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“I would rather have questions that can’t be answered

than answers that can’t be questioned.”

— Richard Feynman



Kurzfassung

Die Kontrolle der Morphologie von teilkristallinen Kunststoffen auf der Nano-, Meso- und

Makroebene ist ein zentraler Aspekt beim Design von Spritzgussteilen, Filmen und Fasern.

Besonders im Bereich moderner Verarbeitungstechniken wie 3D-Druck, Mikroformen oder

Elektrospinnen sind tiefe Kenntnisse des Materialverhaltens notwendig. Weiterhin hilft dieses

Wissen bei der Entwicklung von Computer-Simulationen der Strukturbildung und resultieren-

den Materialeigenschaften von kristallisierenden Kunststoffen.

In der vorliegenden Arbeit wurden neuartige Charakterisierungsmethoden verwendet um

das Kristallisationsverhalten synthetischer Kunststoffe unter ruhenden und fließinduzierten

Bedingungen zu untersuchen. Zur Aufklärung der Zusammenhänge zwischen molekularer

Dynamik, Morphologie und Fließverhalten kristallisierender Kunststoffe wurden kombinierte

RheoNMR, RheoSAXS und optische RheoMikroskopie eingesetzt. Diese Aufbauten ermöglich-

ten eine zweidimensionale Messung und die Beeinflussung der Kristallisation durch Scherpro-

file. Als wichtiges Teilprojekt wurde eine Methode der NMR-Relaxometrie zur Bestimmung der

Kristallinität und der Kristallisationskinetik von kommerziell relevanten Kunststoffen erprobt

und mit herkömmlichen Bestimmungsmethoden wie der Differenzkalorimetrie und Röntgen-

streuung verglichen.

Die erhaltenen Ergebnisse bestätigten einen physikalischen Gelbildungsprozess bei der Kristalli-

sation von Kunststoffen, der durch wachsende und interagierende Überstrukturen bei Raum-

füllungen von ca. 10–15% verursacht wird. Die Analyse des Aushärtevorgangs mit Hilfe

rheologischer Modelle zeigte einen stark nichtlinearen Zusammenhang zwischen Raumfüll-

ung und Viskosität (Zunahme der relativen Viskosität von vier Dekaden im Vergleich zur

Schmelze). Dieses Wissen kann helfen Zykluszeiten im Spritzguss zu verbessern und ist ein

wichtiger Wissensgewinn für die erfolgreiche Verwendung teilkristalliner Kunststoffe in moder-

nen Verarbeitungsmethoden. Aufgrund der beobachteten Abhängigkeiten der molekularen

Dynamik und Morphologie von Temperatur, Additiven und Fließbedingungen ist der Mecha-

nismus der Kristallisation sehr wahrscheinlich durch Keimbildung und Wachstum geprägt. Die

Bildung reihennukleierter Strukturen bei der fließinduzierten Kristallisation wird vermutlich

durch eine modifizierte Konformation der längsten Polymerketten unter dem Einfluss von

Scherung verursacht. Die NMR-Methodik zur Bestimmung der Kristallinität ist ab erhöhten

Temperaturen von der Glasübergangstemperatur Tg + 100 °C in guter Übereinstimmung mit

der Differenzkalorimetrie und Röntgenstreuung im Rahmen der Unsicherheit von ±10% der

jeweiligen Methoden. Somit kann die NMR-Relaxometrie in der Zukunft als weitere Standard-

technik in Qualitäts- und Prozesslaboren zur Bestimmung der Kristallinität von teilkristallinen
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Kurzfassung

Kunststoffen eingesetzt werden. Zusammenfassend haben diese Arbeiten einen Beitrag zur

Aufklärung des Kristallisationsmechanismus, der Bildung von anisotropen Strukturen und des

Aushärteverhaltens unter ruhenden und fließinduzierten Bedingungen geliefert. Diese Ergeb-

nisse haben zu einem besseren Verständnis der Beziehungen zwischen Kristallisationskinetik,

Fließbedingungen und Additiven in Bezug auf die molekulare Dynamik, Morphologie und das

Fließverhalten teilkristalliner Kunststoffe geführt.
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Abstract

Controlling the morphology of semi-crystalline polymers on the nano-, meso-, and macro-scale

is a crucial aspect in the design of injection-molded parts, films, and fibers. Especially when

exploring advanced processing techniques such as 3D printing, micro-molding, or electrospin-

ning, a detailed knowledge of the material behavior is required. Furthermore, this know-how

will help to improve the computer simulation of structural buildup and resulting material

properties during polymer crystallization.

In this thesis, new characterization techniques were employed to study the crystallization

behavior of synthetic polymers under quiescent and flow conditions. Relationships between

the molecular dynamics, morphology, and rheology of crystallizing polymers were investi-

gated using custom-built hyphenated RheoNMR, RheoSAXS, and optical RheoMicroscopy

techniques. These combined set-ups allowed for simultaneous two-dimensional measurements

and the application of flow profiles during polymer crystallization. In an important subproject,

a method to determine the crystallinity and crystallization kinetics via NMR relaxometry was

evaluated for the most relevant semi-crystalline polymers, and compared to other characteri-

zation techniques such as differential scanning calorimetry and X-ray scattering.

The obtained results confirmed a physical gelation process during polymer crystallization me-

diated by the interaction of growing superstructures at volume fractions of approximately

10–15%. The analysis of the hardening behavior with the help of rheological models showed

a strong nonlinear relationship between the degree of space filling and the viscosity (relative

increase in viscosity by four orders of magnitude compared to the melt). This knowledge will

help to optimize cycle times in injection molding and is an important cornerstone for the op-

timal use of semi-crystalline polymers in advanced processing technologies. Based on the ex-

perimental data obtained by hyphenated RheoNMR, RheoSAXS, and optical RheoMicroscopy,

polymer crystallization from the melt most probably follows a nucleation and growth mecha-

nism under the explored experimental conditions because of the dependencies on temperature,

additives, and applied flow. The formation of row-nucleated structures during flow-induced

crystallization is likely associated with the altered conformation of the longest polymer chains

under the application of flow as described by a Weissenberg number larger than one. The NMR

method to determine crystallinity and crystallization kinetics was found to deliver reasonable

results for temperatures larger or equal to the glass transition temperature Tg + 100 °C com-

pared to differential scanning calorimetry and X-ray scattering within an estimated relative

error of ±10% for the respective methods. Consequently, NMR relaxometry could even be

used in the future as a standard technique in quality control or processing labs. Overall, these
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Abstract

investigations helped to clarify the crystallization mechanism, the formation of row-nucleated

structures, and the hardening behavior during quiescent and flow-induced crystallization. The

results led to a better understanding of the relationships between the crystallization kinetics,

flow conditions, and additives with respect to the molecular dynamics, morphology, and rheo-

logy of semi-crystalline polymers.
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1 Introduction

Because of the enormous commercial relevance of synthetic semi-crystalline polymers, the

variety of structure-property relationships, and the mechanistic complexity, the interest in un-

derstanding every detail of polymer crystallization is constantly high. In the following sections,

a brief overview of the semi-crystalline polymer market, the applications, and the challenges

in engineering and polymer science associated with semi-crystalline polymers are presented.

Research questions are deduced and the project steps of this thesis are outlined.

Market and applications of synthetic semi-crystalline polymers

The overall world polymer production in 2015 was ∼300 million tons with a market value of

∼600 billion€ and more than two thirds being semi-crystalline polymers (Plastics Europe Re-

port 2016). In Central Europe the demand per person and year is at the moment∼80 kg/year.

The market of polymers is exponentially growing since the 1950’s with the beginning of large-

scale industrial polymer production (see Figure 1.1).

a) b)

Figure 1.1: World production of polymers from 1950 – today (a) and the demand by polymer type
in Europe from 2015 (b). An exponential growth is observed which is triggered by increased trade
and development. PE: polyethylene, PP: polypropylene, PVC: polyvinyl chloride, PET: polyethylene
terephthalate, PS: polystyrene, PU: polyurethane. Data taken from the Plastics Europe Report (2016).

Half of the produced polymers today are polyolefins, mainly high-density, low-density, and

linear low-density polyethylene (HDPE, LDPE, LLDPE), isotactic polypropylene (i-PP), and

polyolefin copolymers. The second largest group of semi-crystalline polymers are polyesters,

mainly polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polylactide (PLA),

and polycaprolactone (PCL). The third group are polyamides, either aliphatic (e.g., PA-6, PA-

66, Nylons) or aromatic (e.g., polyparaphenylene terephthalamide, Kevlar). Another group

of important semi-crystalline polymers are fluoropolymers such as polytetrafluoroethylene
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1 Introduction

(PTFE, Teflon), polyvinylidene fluoride (PVDF, Kynar), or perfluorosulfonic acid (Nafion). The

semi-crystalline nature of these polymers leads to outstanding toughness, tensile strength,

impact resistance, and chemical robustness (Mark 2007; Van Krevelen and Te Nijenhuis 2009;

Ward and Sweeney 2012; Elsner et al. 2012). Besides these engineering properties, also func-

tionalities with respect to optical, electrical, or separation properties are oftentimes a direct

consequence of the underlying order and crystallinity in materials such as conjugated poly-

mers, dielectrics, or membranes, respectively (Skotheim and Reynolds 2006; O’Halloran et al.

2008; Pabby et al. 2008; Lalia et al. 2013). Because of their easy processability, cheap price,

and low density, semi-crystalline polymers are used in numerous applications for packaging,

construction, automotive parts, electronics, textiles, household appliances, sports, and agri-

culture. They come in forms of bulk parts, films, or fibers which can be taylored to the needs

of specific applications (Crawford 1998; Chanda and Roy 2006).

Figure 1.2: Examples of applications for semi-crystalline polymers: molded parts (a), textiles (b), pack-
aging (c). images: PxHere CC0 1.0 Universal (CC0 1.0) creative commons license.

Challenges in science and engineering of semi-crystalline polymers

Controlling the hierarchical structure of semi-crystalline polymers on the nano-, meso-, and

macro-scale is a crucial aspect in the controlled design of material properties. In contrast to

low molecular weight substances, the crystalline structure of polymers are determined not

only by the molecular structure, but also by the actual crystallization conditions (Mandelk-

ern 2002, 2004; Piorkowska and Rutledge 2013). The bulk crystallinity is very much affected

by these factors as it is sensitive to the molecular weight distribution, chain topology, stereo-

and regio-regularity, additives, thermal history, applied pressure, and flow conditions during

processing (Reiter and Strobl 2007; Piorkowska and Rutledge 2013). The kinetics of polymer

crystallization are also of high interest, i.e., an understanding of the pathway that often leads

to a kinetically trapped state of the material. Polymer crystallization kinetics are comprised of

the inherent polymer nucleation and growth rates, which together with the processing condi-

tions (applied flow, temperature, pressure) and selected additives (nucleating agents, fillers,

pigments), lead to systems of remarkable complexity (Somani, Yang, Zhu and Hsiao 2005; Pa-

pageorgiou et al. 2005). In polymer processing steps such as injection molding, film blowing,

or fiber spinning, polymer melts are crystallized under strong shear and elongational flows

2



1 Introduction

which has a strong impact on the micro-structure (Ward and Sweeney 2012). From a polymer

processing point of view, the molecular weight distribution, branching, and additives together

with the applied temperature, deformation rates, and absolute deformations are the most

critical parameters in obtaining certain morphologies and desired material properties. New

processing techniques such as 3D printing, micro-molding, or electrospinning require a pre-

cise knowledge of the crystallization and hardening behavior of semi-crystalline polymers and

of the interplay between the applied processing conditions and the resulting semi-crystalline

morphologies.

Figure 1.3: Processing techniques for semi-crystalline polymers: injection molding (a), fiber spinning
(b), and film blowing (c). Adapted from Elsner et al. (2012).

In terms of polymer science, a conclusive picture of the mechanism behind polymer crystalliza-

tion is still missing. Classical concepts based on nucleation and growth e.g., by Hoffman and

Lauritzen (1961) were questioned during the past as they didn’t explain all observed structure-

property relationships and were not always in accordance with theoretical calculations. New

models based on multiple stages (Strobl 2006) and spinodal decomposition (Olmsted et al.

1998) were proposed, however, with only little experimental evidence. Especially for material

systems and crystallization conditions that are more complex (flow, pressure, blends, addi-

tives, etc.) a detailed understanding of the interplay between local molecular dynamics, the

structural buildup at the meso-scale, and macroscopic material properties would be very im-

portant for clarifying the mechanism of polymer crystallization. In all of these aspects, new

characterization techniques are needed to achieve better insight into structure-property rela-

tionships, the underlying mechanisms, and will ultimately lead to higher product qualities of

new or recycled materials. In combination with computer simulations they will be key to proof

or disproof the concepts under discussion, and they will help to find rules in the controlled

design of semi-crystalline materials.

Hyphenated rheology techniques

In order to further understand the process of polymer crystallization, knowledge on the re-

lationships between local molecular dynamics, structural buildup, and macroscopic material

behavior under quiescent and flow conditions is required. For this task, hyphenated rheology

techniques are promising analytical tools as they combine information on the macroscopic flow

and deformation behavior of soft matter with insights into structural and dynamic features on

different length and time scales. Furthermore, they can be used to change the state of the ma-

terial, permitting the study of polymer crystallization under well-defined flow conditions. The

3
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concept of hyphenation has the advantage of simultaneous measurements and the potential to

identify correlations between two experimental techniques that are otherwise not accessible

(Figure 1.4). The correlation from separate experiments is usually not possible due to the

strong temperature dependence of polymer crystallization, leading to different experimental

conditions depending on the sample size, shape, and experimental design. The correlated

information obtained using hyphenated rheology techniques can be analyzed quantitatively,

providing a substantial gain in knowledge that will help to elucidate the mechanism of poly-

mer crystallization, the hardening behavior, and the interplay between molecular features and

the buildup of semi-crystalline morphologies.

Figure 1.4: Two main types of hyphenated experiments: simultaneously acquired sets of data from
techniques A and B can be correlated (a). The response of B on a parameter change in A can be
determined and quantified (b).

Three main types of hyphenated rheology techniques can be distinguished that were de-

signed to characterize a) sample morphology, b) chemical structure, or c) molecular dynam-

ics while performing rheological experiments. The largest group are RheoOptics/Microscopy

techniques, which were used for the study of suspensions (Champion et al. 1996; Paulin et al.

1997), liquid crystals (Berghausen et al. 1997; Onogi and Asada 1980; Walker et al. 1997),

polymer solutions (Bossart and Oettinger 1995; Kume et al. 1997; Pathak and Hudson 2006),

block copolymers (Chen and Kornfield 1998; Kannan and Kornfield 1994), and crystalliza-

tion phenomena (Kumaraswamy et al. 1999; Mackley et al. 2000; Pogodina et al. 1999; Scelsi

and Mackley 2008). Usually, only set-ups with visible light sources (potentially monochro-

matic and coherent) are referred to as RheoOptics. Closely related are tomography set-ups

using nuclear magnetic resonance (NMR)(Callaghan 1999; Callaghan and Gil 2000; Kilfoil

and Callaghan 2000; Callaghan 2006; Galvosas and Callaghan 2006; Callaghan 2008) as well

as scattering techniques based on X-rays (Hamley et al. 1998; Somani et al. 2000; Castel-

letto et al. 2001, 2005; Polushkin et al. 2005; Meins et al. 2012; Stellamanns et al. 2013)
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1 Introduction

or neutrons (Maranzano and Wagner 2002; Egres et al. 2006; Liberatore et al. 2006; Eberle

and Porcar 2012). Hyphenations of rheology and spectroscopy techniques were used to ob-

tain in-situ information on the chemical structure of polymers, liquid crystals, or fats during

chemical reactions, gelations, or crystallization while monitoring their rheological behavior.

The employed set-ups were based on IR spectroscopy (Boulet-Audet et al. 2011; Auriemma

et al. 2015; Mascia et al. 2015; Zuppardi et al. 2017), Raman spectroscopy (Chai et al. 1995;

Chevrel et al. 2012; Kotula et al. 2016), or NMR spectroscopy (Grabowski and Schmidt 1994;

Lukaschek et al. 1995; Schmidt 2006; Ohgo et al. 2008; Medronho et al. 2010). Techniques

that characterize molecular dynamics and consequently probe local molecular conformation

were also combined with rheology. They can be used to investigate the origins of macroscopic

flow behavior in e.g., polymer melts and the connections between applied flow and molec-

ular conformation. Such set-ups were designed based on dielectric spectroscopy (Capaccioli

et al. 2007; Höfl et al. 2006; Khastgir and Adachi 2000; Meins et al. 2012; Watanabe et al.

1998, 1999) and NMR relaxometry (Kahle et al. 2008; Meins et al. 2011; Ratzsch et al. 2017;

Räntzsch et al. 2016). Further hyphenated rheology set-ups that do not belong to any of the

three groups were built based on calorimetry (Block et al. 2013; Janssens et al. 2009, 2010;

Kiewiet et al. 2008), dilatometry (Bruker and Lodge 1985; Bruker 1986; Yemelyanov 1990),

or electrical conductivity (Helal et al. 2016). Some of the set-ups discussed above contain

shear cells that allow for the application of flow, but do not provide rheology data.

Thesis Outline

In this thesis, new hyphenated characterization techniques were employed to study the crys-

tallization behavior of synthetic polymers under quiescent and flow conditions. The experi-

mental set-ups were based on commercial rheometers that allowed the correlation of rheolog-

ical data with additionally obtained in-situ information on different length and time scales.

Namely, three combinations of rheology plus nuclear magnetic resonance (NMR), small an-

gle X-ray scattering (SAXS), and optical microscopy were selected to perform in-situ studies

on the molecular dynamics, nano-scale morphology, and microstructure (Figure 1.5). In or-

der to lay the proper groundwork, the temperature-dependence of molecular dynamics in

semi-crystalline polymers was studied using standalone NMR and compared against other es-

tablished characterization techniques.

The following main research questions were addressed:

• How do crystallizing polymer melts rigidify under quiescent and flow conditions?

• What is the temperature-dependence of molecular dynamics in semi-crystalline poly-

mers, and can mobility provide a valuable measure of polymer crystallinity?

• How does shear flow during crystallization affect the nano-scale morphology and micro-

structure of semi-crystalline polymers?

• What is the mechanism of polymer crystallization, especially during the nucleation pe-

riod and under shear flow?
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1 Introduction

Figure 1.5: By combining rheology and nuclear magnetic resonance (NMR), small angle X-ray scattering
(SAXS), and optical microscopy into hyphenated rheology set-ups, we could study in-situ molecular
dynamics, nano-scale morphology, and microstructure during polymer crystallization. Furthermore,
rheology can be used to change the sample state and measure the implications on the dynamics and
morphology of the material as captured by the other experimental techniques.

Our research questions were tackled by...

