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Abstract 

Electric vehicles (EV) show huge potentials in terms of reducing greenhouse gas emissions. 

However, the integration of EV into power systems may also bring challenges, such as demand 

increase during peak hours. Therefore, charging behaviors of EV should be scheduled 

appropriately.  

This paper proposes an optimization model to address the charging management problem of EV. 

The EV charging management problem is formulated as a stochastic linear programming model. 

The objective of the model is to minimize the distance between the EV total charging demand 

and a pre-defined reference demand curve within a one-day period. With this objective, the true 

task of the model depends on the setting of the reference demand, which makes the model easily 

applicable for different purposes. These reference demands might focus on integrating local 

renewables, arbitrage trading on different electricity markets or load management from the local 

grid perspective. As future arrivals of EV are uncertain but contribute to the total charging demand 

in future periods, the model considers these uncertainties by a stochastic term in their arrival time, 

departure time and electricity demand (i.e. state of charge). Hence, EV usage patterns are 

simulated with inhomogeneous Markov chains and scenario reduction technique is applied to 

reduce the number of scenarios considered and to guarantee feasible computing times. The 

simulation results demonstrate that the controlled charging strategy outperforms the uncontrolled 

charging in terms of demand decrease during peak hours and that the proposed model manages 

to distribute the EV charging demand throughout the day. 
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1. Introduction 

Electric vehicles (EV) show huge potentials in terms of reducing greenhouse gas emissions and 

improving energy efficiency (Teixeira et al., 2018). Many countries take EV as a promising option 

for the transition of the energy system (Bauer et al., 2018; Bubeck et al., 2016; Du et al., 2017). 

In Germany, one of the energy transition targets is to have 40% less greenhouse gas emissions by 

2020 compared to 1990 (BMWi, 2017). As a result of policy support, registrations of EV have 



been notably increased in recent years in many countries (IEA, 2017). The adoption of EV can 

help to achieve this target.  

Large integration of EV may bring both challenges and benefits to the power systems (Jochem, 

2016). When customers are of their own will to charge EV, this is often referred to as uncontrolled 

charging, uncoordinated charging or instant charging. Green et al. (2010) analyze the impact of 

EV on distribution networks. For uncontrolled charging, Schill et al. (2015) find that charging 

load will further increase the peak load, which may be a problem for grid capacity and power 

plant operation. Babrowski et al. (2014) and Kaschub et al. (2013) point out the potential and 

necessity of controlling the charging processes of EV. 

Recent literature has also discussed about controlling EV charging behavior in diverse ways and 

for different purposes. Sarker et al. (2016) develop an optimization model for an EV aggregator 

to participate in day-ahead energy and reserve markets and considers the probability of acceptance 

and deployment. Sundström et al. (2012) optimize the charging behaviors for multiple EV while 

considering distribution grid constraints. The availability of EV is both assumed to be known in 

advance in Sarker et al. (2016) and Sundström et al. (2012). Jian et al. (2015) consider the 

stochastic EV connection with an event-triggered charging scheduling scheme. He et al. (2012) 

apply rolling window approach for real-time charging scheduling problem of multiple EV and 

compares the difference between a global EV charging scheduling optimization problem and a 

local one. The local optimum does not take future EV arrivals into consideration.  

Upcoming EV have an influence on the total charging demand in future periods. However, in the 

real world future arrivals are hard to predict. Therefore, this paper contributes to the current 

literature in considering the uncertainties from future EV arrival with a scenario-based stochastic 

linear programming model. This proposed model optimizes charging scheduling problem for 

multiple EV in real-time and considers the uncertainty of EV information in the future, i.e., their 

arrival time, departure time and electricity demand (i.e. state of charge). Scenarios for EV usage 

patterns are simulated by inhomogeneous Markov chains. Scenario reduction technique is further 

applied to reduce the number of scenarios considered and to guarantee suitable computing times. 

The rest of the paper is organized as follows. Section 2 presents the proposed model for optimal 

EV charging management. Section 3 explains the setting of parameters and scenarios. Section 4 

demonstrates the proposed charging strategy with simulation results. Section 5 concludes the 

paper. 

