that this target can be
completed appropriately. As solutions for the future EV will not be implemented, they only
contribute to the quality of the solution for the currently-connected EV.

4. Results and discussions
For comparison, two charging strategies are presented here as follows:

1) Instant charging: EV users will charge their EV upon arrival with maximum charging
power until their charging targets are satisfied.

2) Controlled charging: With the proposed model, all charging behaviors are centrally
managed in order to distribute the EV charging demand evenly throughout the day.

The first strategy is fulfilled by a simulation model that uses the same EV usage pattern as in the
proposed optimization model but charges EV upon arrival with maximum charging power. For

the second strategy, Dfr"’f is set according to Eg. 14. As it is not possible to have charging
demand at zero throughout the day, the 2™ term of the objective function (cf. Eq. 1) tries to have
as few load-changes as possible, which is supported by Eq. 14, which intends to have a low and
flat load throughout the whole modelling period. The two charging strategies are implemented on
the same parameters for EV availability and SOC status. Results are shown in Fig. 2.
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Fig. 2 Total charging demand of instant charging and controlled charging

Fig. 2 also shows the availability of these 112 EV considered by the two charging strategies. As
can be seen, less EV are connected to the grid during daytime. However, the instant charging
demand increases the load dramatically to a peak of over 160 kW and drops to almost zero at
night. The simulation result for the instant charging demand is in line with results from other
literature (e.g. Tehrani et al., 2015; Brady et al., 2016; Schauble et al, 2017). This is because EV
users prefer to charge their EV right after work and most EV are already fully charged before
midnight under instant charging strategy. To make matter worse, this evening EV peak leads —



together with the conventional load pattern — to significant load peaks, which might harm the
local distribution grid.

In the controlled charging strategy, the proposed model manages to dispatch the demand more
evenly throughout day and cuts peak demand by two — even under the uncertainties from future
arrivals. By contrast, in the instant charging strategy, there is almost no charging demand during
night hours. Even though the number of parking EV decrease by about 35% during daytime, the
proposed model still manages to utilize the flexibility of EV and shift a large amount of charging
demand to night hours. This result also serves as a quantitative example of the load shifting
potential of EV. It shows that EV have huge potentials to shift their charging demand to night
hours.

5. Conclusions and future work

This paper focuses on the charging management problem of EV fleets under uncertainties. A
scenario-based stochastic linear programming model is proposed and it considers the uncertainties
of future arrival EV in detail (availability pattern and SOC status). Based on empirical driving
data of EV, the scenarios are generated by inhomogeneous Markov chains. Scenario reduction
technique is further applied to reduce the number of scenarios in the model and to improve model
efficiency.

The model aims to minimize to distance between the actual total charging demand and a pre-
defined reference load. This objective setting makes the proposed model extensible for different
applications. In this paper, the use of the model is demonstrated by the flattening the total EV
charging demand throughout the day and the results are compared with the simulation result from
the instant charging strategy. The results highlight the prospect of EV charging management and
show the promising load shifting potential of EV.

As premises for the use of the proposed model, the user acceptance of the proposed charging
strategy is assumed and situations where users leave early than their guaranteed departure time is
not expected. In data processing, this paper assumes the initial SOC is uniformly distributed with
a certain range, which is a simplification of the real world. Vehicle-to-grid technology (V2G) is
not included in this paper. With V2G, integer variable shall be introduced into the model, which
will increase the model complexity. The limitations above may be taken into account in the future
study.

Future work may also focus on further applications of the proposed model with different pre-
defined curves. Possible research topics may include peak shaving for conventional household

demand, the participation in control reserve market, the integration of renewable energy and the
option of V2G.

Acknowledgements

This article first appeared in the proceedings of the 415 IAEE Conference. The work is funded by
Helmholtz Research School on Energy Scenarios.