• evaluating the temperature-dependent molecular dynamics of crystallizing polymers us-

ing NMR, and comparing the information on the degree of crystallinity and crystalliza-

tion kinetics against X-ray diffraction (XRD) and differential scanning calorimetry (DSC);

• studying the interplay of the molecular dynamics and rheology during polymer crystal-

lization using RheoNMR;

• investigating the buildup of nano-scale morphology during polymer crystallization and

its correlation with the macroscopic flow behavior via RheoSAXS;

• identifying correlations between the microstructure and rheology during polymer crys-

tallization using optical RheoMicroscopy;

• performing ex-situ-scanning electron microscopy (SEM) and optical microscopy on the

recovered specimen to further obtain information on the relationship between applied

flow and morphology of semi-crystalline polymers.

The obtained experimental results were compared against other works and discussed in the

context of theoretical models in order to develop a comprehensive understanding of polymer

crystallization under quiescent and flow conditions.
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2 Fundamentals of Synthetic Semi-Crystalline
Polymers

2.1 Introduction

In this chapter, a brief overview of the main types of synthetic semi-crystalline polymers, their

synthesis, and their properties will be given based on books by Odian (2004); Mark (2007);

Elsner et al. (2012); Ward and Sweeney (2012). For the main part of this thesis, isotactic

polypropylene was chosen as the material of investigation. Consequently, its synthesis, mor-

phology and properties will be discussed in more detail based on Karger-Kocsis (1994, 2012).

2.2 Types of semi-crystalline polymers

Semi-crystalline polymers can be divided into three groups: commodity, engineering, and

high performance materials (Figure 2.1). The production volume is inversely proportional

to the price: commodity plastics such as polyolefins are sold at 1 – 2 €/kg with an annual

production volume of 150 million tons (2015), whereas high performance materials such as

polyaryletherketones are sold at ~100€/kg with an annual production of 5.000 tons (2015).

The class of engineering polymers contains polyamides and polyesters that can be tailored

precisely to the needs of the individual application, e.g., injection molding or fiber spinning.

Furthermore, specialty polymers such as fluoropolymers and polyimides exhibit high chemical

and thermal resistance together with desirable dielectric properties that make them valuable

materials for applications in electronics and construction under demanding conditions.

Figure 2.1: Classification of semi-crystalline polymers as commodity, engineering, and high perfor-
mance materials. Prices range from 1 – 100 €/kg depending on the polymer type (Elsner et al. 2012).

7



2 Fundamentals of Synthetic Semi-Crystalline Polymers

For semi-crystalline polymers, solid properties are strongly connected to the way the material

was processed. In Figure 2.2, mechanical properties of bulk samples and fibers are compared

against other materials such as glass or steel. The tensile modulus increases by up to two

orders of magnitude for e.g., ultra-high molecular weight polyethylene (UHMWPE) in the

case of fibers compared to the bulk material, thereby exceeding the tensile modulus of steel.

Similarly, the elongation at break values decrease substantially to below 10%. This enormous

bandwidth of solid properties depending on the processing method is an important argument

for the wide application of semi-crystalline polymers.

a) b)

c) d)

Figure 2.2: Mechanical properties of semi-crystalline polymers at room temperature compared against
other materials (Van Krevelen and Te Nijenhuis 2009). Tensile and Young’s modulus for bulk samples
(a) and fibers (b). Elongation at break for bulk samples (c) and fibers (d). (*) Steel: X2CrTi12, always
bulk sample.

Polyolefins

Semi-crystalline polymers synthesized from olefinic monomers such as ethylene or propylene

are cheap, chemically inert, and easy to process. However, their synthesis requires either

harsh conditions (high pressure, temperature) or more sophisticated synthesis methods such

as coordination polymerization. In Figure 2.3, the main types of olefinic polymerizations are

shown. The free radical polymerization of ethylene leads to a long-chain branched topology
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2 Fundamentals of Synthetic Semi-Crystalline Polymers

with a relatively low degree of crystallinity of ~40 – 50% (low-density polyethylene, LDPE).

Coordination polymerization using Ziegler-Natta catalysts is frequently used to obtain high-

density polyethylene (HDPE) and isotactic polypropylene. The mechanism and alternatives to

conventional ZN catalysts will be discussed in section 2.3.

Figure 2.3: Synthesis of semi-crystalline polyolefins by radical and coordination polymerization.

Polyolefins are used in many relatively low-cost applications such as packaging, household

appliances, housings, and construction. As the glass transition temperatures are well below

room temperature, they show high impact resistance and toughness. Their chemical inertness

leads to a long lifetime of molded parts, films or fibers. The downside is a low bio-degradability

and persistance in nature, leading to a substantial issue for aquatic life (Andrady 2011).

Polyesters

Polyesters show high tensile strength when spun into fibers, and are frequently used in textile

industry. As their glass transition temperature is usually above room temperature, they are less

impact-resistant compared to polyolefins, but show a relatively high ductility due to their low

crystallinity of<40%. The most important representative is polyethylene terephthalate (PET),

which is synthesized by a polycondensation reaction from ethylene glycol and terephthalic acid

following a step-growth mechanism (Figure 2.4a). Due to its high glass transition temperature

of+70 °C, it can be quenched to room temperature without developing substantial crystallinity.

A second derivative is polybutylene terephthalate (PBT), frequently selected for housings or

fibers. A special polyester is polylactide (PLA), which is more and more used as a biodegradable

alternative to polyolefins in injection molding and film blowing. Another application of PLA is

3D-printing as it shows low warping and fast crystallization. Its synthesis can either be carried

out by direct condensation using lactic acid or by a ring-opening polymerization from the cyclic

di-ester (Figure 2.4b).
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2 Fundamentals of Synthetic Semi-Crystalline Polymers

Figure 2.4: Synthesis of polyesters by polycondensation or ring-opening polymerization (ROP).

Polyamides

Similarly to polyesters, polyamides are mostly used for fibers in textile industry. Due to their

structural versatility depending on the length of the respective amine and carboxylic acid

blocks, material properties can be fine-tuned for each individual application. The most im-

portant representatives of polyamides (Nylons) are polyamide 6–6, polyamide 6, polyamide

6–10, and polyamide 6–12, which are synthesized either by polycondensation reactions from

the respective amines and carboxylic acids or chlorides (Figure 2.5a), or by a ring-opening

polymerization as in the case of PA-6 from ε-caprolactame (Figure 2.5b).

Figure 2.5: Synthesis of polyamides by polycondensation or ring-opening polymerization (ROP).

Besides aliphatic derivatives, also aromatic polyamides –so-called aramides– can be synthe-

sized. The most important representative is sold under the trade name Kevlar (polypara-

10



2 Fundamentals of Synthetic Semi-Crystalline Polymers

phenylene terephthalamide) and has an extremely high tensile strength and melting point

due to significant hydrogen bonding between multiple amide groups. Kevlar is used for body

armor fabric, tires, and in reinforced composites.

Figure 2.6: Synthesis of polyparaphenylene terephthalamide (Kevlar) by polycondensation.

Fluoropolymers

Fully or partially fluorinated olefins can be polymerized by free radical polymerization at rel-

atively low pressures. The most important ones are polytetrafluorethylene (PTFE, Teflon),

polyvinylidene fluoride (PVDF, Kynar), polychlorotrifluoroethylene (PCTFE, Kel-F). In Fig-

ure 2.7, the synthesis of PTFE is shown. All fluoropolymers show extremely high chemical

and thermal resistance. Therefore, they are used as containers, tubings, or sealings for haz-

ardous materials. Furthermore, they are used as electrical insulators due to their low dielectric

permittivity. PTFE is used frequently as a coating material for kitchen tools due to its non-stick

properties. Expanded PTFE films (Gore-Tex) shows a high permeability for moisture and is

used for weatherproof jackets.

Figure 2.7: Synthesis of polytetrafluorethylene (PTFE, Teflon) by free radical polymerization.

The persistence of fluoropolymers together with potential CMR1 decomposition products rep-

resent considerable environmental issues. Furthermore, the disposal of fluoropolymers is

cumbersome as hazardous hydrofluoric acid might be produced during their decomposition.

Other synthetic semi-crystalline polymers

The class of polyimides contains aliphatic and aromatic derivatives. One of the most important

representatives is poly(oxydiphenylene-pyromellitimide) (Kapton, Figure 2.8). Because of its

high temperature resistance (short times >400 °C) it is used in high-temperature applications

for electronics, spacecrafts, and airplanes. Additionally, Kapton is used in X-ray transmissive

windows (see also chapter 7).
1 CMR = carcinogenic, mutagenic, reprotoxic
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2 Fundamentals of Synthetic Semi-Crystalline Polymers

Figure 2.8: Synthesis of poly(oxydiphenylene-pyromellitimide) (Kapton) via a two-step reaction.

Polyaryletherketones such as polyetheretherketone (PEEK), polyetherketone (PEK), or polyether-

ketoneetherketoneketone (PEKEKK) with high melting points of >300 °C are another class of

high-temperature thermoplastics. They are chemically robust, stiff, and excellently machin-

able. Applications of polyaryletherketones include bearings, piston parts, or valves.

Figure 2.9: Synthesis of polyetheretherketone (PEEK) by polycondensation.

Another relevant synthetic semi-crystalline polymer is polyoxymethylene (POM, Delrin) and

in its copolymers with other acetal components (Ultraform, Celcon). Its synthesis is based

on ionic polymerization as shown in Figure 2.10. Due to its low friction coefficient and its

resistance to creep, fatigue, and abrasion, it is used e.g., for gears, bearing and fittings.

Figure 2.10: Synthesis of polyoxymethylene (POM) by cationic polymerization from (trioxane).
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2 Fundamentals of Synthetic Semi-Crystalline Polymers

2.3 Polypropylene: synthesis, morphology, and properties

Polypropylene is the second most produced semi-crystalline polymer with a large variety of

applications in injection molding and fiber spinning. Its impact-resistance, inertness, and re-

cyclability make it an ideal polymer for packaging, construction, and textiles. It was selected as

the main material of investigation in this thesis, because of its relevance, slow crystallization

behavior, and well-defined chemical structure / topology. On the following pages, the syn-

thesis of polypropylene, its morphological features, and properties will be discussed in more

detail based on (Karger-Kocsis 2012; Baugh and Canich 2007; Kaminsky 2013a,b).

Synthesis

Polypropylene is chemically synthesized by a coordination polymerization of propylene us-

ing organometallic catalysts. Initial works were carried out by Ziegler et al. (1955) at the

Max Planck Institute for Coal Research in Mülheim, Germany and by Natta et al. (1955) at

the Politecnico di Milano, Italy, who both received the Nobel prize for their works in 1963.

They discovered that a combination of titanium chloride and triethylaluminium can be used

to effectively polymerize olefins at low pressures (Figure 2.11). K. Ziegler focused on the poly-

merization of ethylene, whereas G. Natta applied the catalytic system to different α-olefins and

discovered its high stereo-selectivity.

Figure 2.11: Ziegler-Natta catalyst: titanium chloride and triethylaluminium (Kaminsky 2013a).

The mechanism of coordination polymerization using Ziegler-Natta (ZN) catalysts was de-

scribed in detail by Cossee (1964); Arlman (1964); Arlman and Cossee (1964). In Figure 2.12,

the main mechanistic steps are shown for the polymerization of propylene.

Figure 2.12: Mechanism of coordination polymerization using a ZN catalyst (Cossee 1964).
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The steps are:

I. Ion-par formation;

II. Addition of monomer;

III. 4-membered ring transition state

IV. Chain extension

Upon complete polymerization, the catalyst is hydrolyzed using alcohols. Ziegler-Natta cata-

lysts are known to be regioselective, i.e., the insertion of α-olefins follows a strictly head-to-

tail-sequence. The stereo-selectivity of Ziegler-Natta catalysts is mainly based on chain end

control as the stereogenic carbon atom of the previously inserted propylene monomer directs

the insertion of the next monomer. Despite the great success of the coordination polymeriza-

tion at low pressures using ZN catalysts, industry demanded for homogeneous catalyst systems

that would allow a simpler purification and removal of the catalyst. In the 1980’s, the group of

W. Kaminsky at the University of Hamburg, Germany developed metallocene-based homoge-

neous catalyst systems that showed equal catalytic activity as their heterogeneous counterparts

(Kaminsky et al. 1985; Brintzinger et al. 1995; Kaminsky 2013b). In Figure 2.13, a frequently

used catalyst is shown together with typical reaction conditions (Spaleck et al. 1994). The

activation of the catalyst is carried out by adding methylaluminoxane (MAO), which is a par-

tially hydrolyzed derivative of triethylaluminium.

Figure 2.13: Example of a metallocene catalyst and reaction conditions for the polymerization of propy-
lene (Spaleck et al. 1994).

The shared structural feature of many metallocene catalysts is the C2 symmetry generated by

an ansa-bridging group (here: –Me2Si). Different from the heterogeneous ZN catalysts, this
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symmetry leads to enantiomorphic site control, i.e., stereo-selectivity is achieved by a prefer-

ential orientation of the monomer with respect to the stereogenic catalyst. The mechanism

of metallocence-catalyzed olefin polymerizations is similar to that of the heterogeneous ZN

catalysts (Figure 2.14).

Figure 2.14: Mechanism of coordination polymerization using a metallocene catalyst.

Other than the heterogeneous ZN catalysts, metallocene catalysts tend to introduce regio de-

fects (Resconi et al. 2000). The most frequently encountered defect is a 2,1-erythro insertion

(see Figure 2.15), which can be determined and quantified by 13C-NMR (Busico and Cipullo

2001). Such regio defects have strong implications on the crystallization behavior as they

disturb the formation of the crystallographic lattice and lead to modified material properties

(De Rosa et al. 2005; Meer et al. 2015).

Figure 2.15: Creation of 2,1-erythro defects during a metallocene-catalyzed polymerization of
propylene.

In recent years, so-called post-metallocene catalysts were developed that were based on large

organometallic complexes of group 4 metals (Ti, Zr, Hf). The ligands contained aromatic

heterocycles (e.g., pyridine) and were designed to control the stereo- and regio-selectivity. For

a detailed discussion on the large number of catalysts for stereoselective olefin polymerization,

see Baugh and Canich (2007).
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Morphology: from the chain to unit cells, lamellae, and spherulites

The morphology of semi-crystalline polymers follows a highly hierarchical pattern: chain seg-

ments build up a crystallographic unit cell that is part of large extending sheets (lamellae),

which themselves form superstructures such as so-called spherulites. For polypropylene the

hierarchical morphology is shown in Figure 2.16.

Figure 2.16: Hierarchical morphology of crystallized polypropylene: 3-1 helices build up a unit cell that
is part of a chain-fold lamellae, which themselves form larger superstructures (spherulites).

Based on the two main chain constitutions of polypropylene (isotactic and syndiotactic)

unit cells are formed by a conformational chain twist into 3-1 helices. The polymorphs of

polypropylene are classified as α, β , and γ with α being the predominantly formed polymorph

for ZN-catalyzed i-PP under quiescent conditions (Piorkowska and Rutledge 2013). The trigo-

nal β-polymorph is obtained by incorporating specific nucleating agents or by the application

of flow (Meille et al. 1994; Varga 2002; Kotek et al. 2002; Huo et al. 2004). The γ-form of

isotactic polypropylene has an orthorhombic unit cell with non-parallel chain-packing (Meille

and Brückner 1989) and is frequently found in metallocene-catalyzed regio-defective i-PP

grades (Thomann et al. 1996).

On the second hierarchy level, the characteristic structural feature of chain-fold lamellae is

found, which is an important difference to small molecules. The size of polymeric crystals is

limited in one dimension to some tens of nanometers. However, the lateral lamellar dimen-

sions can go up to several hundreds of microns, depending on the crystallization conditions.

The incorporated chains are most probably tilted as recently discussed by Fritzsching et al.

(2017) to decrease the density at the interface. Lamellae grow radially from a nucleation cen-

ter and form the shown sphere-like superstructures. These spherulites are being classified as

negative, positive, mixed, or ring-like depending on the orientation of the lamellae and their

twist (Varga 1992). In Figure 2.17, a series of scanning electron micrographs is shown for a

quiescently crystallized isotactic polypropylene. The sample was etched (oxidized) using an

acidic permanganate solution to remove the amorphous fraction of polymer chains. The lamel-
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lar substructure shows another feature of isotactic polypropylene – so-called cross-hatching.

This phenomenon describes the splaying of lamellae orthogonal to the primary growth direc-

tion (daughter lamellae). This secondary crystallization process is thought to be induced by

a nucleation of new lamellae from the methyl groups standing out from the 3–1 helices of

parent lamellae (Piorkowska and Rutledge 2013).

Figure 2.17: Scanning electron micrographs of etched isotactic polypropylene crystallized under quies-
cent conditions. The spherulitic superstructure consisted of lamellae and showed cross-hatching.

Properties

The properties of polypropylene are temperature- and molecular-weight-dependent and differ

depending on the sample preparation. Some characteristic thermal, mechanical, and electri-

cal properties of a standard isotactic polypropylene grade at room temperature are given in

Table 2.1 based on data from Elsner et al. (2012). Usual molecular weights of Ziegler-Natta

i-PP grades are on the order of Mw = 200 – 300 kg/mol (polydispersity -D = 3 – 4).

Property Unit Value

Density g/cm3 0.91

Glass transition temperature °C -10

Melting range °C 160 – 170 °C

Torsional stiffness MPa 480

Hardness (Shore) D – 74

Impact strength mJ/mm2 20

Thermal conductivity W/mK 0.22

Dielectric permittivity 106 Hz 2.25

Table 2.1: Properties of an i-PP homopolymer at room temperature based on Elsner et al. (2012).
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In Figure 2.18, a stress-strain curve measured at room temperature and the temperature-

dependence of the G modulus are shown again for a standard isotactic polypropylene grade.

As at room temperature the material is above its glass transition, it starts to flow at relatively

low strains and can be elongated to several hundred percent before the material ruptures. The

temperature-dependence of the G modulus (see section 4.1) shows a plateau-like behavior up

to the glass transition temperature of -10 °C, then a linear decrease on a logarithmic scale,

and finally a steep decrease at the nominal melting point of ~165 °C.

a)
b)

Figure 2.18: Stress-strain curve at room temperature (a) and temperature-dependence of the G modu-
lus (b) for an i-PP homopolymer. Adapted from Elsner et al. (2012).

In many cases, polypropylene is mixed with fillers, nucleating agents, and processing addi-

tives to alter the properties and enhance processability. Nucleating agents play an impor-

tant role in manufacturing of polypropylene parts as they decrease turbidity, generate impact-

resistance, and raise the possible processing temperature for injection molding. There are

two main groups of nucleating agents: non-polymer-soluble and polymer-soluble substances.