2. Model formulation 

2.1 Centralized charging scheduling 

The model proposed in this paper schedules the EV charging behaviors in a centralized way, 

which means that an entity or an aggregator schedules the charging for a group of EV. This 

aggregator might be the electricity utility itself or a third party that can benefit by providing such 

kind of demand side management service (cf. Ensslen et al., 2018). The aggregator collects EV 

information, optimizes EV charging strategy and communicate with EV to manage corresponding 

charging solutions. A centralized model can include EV connected to one location, e.g. one 

charging infrastructure or one charging station. 

2.2 Implementation assumptions 

The EV considered fall into two categories: EV that are currently connected to the grid and EV 

that will arrive in the future. As discussed, the uncertainties of the model stem from the future EV. 

The following assumptions are made for the formulation of the model: 



1) Upon arrival, EV are connected to the grid and will inform the aggregator about their 

departure time.  

2) The departure time is guaranteed by EV users and the actual departure time cannot be 

earlier than the guaranteed departure time. 

3) Upon arrival, EV also inform the aggregator about their desired battery state of charge 

(SOC). 

4) This desired SOC is guaranteed by the aggregator. 

Although EV users will have less convenience by guaranteeing their departure time, the 

assumptions above can be reasonable when profitable charging tariff is offered (cf. Ensslen et al. 

2018). 

2.3 Objective function 

The objective function (1) aims to have the total EV charging demand operated at a certain level 

(cf. eq. 1).  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: ∑ 𝜋𝜔 ∗ |𝐷𝑡,𝜔 − 𝐷𝑡
𝑝𝑟𝑒𝑓

| 𝑡=𝑊𝑖

𝑡=𝑖 + ∑ 𝜋𝜔 ∗ |(𝐷𝑡,𝜔 − 𝐷𝑡
𝑝𝑟𝑒𝑓

) − (𝐷𝑡−1,𝜔 − 𝐷𝑡−1
𝑝𝑟𝑒𝑓

)|𝑡=𝑊𝑖

𝑡=𝑖+1                                  

 (1) 

_____________________________________________________________________________ 

Indices/Sets: 

𝑚(𝐸𝑉𝑖) EV that are available for charging at period 𝑖 
𝑡 Time periods  
𝜔 Scenarios for EV arrival patterns 

Parameters: 

𝑖 Starting period of the optimization model 

𝑊𝑖 Ending period of the optimization model 

𝜋𝜔 Probability of scenario 𝜔 

𝐷𝑡
𝑝𝑟𝑒𝑓

 Preferred total EV charging demand in period 𝑡 [kW] 

Variables: 

𝐷𝑡,𝜔 EV total charging demand assumed in period 𝑡 in scenario 𝜔 [kW] 
_____________________________________________________________________________ 

In eq. 1, the first term is the distance between the total charging demand 𝐷𝑡,𝑐 and the preferred 

charging demand 𝐷𝑡
𝑝𝑟𝑒𝑓

. The second term is the difference of that distance in two consecutive 

periods. With these two terms in eq. 1, the model minimizes the total distance between the total 

charging demand and the preferred charging and also tries to avoid changes over time. Please note 

that all variables in this paper are non-negative variables. 

2.4 Constraints for total EV charging demand 

The constraint in eq. 2 limits the total EV charging demand. 

𝐷𝑡,𝜔 = ∑ 𝑃𝑚,𝑡𝑚∈𝐸𝑉𝑖 + ∑ 𝑃𝑠,𝑡,𝜔 
′

𝑠≥𝑖+1  𝑖 ≤ 𝑡 ≤ 𝑊𝑖, ∀𝜔  (2) 

_____________________________________________________________________________ 

Indices/Sets: 

𝑠 Time periods (arrival periods for future EV) 



Variables: 

𝑃𝑚,𝑡 Charging demand of currently-connected EV 𝑚 in period 𝑡 [kW] 

𝑃𝑠,𝑡,𝜔
′  Charging demand in period 𝑡 of future EV from period 𝑠 in scenario 𝜔 [kW] 

_____________________________________________________________________________ 

As categorized in Section 2.2, the currently-connected EV refer to EV that are currently connected 

to the grid and are being scheduled by the model. Obviously, all information about these EV are 

deterministically considered by the model. The future EV refer to EV that the model assumes to 

arrive in a future period within the optimization horizon. The information about future EV are all 

considered by scenarios.  