References

Babrowski S., Heinrichs H., Jochem P., Fichtner W., (2014), Load shift potential of electric
vehicles in Europe, Journal of Power Sources, 255, 1 June 2014, pp. 283-293



Bauer G., (2018), The impact of battery electric vehicles on vehicle purchase and driving behavior
in Norway, Transportation Research Part D: Transport and Environment, 58, pp. 239-258

BMWi (2017), BMWi webpage, http://www.bmwi.de/Redaktion/EN/Dossier/Energy-
transition.html

Brady J., O’Mahony M., (2016), Modelling charging profiles of electric vehicles based on real-
world electric vehicle charging data, Sustainable Cities and Society, 26, pp. 203-216

Bubeck S., Tomaschek J., Fahl U., (2016), Perspectives of electric mobility: Total cost of
ownership of electric vehicles in Germany, Transport Policy, 50, pp. 63-77

Du J., Ouyang M., Chen J., (2017), Prospects for Chinese electric vehicle technologies in 2016—
2020: Ambition and rationality, Energy, 120, pp. 584-596

Ensslen, A., Ringler, P., Dorr, L., Jochem, P., Zimmermann, F., Fichtner, W. (2018), Incentivizing
smart charging: Modeling charging tariffs for electric vehicles in German and French electricity
markets, Energy research & Social science, 42, pp. 112-126

Feng Y., Ryan S., (2013), Scenario construction and reduction applied to stochastic power
generation expansion planning, Computers & Operations Research, 40 (1), pp. 9-23

Green R., Wang L., Alam M., (2010), The impact of plug-in hybrid electric vehicles on
distribution networks: a review and outlook, IEEE PES General Meeting, Minneapolis, MN, pp.
1-8

He Y., Venkatesh B., Guan L., (2012), Optimal Scheduling for Charging and Discharging of
Electric Vehicles, in IEEE Transactions on Smart Grid, 3 (3), pp. 1095-1105

IEA (2017), Global EV  Outlook 2017: Two Million and Counting,
https://www.iea.org/publications/freepublications/publication/GlobalEVOutlook2017.pdf

Iversen E., Morales J., Madsen H., (2014), Optimal charging of an electric vehicle using a Markov
decision process, Applied Energy, 123, pp. 1-12

iZeus (2017), iZeus webpage, http://www.izeus.de

Jian L., Zheng Y., Xiao X., Chan C., (2015), Optimal scheduling for vehicle-to-grid operation
with stochastic connection of plug-in electric vehicles to smart grid, Applied Energy, 146, pp.
150-161

Jochem, P. (2016), Electric mobility & energy systems: a techno-economic impact analysis of
electric vehicles on the energy systems, habilitation, Karlsruhe, Germany.

Kaschub, T.; Heinrichs, H.; Jochem, P.; Fichtner, W. (2013), Modeling Load Shifting Potentials
of Electric Vehicles, Energy Economics of Phasing out Car-bon and Uranium, 13th IAEE
European Conference, Dusseldorf, Germany, August 18-21, 2013

Tehrani N., Wang P., (2015), Probabilistic estimation of plug-in electric vehicles charging load
profile, Electric Power Systems Research, 124, pp. 133-143,



Teixeira A., Sodré J., (2018), Impacts of replacement of engine powered vehicles by electric
vehicles on energy consumption and CO2 emissions, Transportation Research Part D: Transport
and Environment, 59, pp. 375-384

Sarker M., Dvorkin Y., Ortega-Vazquez M., (2016), Optimal Participation of an Electric Vehicle
Aggregator in Day-Ahead Energy and Reserve Markets, in IEEE Transactions on Power Systems,
31 (5), pp. 3506-3515

Schill W., Gerbaulet C., (2015), Power system impacts of electric vehicles in Germany: Charging
with coal or renewables?, Applied Energy, 156, pp. 185-196

Schéuble J., Kaschub T., Ensslen A., Jochem P., Fichtner W., (2017), Generating electric vehicle
load profiles from empirical data of three EV fleets in Southwest Germany, Journal of Cleaner
Production, 150, pp. 253-266

Sundstrom O., Binding C., (2012), Flexible Charging Optimization for Electric Vehicles
Considering Distribution Grid Constraints, in IEEE Transactions on Smart Grid, 3 (1), pp. 26-37

Wang Y., (2010), Scenario reduction heuristics for a rolling stochastic programming simulation
of bulk energy flows with uncertain fuel costs. Graduate Theses and Dissertations. lowa State
University

Widén J., Nilsson A., Wickelgard E., (2009), A combined Markov-chain and bottom-up approach
to modelling of domestic lighting demand, Energy and Buildings, 41 (10), pp. 1001-1012