The first group consists of inorganic and organic small molecules such as talc, sodium ben-

zoate or phosphates which were empirically found to induce nucleation, but can lead to odor,

yellowing and aging. Polymer-soluble nucleating agents are either sorbitol-based (e.g., Mil-

liken Millad 3988 / DMDBS, Bernland et al. (2009); Kristiansen et al. (2003, 2005, 2009))

or 1,3,5-benzene tricarboxamides (e.g., BASF Irgaclear XT 386). 1,3,5-benzene tricarboxam-

ides are very effective nucleating agents and were structurally optimized with regard to haze

and clarity by modification of the alkyl groups (Bernland et al. 2016). The discotic structure

permits a supramolecular organization into columnar structures / fibers, which are stabilized

by hydrogen bonding. During cooling of a polypropylene melt, the nucleating agent precip-

itates and forms a 3D-network of fibers with a high surface area compared to insoluble bulk

nucleating agents. Fillers such as silica or titania can have a similar nucleating effect when

their surfaces are hydrophobically modified using chlorosilanes. For further information on

the different types of materials that can be incorporated into the neat polypropylene matrix

see Karger-Kocsis (2012).
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2.4 Selected materials for the study of polymer crystallization

The main material of investigation in this thesis was a Ziegler-Natta polypropylene grade i-

PP-1 (Repsol Isplen PP070G2M). Additional experiments were performed on a metallocene-

catalyzed polypropylene grade i-PP-2 (LyondellBasell Metocene HM562P) in order to unravel

the effect of regio-defects on the crystallization behavior. The potential of NMR relaxometry to

determine polymer crystallinity and crystallization kinetics was studied using a broad range of

commercially relevant polymers. In Table 2.2, molecular weights, polydispersities, glass tran-

sitions temperatures, and peak melting temperatures are shown for all materials. The samples

contained standard anti-oxidants, but no nucleating agents. PA-6 and PET were dried at 70 °C

under vacuum for 7 days to remove residual moisture. The tacticity of the polypropylenes was

determined to be ~94% mmmm, and sample i-PP-2 contained 1 mol% of 2,1-erythro regio

defects (13C-NMR – Appendix A). The ZN grade i-PP-1 crystallizes in the α-form, whereas the

metallocene-catalyzed i-PP-2 showed γ-form crystallization and a higher nucleation density

(XRD and PLOM data in Appendix A). High-temperature gel permeation chromatography at

145 °C was done using tri-chloro-benzene as the eluent for i-PP, HDPE, and LDPE. Standard

GPC at room temperature was performed using respective calibration standards for t-PI and

PS in tetrahydrofuran, and for PET and PA-6 in hexafluoroisopropanol.

Sample Code Polymer Grade Supplier Mw (-D) [kg/mol] Tg [°C] Tm [°C]

i-PP-1 Isplen PP070G2M (batch 1) Repsol 246 (2.7) -10 168

i-PP-1’ Isplen PP070G2M (batch 2) Repsol 282 (3.4) -10 168

i-PP-2 Metocene HM562P LyondellBasell 202 (1.9) -10 161

HDPE N/A* (batch 1) LyondellBasell 182 (11) -120 135

HDPE’ N/A* (batch 2) LyondellBasell 155 (15) -120 134

LDPE Lupolen 1840H LyondellBasell 135 (11) -120 112

PA-6 Ultramid B27E BASF 61.8 (2.1) +40 226

PET Xpure V004 Invista 50.2 (2.0) +70 261

t-PI N/A (>99% trans) Sigma Aldrich 129 (4.6) -60 65

PS N/A (amorph.) Sigma Aldrich 209 (1.9) +105 N/A

PBMA N/A (amorph.) Sigma Aldrich 205 (2.2) +21 N/A

Table 2.2: Molecular weight distributions (GPC), glass transition temperatures (Mark 2007), and peak
melting temperatures (DSC) for all polymers investigated. (*) Research grades.

The influence of nucleating agents on polymer crystallization was studied using compounds of

i-PP-1’ (batch 2) with 250, 500, 750, 1500 ppm of N, N’, N”-tris(3-methylbutyl)-1,3,5-benzene

tricarboxamide (DH677), which were prepared by our collaborators Dr. K. Kreger and D. Kre-

mer in the group of Prof. H.W. Schmidt (University of Bayreuth, Germany) using a lab-scale

twin-screw extruder. Furthermore, the effect of fillers on the crystallization behavior was an-

alyzed using compounds of i-PP-1 with 1 – 5 wt% fumed silica (CAB-O-SIL TS-530, Cabot

Corporation, Alpharetta, USA), which were compounded by Dr. J. Palacios in the group of

Prof. A. Müller (Universidad del País Vasco, San Sebastián, Spain).
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3 Theory of Polymer Crystallization

3.1 Introduction

Early works on the thermodynamics, kinetics, and underlying mechanism of polymer crystal-

lization have been carried out by Hoffman and Lauritzen (1961); Hoffman and Weeks (1962);

Hoffman et al. (1969), Mandelkern et al. (1954); Mandelkern (1964), Keith and Padden Jr

(1963) and Keller and Mackley (1974). They made important theoretical contributions that

helped to rationalize experimental data and could accurately describe phenomena such as

lamellar thickening and the melting point depression in polymeric crystals. The spherulitic

growth of chain-fold lamellae (Figure 3.1) was described in great detail by the groups of Hoff-

man and others. At the heart of classical nucleation and growth theories is a thermally acti-

vated two-step process of the formation of thermodynamically stable nuclei and their growth

over time. However, classical nucleation theories are only partially applicable to polymer melts

as the complex macromolecular nature with their long chain structure, entanglements, and

their reptating motion is not sufficiently incorporated into these models. In recent years, new

concepts were proposed, namely the spinodal decomposition model by Olmsted et al. (1998)

and the mesomorphic phase transition model by Strobl (2000, 2006, 2009), which were trig-

gered by experiments using improved characterization methods. Furthermore, molecular dy-

namics simulations (Muthukumar 2003, 2004; Milner 2011; Yi et al. 2013) delivered valuable

information on the early stages of crystal nucleation. In the following chapters, the main the-

oretical concepts in the description of polymer crystallization are presented based on texts by

Strickland-Constable (1968); Armitstead et al. (1992); Gedde (1999); Muthukumar (2004);

Sperling (2005); Piorkowska and Rutledge (2013).

a) b)

Figure 3.1: a) Spherulitic crystallization under quiescent conditions with radially growing chain-fold
lamellae. b) Crystallization process for a volume element dV . The applied conditions (temperature,
pressure, flow) determine the morphology, crystallinity, and crystallization kinetics.
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3.2 Equilibrium thermodynamics

The starting point for most crystallization theories is the ideal case of thermodynamic equi-

librium. In contrast to low molecular weight substances, polymers usually do not reach that

state on experimentally relevant time scales. Because of their macromolecular structure, the

mechanism of crystallization is complex with many kinetically controlled steps. Nevertheless,

the fundamental thermodynamic aspects concerning stability are the basis for all further dis-

cussions and help to understand phenomena such as lamellar thickening or the melting point

depression depending on the supercooling with respect to the equilibrium melting point.

Thermodynamic criteria for the stability of crystals in a liquid

Under a given conditions of temperature, pressure, and concentration, a thermodynamically

most favored state with a minimum of the Gibbs free energy G is pursued (see Figure 3.2).

When a liquid is supercooled below the melting point, it is crystallizing accompanied by a

release of latent heat (expressed as a free enthalpy∆H) overcompensating the loss in entropy

∆S. The net difference in the Gibbs free energy ∆G is given by:

∆G =∆H − T∆S (3.1)

∆G: Gibbs free energy, ∆H: free enthalpy, T : absolute temperature, ∆S: entropy.

Figure 3.2: Gibbs free energy G (a) and free enthalpy H (b) as a function of temperature T . At a given
crystallization temperature Tc below the melting point T 0

m, the material crystallizes with ∆G < 0 and
∆H < 0.

A prerequisite for the formation of stable crystals are intermolecular forces that give rise to

the release of heat compared to the disordered liquid state. The type of bonding can be of

ionic, metallic, dipole-dipole, hydrogen bonding, or Van-der-Waals character. For polymers,

the latter two are the most important ones (e.g., hydrogen bonding in polyesters and disper-

sion forces in polyolefins). The stability and dimensions of crystalline entities are strongly

connected with the balance of surface stresses and the minimization of surface energies.
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3 Theory of Polymer Crystallization

The Gibbs free energy ∆G of a two-phase system with n solid – liquid interfaces is given by:

∆G =∆G0 +∆GS = V∆g0 +
n
∑

i=1

Aiσi (3.2)

∆G: total Gibbs free energy, ∆G0: Gibbs free energy of fusion, ∆GS: excess surface Gibbs free

energy, V : volume of the solid, ∆g0: specific Gibbs free energy of fusion, Ai: surface areas of

the solid interfaces, σi: specific surface energies.

By assuming a cuboid solid shape with V = L1 L2 L3 and corresponding surface energies σ1,

σ2, and σ3 (in J/m2 or N/m – not to be confused with stresses in units of pressure (N/m2))

contributing to ∆GS , Equation 3.2 is modified to:

∆G = V ·∆g0 + 2L1 L2σ3 + 2L1 L3σ2 + 2L2 L3σ1

= V ·∆g0 +
2V
L3
·σ3 + 2L1 L3σ2 +

2V
L1
·σ1

(3.3)

In order to find the minimum Gibbs free energy, the derivatives of ∆G with respect to L1, and

L3 are set to 0 and rearranged using V = L1 L2 L3:

∂ (∆G)
∂ L1

= 2L3σ2 −
2V

(L1)
2 ·σ1

!
= 0 ⇒

σ1

L1
=
σ2

L2
(3.4)

∂ (∆G)
∂ L3

= 2L1σ2 −
2V

(L3)
2 ·σ1

!
= 0 ⇒

σ2

L2
=
σ3

L3
(3.5)

⇒
σ1

L1
=
σ2

L2
=
σ3

L3
(3.6)

The dimensions L1, L2, and L3 are thus in direct connection with the surface Gibbs free en-

ergies σi . In polymeric crystals, the specific surface energy of the fold surface σe is several

times higher than the specific surface energy of the lateral surfaces σL . For polyethylene, σe ≈
100 mJ/m2 and σL ≈ 10 mJ/m2, leading to an equilibrium ratio of L2 = 10L1 (Mark 2007).

In experiments however, the lateral dimensions are found to be several orders of magnitude

larger than the crystal thickness (e.g., 10 µm vs. 10 nm), indicating that the structures are

usually far from thermodynamic equilibrium.

Figure 3.3: Schematic representation of a chain-folded crystal with the specific surface energies σL and
σe of the lateral and the fold surface, respectively.
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Relationship between polymer crystal thickness and temperature

The thickness Lc of polymeric crystals depends on the crystallization temperature, i.e., the

supercooling with respect to the equilibrium melting point1. The larger the supercooling – the

thinner the crystallites, which is a consequence of the kinetic trapping during crystallization

(Gedde 1999):

Lc =
C

T0
m − Tc

+δL (3.7)

T0
m: equilibrium melting point, Tc: crystallization temperature, C: const., δL: const.

In Figure 3.4, data from Barham et al. (1985) on a low molecular weight polyethylene stan-

dard shows the linear relationship between Lc and 1/∆T = 1/
�

T0
m − Tc

�

.

Figure 3.4: Lamellar thickness Lc vs. supercooling 1/∆T for a PE standard. A linear relationship is
found that can be described by Equation 3.7. Data taken from Barham et al. (1985).

By annealing a polymeric crystal at temperatures close to its nominal melting point Tm, the

thickness Lc is increased. An important consequence is that during non-isothermal heating

experiments, thin crystals undergo thickening prior to melting.

Fusion of semi-crystalline polymers

The finite thickness of polymer crystals has major implications on their melting behavior, es-

pecially on the nominal melting temperature Tm. From a thermodynamics standpoint, crystal

melting is a first order phase transition with ∆G = 0 at the melting point:

∆G =∆G0 +
n
∑

i=1

Aiσi
!
= 0 (3.8)

1 The equilibrium melting point T 0
m is the theoretical melting point of infinitely thick crystals. It corresponds to the

limiting theoretical case of a (polymeric) crystal in thermodynamic equilibrium.
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Since the fold surface is usually several orders of magnitude larger than the lateral surfaces,

and the surface energy σe is ~10x higher than σL , ∆G0 is approximated by:

n
∑

i=1

Aiσi ≈ 2Aσe (3.9)

⇒∆G0 ≈ 2Aσe (3.10)

Equation 3.10 can also be expressed in specific quantities:

∆G0 =∆g0 · ALc = 2Aσe ⇒ ∆g0 =
2σe

Lc
(3.11)

∆G0: Gibbs energy of fusion, ∆g0: specific Gibbs energy of fusion, A: surface area of the crys-

tal, Lc: crystal thickness.

Based on Equation 3.1, a relationship between the specific Gibbs energy of fusion and the

temperature difference ∆T = T0
m − Tm is established:

∆g0 =∆h0 − T∆s0
!
= 0 ⇒ ∆h0 = T∆s0 (3.12)

with
∆h0

Tm
≈
∆h0

T0
m

and Tm∆s0 ≈ T0
m∆s0 follows :

∆g0 ≈∆h0 −
Tm ·∆h0

T0
m

=∆h0 ·
�

1−
Tm

T0
m

�

=∆h0

�

∆T
T0

m

�

(3.13)

Combining Equation 3.11 and Equation 3.13 yields:

∆h0

�

∆T
T0

m

�

=
2σe

Lc
⇒ ∆T =

2σeT0
m

Lc∆h0
(3.14)

⇒ Tm = T0
m

�

1−
2σe

Lc∆h0

�

(Gibbs− Thomson) (3.15)

Tm: nominal melting point, T0
m: equilibrium melting point, σe: fold surface energy, Lc: crystal

thickness, ∆h0: specific enthalpy of fusion.

Equation 3.15 is known as the Gibbs-Thomson equation and describes the melting point de-

pression in terms of fundamental parameters: fold surface energy σe and crystal thickness Lc .

Notably, the dependence on the surface area A cancels out, which implies that the nominal

melting point only depends on crystal thickness and is independent of the lateral crystal di-

mensions.
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3.3 Quiescent crystallization

3.3.1 General remarks

The process of polymer crystallization involves the formation of thermodynamically stable

nuclei and their growth over time. In a classical treatment of nucleation and growth, the equi-

librium concepts described in the previous section are combined with kinetic nucleation and

growth rates. More recently, theories based on spinodal decomposition Olmsted et al. (1998)

and mesomorphic phase transitions Strobl (2000, 2006) were developed that questioned the

classical concept of nucleation and growth. In this section, the main aspects of the different

crystallization theories will be outlined and discussed.

3.3.2 Classical nucleation theory

The nucleation of crystals, liquid drops, or gas bubbles can be treated using classical nucle-

ation theory. Early works by Volmer and Weber (1926), Becker and Döring (1935), Frenkel

(1946), and Turnbull and Fisher (1949) laid out the foundation and were adapted to different

material systems. An important outcome of the theory is that a nucleus has to reach a critical

cluster size by spontaneous fluctuations in order to survive the nucleation phase. Essentially,

nucleation is treated as a growth process on a very small scale that is competing with the

opposing separation process.

Figure 3.5: a) Schematic representation of the addition and separation equilibrium processes preced-
ing the formation of a stable nucleus. b) A nucleus survives the formation process if the critical size
is exceeded. The process is determined by the size of the activation barrier ∆G∗ and the thermally
activated diffusion of nucleus forming elements.
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At any given time t, a nucleus (or cluster) consists of n elements and is in equilibrium with a

cluster of n − 1 elements (separation) and a larger cluster of n + 1 elements (addition) (see

Figure 3.5). For N clusters this can be expressed as:

Nn−1

jadd−−*)−−
jsep

Nn
jadd−−*)−−
jsep

Nn+1 (3.16)

N : number of clusters, n: number of elements per cluster, j: addition and separation rates

The nucleation rate I (number of clusters converted per unit time) is given by:

I = jaddNn−1 − jsepNn = jaddNi − jsepNn+1 (3.17)

The temperature-dependence of the nucleation rate I can be described by an Arrhenius-type

activation behavior (see Figure 3.6):

I = I0 · exp
�

−
∆G∗

kT

�

(3.18)

I0: prefactor, ∆G∗: Gibbs free energy of activation, k: Boltzmann constant, T : temperature.

Figure 3.6: Activation energy chart for the formation of a stable nucleus at Tc < T 0
m. With an increasing

number of elements n, the Gibbs free energy ∆G rises until the critical size is reached.

The prefactor I0 in Equation 3.18 depends on the diffusion behavior of the individual elements:

I0 = n ·
kT
h
· exp

�

−
∆Ediff

kT

�

(3.19)

n: number of elements, h: Planck constant,∆Ediff: activation energy of diffusion per molecule.

Combining Equation 3.18 and Equation 3.19 leads to:

I =
nkT

h
· exp

�

−
∆Ediff +∆G∗

kT

�

(Turnbull and Fisher 1949) (3.20)

The term∆G∗ depends on the geometry of the growing cluster, because of the different surface-

to-volume ratios for e.g., spheres, cubes, or cylinders.
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Equation 3.2 can be applied to describe the critical term ∆G∗:

Spheres : ∆G∗sph =
4π(r∗)3

3
·∆g0 + 4π(r∗)2σ (3.21)

Cylinders : ∆G∗cyl = π(r
∗)2h∗ ·∆g0 + 2πr∗h∗σ2 + 2π(r∗)2σ1 (3.22)

Cuboids : ∆G∗cub = L∗1 L∗2 L∗3 ·∆g0 + 2L∗1 L∗2σ
∗
3 + 2L∗1 L∗3σ2 + 2L∗2 L∗3σ1 (3.23)

The specific Gibbs free energy ∆g0 is related to the enthalpy of fusion (Equation 3.13):

∆g0 ≈∆h0

�

∆T
T0

m

�

Here, ∆T = T0
m − Tc describes the supercooling conditions (not the melting point depression

as in the derivation of the Gibbs-Thomson relation). The respective critical terms ∆G∗ can be

expressed as a function of ∆T :

Spheres : ∆G∗sph =
16πσ3

�

T0
m

�2

3(∆h0)
2 (∆T )2

(3.24)

Cylinders : ∆G∗cyl =
8πσ2

2σ1

�

T0
m

�2

(∆h0)
2 (∆T )2

(3.25)

Cuboids : ∆G∗cub =
32σ2

2σ1

�

T0
m

�2

(∆h0)
2 (∆T )2

for σ2 = σ3 (3.26)

Most importantly, the proportionality ∆G∗ ∼ 1/∆T2 leads to lower activation barriers for

larger supercoolings ∆T and therefore higher tendencies of nucleation, which is experimen-

tally observed. The result implies that the critical size of nuclei is smaller and more likely to

be reached by spontaneous fluctuations for larger supercoolings.

3.3.3 Hoffman and Lauritzen theory

The concepts of the classical nucleation theory were adapted to polymer crystallization in

the 1960’s after the chain-fold lamellar structure of polymeric crystals was discovered (Keller

1957). A research group at the US National Bureau of Standards (today: National Institute

of Standards and Technology – NIST) led by John D. Hoffman and John I. Lauritzen Jr. pre-

sented a theory that provided a profound description of the crystallization mechanism and its

kinetics (commonly referred to as the HL or LH theory (Lauritzen and Hoffman 1960; Hoffman

and Lauritzen 1961; Hoffman and Weeks 1962; Hoffman et al. 1969, 1976). Since then, the

theory was constantly refined and checked against experiments. Its basis is the consideration

of nucleation as a primary process that is followed by successive growth steps, which can be

treated as secondary nucleation events.
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Outline and fundamental assumptions

The HL theory assumes that lamellae grow radially from a nucleus with a constant growth

rate G that is proportional to the degree of supercooling ∆T = T0
m − Tc (note the bold face

notation for the growth rate G vs. the Gibbs free energy G). Primary nuclei are being formed

by spontaneous fluctuations of stems that accidentally reach the critical cluster size governed

by the thermodynamics described in subsection 3.3.2. The deposition of stems onto these

nuclei (secondary nucleation) and their separation from it follow again the activation behav-

ior described by classical nucleation theory and are divided into an initial and all subsequent

events along the growth front. Of high importance is the competition between nucleation in

the radial direction and perpendicular to it (Figure 3.7) leading to different growth regimes

depending on the supercooling conditions. In the most simple version, all addition and sepa-

ration processes are independent of the lateral dimensions and the chain length.