For the starting period 𝑖, the total charging demand 𝐷𝑡,𝜔 is only from currently-connected EV 𝑃𝑚,𝑡. 

For future periods, 𝐷𝑡,𝜔  also considers the demand 𝑃𝑠,𝑡,𝜔 
′ by future EV. Although currently-

connected EV are considered individually, future EV are considered in an aggregated way. Index 

𝑠  marks all EV that arrive in this future period 𝑠 . Index 𝑡  is for a charging period of this 

aggregated EV. 

2.5 Constraints for currently-connected EV 

Eq. 3-7 constrain the charging processes of currently-connected EV.  

𝑆𝑂𝐶𝑚,𝑡 ∗ 𝐶𝑎𝑝 = 𝑆𝑂𝐶𝑚,𝑡−1 ∗ 𝐶𝑎𝑝 + 𝑃𝑚,𝑡 ∗ 𝑒 ∗ ∆𝑡 𝑚 ∈ 𝐸𝑉𝑖, 𝑖 + 1 ≤ 𝑡 ≤ 𝑊𝑖 (3) 

𝑆𝑂𝐶𝑚,𝑡 ∗ 𝐶𝑎𝑝 = 𝑆𝑂𝐶𝑚
𝑖𝑛𝑖 ∗ 𝐶𝑎𝑝 + 𝑃𝑚,𝑡 ∗ 𝑒 ∗ ∆𝑡 𝑚 ∈ 𝐸𝑉𝑖, 𝑡 = 𝑖 (4) 

𝑆𝑂𝐶𝑚,𝑡 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥 𝑚 ∈ 𝐸𝑉𝑖, 𝑖 + 1 ≤ 𝑡 ≤ 𝑊𝑖 (5) 

𝑆𝑂𝐶𝑚,𝑡 ≥ 𝑆𝑂𝐶𝑚
𝑡𝑎𝑟𝑔𝑒𝑡

∗ (1 − 𝐴𝐴𝑚) 𝑚 ∈ 𝐸𝑉𝑖, 𝑡 = 𝑊𝑖  (6) 

𝑃𝑚,𝑡 ≤ 𝑃𝑚𝑎𝑥 ∗ 𝐴𝑚,𝑡 𝑚 ∈ 𝐸𝑉𝑖, 𝑖 + 1 ≤ 𝑡 ≤ 𝑊𝑖 (7) 

_____________________________________________________________________________ 

Parameters: 

𝐶𝑎𝑝 Battery capacity of an EV [kWh] 
𝑒 EV charging efficiency [%] 
∆t Length of a time interval [hour] 
𝑆𝑂𝐶𝑚

𝑖𝑛𝑖 Initial SOC of EV 𝑚 before charging [%] 
𝑆𝑂𝐶𝑚𝑎𝑥  Maximum SOC of EV [%] 

𝑆𝑂𝐶𝑚
𝑡𝑎𝑟𝑔𝑒𝑡

 SOC target of EV 𝑚 when charging ends [%] 
𝑃𝑚𝑎𝑥 Maximum EV charging power of an EV [kW] 
𝐴𝑚,𝑡 Availability of EV 𝑚 in period 𝑡 [binary] 

𝐴𝐴𝑚 Availability of EV 𝑚 after 𝑊𝑖 [binary] 

Variables: 

𝑆𝑂𝐶𝑚,𝑡 SOC of EV 𝑚 in period 𝑡 [%]  
_____________________________________________________________________________ 

Eq. 3 and 4 present the SOC change in two consecutive periods. Eq. 5 limits the SOC in any 

period 𝑡 with a maximum value. Eq. 6 guarantees that the charging target of each EV 𝑚 is met. 