Figure 3.7: a) Lamella at the growth front of a spherulite. The growth process is modeled by the step-
wise addition of chain segments (stems) with a lateral rate g . b) Lamellar splaying and ultimately
radial growth with the rate G that can be macroscopically determined by polarized light microscopy.

Homogeneous nucleation

The starting point for the HL theory is an Arrhenius-type thermal activation behavior of ho-

mogeneous nucleation as introduced by Turnbull and Fisher (1949) (Equation 3.18):

I = I0 · exp
�

−
∆G∗

kT

�

For polymers, the prefactor I0 (sometimes termed β) cannot be described by a simple ther-

mally activated diffusion term because of the inherent more complex dynamics compared to

small molecules. In early descriptions, a Williams Landel Ferry (WLF) activation behavior was

assumed, and was later modified to include the reptation concept of de Gennes.
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Assuming WLF activation behavior, the nucleation rate I per unit time is defined as:

I =
nkT

h
· exp

�

−
Ea

k · (T − T0)

�

· exp
�

−
∆G∗

kT

�

(3.27)

A: addition rate, ∆G∗: Gibbs free energy of activation, k: Boltzmann constant, T : tempera-

ture, n: number of stems, h: Planck constant, Ea: activation energy per molecule, T0: reference

temperature (e.g., the glass transition temperature).

The Gibbs free energy of activation ∆G∗ is given by Equation 3.26 for a cuboid nucleus with

σ1 = σe (the fold surface energy) and σ2 = σ3 = σL (the lateral surface energies):

∆G∗cub =
32σ2

Lσe

�

T0
m

�2

(∆h0)
2 (∆T )2

(3.28)

In order to survive the nucleation process, a forming nucleus has to reach a critical cluster

size for which the latent heat balances the excess surface energy terms (Equation 3.2). The

critical size depends inversely on the supercooling ∆T = T0
m− Tc , leading to a higher number

of successful nucleation events per unit volume for larger supercoolings.

Growth from a pre-existing surface (secondary nucleation)

The growth process is defined as the addition of stems onto a pre-existing surface which was

either formed by homogeneous nucleation or is part of a solid object (heterogeneous nucle-

ation). It is important to note that there is no fundamental distinction between surfaces of

polymeric nuclei or other solid materials in the HL theory, except from their possibly different

surface energy and enthalpy terms. For the growth process, the net energy barrier is deter-

mined by the initial step of placing a stem onto a pre-existing surface, differing from the case

of homogeneous nucleation (Figure 3.8a vs. Figure 3.6).

The competition of growth along the growth front and perpendicular to it gives rise to three

regimes depending on the supercooling conditions (Figure 3.9a). The radial growth rates g

for the different regimes were shown to be (Sanchez and DiMarzio 1971; Frank 1974):

G I = biL for g � i (3.29)

G I I = b ·
p

ig for g ≈ i (3.30)

G I I I = biL for g � i (3.31)

G: radial growth rate, L: lamellar width (see Figure 3.7), b: stem width in the radial direction,

i: secondary nucleation rate, g : lateral spreading rate (growth rate along the growth front).
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Figure 3.8: a) Activation energy chart for the growth process, i.e., secondary nucleation from a pre-
existing surface. The initial step A0 determines the net energy barrier. All succeeding addition steps
along the growth front follow an activation behavior with lower energy barriers. b) Schematic repre-
sentation of the individual addition and separation steps along the growth front.

Figure 3.9: a) Different regimes of growth described by the Hoffman-Lauritzen model. The lateral
spreading rate g competes with the secondary nucleation rate i which determines the overall growth
rate G. b) Hoffman-Lauritzen plot of ln(G/I0) vs. 1/(T∆T ) to identify the different growth regimes
and corresponding slopes. The HL theory predicts the slopes to be Kg(I) = Kg(I I I) = 1/2 · Kg(I I).

The thermal activation behavior of G I , G I I , and G I I I is given by:

G I = G I ,0 · exp
�

−
EA

k (T − T0)

�

exp

 

−
4 bσeσL T0

m

∆h′0
�

T0
m − T

�

kT

!

(3.32)

G I I = G I I ,0 · exp
�

−
EA

k (T − T0)

�

exp

 

−
2 bσeσL T0

m

∆h′0
�

T0
m − T

�

kT

!

(3.33)

G I I I = G I I I ,0 · exp
�

−
EA

k (T − T0)

�

exp

 

−
4 bσeσL T0

m

∆h′0
�

T0
m − T

�

kT

!

(3.34)

Similarly to primary nucleation (Equation 3.27, p. 29), the rates G I , G I I , and G I I I contain

transport and energetic terms. For small degrees of supercooling∆T = T0
m− T , the Gibbs free
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energy of activation ∆G∗ dominates the growth rate, whereas for temperatures close to T0,

diffusion controls the growth process.

Equation 3.32, Equation 3.33, and Equation 3.34 are of the form:

G = I0 · exp
�

−
Kg

T∆T

�

(3.35)

By plotting ln(G/I0) vs. 1/(T∆T ) in a Hoffman-Lauritzen plot, the slope Kg can be determined

that characterizes secondary nucleation in the respective regimes (see Figure 3.9b). Further-

more, the surface energy terms σe and σL can be extracted from the slopes Kg . For most

high molecular weight polymers, only one or two regimes can be observed experimentally us-

ing standard methods such as optical microscopy or DSC. Tabulated Kg values for different

polymers can be found in reference books (Mark 2007).

Discussion

The kinetic model developed by Hoffman and Lauritzen is based on the concepts of classical

nucleation theory, and thus requires the formation of a critical nucleus and its subsequent

growth over time by passing activation energy barriers of enthalpic character. In its original

form, the model has shortcomings with respect to the dynamics of long-chain polymers, and

the assumptions in terms of one-shot stem addition, fixed stem length, and strictly flat growth

can be regarded as strong simplifications. Therefore, the HL theory does not generally lead to

quantitatively correct predictions of surface energies, lamellar dimensions, and growth rates

(Point and Dosiere 1989).

The main points of criticism are related to the:

• General mechanism: sequential stem deposition; uniform lamellar thickness throughout

the growth; strictly adjacent chain re-entry;

• Thermodynamics: kinetic treatment; rate-determining step of enthalpic character;

• Oversimplifications: Disregard of polymer dynamics, molecular weight distribution,

fractionation effects, cilia, side-chains, stereo-/regio-defects; phenomena such as lamel-

lar twisting and curved growth fronts are not covered by the model;

There is a long list of modifications to the original HL model and alternative theories that

have been developed to account for the mentioned aspects. Here are the most prominent ones

(without claim for completeness):

• Modified HL model including polymer reptation (Hoffman and Miller 1988);

• Sliding diffusion model to account for a variation of stem thickness and two-dimensional

growth (Hikosaka 1987, 1990);
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• Multipath approach for the step-wise addition of individual segments to form a complete

stem (Point 1979);

• Surface roughening model by (Sadler and Gilmer 1984; Sadler 1987) suggesting an

entropic origin of the activation barrier;

• Model based on spinodal decomposition by Olmsted et al. (1998);

• Mesomorphic phase transition model by Strobl (2000, 2006, 2009);

The models by Olmsted and Strobl reflect approaches which do not rely on the concepts of

classical nucleation theory and will therefore be presented briefly in the following sections.

3.3.4 Olmsted’s spinodal decomposition model

In the late 1990’s, multiple research groups reported that for certain polymers small-angle X-

ray scattering (SAXS) patterns showed up earlier during polymer crystallizations compared to

the corresponding wide-angle patterns, which was associated with density fluctuations prior

to the crystallographic packing of chains (Imai et al. 1992, 1994, 1995; Ezquerra et al. 1996;

Heeley et al. 2003; Kaji et al. 2005). The SAXS data was analyzed using a model initially

developed by Cahn and Hilliard for the spinodal decomposition of binary mixtures, describing

the data sufficiently well (Cahn and Hilliard 1959; Cahn 1961; Huston et al. 1966). The group

of Peter D. Olmsted at the University of Leeds later proposed a theoretical model based on

spinodal decomposition for crystallizing polymers that contradicted the concepts of thermally

activated nucleation and growth (Olmsted et al. 1998). The main difference in the theory is

that whereas in the kinetic treatment of nucleation an activation barrier has to be overcome,

spinodal decomposition happens spontaneously.

Theoretical approach

The thermodynamics of spinodal decompositions have been extensively studied for binary

mixtures, e.g., metal alloys (Binder and Fratzl 2005). Spontaneous demixing occurs when a

constant loss in free energy is associated with the phase separation, which is the case when the

curvature in a plot of the Gibbs free energy G vs. composition X is negative with d2G/dX 2 < 0

(Figure 3.10a). For curve segments with d2G/dX 2 > 0, demixing leads to a gain in free energy

∆G that is characteristic for a thermally activated nucleation and growth process. The binodal

and spinodal lines represent phase boundaries between the respective unstable, metastable,

and stable phases in a T − X -plot (Figure 3.10b). The selected temperature Texp and com-

position X determine whether spinodal decomposition or thermally activated nucleation and

growth will take place. A generic phase diagram for semi-crystalline polymers was proposed by

Olmsted et al. (1998) (Figure 3.10c), which is based on the scaled density ρ ·w instead of the

composition X as for binary mixtures. In order to account for all features of semi-crystalline

polymers, co-existence, metastable, and unstable regimes are included.
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Figure 3.10: a) Gibbs free energy G vs. composition X for a binary mixture. For case A, the difference
in Gibbs free energy ∆G for demixing is positive, corresponding to a thermally activated nucleation
and growth process from a metastable state. For case B, the ∆G is negative, leading to spontaneous
demixing (spinodal decomposition). b) Temperature T vs. composition X for the binary mixture of a).
The binodal and spinodal lines represent phase boundaries for the respective unstable, metastable, and
stable phases. c) Suggested phase diagram for a semi-crystalline polymer after Olmsted et al. (1998)
(temperature vs. density ρ times the monomeric specific volume w). By quenching from a temperature
T > Tm to temperatures Tc < Tm different scenarios can occur: for low supercooling, a nucleation and
growth process directly from the melt is realized (A), for higher supercoolings, an ordered nematic pre-
cursor phase and an isotropic metastable phase are created through a nucleation and growth process
(A’), for even higher supercoolings, a spontaneous demixing into an ordered isotropic phase takes place
by a spinodal decomposition mechanism (B).

Discussion

The spinodal decomposition model focuses on the initial stages of homogeneous nucleation

and does not represent a full theory for all stages of polymer crystallization. There have been

discussions to whether the early appearance of SAXS patterns compared to WAXS reflexes

during polymer crystallizations is indeed a real effect or caused by the different sensitivities

of SAXS and WAXS detectors (Baert and Van Puyvelde 2008; Panine et al. 2008). Some re-

searchers reported that by taking into account the different detection limits, the observed SAXS

patterns would be reasonably well explained by the formation of anisotropic sheaf-like nuclei

(Wang et al. 2000; Hikosaka et al. 2005). Furthermore, some groups observed a temperature-

dependence of the SAXS intensities that was not in accordance with the theory of spinodal

decomposition as discussed by Muthukumar (2004).
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3.3.5 Strobl’s mesomorphic phase transition model

The concept of pre-ordering preceding homogeneous nucleation was extended to the whole

growth process in the early 2000’s by Gert Strobl and co-workers at the University of Freiburg

(Germany) (Strobl 2000, 2006; Strobl and Cho 2007; Strobl 2009). Their reasoning was that

if density fluctuations occur during the very early stages of homogeneous nucleation, they

should as well play an important role at the growth front later on during polymer crystalliza-

tion. The model involves three basic steps: (1) formation of slightly ordered mesomorphic

domains in the melt, (2) stabilization by crystallization into granular blocks , (3) merging of

the granular blocks and surface re-ordering to form long extending lamellae (see Figure 3.11).

Figure 3.11: Mesomorphic phase transition model by Strobl (2000, 2006, 2009). Rather than a step-
wise addition of individual stems as in the HL theory, the model consists of multiple stages starting
with the formation of a slightly ordered mesophase that crystallizes into granular blocks, which are
then merged to form long extending lamellae.

Experiments and reasoning behind the proposed multistage model

Strobl and co-workers analyzed a range of materials including polylactide (PLA), poly ε-

caprolactone (PCL), syndiotactic polypropylene (s-PP), s-PP-co-octene and PE-co-octenes in

terms of their temperature-dependent crystallization and melting behavior using small angle

X-ray scattering (SAXS). They could determine the respective lamellar thicknesses for different

experimental conditions and compared them in Gibbs-Thomson plots of melting and crystal-

lization temperatures vs. 1/Lc (see Figure 3.12a). By linearly extrapolating the crystallization

and melting temperatures to 1/Lc = 0, they obtained melting and crystallization lines, and

identified another equilibrium temperature T0
c that is higher than T0

m. They suggested to

replace T0
m by T0

c in Equation 3.7, claiming that the lamellar thickness is controlled by the

supercooling conditions with respect to T0
c . Furthermore, growth rate measurements were

performed and a third temperature Tzg was identified as the one controlling lateral growth

instead of T0
m with the overall order being Tzg < T0

m < T0
c (Strobl 2009).
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Figure 3.12: a) Gibbs-Thomson plot for different crystallization temperatures (open symbols) and corre-
sponding melting points (solid symbols). The crystallization and melting lines are linear extrapolations
and lead to the equilibrium temperatures T 0

m and T 0
c . b) Temperature vs. the inverse of the stem length

for the multi-stage crystallization model with T∞am = Tzg < T∞ac = T 0
m < T∞mc = T 0

c and three lines that
describe melting, crystallization, and the mesomorphic phase transition.

As the observations of Strobl and co-workers could not be fully explained by the HL model with

its single characteristic temperature T0
m, they proposed their model of multiple stages during

crystallization. Their main reasoning was that, if crystallization and melting were controlled

by different laws and characteristic temperatures, the processes are not exactly the inverse

of each other, and thus involve different mechanisms. The experimental observations were

discussed in the light of Ostwald’s rule of stages, stating that nano-sized crystals will adopt

a structure that is favorable at small length scales, but might change when the object grows

(Keller et al. 1994). The initial pre-ordering was suggested to be governed by the mesomor-

phic phase transition line with the characteristic temperature T∞am , which is identical with the

macroscopically observed zero-growth rate temperature Tzg (Figure 3.12b).

Discussion

The mesomorphic phase transition model treats crystal growth as a multistage process, but

doesn’t provide an explanation for the very initial stages of homogeneous nucleation. It is

based on a phenomenological analysis of crystallization and melting temperatures, which

are only accessible over a relatively small temperature range. Under most real crystallization

conditions, a distribution of lamellar thicknesses and respective melting points is observed,

leading to less obvious trends in Gibbs-Thomson plots as the ones sketched in Figure 3.12a or

even non-linear curves that might collapse onto one line for 1/Lc = 0 (Xu et al. 2016). How-

ever, the concept of a pre-ordering step preceding polymer crystallization has been thoroughly

investigated by different groups using molecular dynamics simulations, who discovered that

very likely a pre-cursor phase is formed at the growth front (Sirota 2007; Sommer and Luo

2010; Milner 2011; Luo and Sommer 2011). In addition, atomic force microscopy (AFM) im-

ages of crystallized polymers revealed the proposed granular structure of lamellae in different

materials (Magonov and Godovsky 1999; Hugel et al. 1999).
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3.3.6 Kinetic analysis of crystallization data

Crystallization experiments are usually carried out by monitoring the buildup of crystallinity in

time-dependent experiments using e.g., optical microscopy, differential scanning calorimetry,

or X-ray scattering. By extracting kinetic parameters, crystallizations can be analyzed in terms

of their time-dependent nucleation and growth behavior. These parameters can be compared

for different polymers, experimental conditions, and additives, providing a way of reducing

the large amounts of data acquired in crystallization experiments. There are two important

types of experimental conditions: isothermal at constant temperature and non-isothermal at

constant cooling rate. The former delivers information on the nucleation and growth charac-

teristics for a chosen set of conditions in one single experiment, whereas the latter provides

information on the entire growth rate distribution when multiple experiments are carried out.

The Avrami model

Under isothermal conditions, radial spherulitic growth as shown in Figure 3.13 is well de-

scribed by a constant rate and a dimensionality parameter. In case of heterogeneous / ather-

mal nucleation, the following derivation leads to an analytical expression that describes the

crystallization kinetics: Let A be a reference point. If a number of nuclei N is distributed ran-

domly in space, and grow radially with the growth rate G, a Poisson distribution describes the

probability for point A to be hit c times by a growth front up to time t (Gedde 1999):

P (c) =
E (t)c

c!
exp [−E (t)] (3.36)

P: probability, c, E (t): considered and average number of crystal fronts that pass point A.

For c = 0, i.e., for the case that A was not hit by a crystal front, Equation 3.36 reduces to:

P (0) = exp [−E (t)] (3.37)

The average number of crystal fronts E(t) that pass point A can also be interpreted as an

extended volume counting all transformed domains (impingement is not taken into account).

It can be expressed by the product of the number of nuclei N per unoccupied volume Vtotal

times their individual volumes V0:

E (t) = V0 ·
N

Vtotal
=

4
3
π(G t)3 ·

N
Vtotal

(3.38)

E (t): extended occupied volume, G: growth rate, t: time, N : number of nuclei, Vtotal: total

unoccupied volume.

The volume-related relative crystallinity φc/φ
∞
c is given by:

φc/φ
∞
c = 1− P(0) = 1− exp [−E (t)] = 1− exp

�

−
4
3
π(G t)3 ·

N
Vtotal

�

(3.39)
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Figure 3.13: Illustration for three points in time during isothermal crystallizations of polymers under
heterogeneous (a) or homogeneous (b) nucleation conditions.

In case of homogeneous nucleation with a nucleation rate I (Figure 3.13b; see also subsec-

tion 3.3.3), the instantaneous change in occupied extended volume dE is given by:

dE = I · 4πr2
�

t −
r
G

�

dr (3.40)

Integration from r = 0 to r = G t at time t yields:

E (t) =

G t
∫

r=0

dE =

G t
∫

r=0

I · 4πr2
�

t −
r
G

�

dr =
π

3
IG3 t4 (3.41)

Inserting Equation 3.41 into Equation 3.39 yields:

φc/φ
∞
c = 1− exp

�

−
π

3
IG3 t4

�

(3.42)

Generalization of Equation 3.39 and Equation 3.42 leads to the Avrami equation2, and is often

linearized to be able to perform a linear regression (Avrami 1939, 1940, 1941):

φc/φ
∞
c = 1− exp [−(K t)n] = 1− exp [−ktn] (3.43)

log
�

−ln
�

1−φc/φ
∞
c

��

= n · log (K) + n · log (t) = log (k) + n · log (t) (3.44)

2 Equation 3.43 is also called the JMAK equation after the researchers W. A. Johnson, R. F. Mehl, M. Avrami, and
A. Kolmogorov who contributed to its derivation.
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The dimensionality parameter n adopts different values for 1D, 2D, and 3D growth depending

on the type of nucleation (homogeneous: n = dim+ 1, heterogeneous: n = dim, see Fig-

ure 3.14). Care has to be taken when experimentally obtained dimensionality parameters are

discussed without complementing structural information (Wunderlich 1976; Lorenzo et al.

2007). Experimental factors that may lead to wrong mechanistic conclusions are tempera-

ture gradients, a prolonged induction period, and confined sample spaces. Furthermore, the

Avrami equation describes only the early stages of growth before crystal impingement and

secondary growth. Thus, fitting experimental data is usually only reliable in the range of

0< φc/φ
∞
c < 0.5 (Lorenzo et al. 2007).

a) b)

Figure 3.14: a) Calculated crystallization curves based on Equation 3.43 for different values of K and
n. b) Avrami plot of the calculated crystallization curves based on Equation 3.44.

3.4 Flow-induced crystallization

3.4.1 General remarks

Early on, polymer scientists noticed that the application of flow has significant effects on

the crystallization kinetics, the morphology, and ultimately the material properties of semi-

crystalline polymers. Initial works by Lagasse and Maxwell (1976), Mackley and Keller (1973);

Mackley et al. (1975), and the group of Janeschitz-Kriegl (Eder and Janeschitz-Kriegl 1988;

Eder et al. 1990, 1992; Janeschitz-Kriegl 1992; Liedauer et al. 1993, 1995) showed that flow

leads to increased nucleation and row-nucleated structures above a certain threshold of ap-

plied flow stress and strain. These anisotropic structures are characterized by a high degree

of chain orientation in the direction of flow as shown in Figure 3.15. The high degree of ori-

entation drastically increases the mechanical strength of the materials. For semi-crystalline

fibers and films, this structural feature is essential as it permits the creation of thin, yet strong,

filaments and layers due to the presence of strain-hardening.3

3 The quantification of chain orientation in fibers is frequently analyzed using Herman’s orientation function, which
will be presented and discussed in section 7.4 of chapter 7.
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Figure 3.15: Pathway of flow-induced crystallization: flow alters the polymeric chain conformation. If
chain relaxation is slower than crystallization under the chosen conditions, row-nucleated morphologies
are obtained that exhibit a high degree of chain orientation in the nucleus.

The mechanism behind flow-induced crystallization involves the competition between chain

deformation and relaxation. In other words, if the application of flow overrides the ten-

dency of polymeric chains to form random coils, a substantial degree of orientation is main-

tained. An important consequence is that the timescale of deformation has to be equal or

shorter than the one of polymer relaxation. As commercially available semi-crystalline poly-

mers have usually high polydispersities (broad molecular weight distributions), the slowest

relaxing components of the highest molecular weights are the first to display a substantial

degree of chain orientation. Consequently, the formation of row-nucleated morphologies is

molecular-weight-dependent and can be altered by incorporating additional long polymeric

chains (e.g., UHMWPE as shown by Wingstrand et al. (2017)). Main works on the elucida-

tion of this mechanism have been carried out by the group of Julie Kornfield at Caltech, USA

(Kumaraswamy et al. 1999, 2000, 2002; Kimata et al. 2007), the group of Benjamin Hsiao at

Stony Brook University, USA in collaboration with the group of Francisco Baltá-Calleja at at the

Institute for Structure of Matter, CSIC, Spain (Nogales et al. 1999; Somani et al. 2000, 2001,

2002, 2003; Agarwal et al. 2003), and the group of Jean-Marc Haudin at MINES ParisTech,

France (Jay et al. 1999; Duplay et al. 2000). Most works were carried out using set-ups of X-ray

scattering or microscopy equipped with flow apparatuses. Especially, small angle X-ray scat-

tering (SAXS) was used extensively in these works as it is sensitive to the size and orientation

of the formed lamellae (tens of nanometers).

3.4.2 Effects of flow on the morphology of crystallizing polymers

As discussed in section 3.3, nucleation in semi-crystalline polymers always involves de-coiling

and reorganization to form stable nuclei. Flow promotes these processes and substitutes the

otherwise stochastic diffusion of polymeric chains under quiescent conditions. Furthermore,

it directs crystal growth by a template-based mechanism: once row-nuclei have been formed

under the influence of flow, lamellar growth takes over and leads to lamellae perpendicular

to the flow direction. This phenomenon is responsible for the persisting structural anisotropy
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during flow-induced crystallization even after the cessation of flow. In Figure 3.16, the effects

of flow on the microstructure of crystallizing polymers is displayed. At relatively mild flow

conditions, an increase in nucleation density and reduction in spherulite sizes is observed.

With increasing flow stress and strain, elongated and ultimately row-nucleated morphologies

are obtained. The latter are also known as cylindrites (Varga 1983, 1992; Varga and Karger-

Kocsis 1996).

Figure 3.16: Effects of flow on the microstructure of crystallizing polymers. With increasing flow stress
and strain, higher nucleation densities, elongated spherulites, and row-nucleated morphologies (cylin-
drites) are observed. The lamellar substructure shows strong orientation perpendicular to the flow
direction for more vigorous flow conditions.

If the applied flow stress is further increased, the induced row-nucleated structures become

smaller and smaller. For typical processing conditions of injection molding or fiber spinning

with strain rates of γ̇ > 1000/s, the lamellae perpendicular to the flow direction extend only

for a few tens of nanometers. This nano-sized morphology is oftentimes called shish kebab

after a Turkish meat dish and is usually found in semi-crystalline fibers or the skin layer of

injection molded parts (Figure 3.17).

Depending on the processing method, the type of applied flow can be predominantly exten-

sional, shear, or a combination of both (e.g., fiber spinning: extensional, injection molding:

shear flow, thermoforming: both). The flow conditions needed to achieve the different regimes

shown in Figure 3.16, can be divided into time-dependent terms (flow duration and strain

rate) and time-independent terms (total strain and specific work). As already pointed out in

the introduction, the competition between distorted chain conformation and chain relaxation

plays an important role in the formation of row-nucleated morphologies. It has been shown

independently by different research groups that the applied strain rate most probably has to

be larger than the inverse of the longest relaxation time to achieve persistent chain orientation

(Lellinger et al. 2003; Elmoumni et al. 2003, 2005; Elmoumni and Winter 2006; Steenbakkers

2005). However, the number and spatial dimensions of row-nucleated morphologies are also

connected to the time-independent quantities, i.e., total strain and specific work (Mykhaylyk
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Figure 3.17: Shish kebab morphology for high strain rates present in injection molding or fiber spinning
(e.g., γ̇ > 1000/s). Different from the micron-sized row-nucleated cylindrites, shish kebabs consist of
stacked lamellae with lateral dimensions of some tens of nanometers.

et al. 2008, 2010). For more complex material systems with incorporated additives or fillers,

the presence of additional surfaces leads to a facilitated formation of row-nucleated morpholo-

gies (Byelov et al. 2008; Szkudlarek et al. 2013).

3.4.3 Modeling flow-induced crystallization

Initial works on modeling flow-induced crystallization were carried out by Janeschitz-Kriegl

and Eder at the Johannes Kepler University Linz (Austria) (Eder et al. 1990; Janeschitz-Kriegl

1992; Eder et al. 1992). They made important contributions to the description of the low strain

rate regime and pointed out the importance of separating temperature from flow effects con-

cerning polymer crystallization. Another very active group of researchers around Han Meijer

and Gerrit W. Peters at Eindhoven University of Technology (Netherlands) published a number

of very systematic studies and thorough theoretical treatments of flow-induced polymer crys-

tallization (Vleeshouwers and Meijer 1996; Zuidema et al. 2001; van Meerveld et al. 2004;

Housmans, Peters and Meijer 2009; Custódio et al. 2009; Housmans, Steenbakkers, Rooze-

mond, Peters and Meijer 2009; Housmans, Gahleitner, Peters and Meijer 2009; Roozemond

et al. 2014). Further works have been carried out by Coppola et al. (2001); Acierno et al.

(2002); Coppola et al. (2004), Koscher and Fulchiron (2002), and Mykhaylyk et al. (2008);

Graham (2014). Plots of the onset time tonset (see Figure 6.6 in chapter 6) or half crystal-

lization time t1/2 vs. the applied shear strain rate γ̇ help to classify the effects of strain rate,

total strain, and temperature on the morphology of crystallizing polymers. In Figure 3.18, the

generally observed trends are shown based on articles by Eder et al. (1990) and Housmans,

Peters and Meijer (2009). Lowering the crystallization temperature decreases the induction

time tonset as expected. Above a critical strain rate γ̇min the applied flow leads to a further

decrease of tonset, thereby acting as an apparent lower crystallization temperature (note: the

induction time tonset is frequently defined as the intersecting point of two linear extrapola-

tions for the induction and growth period in isothermal crystallization experiments (see e.g.,

Figure 6.6, p. 101 in chapter 6).
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Figure 3.18: Induction time tonset (a) and normalized half crystallization time t1/2/t1/2(quiesc.) (b) vs.
the applied strain rate γ̇. Multiple regimes are observed, differing in morphological and kinetic aspects.
Adapted from Eder et al. (1990) and Housmans, Peters and Meijer (2009).

The crystallization half time t1/2 is usually normalized to the half time under quiescent con-

ditions, thereby removing any temperature-dependent effects. In the literature, this ratio is

sometimes also called θ . Four different regimes can be distinguished:

I: No significant influence of flow on the crystallization behavior;

II: Increased nucleation, spherulitc growth;

III: Increased nucleation and formation of ellipsoid morphologies;

IV: Increased nucleation and formation of long extending row-nucleated structures;

Housmans et al. discussed the occurrence of these multiple regimes based on the characteristic

flow relaxation times of polymeric melts (Housmans, Peters and Meijer 2009). In regime I, the

applied strain rates were assumed to be smaller than the inverse of the reptation time τd (for

the definitions of the reptation time τd and Rouse time τR see e.g., Larson et al. (2003)). As τd

characterizes the slowest relaxation mode, all relaxation processes would be fast compared to

the applied strain rate. In regime II, the strain rate was thought to be larger than the inverse

of τd , but smaller than the inverse of the Rouse relaxation time τR. Polymeric chains would be

oriented, but not significantly stretched. In regimes III and IV, the strain rate was assumed to

be higher than the inverse of τR, leading to chain stretching and row-nucleated morphologies.

The difference between regime III and IV was explained by the need of a certain total strain to

achieve substantial chain stretching. However, Coppola et al. (2001) already noted earlier that

the formation of row-nucleated morphologies was experimentally found to happen at much

lower strain rates than the inverse of the Rouse time τR, thereby ruling out the argument of

pronounced chain stretching as a requirement for the formation of row-nucleated structures.

More likely, preventing the longest polymer chains from reptating in combination with sub-

stantial disentanglement and orientation for shear rates above the inverse of the reptation

time τd leads to regimes III and IV.
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The theoretical treatments of flow-induced crystallization range from purely phenomenologi-

cal, over semi-microscopic, to fully microscopic models. The shared main goal is to connect the

observed features with the applied flow conditions, thereby having to bridge the gap from mi-

croscopic chain conformation, over mesoscopic semi-crystalline morphology, to macroscopic

continuum mechanics. Models that merely focus on kinetic aspects are oftentimes modifi-

cations of the treatments by Avrami, Ozawa, and Nakamura for the polymer crystallization

under quiescent conditions (see subsection 3.3.6). For isothermal experiments, the Avrami

model provides the following expression for athermal nucleation and spherulitic growth:

φc/φ
∞
c = 1− exp (−E (t)) with E (t) =

4
3
π(G t)3 ·

N
Vtotal

(3.45)

φc/φ
∞
c : volume-related relative crystallinity, E(t): extended occupied volume, G: growth

rate, t: time, N : number of nuclei, Vtotal: total unoccupied volume.

More generally, E (t) can be defined as the integral over all individual spherulitic volumes

v(t, t0) that started to grow at time t0 multiplied by the nucleation rate Ṅ :

E (t) =

t
∫

0

v (t, t0) Ṅ d t (3.46)

The total number of nuclei N is given by the sum of all created nuclei under quiescent crystal-

lization conditions Nq and the additional flow-induced nuclei Ns:

N = Nq + Ns (3.47)

Koscher and Fulchiron (2002) linked the appearance of additional flow-induced nuclei Ns to

the first normal stress coefficient N1 by:

Ṅs = FN1 (3.48)

Ṅs: Flow-induced nucleation rate, F : Finger strain tensor, N1: first normal stress difference.

Equation 3.48 was justified by the fact that the first normal stress difference N1 is a mea-

sure of elasticity and thus the distortion of the chain conformation. The model by Koscher et

al. predicts the increased nucleation density and speed up of crystallization upon the applica-

tion of flow. However, it doesn’t take into account the modified semi-crystalline morphology in

regimes III and IV at higher flow stresses and strains. A more sophisticated model was proposed

by Zuidema et al. (2001) considering also morphological changes during flow-induced crystal-

lization, especially the formation of row-nucleated structures above certain critical strain rates.
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In the following chapter, the used concepts in terms of theory, experimental design, and data

analysis will be presented for each characterization method. Experimental details such as in-

strumental specifications, test parameters, etc. will be given in the individual chapters together

with the results and discussion sections.

4.1 Rheology

Rheology is the science of flow and deformation of matter (from Greek rheo – "flow" and logia –

"study of"). It combines the theoretical concepts of fluid and solid mechanics with observed

flow phenomena for a range of mostly soft materials such as simple liquids, emulsions, suspen-

sions, polymers, solutions, or gel formers that show both fluid- and solid-like character. The

complexity of these materials strongly affects their flow behavior. Thus, unraveling structure-

property relationships has a high importance for process engineering and product develop-

ment. In the following sections, some fundamentals, common experiments, and data analysis

will be presented based on books by Macosko (1994); Larson (1999); Morrison (2001); Dealy

and Larson (2006); Shaw (2012); Dealy and Wang (2013).

4.1.1 Fundamentals

Flow and deformation of matter can be described by fluid and solid mechanics, which rely on

the conservation of mass, momentun, and energy. The main goal in rheological experiments

is to obtain information on the material properties under defined flow and deformation con-

ditions in shear or elongation. In a simple shear experiment, the shear stress σ, the shear

strain γ, and the shear strain rate γ̇ are defined as intensive quantities1 (Figure 4.1):

σ =
F
A

[σ] = Pa (4.1)

γ=
∆x
h

[γ] = 1. (4.2)

γ̇=
dγ
d t
=

v
h

[γ̇] = s−1 (4.3)

σ: shear stress, γ: shear strain, γ̇: shear strain rate, F : force, A: area, h: height, ∆x: displace-

ment, v: velocity, t: time.

1 For simplicity, stress σ and strain γ are treated as scalars here. In a three dimensional treatment, they would
have to be defined as tensorial quantities.
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Figure 4.1: Illustration of simple shear applied to an ideal elastic solid (a) and an ideal viscous fluid
(b). The definitions of stress, strain, and strain rate together with their respective relationships for the
two cases are given by Equation 4.1, Equation 4.2, Equation 4.3, Equation 4.4, and Equation 4.5.

In rheology, two limiting cases of material behavior are distinguished: elasticity and viscosity.

Ideal solids (Figure 4.1a) are assumed to respond purely elastic, i.e., the material will return

to its original size and shape once a mechanical load is removed. This can be expressed by

a proportionality between the stress σ and the strain γ with the proportionality coefficient G

(the shear modulus), which corresponds to Hooke’s law for a shear experiment:

σ(γ) = G · γ (4.4)

On the other hand, ideal fluids under laminar flow conditions show a proportionality between

the stressσ and the strain rate γ̇with the proportionality coefficient η (the dynamic viscosity),

and was found by Newton in 1687 (Figure 4.1b):

σ(γ̇) = η · γ̇ (4.5)

Many real substances exhibit both elastic and viscous properties and are therefore called vis-

coelastic materials. In order to describe their behavior, the relationships for the limiting cases

(Equation 4.4, Equation 4.5) are combined into differential equations, visually corresponding

to a connection of spring and dashpot elements. A model that describes liquids with a low elas-

tic contribution sufficiently well is the Maxwell model, which is based on a serial connection

of an elastic and a viscous element. Its differential form is given by:

γ̇= γ̇Newton + γ̇Hooke =
σ

η
+
σ̇

G
(4.6)

σ(t) = ηγ̇−
σ̇η

G
= ηγ̇− σ̇λ (4.7)

σ̇(t) = Gγ̇−
σG
η
= Gγ̇−

σ

λ
(4.8)

σ: stress, γ̇: strain rate, G: shear modulus, η: viscosity, λ: relaxation time.
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Solving the differential Equation 4.8 for a given problem leads to the material functions G(t)

and η(t). In a stress relaxation experiment for example, the strain rate vanishes once the load

is removed (γ̇= 0). Thus, Equation 4.8 can be rewritten as:

σ̇(t) = −
σ

λ
(4.9)

After a separation of variables and integration, the time-dependent quantities are obtained

(Macosko 1994):

σ(t) = σ0exp
�

−
t
λ

�

(4.10)

G(t) = G0exp
�

−
t
λ

�

(4.11)

η(t) = η0exp
�

−
t
λ

�

(4.12)

The relaxation time λ = η/G is a material parameter (e.g., molecular weight-dependent for

polymers). In many cases, a single relaxation time λ is not sufficient to describe the ob-

served relaxation behavior of complex materials and weighted sums of relaxation terms (Equa-

tion 4.13) or even full relaxation spectra (Equation 4.14) have to be considered:

G (t) =
N
∑

k=1

Gkexp
�

−
t
λk

�

(4.13)

G (t) =

∞
∫

0

H (λ)
λ

exp
�

−
t
λ

�

dλ (4.14)

The inversion of measured experimental G(t) data into relaxation time distributions H(λ) can

be carried out using regularization approaches (Thimm et al. 1999). From a H(λ) distribution

one can then estimate molecular properties such as the molecular weight distribution of poly-

mers. However, a discrete number of relaxation terms is oftentimes sufficient to describe the

material behavior sufficiently well (Baumgaertel et al. 1992).