However, this does not apply to EV whose departure time is later than the ending period 𝑊𝑖 of 

the optimization model. 𝐴𝐴𝑚 is a binary indicator for EV availability beyond 𝑊𝑖. 𝐴𝐴𝑚 is equal 

to 1 when EV 𝑚 is still available after 𝑊𝑖. Eq. 7 limits the charging power of each EV. 𝐴𝑚,𝑡 is a 

binary indicator for EV 𝑚 in period 𝑡. 𝐴𝑚,𝑡 is equal to 1 when EV 𝑚 is available in period 𝑡. 



2.6 Constraints for future EV 

Eq. 8 to 12 constrain the charging process of future EV.  

𝑆𝑂𝐶𝑠,𝑡,𝜔
′ ∗ 𝐶𝑎𝑝 ∗ 𝛼𝑠,𝜔 = 𝑆𝑂𝐶𝑠,𝑡−1,𝜔

′ ∗ 𝐶𝑎𝑝 ∗ 𝛼𝑠,𝜔 + 𝑃𝑠,𝑡,𝜔
′ ∗ 𝑒 ∗ ∆𝑡  

  𝑖 + 1 ≤ 𝑡 ≤ 𝑊𝑖, 𝑖 + 1 ≤ 𝑠 < 𝑡, ∀𝜔 (8) 

𝑆𝑂𝐶𝑠,𝑡,𝜔
′ ∗ 𝐶𝑎𝑝 ∗ 𝛼𝑠,𝜔 = 𝑆𝑂𝐶0

′ ∗ 𝐶𝑎𝑝 ∗ 𝛼𝑠,𝜔 + 𝑃𝑠,𝑡,𝜔
′ ∗ 𝑒 ∗ ∆𝑡 𝑖 + 1 ≤ 𝑡 ≤ 𝑊𝑖, 𝑠 = 𝑡, ∀𝜔 (9) 

𝑆𝑂𝐶𝑠,𝑡,𝜔
′ ≤ 𝑆𝑂𝐶𝑚𝑎𝑥 𝑖 + 1 ≤ 𝑡 ≤ 𝑊𝑖, 𝑖 + 1 ≤ 𝑠 ≤ 𝑡, ∀𝜔 (10) 

𝑆𝑂𝐶𝑠,𝑡,𝜔
′ ≥ 𝑆𝑂𝐶𝑠

𝑡𝑎𝑟𝑔𝑒𝑡
 𝑡 = 𝑊𝑖 , 𝑠 ≥ 𝑖 + 1, ∀𝜔 (11) 

𝑃𝑠,𝑡,𝜔
′ ≤ 𝑃𝑚𝑎𝑥 ∗ 𝛼𝑠,𝜔 𝑖 + 1 ≤ 𝑡 ≤ 𝑊𝑖, 𝑖 + 1 ≤ 𝑠 ≤ 𝑡, ∀𝜔 (12) 

_____________________________________________________________________________ 

Parameters: 

𝛼𝑠,𝜔 Number of EV that are estimated to arrive in future period 𝑠 in scenario 𝜔 
𝑆𝑂𝐶0

′  Initial SOC for EV that are estimated to arrive in future periods [%] 

𝑆𝑂𝐶𝑠
𝑡𝑎𝑟𝑔𝑒𝑡

 SOC target of EV from future period 𝑠 when charging ends [%] 

Variables: 

𝑆𝑂𝐶𝑠,𝑡,𝜔
′   Forecast of SOC in period 𝑠 in period 𝑡 in scenario 𝜔 [%] 

_____________________________________________________________________________ 

The future estimated charging demand from EV is aggregated for each future period s. 𝛼𝑠,𝜔 is the 

estimated number of future EV and varies among scenarios. Similar to Eq. 3 and 4, Eq. 8 and 9 

show the SOC change in two consecutive periods for future EV. Eq. 10 limits the maximum SOC 

level of these vehicles. Eq. 11 sets a charging target for this aggregated SOC and Eq. 12 limits 

the overall charging power demand. 

2.7 Rolling window approach 

As EV will arrive at all time and the charging of newly arrived EV should also be scheduled, the 

proposed model runs on a rolling window basis. The model optimizes for a fixed time span and 

iterates with updated parameters. Therefore, only the solution for the starting period of the model 

will be actually implemented. 