4.1.2 Rotational and oscillatory shear rheometry

The branch of rheology that deals with apparatuses and experiments is called rheometry. Mea-

surements of rheological quantities such as G and η can be carried out in pressure driven or

drag flows. The latter offers a high versatility of different test geometries (parallel-plate, cone-

plate, Couette cylinder, etc.) that can be selected depending on the type of material and the

desired experimental conditions. The geometries are designed to provide different flow fields,

e.g., a radius-independent shear rate γ̇ in case of a cone-plate, and allow the precise calcu-

lation of stress, strain, and strain rate depending on the torque, angular velocity, and sample

dimensions (Morrison 2001). There are two basic types of experiments in shear rheome-

try: rotational and oscillatory experiments. The former are suitable for the determination
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of viscosity curves for low viscous liquids, whereas the latter are an appropriate choice for

materials such as polymer melts, gels, or highly filled suspensions. As this thesis deals with

crystallizing polymer melts, some features of oscillatory tests will be outlined briefly. When an

oscillatory excitation is applied to a sample, the stress σ, strain γ, and strain rate γ̇ become

time-dependent quantities:

γ(t) = γ0 · sin(ω1 t) (4.15)

γ̇(t) =ω1γ0 · cos(ω1 t) (4.16)

σ(t) = σ0 · sin(ω1 t +δ) = G∗ · γ(t) (4.17)

The material parameter G∗ can be separated into an imaginary and a real part, and is connected

to the phase angle δ by a trigonometric relation:

|G∗|=
Æ

(G′)2 + (G′′)2 and tan(δ) =
G′′

G′
(4.18)

The storage modulus G′ represents the elastic contributions, whereas the loss modulus G′′ is

a characteristic measure of all viscous contributions. This definition is based on the obser-

vation that the response of solids shows a phase angle of δ = 0, i.e., the stress evolution is

synchronous to the strain (ideal elasticity – see subsection 4.1.1). For viscous materials, the

phase angle δ = 90°, standing for a maximum phase lag between the excitation and response.

Strain- and frequency-dependent measurements

For the characterization of viscoelastic materials, two rheometric tests based on a variation of

strain or frequency are oftentimes used. In a strain or amplitude sweep, a sinusoidal excitation

using a fixed frequency ω1 and a varying strain amplitude γ0(t) is applied. In contrast, a

frequency sweep is carried out using a fixed strain amplitude γ0 in combination with a variation

of the excitation frequency ω1(t):

γ(t) = γ0(t) · sin(ω1 t) (4.19)

γ(t) = γ0 · sin [ω1(t) · t] (4.20)

The strain sweep test is usually performed to distinguish the linear viscoelastic (LVE) from

the non-linear viscoelastic (NLVE) regime (Figure 4.2a). At relatively low strain amplitudes

γ0 models based on linear differential equations such as the Maxwell model describe the ma-

terial behavior sufficiently well. At high strain amplitudes γ0, the stress response becomes a

non-linear function of shear rate and strain (subsection 4.1.3). In contrast to a strain sweep,

a frequency sweep is used to characterize the time-dependent flow behavior of viscoelastic

materials (Figure 4.2b).
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Figure 4.2: a) Strain-sweep test of a predominantly elastic material. The linear and nonlinear viscoelas-
tic regimes are separated by a critical strain γmax. b) Frequency-dependent test of a sample that shows
a Maxwell behavior according to Equation 4.21.

As discussed in the context of the Maxwell model, many materials exhibit relaxation pro-

cesses that can be probed using frequency-dependent tests. For a single relaxation time λ, the

frequency-dependence of storage G′ and loss modulus G′′ are given by (Macosko 1994):

G′ = G
(λω)2

1+ (λω)2
G′′ = G

λω

1+ (λω)2
(4.21)

These relations lead to characteristic frequency-dependent curves in a log-log plot as indicated

in Figure 4.2b (slope of 1 for G′′, slope of 2 for G′, at G′ = G′′ the relaxation time λ is

equal to the frequency ω). Real materials are oftentimes characterized by a distribution of

relaxation times. For frequency-dependent experiments, a superposition of multiple Maxwell

modes usually provides a good description of measured experimental data:

G′ =
∑

i

�

Gi
(λiω)

2

1+ (λiω)
2

�

G′′ =
∑

i

�

Gi
λiω

1+ (λiω)
2

�

(4.22)

The time-temperature superposition principle (TTS)

The accessible frequency range in a measurement can be artificially increased by making use

of the time-temperature superposition principle (TTS). For many materials, an inverse propor-

tionality between frequency and temperature with respect to the rheological response is ob-

served. Simply speaking, a lower frequency is mimicked by an increased temperature and vice

versa. This relationship is usually expressed in the WLF-equation after its inventors Williams,

Landel, and Ferry (Williams et al. 1955):

log(aT ) = −
C1 · (T − Tref)
C2 + (T − Tref)

(4.23)

aT : shift factors, Tref: reference temperature, C1 ≈17.4 and C2 ≈51.6 K for Tref = Tg .
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The shift factors aT provide the conversion ratio for all rheological quantities:

log(aT ) = log
�

ω

ωref

�

= log
�

η

ηref

�

= log

�

G′

G′ref

�

= log

�

G′′

G′′ref

�

(4.24)

The time-temperature superpostion principle is mainly used for the creation of rheological

master curves. Multiple frequency-dependent measurements are recorded for different tem-

peratures and shifted with respect to the reference temperature Tref using numerical minimiza-

tion algorithms. The resulting curve spans many orders of magnitude in frequency and allows

the analysis of the relaxation behavior in frequency domains that are usually not accessible by

experiment or would be very time consuming (Figure 4.3).

a) b)

Figure 4.3: a) Frequency-dependent measurements of a poly methyl methacrylate (PMMA,
Mw: 320 kg/mol, -D: 2.2) at different temperatures. b) By shifting the individual frequency
curves with respect to a reference temperature Tref, a master curve is obtained that spans seven orders
of magnitude.

4.1.3 Nonlinear rheology

Many soft materials exhibit non-linear rheological behavior, i.e., the stress response is a func-

tion of strain or strain rate. Phenomena such as shear-thickening (dilatant fluids) or shear-

thinning (pseudoplastic fluids) have its origin in the microscopic structure of the materials.

For example, polymers show shear-thinning, which is a consequence of the decreasing number

of chain entanglements at higher strains and shear rates. Other materials such as concentrated

suspensions and pastes exhibit shear-thickening as they form elastic clusters at higher strains

and shear rates. In some materials, a network of associative forces has to be destroyed before

a material exhibits flow, resulting in a yield stress behavior (e.g., for mayonnaise, toothpaste,

or blood)2. As most processing methods such as pumping, spraying, or molding involve high

shear forces, the study of nonlinear rheology is of high relevance for many industries.

2 Also a time-dependent behavior can be observed: thixotropy (time-dependent shear-thinning) and rheopexy
(time-dependent shear-thickening).
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Oscillatory nonlinear rheology

For oscillatory shear measurements, one distinguishes between experiments in the linear vis-

coelastic regime under small amplitude oscillatory shear (SAOS) conditions, and experiments

in the nonlinear viscoelastic regime under large amplitude oscillatory shear (LAOS) condi-

tions. The transition region is sometimes referred to as the medium amplitude oscillatory

shear (MAOS) regime (Hyun and Wilhelm 2008). The nonlinear stress response of a material

under LAOS conditions is characterized by a non-sinusoidal waveform that can be visualized

in Lissajous or Bowditch curves as shown in Figure 4.4b, where the stress σ is plotted vs. the

strain γ (Ewoldt et al. 2008). However, this type of representation is hardly suitable for the

visualization of changing nonlinear material behavior during processes such as gel formation,

crystallization, or phase separation. Additionally, a quantification of nonlinearity using geo-

metric analysis is limited. More sophisticated approaches to quantify nonlinear behavior are

the stress composition method by Ewoldt and McKinley (Ewoldt et al. 2008; Hyun et al. 2011)

using Chebychev polynomials and the Fourier transform (FT) rheology method by Wilhelm

(Wilhelm et al. 1998; Wilhelm 2002).

a) b)

Figure 4.4: a) Schematic shear strain γ and nonlinear oscillatory stress response σ. b) Harmonic anal-
ysis based on the FT framework by Wilhelm et al. (1998).

The Fourier transform rheology approach is based on a harmonic analysis of the stress re-

sponses using Fourier transforms F (Fourier analysis). The Fourier transform of a time-

dependent signal f (t) is defined as:

F{ f (t)}= F(ω1) =

+∞
∫

−∞

e−iω1 t · f (t)d t (4.25)

Inversely, the time-dependent signal f (t) can be represented by a combination of waves:

f (t) =
1

2π

+∞
∫

−∞

eiωt · F(ω)dω. (4.26)
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Applying Fourier analysis to a stress signal leads to a corresponding frequency spectrum. For

oscillatory experiments under LAOS conditions, monotonically decaying higher harmonics are

observed (Figure 4.4c). As right and left turns in oscillatory experiments should yield identi-

cal responses, the stress exhibits a periodicity of 180°, which implies that even harmonics are

not observed. The intensity of the third harmonic over the fundamental I3/I1 = I31 has the

highest sensitivity for nonlinearity and can be compared readily or as an intrinsic parameter

(Q = I31/γ
2
0, Hyun and Wilhelm (2008)) for different materials such as emulsions, colloidal

gels, or polymer melts (Reinheimer et al. 2011; Kim et al. 2014; Cziep et al. 2016). Further-

more, the evolution of nonlinear behavior during transformation process like order-disorder

transitions in block copolymers, gel formations, or crystallizations can be monitored and quan-

tified (Langela et al. 2002; Hilliou et al. 2009; Dötsch et al. 2003; Malek et al. 2013).

4.2 Nuclear magnetic resonance (NMR)

Nuclear magnetic resonance (NMR) is an interaction between nuclei and electromagnetic

waves in magnetic fields as well as the terminology for all corresponding characterization

techniques. The earliest reported NMR experiments were carried out by Bloch et al. (1946).

Since then a number of powerful techniques including Fourier-transform spectroscopy, multi-

dimensional NMR spectroscopy, and magnetic resonance imaging (MRI) have been developed.

The most important applications of NMR are the structural elucidation of mostly organic

molecules and clinical in-vivo imaging. In the following sections, the fundamentals of NMR

will be presented based on texts by Schmidt-Rohr and Spiess (1994); Slichter (1996); Kim-

mich (1997); Keeler (2011); Kimmich (2012).

4.2.1 Fundamentals

Nuclei consist of protons and neutrons that posses angular momentum (spin). The magnetic

moment ~̂µ is proportional to the spin angular momentum ~̂I :

~̂µ= γ · ~ · ~̂I (4.27)

~̂µ: magnetic moment, γ: magnetogyric ratio, ~: reduced Planck constant, ~̂I : spin angular mo-

mentum.

The magnetogyric ratio γ is characteristic for each isotope and determines the sensitivity of

NMR towards that specific nucleus (Table 4.1). As the most abundant isotopes of carbon
�

12C
�

and oxygen
�

16O
�

are undetectable by NMR (I = 0), the analysis of organic matter is mostly

based on hydrogen nuclei / protons (I = 1/2, high γ and abundant, see Table 4.1). By analyz-

ing the interactions of nearby protons, detailed information about molecular structures and

their dynamics can be obtained.
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Nucleus I Abundance [%] Magnetogyric ratio γ/2π [MHz/T] Relative sensitivity
1H 1/2 99.9 42.6 1
19F 1/2 100 40.1 8.32 · 10−1

11B 3/2 80.1 13.7 1.65 · 10−1

31P 1/2 100 17.2 6.65 · 10−2

13C 1/2 1.07 10.7 1.59 · 10−2

2H 1 0.0115 6.54 9.65 · 10−3

Table 4.1: Abundances, magnetogyric ratios, and relative sensitivities for selected nuclei.

In a static magnetic field ~B0 = (0, 0, B0), the spin angular momentum ~̂I adopts an orientation

along the z-direction. The longitudinal component Îz is quantized with 2I + 1 eigenstates:

m= I , I − 1, ...,−I (4.28)

m: magnetic quantum number.

The absolute magnetic moment in z-direction is given by:

µ̂z = m · γ · ~ (4.29)

The energy E is the product of the magnetic moment ~̂µ times the static magnetic field ~B0 and

leads to discrete energy levels Em depending on the magnetic quantum number m:

Em = − ~̂µ · ~B0 = −m · γ · ~ · B0 (4.30)

Consequently, the energy difference ∆Em depends on the ~B0 field as discovered by Pieter Zee-

man in 1896 (Figure 4.5):

∆Em = γ · ~ · B0 (4.31)

Transitions between these energy levels can be induced by irradiating the sample with elec-

tromagnetic waves with the Larmor frequency ωL:

∆Em = ~ωL = γ · ~ · B0 ⇒ ωL = γ · B0 (4.32)

ωL: Larmor precession angular frequency, γ: magnetogyric ratio, B0: static magnetic field.

The macroscopic net magnetization ~M0 for an ensemble of n nuclei is given by the sum of all

individual magnetic moments ~µi:

~M0 =
n
∑

i=1

~µi (4.33)
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Figure 4.5: Energy E vs. static magnetic field strength B0 for a spin 1/2 nucleus. The two orientations

of the spin angular momentum ~̂I in the ~B0 field lead to an energy splitting ∆E (Zeeman interaction).

The population of energy levels (ground and excited eigenstates) for an ensemble of n nuclei

follows a Boltzmann distribution:

Nβ
Nα
= gi · exp

�

−
∆Em

kT

�

(4.34)

Nβ/Nα: population ratio of excited vs. ground state, gi: degeneracy of the state i.

For NMR experiments at room temperature, kT is relatively large compared to ∆Em. There-

fore, ~B0 is desired to be as large as possible to obtain the highest possible difference between

the population of the ground and excited states (Figure 4.5). In modern high-field NMR spec-

trometers B0 = 10 – 20 T using superconducting magnets with a substantial gain in signal-to-

noise ratio (SNR) compared to permanent magnets (0.2 – 2 T). Overall, higher fields reduce

the required measurement time for achieving a specified signal-to-noise ratio (SNR∝
p

t).

NMR interactions

In molecules, nuclei are in close proximity to each other, which leads to strong interactions

through chemical bonds and space. There are different types of NMR interactions such as

the chemical shift, homo- and heteronuclear dipolar coupling, or J -coupling. All of them can

be treated as quantum mechanical perturbations of the spin system in its unperturbed state

defined by the Zeeman interaction. The basis for quantum mechanical treatments are the

time-independent and time-dependent Schrödinger equations:

Ĥψ= Eψ (4.35)

i~
∂ψ (t)
∂ t

= Ĥψ (t) (4.36)

Ĥ: Hamilton operator, E: energy, ψ: wave function, ~: reduced Planck constant, t: time.

Equation 4.35 leads to the energy eigenstates for a selected system that is defined by the

Hamilton operator (Hamiltonian) Ĥ. On the other hand, Equation 4.36 is relevant for all
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time-dependent processes such as the excitation to and the relaxation from different energy

levels, and its integration yields the time evolution of a selected system. Some important NMR

interactions and their respective Hamiltonians are shown in Table 4.2. Quantum mechanical

perturbation theory separates the overall Hamiltonian into a non-perturbed and perturbation

term. This separation is valid for perturbations that are small compared to the entire energy

of the system. Depending on the problem, calculations have to be carried out using first or

higher order approximations and potentially including time-dependence. More information

on the quantum mechanical description can be found in textbooks by e.g., Schmidt-Rohr and

Spiess (1994); Slichter (1996); Mehring (1983).

Type of interaction Hamiltonian Effect

Zeeman ĤZ = −γ ÎzB0 Resonance at ωL

Chemical shift ĤCS = γ~̂Iσ~B0 Shift relative to ωL

Dipolar coupling ĤD = −
µ0~γ1γ2

4π·r3 · 1
2

�

3cos2θ − 1
�

¦

3 Î1z Î2z − ~̂I1 · ~̂I2

© Line broadening /

splitting

J-coupling ĤJ = −2πJ
�

~̂I1 · ~̂I2

�

Line splitting

Quadrupolar

coupling
ĤQ =

eQV
2I(2I−1)·~

1
2

¦

3 Î1z Î2z − ~̂I1 · ~̂I2

© Line broadening /

splitting

RF irradiation ĤRF =ω1 Îx/y = −γB1 Îx/y Rabi oscillation

Table 4.2: Hamiltonians for different interactions in frequency units and their effects on NMR. ~B0: static
magnetic field, ~B1: induced magnetic field, γ: magnetogyric ratio, σ: chemical shift tensor, r: distance,
µ0: vacuum permeability, θ : orientation angle between the spin pair vector and ~B0, Q: quadrupolar
moment, e: elemental charge, V : field gradient (Schmidt-Rohr and Spiess 1994; Mehring 1983).

Pulsed NMR

To rapidly investigate a large frequency range and to exploit the multiplex advantage in NMR

experiments, modern spectrometers make use of short radio frequency (RF) pulses. A fre-

quency generator with f 'ωL/2π is turned on for short times τ (e.g., 1 – 100 µs), producing

a square wave with a corresponding spectral bandwidth of several hundred kHz. The interac-

tion of RF pulses with nuclei in a static magnetic field can be rationalized using a vector model

in a coordinate system that’s rotating withωL . At equilibrium, the macroscopic magnetization
~M0 is aligned along the ~B0 field, which is defined as being oriented along z. Once an RF pulse

is applied, the ~B1 field in the NMR probe coil interacts with the magnetization ~M0, leading to

a rotation of ~M0 along the field axis of the induced field ~B1 in a ωL rotating frame.

The most often applied pulses have defined pulse angles of θ = 90° ("90° pulse") and θ = 180°

("180° pulse"). During an ideal 90° pulse, the magnetization is completely transferred to the

x y plane, whereas during a 180° pulse, the magnetization is inverted along the z-axis. The

NMR signal can be regarded as a magnetic field inducing a voltage into the NMR probe coil.

Once an RF pulse has ended, the magnetization gradually relaxes back to equilibrium. These
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processes are divided into transverse relaxation in the x y plane, and longitudinal relaxation

along the z-axis (~B0 field direction). NMR relaxation can be empirically described by a set of

differential rate equations that were proposed by Bloch (1946) (Nobel prize 1952):

dMz(t)
d t

= −
Mz(t)−Mz,0

T1
+ γ

�

~M(t)× ~B(t)
�

z (4.37)

dMy(t)

d t
= −

My(t)

T2
+ γ

�

~M(t)× ~B(t)
�

y (4.38)

dMx(t)
d t

= −
Mx(t)

T2
+ γ

�

~M(t)× ~B(t)
�

x (4.39)

In a static magnetic field ~B0 = (0,0, B0) and upon a 90◦
φ

pulse (Mz,0 = 0), the solutions for

Blochs linear differential equations are given by:

Mz(t) = Mz,∞ ·
�

1− exp
�

−
t

T1

��

(4.40)

My(t) = My,0 · exp
�

−
t

T2

�

(4.41)

Mx(t) = Mx ,0 · exp
�

−
t

T2

�

(4.42)

The relaxation times T1 and T2 describe the respective buildup or decay of magnetization and

contain information about interactions between different nuclei. T1 is called the spin-lattice

relaxation time, and T2 is referred to as the spin-spin relaxation time. Multiple phenomena

lead to a decaying behavior in the time domain or the corresponding broadening of resonance

lines in a spectrum. They can be classified as coherent and incoherent interactions (Schmidt-

Rohr and Spiess 1994). An important difference is that whereas coherent interactions can be

refocused, incoherent interactions lead to an irreversible decay of magnetization. The former

type is usually caused by dipolar dephasing in multispin systems and the coherent part can

be refocused using echo pulse sequences. The latter is a consequence of stochastic local field

fluctuations and is referred to as NMR relaxation in a more narrow sense.