3. Parameter setting 

3.1 Temporal setting 

The model optimizes for a fixed time span of 24 hours with quarter hour resolution and iterates 

quarter hourly. The rolling horizon is set to 24 hours because the total amount of energy that needs 

to be charged greatly varies among different windows, which will have a negative impact on the 

performance of the model. 

3.2 EV setting 

3.2.1 EV usage pattern 

The model uses real EV usage data from a field test (iZeus 2017) to simulate EV availability data 

and to generate scenarios 𝛼𝑠,𝜔. The model applies inhomogeneous Markov chains to capture the 

probability of EV state change in two consecutive periods (Iversen et al., 2017; Widén et al., 

2009). As shown in Eq. 13, 𝑝𝑗𝑘 denotes the probability of a state change from state 𝑗 in period 𝑡 



to state 𝑘 in period 𝑡 + 1. 𝑀(𝑡) is called transition matrix which includes the probability of all 

state changes. EV are more likely to remain parking or charging at night than during day time so 

its probability of state change is time-dependent. Therefore, the model uses inhomogeneous 

Markov chains instead of homogeneous. 

𝑀(𝑡) = [

𝑝11(𝑡) 𝑝12(𝑡) 𝑝13(𝑡)
𝑝21(𝑡) 𝑝22(𝑡) 𝑝23(𝑡)
𝑝31(𝑡) 𝑝32(𝑡) 𝑝33(𝑡)

]   𝑝𝑗𝑘(𝑡) = 𝑃(𝑋𝑡+1 = 𝑘|𝑋𝑡 = 𝑗)                (13) 

The field test records usage data of 28 EV for 6 months. Four usage patterns are generated from 

one transition matrix so that there are in total 112 EV included in the modelling. A relatively large 

amount of EV helps to demonstrate the performance of the model. With inhomogeneous Markov 

chains, simulated usage patterns from the same transition matrix are of high diversity. Therefore, 

one scenario of 𝛼𝑠,𝜔 stems from availability patterns of 112 EV. A total number of 500 scenarios 

are generated for the proposed model. Fig. 1 shows the number of parking EV of the 500 scenarios 

within a day. As can be seen, most EV are available for charging before 6 a.m.. The number of 

parking EV reaches the minimum in the middle of the day. Fig. 1 presents the uncertainty of EV 

usage pattern. In order to consider such uncertainty, the scenario-based model should include as 

many scenarios as possible. However, rolling window approach requires the timeliness of the 

solution. Therefore, scenario reduction technique is needed to reduce the computation time while 

maintaining the diversity of scenarios. A fast forward selection method is applied to select a 

limited amount of representative scenarios out of a large scenario set (Feng et al., 2013; Wang 

2010). After applying this scenario reduction technique, the model considers only 10 

representative scenarios with weighted probabilities out of the 500 scenarios. 

 

Fig. 1. Number of parking EV in 500 scenarios (with median – curve; 25% & 75% quantile – 

shade) 

3.2.2 EV specifications 

The specifications used in the model follows the specifications of the test EV (Daimler Smart) of 

the field test used in Section 3.2.1. EV specifications of the proposed model are as follows: 

Parameter Setting  Parameter Setting 

𝐶𝑎𝑝 17.6 kWh  𝑒 90% 

𝑃𝑚𝑎𝑥 5 kW  𝑆𝑂𝐶𝑚
𝑖𝑛𝑖 𝑈(15%, 75%) 
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𝑆𝑂𝐶𝑚
𝑡𝑎𝑟𝑔𝑒𝑡

 90%  𝑆𝑂𝐶𝑚𝑎𝑥 100% 

𝑆𝑂𝐶0
′  45%  𝑆𝑂𝐶𝑠

𝑡𝑎𝑟𝑔𝑒𝑡
 min (𝑆𝑂𝐶0

′ + (𝑊𝑖 − 𝑠) ∗ 3%, 90%)       

𝑆𝑂𝐶0
′  is assumed to be the average of 𝑆𝑂𝐶𝑚

𝑖𝑛𝑖. Considering the remaining periods of future EV 

towards the end of the rolling window, 𝑆𝑂𝐶𝑠
𝑡𝑎𝑟𝑔𝑒𝑡

 is set as shown above so that this target can be 

completed appropriately. As solutions for the future EV will not be implemented, they only 

contribute to the quality of the solution for the currently-connected EV. 