4.2.2 Theory of NMR relaxation

The origin of NMR relaxation in ensembles of n nuclei with I 6= 0 lies in incoherent interactions

of stochastically fluctuating fields that are caused by molecular motion. A frequently applied

theory of NMR relaxation was described by Bloembergen et al. (1948), and is usually referred

to as the Bloembergen-Purcell-Pound (BPP) model. An important prerequisite for the theory

is that motions have to be fast compared to the inverse of the induced coupling frequencies.

The BPP model is well suited for the description of liquids, but is limited in its applicability to

solids. More elaborate theories are based on density operator formalisms (Redfield 1957).
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Molecular motion and the spectral density

Similar to other techniques such as dynamic light scattering, X-ray scattering, or dielectric spec-

troscopy, stochastic fluctuations are accounted for by an autocorrelation or memory function

G(τ). For the most simple case of a single characteristic correlation time τc , the autocorrela-

tion function of local field fluctuations can be assumed to follow a mono-exponential decay:

G(τ) = exp
�

−
τ

τc

�

(4.43)

The autocorrelation function G(τ) can be converted into a frequency-dependent quantity J(ω)

by applying a Fourier transform (Equation 4.26):

J(ω) =

+∞
∫

−∞

e−iωτ · G(τ)dτ (4.44)

The spectral density J(ω) contains information on the magnitude of individual frequency com-

ponents dω. By inserting Equation 4.43 into Equation 4.44 and integration over all dτ, the

spectral density for a single correlation time τc is given by:

J(ω,τc) =
2τc

1+ω2τ2
c

(4.45)

a) b)

Figure 4.6: Spectral density J(ω,τc) plotted vs. ω/2π (a) and τc (b) for different material states (liquid
to solid), Larmor frequencies ω0, and interaction frequencies ∆ω according to Equation 4.45.

The characteristic correlation time τc has a strong temperature-dependence, and can e.g., be

described by an Arrhenius (or WLF, Equation 4.23) activation behavior if phase transitions are

absent:

τc = τ∞exp
�

−
EA

kT

�

(4.46)

Thus, the τc-axis can also be seen as an inverse temperature axis, suggesting temperature-

dependent experiments to obtain information on the correlation times and related molecular

dynamic processes.
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The BPP model of NMR relaxation

NMR relaxation is caused by local magnetic field fluctuations induced by molecular motion.

The local magnetic field ~Bloc(t) can be treated as a quantum mechanical perturbation. The

Hamiltonian has the form of a magnetic field-induced perturbation (similar to e.g., an RF

pulse – see Table 4.2):

Ĥ = −γ Îx Bx,loc(t)≈ −γ Îx Bx,loc(0) f (t) (4.47)

The Bloch equations (Equation 4.40, Equation 4.41, Equation 4.42) can be seen as special

cases of a general transition process:

dN(t)
d t

=
dM(t)

d t
∝−k ·M (4.48)

NMR relaxation is a second order transition involving multiple spins, and its treatment neces-

sitates second order perturbation theory. The transition rate for second order transitions is

given by Fermi’s Golden Rule No. 1 (Fermi (1950), p. 148)3:

dNγ(t)

d t
=

2π
~

�

〈γ|Ĥ|α〉 · 〈β |Ĥ|γ〉
Eα − Eγ

�2

ρ(E) (4.49)

ρ(E): density of eigenstates.

Application of Equation 4.49 to NMR relaxation by including the homonuclear dipolar cou-

pling Hamiltonian (Equation 4.47) and the spectral density J(ω) as ρ(E), and integration of

the differential form leads to the BPP model expressions for the transverse and longitudinal

relaxation times:

1
T1
=
�

µ0}
4π

�2 γ4

5r6
I (I + 1) [J (ω0,τc) + 4J (2ω0,τc)] (4.50)

1
T2
=
�

µ0}
4π

�2 γ4

10r6
I (I + 1) [3J (∆ω= 0,τc) + 5J (ω0,τc) + 2J (2ω0,τc)] (4.51)

Inserting the respective spectral density terms J(ω) for a single correlation time τc (Equa-

tion 4.45) leads to a characteristic τc-dependence for T1 and T2 (Figure 4.7).

The spin-lattice relaxation time T1 is governed by the Larmor frequency ω0, and exhibits a

minimum, whereas T2 is governed by the term ∆ω = 0. The BPP model assumes relaxation

in the motional averaging limit where the product of the static coupling angular frequency

and the motional correlation time ∆ωτc � 1. The interaction term ∆ω in Equation 4.51

is assumed to be zero, and consequently a monotonic decay is observed in Figure 4.7. If

motional averaging is not as effective, a non-vanishing term ∆ω (e.g., 25 kHz) can be taken

into account, leading to a non-monotonic decay (Zimmer et al. 1994, 1995).

3 Fermi’s Golden Rule No. 2 is the other well-known Golden Rule for first order transitions.
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Figure 4.7: Calculated longitudinal T1 and transverse T2 relaxation time curves based on Equation 4.51
for different Larmor frequencies ω0 and interaction terms ∆ω plotted against the correlation time τc
(inversely proportional to temperature). T1 shows a minimum, whereas T2 shows a monotonic decrease
for ∆ω = 0. For a non-vanishing interaction term of e.g., ∆ω= 25 kHz, T2 exhibits a minimum, too.

A third type of relaxation is observed when a sample is being continuously irradiated with an

additional electromagnetic wave or, i.e., is exposed to an additional ~B1 field (spin-locking):

1
T1ρ
=
�

µ0}
4π

�2 γ4

10r6
I (I + 1) [3J (2ω1,τc) + 5J (ω0,τc) + 2J (2ω0,τc)] (4.52)

ω1: spin locking frequency – directly to the applied ~B1 field.

This third type is called relaxation in the rotating frame and can be used to probe relaxation at

specific angular frequencies. Experimentally, a prolonged relaxation behavior with increased

relaxation times is frequently observed.

4.2.3 NMR pulse sequences

The development of NMR pulse sequences is a very important branch of NMR research, as

molecular structure and dynamics can be investigated selectively using clever combinations

of pulses (Kimmich 2012). Some basic sequences for the determination of transverse and

longitudinal relaxation times will be presented briefly in the following.

Transverse relaxation – Determination of T2

The most simple experiment for measuring transverse relaxation is a single 90° pulse exper-

iment. The succeeding signal decay is called a free induction decay (FID) and has the char-

acteristic transverse relaxation time T ∗2 . For highly mobile samples, T ∗2 is usually governed

by the ~B0 field homogeneity, i.e., the decay is not sample-, but magnet-specific. In order to

obtain transverse relaxation times even for mobile samples, the spin echo sequence can be

performed (Figure 4.8a, Hahn (1950)). The coherence of a spin system is gradually lost upon

58



4 Theory of Characterization Techniques

the application of a 90° pulse (e.g., as if many watches are not perfectly in sync). An additional

180° pulse is applied after time τ, leading to an effective time reversal, and phase coherence

is re-obtained after another time τ. Varying τ, the full relaxation curve can be obtained by

analyzing the echo maxima.

a) b)

Figure 4.8: a) Spin echo sequence for studying transverse relaxation in mobile samples (Hahn 1950).
b) Carr-Purcell-Meiboom-Gill sequence as a time-saving alternative to a spin echo sequence for the
study of transverse relaxation in mobile samples (Carr and Purcell 1954; Meiboom and Gill 1958).

The variation of τ in a spin echo sequence is very time consuming and prevents the use of such

a sequence for e.g., rapid monitoring of T2 relaxation. An alternative is the CPMG sequence

after its inventors Carr and Purcell (1954); Meiboom and Gill (1958). Following a 90° pulse,

transverse relaxation is studied by a train of 180° pulses and corresponding echoes. In its

original form, the time between all 180° pulses is exactly twice that of the time between the

initial 90° pulse and the first 180° pulse. However, the timing between the second and all

further 180° pulse can also be chosen differently. The benefit of the CPMG sequence is that

it enables the measurement of a full relaxation curve in a single experiment. It can lead to

substantial heating of the sample, and can be compensated by strong gas flow to ensure a

constant sample temperature. Furthermore, short pulse timing can cause spin-lock type relax-

ation (Equation 4.52). Phase cycles such as MLEV-4, XY-16, etc. suppress this effect (Gullion

et al. 1990). In solids, the spin system is not fully refocused by a 180° pulse, which is a con-

sequence of the fast dipolar dephasing caused by homonuclear dipolar coupling. However, a

90° pulse leads to phase coherence for a strongly coupled two spin system as shown by Powles

and Strange (1963) and Ostroff and Waugh (1966). This phenomenon can be theoretically

predicted using density operator formalisms, and is referred to as a solid echo (Figure 4.9a).

a) b)

Figure 4.9: a) Solid echo sequence for studying transverse relaxation in solid samples (Powles and
Strange 1963). As the solid echo does not fully refocus multi-body interactions, the mixed magic
sandwich echo sequence (b) is a more quantitative alternative (Rhim et al. 1971; Pines et al. 1972;
Takegoshi and McDowell 1985; Hafner et al. 1996).
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Multi-body interactions are not completely refocused by a solid echo sequence. A more quan-

titative alternative for real solid materials are magic echo sequences (Rhim et al. 1971; Pines

et al. 1972; Takegoshi and McDowell 1985; Hafner et al. 1996). The sequence shown in Fig-

ure 4.9b is one example, and is called the mixed magic sandwich echo sequence (MSE). All

magic echo sequences are based on an effective time reversal of the phase coherence evolution

in a multi-body spin system. The quantitative refocusing of even strongly dipolar coupled sys-

tems makes the MSE sequence a preferential candidate for reconstructing the initial part of an

FID of solid samples, which is usually not accessible due to the dead time of NMR probes. How-

ever, if stochastic motions act on the time scale of the MSE refocusing block, the time reversal

does not work properly, and consequently attenuated echo intensities are observed. Further-

more, the duration τφ has to be optimized for each individual set-up with respect to the echo

intensity and occurence of the maximum intensity after the duration τMSE = 4τφ + 4.5p90/2.

Longitudinal relaxation – Determination of T1

Longitudinal relaxation cannot be studied directly in z-direction, as the strong ~B0 field inhibits

its measurement. By flipping the magnetization into the x y plane using appropriate pulse se-

quences, the Mz magnetization can be detected. Two common pulse sequences are inversion

recovery and saturation recovery (Figure 4.10). The former is based on an full inversion of the

magnetization vector by applying a 180° pulse. Increasing the waiting time τ and flipping the

recovered magnetization into the x y plane, leads to a buildup curve from which the longitu-

dinal relaxation time T1 is extracted. The saturation recovery sequence is based on a cascade

of 90° pulses that destroys all magnetization (saturation). By increasing the waiting time τ,

the buildup of magnetization in z-direction can be studied, leading again to the longitudinal

relaxation time T1. Instead of evaluating the FID upon a 90° pulse, one can also add a CPMG

sequence to the respective inversion or saturation recovery sequences.

a) b)

Figure 4.10: Pulse sequences for the study of longitudinal relaxation: a) Inversion recovery sequence.
b) Saturation-recovery sequence. Both sequences can also be combined with refocussing sequences in
the transverse plane for the detection of recovered magnetization.
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4.3 X-ray scattering

The scattering of X-rays with wavelengths of 10 pm to 10 nm is widely used in material science

to study structural order on a nanometer to Ångström scale (soft to hard X-rays with photon

energies of 100 eV to 100 keV). The term "scattering" indicates that the fundamental concepts

are similar to visible light and electron scattering and can be categorized into two types: elastic

and inelastic with either no or some change in photon energy, respectively4. For polymers,

the elucidation of crystal structures, the study of nano-scale morphologies, and the structure

of polymers in solution are the most important applications. In the following sections, the

fundamentals of X-ray scattering will be presented based on texts by Baltá-Calleja and Vonk

(1989); Guinier and Fournet (1955); Glatter and Kratky (1982); Chu and Hsiao (2001).

4.3.1 Fundamentals

The scattering of X-rays can be treated as a collision of X-ray photons with the electrons sur-

rounding atomic nuclei or as an interaction between the electrons and the ~E-field component

of light (see e.g., (Baltá-Calleja and Vonk 1989)). In Figure 4.11, the scattering of incident

X-rays by a single electron is shown schematically.

Figure 4.11: Elastic scattering of X-rays by a single electron at an angle 2θ (|~k|= |~k0|).

The deflection of an incident beam is usually expressed using the angle 2θ or the corresponding

scattering vector ~q (Equation 4.53)5:

|~q|= |~k− ~k0|=
4πsinθ
λ

(4.53)

θ : scattering angle, ~q: scattering vector, |~k|= 2π/λ: wave vector, λ: wavelength.

Generally, one distinguishes between scattering at small and wide angles (SAXS and WAXS,

respectively) with 2θSAXS ≤ 5° ≤ 2θWAXS (qSAXS ≤ 0.5 /Å ≤ qWAXS for λ = 1.5 Å) as available

experimental set-ups are optimized for these two regimes. In Figure 4.12, a typical experi-

mental set-up for SAXS experiments is shown. The scattering intensities are detected in two

dimensions as a function of the scattering vector ~q and the azimuthal angle χ. In addition

to the characteristic length scales provided by the scattering vector ~q, the azimuthal angle

4 The elastic scattering from crystalline materials is also referred to as X-ray diffraction (XRD), thereby stressing
the wave nature of light.

5 In older literature, definitions based on the scattering vector ~s = ~q/2π can be found.
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contains information on the degree of orientation of ordered structures. For time-resolved ex-

periments, usually synchrotron X-ray radiation is needed to achieve a substantial photon count

per unit area in a given time interval. Most synchrotron sources provide a large bandwidth of

X-ray wavelengths, which can be tailored to the needs of the individual experiment by using

monochromators (for λ= 1.5 Å e.g., Si333 or Ge333 crystals).

Figure 4.12: Set-up for small-angle X-ray scattering (SAXS) including the source, a sample, and the 2D
detector.

4.3.2 Theory of scattering

For a single electron, the observed scattering intensity corresponds to a spherical angular-

independent wave. However, for multiple scattering centers, the intensity or number of pho-

tons measured at a given angle 2θ is determined by the interference pattern of the scattered

X-rays (see Figure 4.13). In case of constructive interference, a strong signal is detected,

whereas for destructive interference the intensity vanishes at any given angle 2θ . The condi-

tion for constructive interference was described by W. L. and W. H. Bragg in 1913:

4πsinθ
nλ

=
2π
d
= |~q| (Bragg’s law) (4.54)

θ : scattering angle, ~q: scattering vector, d: distance between two electrons in real space (long

period), n: order of scattering, λ: wavelength.

Figure 4.13: Scattering of X-rays by two electrons. Constructive interference of the scattered X-rays
leads to a detectable signal intensity at an angle 2θ .
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For every spatial arrangement of electrons in real space, there exists a corresponding lattice

in ~q-space (reciprocal space). The Bragg condition (Equation 4.54) can be rationalized using

the Ewald sphere construction shown in Figure 4.14. The intersection of the Ewald and re-

ciprocal space spheres determines the scattering pattern. In case there is a reciprocal lattice

point exactly on the intersecting ring, a scattering reflex is observed. For highly ordered single

crystals, a map of the reciprocal lattice is obtained, whereas for polycrystalline materials, rings

of different |~q| values are found as shown in Figure 4.15. Furthermore, semi-circular patterns

can be observed when a substantial degree of orientation is present in polycrystalline materials.

Figure 4.14: Construction of the Ewald sphere at point M and the reciprocal sphere at point O. In case
there are reciprocal lattice points on the intersecting ring, scattering reflexes are observed.

Figure 4.15: Reciprocal lattices and scattering patterns for a single crystal and unoriented / oriented
polycrystalline materials (see also Figure 4.12).

In real materials, many scattering centers (electrons) are present that all contribute to the

observed intensity profile I(q). One distinguishes between contributions from electrons of the

same or other scattering objects by introducing the form and structure factor:

I(q)∝ P(q)S(q) (4.55)

I(q): intensity, P(q): form factor, S(q): structure factor, q = |~q|: absolute scattering vector.
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The form factor P(q) is related to the shape of the scattering object, whereas the structure

factor S(q) describes the degree of order in a set of multiple scattering objects. For dense

materials, the structure factor is the dominating part, and it is related to its electron density

correlation function ρ(z) by a Fourier cosine transform:

S(q) =

∞
∫

0

ρ(z) · cos(qz)dV (4.56)

S(q): structure factor, ρ(z): correlation function, z: distance in real space.

Scattering from lamellar systems

Materials with a high degree of order and periodicity in one dimension present a special case

for the analysis of X-ray scattering data as their electron density fluctuates only in one dimen-

sion. Theoretical treatments by Vonk and Kortleve (1967); Vonk (1978) and later by Strobl and

Schneider (1980) on the basis of one-dimensional correlation functions showed good agree-

ment with experiment data and will be presented briefly. The starting point for these models is

the reduction of the measured three-dimensional intensity profile I(q) into a one-dimensional

one by applying the Lorentz correction (Baltá-Calleja and Vonk 1989):

I1(q) = I(q) · q2 (4.57)

I1(q): one-dimensional intensity, I(q): measured intensity, q: absolute scattering vector.

In Figure 4.16, both, the measured and the Lorentz-corrected intensity profiles are shown

for a material with a periodic lamellar structure. The Lorentz correction shifts the scattering

maxima to higher values, corresponding to a slightly smaller long period d = 2π/q.

Figure 4.16: I(q) intensity profile for a lamellar material (a) and the Lorentz-corrected profile (b).

From the Lorentz-corrected intensity profiles I1(q), a correlation function K(z) can be deduced:

K(z) =

∞
∫

0

I1(q) · cos(qz)dq (4.58)

K(z): correlation function, z: distance in real space, q: absolute scattering vector.
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For an ideal lamellar structure with equidistant spacing of perfect lamellae of only one sin-

gle thickness, the correlation function becomes a triangular function (Figure 4.17b). For less

ideal systems the correlation function K(z) shows a damped oscillating behavior (Figure 4.17d,

Strobl and Schneider (1980)).

Figure 4.17: Electron density distribution η(z) and related correlation functions K(z) for an ideal lamel-
lar system (a, b) and a less perfect material with variations in the thickness Lc , spacing between the
lamellae, and surface thickness variations. Figure adapted from Strobl and Schneider (1980).

By determining the correlation function K(z) from experimental scattering data, the mean

lamellar thickness Lc can be extracted together with other quantities as the invariant Q, and

can be converted into a crystallinity X c for semi-crystalline polymers. As for these materials,

lamellar thicknesses are on the order of 10 – 20 nm, the commonly employed technique to

characterize them is small-angle X-ray scattering (SAXS). The obtained results on the lamellar

thickness can be readily compared with theoretical predictions by the Gibbs-Thomson equation

(Equation 3.15). Ultimately, SAXS measurements triggered Strobl to propose his multistage

model (see subsection 3.3.5), as his group detected differences in the lamellar thicknesses

upon crystallization and melting. In addition, SAXS reflexes at small q values that occured

prior to the formation of lamellae were assigned to density fluctuations and gave rise to the

spinodal decomposition model of Olmsted et al. (see subsection 3.3.4).
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Studied by NMR

Nuclear magnetic resonance (NMR) techniques were used to study semi-crystalline polymers

with a main focus on the investigation of the temperature-dependent molecular dynamics in

semi-crystalline polymers and its use for monitoring crystallization kinetics at low magnetic

fields. Furthermore, the goal was to develop a routine that could also be used for in-situ

experiments using hyphenated RheoNMR (see chapter 6). The works were carried out at the

Pro2NMR facility under supervision of Prof. G. Guthausen with support from Prof. H. Horn.