4. Results and discussions 

For comparison, two charging strategies are presented here as follows: 

1) Instant charging: EV users will charge their EV upon arrival with maximum charging 

power until their charging targets are satisfied. 

2) Controlled charging: With the proposed model, all charging behaviors are centrally 

managed in order to distribute the EV charging demand evenly throughout the day. 

The first strategy is fulfilled by a simulation model that uses the same EV usage pattern as in the 

proposed optimization model but charges EV upon arrival with maximum charging power. For 

the second strategy, 𝐷𝑡
𝑝𝑟𝑒𝑓

 is set according to Eq. 14. As it is not possible to have charging 

demand at zero throughout the day, the 2nd term of the objective function (cf. Eq. 1) tries to have 

as few load-changes as possible, which is supported by Eq. 14, which intends to have a low and 

flat load throughout the whole modelling period. The two charging strategies are implemented on 

the same parameters for EV availability and SOC status. Results are shown in Fig. 2. 

𝐷𝑡
𝑝𝑟𝑒𝑓

= 0 ∀𝑡 (14) 

 

Fig. 2 Total charging demand of instant charging and controlled charging 

Fig. 2 also shows the availability of these 112 EV considered by the two charging strategies. As 

can be seen, less EV are connected to the grid during daytime. However, the instant charging 

demand increases the load dramatically to a peak of over 160 kW and drops to almost zero at 

night. The simulation result for the instant charging demand is in line with results from other 

literature (e.g. Tehrani et al., 2015; Brady et al., 2016; Schäuble et al, 2017). This is because EV 

users prefer to charge their EV right after work and most EV are already fully charged before 

midnight under instant charging strategy. To make matter worse, this evening EV peak leads – 
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together with the conventional load pattern – to significant load peaks, which might harm the 

local distribution grid.  

In the controlled charging strategy, the proposed model manages to dispatch the demand more 

evenly throughout day and cuts peak demand by two – even under the uncertainties from future 

arrivals. By contrast, in the instant charging strategy, there is almost no charging demand during 

night hours. Even though the number of parking EV decrease by about 35% during daytime, the 

proposed model still manages to utilize the flexibility of EV and shift a large amount of charging 

demand to night hours. This result also serves as a quantitative example of the load shifting 

potential of EV. It shows that EV have huge potentials to shift their charging demand to night 

hours. 

5. Conclusions and future work 

This paper focuses on the charging management problem of EV fleets under uncertainties. A 

scenario-based stochastic linear programming model is proposed and it considers the uncertainties 

of future arrival EV in detail (availability pattern and SOC status). Based on empirical driving 

data of EV, the scenarios are generated by inhomogeneous Markov chains. Scenario reduction 

technique is further applied to reduce the number of scenarios in the model and to improve model 

efficiency.  

The model aims to minimize to distance between the actual total charging demand and a pre-

defined reference load. This objective setting makes the proposed model extensible for different 

applications. In this paper, the use of the model is demonstrated by the flattening the total EV 

charging demand throughout the day and the results are compared with the simulation result from 

the instant charging strategy. The results highlight the prospect of EV charging management and 

show the promising load shifting potential of EV. 

As premises for the use of the proposed model, the user acceptance of the proposed charging 

strategy is assumed and situations where users leave early than their guaranteed departure time is 

not expected. In data processing, this paper assumes the initial SOC is uniformly distributed with 

a certain range, which is a simplification of the real world. Vehicle-to-grid technology (V2G) is 

not included in this paper. With V2G, integer variable shall be introduced into the model, which 

will increase the model complexity. The limitations above may be taken into account in the future 

study. 

Future work may also focus on further applications of the proposed model with different pre-

defined curves. Possible research topics may include peak shaving for conventional household 

demand, the participation in control reserve market, the integration of renewable energy and the 

option of V2G. 
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