Parts of this chapter are based on a recently published journal article (Räntzsch et al. 2018).

5.1 Introduction

In addition to detailed structural information, NMR also provides substantial insight into dy-

namic processes on wide time and length scales depending on the type of NMR experiments

(section 4.2, p. 51). Here, we focused on transverse relaxation measurements at high and low

fields of 400 and 20 MHz, respectively. NMR relaxometry is sensitive to molecular mobility

on a length scale of nanometers and a time scale of 10−10–10−2 s. Different materials with a

difference in molecular dynamics have been studied by 1H-NMR in the past, e.g., fats (Todt

et al. 2006a,b), rubbers (Litvinov and van Duin 2002; Saalwächter et al. 2005), carbohydrates

(Derbyshire et al. 2004), composites (Papon et al. 2011; Guthausen et al. 2014), and semi-

crystalline polymers (Fujimoto et al. 1972; Kitamaru and Horii 1978; Bergmann and Nawotki

1967; Bergmann 1978, 1981; Packer et al. 1984; Eckman et al. 1997; Kristiansen et al. 1999;

Litvinov and Penning 2004; Hertlein et al. 2006). Most studies on semi-crystalline polymers

were conducted at high fields with a focus on the decomposition of the FID into multiple com-

ponents, which is possible due to the high ~B0 homogeneities and short NMR probe dead times

of ≈ 5 µs (Dadayli et al. 1994; Feio and Cohen-Addad 1988; Feio et al. 1989; Hansen et al.

1998; Kristiansen et al. 2000, 2001). However, transverse relaxation of very rigid components

can be so fast that pulse sequences based on solid (Tanaka and Nishi 1986a,b) and magic

echoes (Takegoshi and McDowell 1985; Sergeev et al. 1985; Demco et al. 2003; Maus et al.

2006) are needed to reconstruct the FID in order to obtain information on the initial relaxation

behavior (0 – 5 µs) of strongly homonuclear dipolar coupled 1H multi-body spin systems (see

subsection 4.2.3, p. 58).

NMR relaxation is strongly temperature-dependent as discussed in subsection 4.2.2, p. 55.

For polymers, the glass transition temperature Tg characterizes the temperature below which

coordinative segmental motions are inhibited and high rigidity is observed. Far above Tg ,
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a) b)

Figure 5.1: a) Lamellar substructure and assigned regions of molecular mobility. b) 1H-NMR free in-
duction decay (FID) and spectrum (inset) for a semi-crystalline polymer far above Tg . Homonuclear
dipolar coupling leads to a strong line broadening and a fast decay in the time domain (see also sec-
tion 4.2, p. 51).

protons in the center of a polymer crystal remain rigid with τc,rigid ≈ 10−3 s, whereas interfacial

protons have an intermediate mobility with τc,intermediate ≈ 10−4 s, and amorphous ones are

mobile with τc,mobile ≈ 10−6 s (Schmidt-Rohr and Spiess (1994), exceptions are polymers with

pronounced mobility in crystalline domains such as helical flips). As the transitions between

phases with different mobilities are relatively smooth, choices have to be made when to call

a proton "crystalline”, "interfacial”, or "amorphous” (Figure 5.1). This ambiguity can lead to

varying results and is a reason for the differences in absolute crystallinity compared to DSC,

XRD, or microscopy. Each technique measures different physical quantities (heat of fusion,

unit cell order, birefringence, etc.) and therefore differences in the crystallinity X c are also a

consequence of the different sensitivity and selectivity towards the crystalline fraction.

Modeling of the transverse magnetization decay

Polymers are complex multi-spin systems where multibody interactions between nearby pro-

tons are present leading to distributions in the dipolar couplings. One can approximate the

interactions using only the nearest neighbors due to the local nature of homonuclear dipolar

coupling assuming that the structures are conformationally frozen (see section 4.2.1, p. 53).

This simplification is applicable to polymers below their Tg and, to a good approximation, to

crystalline domains above Tg . The cubic dependence of homonuclear dipolar coupling on the

distance between two nuclei causes a rapid decrease in ∆ω for larger values of r and is the

reason for the local nature of homonuclear dipolar interaction (for proton-proton coupling and

r in units of Å: ∆ω/2π = 122 kHz/r3 (Schmidt-Rohr and Spiess 1994)). For most synthetic

polymers, the shortest proton-proton distances are found in methylene and methyl groups

(r ≈ 1.8 Å) leading to static dipolar couplings of ~21 kHz. The next neighbors in an alkyl

chain are ~2.5 Å apart corresponding to a ~7.5 kHz coupling. The orientation-dependence

of isolated spin pairs in the static ~B0 field (second Legendre polynomial, see Table 4.2) leads

to characteristic line shapes discovered by Pake (1948) with line splittings depending on the
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orientation. In the time-domain the Gaussian-broadened sinc-function suggested by Abragam

(1989) describes the static coupling of spin pairs sufficiently well (Equation 5.1).

A(t) =
sin(2πδt)

2πδt
× exp

�

−
�

t
T2Abr

�2
�

(5.1)
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i
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¨

sin(2πδi t)
2πδi t

× exp

�

−
�

t
T2Abr,i

�2�«

(5.2)

δ = 3/2 × ∆ω/2π : homonuclear Pake anisotropy parameter, T2Abr : transverse relaxation

time, fi: weighting factor, t: time.

Calculated decays based on Equation 5.1 are shown in Figure 5.2 for different values of

∆ω/2π, which are characteristic for a conformationally frozen alkyl chain (a simple model

for linear polyethylene below Tg). Decomposition of any measured A(t) into an unknown

number of weighted terms (Equation 5.2) can be challenging. An approximation including

only the most dominant interaction and an average Gaussian component for all higher-order

terms is often sufficient to model experimentally obtained relaxation data.

Figure 5.2: Calculated decays based on Equation 5.1 for various individual coupling frequencies
∆ω/2π and corresponding proton-proton distances rHH. Pronounced oscillation is observed for
∆ω/2π& 10 kHz. Reprinted from Räntzsch et al. (2018).

The selection of a model that accurately describes the transition from static dipolar coupling

behavior (Abragamian type) to relaxation in the rigid lattice limit (Gaussian type), and finally

to the motional averaging limit (exponential type) is challenging, especially as static dipolar

couplings are specific for each polymer. Several semi-empirical models have been proposed,

which rely on combinations of Abragamian, Gaussian, and exponential functions (Dadayli

et al. 1994; Hansen et al. 1998; Kristiansen et al. 2000). For this work, a model was selected

that features a combination of an Abragamian with a single coupling constant and a Gaussian

to model rigid strongly coupled protons, a Weibullian for intermediately mobile protons with

remaining residual dipolar couplings, and a mono-exponential for mobile protons under the

effect of motional averaging (AGWE model, Equation 5.3).
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The rigid fraction χ(T ) was defined as:

χ(T ) = (AAbr + AG)/
�

AAbr + AG + AWb + Aexp

�

(5.4)

In Figure 5.3, the expected temperature-dependence of χ(T ) for an amorphous and a semi-

crystalline polymer is shown. Above Tg one expects a softening phase, which leads to a mobile

material with sufficient motion to pre-average dipolar coupling for an amorphous polymer ac-

cording to the Williams-Landel-Ferry (WLF) model of motional activation energies. For semi-

crystalline polymers, the crystalline domains remain rigid above Tg , so that χ(T ) becomes a

measure of the crystallinity X c in a plateau region preceding melting (Figure 5.3).

Figure 5.3: Schematic temperature-dependence of the rigid fraction χ(T ) for an amorphous and a semi-
crystalline polymer. The plateau for which χ(T ) ≈ X c is expected to be observed around Tg + 100 K
and ends when the polymer starts to melt. Reprinted from Räntzsch et al. (2018).

5.2 Experimental

NMR equipment and experimental procedures

All 1H-NMR experiments were performed at the Pro2NMR facility under supervision of Prof. G.

Guthausen with support from Prof. H. Horn. The high-field experiments were carried out on a

Bruker AVANCE 400 WB spectrometer (Bruker BioSpin GmbH, Rheinstetten, Germany) with

B0 = 9.4 T, ωL/2π = 400 MHz for 1H and equipped with a 4 mm CP-MAS 1H probe. The

NMR probe characteristics were: dead time 4.5 µs, pulses 2.5 µs (p90), 5.0 µs (p180). The

sample temperature was controlled from -15 to +120 °C by a Bruker Variable Temperature
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(BVT) unit operated with pressurized air and a flow rate of 1200 l/h in combination with a

home-built cooling system using a mixture of dry ice and ethanol. All data were acquired

by 90°-dead time-FID pulse programs (zg). The MAS rotors were packed using ~100 mg of

polymer pellets. All data were accumulated (16 scans) with a 5 s recycle delay and phase

cycling: φ1 = φrec = x x x x y y y y , and digitized using the ADC+ digitization mode. The 1H-

NMR relaxometry experiments at low field were performed on a Bruker "the minispec” mq20

(Bruker BioSpin GmbH, Rheinstetten, Germany) with B0 = 0.5 T,ωL/2π= 20 MHz for 1H. The

sample temperature was controlled from -115 to +205 °C by a Bruker Variable Temperature

(BVT) unit. The NMR probe characteristics were: dead time 10 µs, pulses 2.6 µs (p90), 5.1 µs

(p180) for 0 dB pulse attenuation, and bandwidth ~500 kHz FWHM. All data were accumulated

(16 scans) with a 3.5 s recycle delay and phase cycling: φ1 = x x x x , φ2 = y y y y , φ3 = x x x x ,

φ4 = y y y y , φrec = x x x x . On-resonance was ensured for all experiments and the phase was

adjusted using a zero order phase correction. The real part was selected for analysis of the

decay decomposition. In all crystallization experiments, a combination of a MSE decay and a

succeeding CPMG echo train with phase cycling was employed (see subsection 4.2.3, p. 58).

Approximately 20 – 30 polymer pellets (in total ~1 cm3) were put into 10 mm borosilicate

glass NMR tubes, which were purged a couple of times with Argon, evacuated, and finally

sealed to reduce convection and oxidative degradation.

Additional characterization

Isothermal and non-isothermal differential scanning calorimetry (DSC) were performed on a

Mettler DSC30 with a TC15 temperature controller and a liquid nitrogen cooling unit (Mettler-

Toledo GmbH, Gießen, Germany). The temperature profile for isothermal crystallization ex-

periments was: RT to Tisomelt at 10 K/min, hold at Tisomelt for 12 min, Tisomelt to Tcryst at

-60 K/min, hold at Tcryst for 2 – 3 h where Tisomelt was set to 40 K above the peak maximum

temperature of the respective DSC melting endotherms and Tcryst was chosen to yield complete

crystallization within the given time interval of 2 – 3 h. X-ray diffraction (XRD) experiments

were carried out on a Bruker D8 Discover (Bruker AXS GmbH, Karlsruhe, Germany) with a Cu

X-ray tube (40 kV, 40 mA), Göbel mirror, an Anton Paar HTK1200N heating chamber (Anton

Paar, Graz, Austria), a 0.2 mm Soller slit, and a LYNXEYE XE detector (0D mode). The diffrac-

tograms were acquired by continuous scanning between 2θ = 5 to 34° first at 30 °C, then

at elevated temperatures of +40 K above the peak maximum melting temperature observed

in non-isothermal DSC experiments, and finally again at 30 °C after cooling from the melt at

approximately -10 K/min. The heating chamber was evacuated to reduce X-ray background

scattering and polymer degradation.

Materials

The materials used in this chapter were selected grades of the most common synthetic semi-

crystalline polymers (polyolefins, polyamides, and polyesters). Information on the suppliers,

the molecular weight distributions, the glass transition temperatures, and the nominal melting

points can be found in section 2.4, p. 19.
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5.3 Solid-state 1H-NMR experiments at 400 MHz

5.3.1 Temperature-dependent static solid-state 1H-NMR experiments

In order to obtain information on the transverse relaxation behavior of semi-crystalline poly-

mers, free induction decays (FIDs) were recorded for all selected polymers varying the sample

temperature from -15 to +115 °C in 10 °C steps (static, no drive pressure applied to CP-MAS
1H probe). The FIDs were zero order phase-corrected and Fourier-transformed using Bruker

TopSpin 4.0. Figure 5.4 shows such a temperature series of spectra for i-PP-1 (spectra of all

other semi-crystalline polymers can be found in Appendix A). The broad and indifferent line

below the glass transition temperature Tg = −10 °C gradually changed into a multi-component

line with increasing temperature, and displayed an almost invariant shape for temperatures of

T > Tg +100 K. The origin of this line narrowing behavior is the increasing molecular motion

in the amorphous domains at higher temperatures, which leads to slower transverse relaxation

and more narrow lines as described by the NMR theory of relaxation (subsection 4.2.2, p. 55).

Figure 5.4: Temperature-dependent 1H-NMR solid-state spectra of i-PP-1 (Tg = −10 °C) recorded in
static mode at 400 MHz. Motional narrowing with increasing temperature led to a multi-component
line, which displayed an invariant shape at temperatures of T > Tg + 100 K.

In Figure 5.5, 1H-NMR solid-state spectra of different semi-crystalline and amorphous poly-

mers are shown, which were recorded at different temperatures with respect to the glass tran-

sition temperature. Spectral lines are expected to be Lorentzian for highly mobile components

(Fourier transform of an exponential FID), whereas for strongly dipolar coupled systems Gaus-

sian lines are observed. The latter can be rationalized as a superposition of Pake patterns with

a broad distribution of dipolar coupling frequencies (see section 5.1).
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Figure 5.5: 1H-NMR spectra of semi-crystalline and amorphous polymers recorded at Tg + 100 K in
static mode at 400 MHz with indicated Lorentzian and Gaussian lines to separate mobile from rigid
components (dotted lines: Gaussian model fits, dashed lines: Lorentzian model fits).

The spectra recorded close to the glass transition temperature Tg of the respective polymers

could be described by a single Gaussian function (i-PP-1, i-PP-2, PA-6, PET, PBMA). For tem-

peratures T = Tg +100 K, the polypropylenes exhibited a combination of a narrow Lorentzian

for the motional-averaged mobile components and a Gaussian (broad feet) due to the strong

dipolar coupling within the crystalline domains. Interestingly, the polyethylenes displayed

rather broad lines for both components at temperatures of Tg + 100 K, which indicated that

motional narrowing was not as effective as for the other polymers. Spiess et al. made similar

observations when analyzing 2H-NMR spectra and associated this behavior with a small num-

ber of possible conformations that are accessible by CH2 groups at these temperatures (Spiess

1983). Additionally, the glass transition temperature Tg ≈ −120 °C (Mark 2007; Swan 1960;
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Stehling and Mandelkern 1970) is related to the γ-relaxation process in polyethylene (Boyd

1985a,b) and has been questioned to be a proper thermodynamic glass transition by multiple

researchers (Davis and Eby 1973; Gaur and Wunderlich 1980). In case of the amorphous

atactic poly(butyl methacrylate) (PBMA), a single narrow Lorentzian line shape was observed

for T ≈ Tg + 100 K, which was expected because of the absence of crystalline domains.

Figure 5.6: Series of temperature-dependent free induction decays (FID) recorded in static mode at
400 MHz for different polymers in the accessible temperature range of -15 °C to +115 °C (∆T = 10 °C,
black lines: fits based on Equation 5.3 – constraints described in the text.).

In Figure 5.6, temperature-dependent free induction decays (FIDs) of all investigated polymers

are depicted. At temperatures close to the respective glass transitions, all polymers showed

rapid decays to zero within ~50 µs which is a consequence of the high rigidity and absence

of cooperative segmental motion at Tg . Plateau-like behavior was observed between 20 –
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50 µs for the polyethylenes, the polypropylenes, and PA-6, which were an indication of Pake-

type interactions between coupled methylene protons. The data for PET and PBMA displayed

monotonically decaying curves without any notable plateau. With increasing temperature, the

relative intensity of the slowly relaxing component (mobile / amorphous) increased, while the

total intensity went down due to a lower overall NMR intensity (Boltzmann distribution, see

section 4.2, p. 51).

For a quantitative compositional analysis, the free induction decays (FID) were modeled us-

ing the described fitting function (Equation 5.3). As all polymers contain methylene groups,

a dedicated Abragamian with δ= 30 kHz and T2Abr as a free parameter (30 – 50 µs) was

chosen to account for the strong oscillations and plateau-like behavior observed in the data.

The weak motional narrowing observed for the polyethylenes at temperatures of Tg + 100 K

as revealed by the 1H-NMR spectra, was also reflected in the free induction decays and re-

quired a different modeling approach compared to all other polymers. For the polyethylenes,

the Gaussian component was not needed to achieve an accurate representation of the data

and high numerical fitting stability, presumably because of its simple repeat unit consisting

only of methylene protons and a regular zig-zag conformation in a polymer crystal (see sec-

tion 2.2, p. 7). The Gaussian component was however necessary for the other polymers to

describe the free induction decays sufficiently well, possibly due to the higher structural com-

plexity and the associated multiple couplings. The Weibullian component could be set to zero

while still providing a good representation of the data and with the benefit of fewer free pa-

rameters for all polymers except of the polyethylenes. This behavior was presumably another

consequence of the low motional averaging, as the protons displayed some remaining residual

dipolar coupling, and thus had to be described by a combination of a Weibullian (n= 1.5) and

an exponential function as an approximation of the Brereton function described by Dadayli

et al. (1994); Hansen et al. (1998).

a) b)

Figure 5.7: Evolution of the rigid proton fraction χ(T ) for i-PP-1 (a) and in comparison with all other
investigated polymers (b). Due to the limited accessible temperature range, the full softening and
melting behavior could not be examined for the polymers under investigation.
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In Figure 5.7a, the evolution of the rigid fraction χ(T ) is shown for i-PP-1, which followed

the expected decreasing behavior during the softening phase above Tg . A constant plateau

was reached at temperatures T ≈ Tg + 100 K. Because of the limited accessible temperature

regime with the current solid-state NMR probe, the melting behavior could not be examined.

Figure 5.7b shows a comparison of the respective χ(T ) curves for all investigated polymers

with indicated extrapolations to higher or lower relative temperatures (dotted lines). As the

temperature interval was limited to experiments between -15 and +120 °C, the intended

temperature-dependent study of χ(T ) could only be carried out for small sections of Fig-

ure 5.3, especially in the cases of polymers with very low or high glass transition temperatures

(polyethylenes: Tg ≈ -120 °C, PET: Tg ≈ +70 °C). As the solid-state NMR probe exhibited a

dead time of 4.5 µs, the available information on the decay of the very rigid components was

limited (see plot in Figure 5.6). Thus, modeling the data with multiple component functions

presented an ill-defined problem, especially for the estimation of the total intensity. Conse-

quently, the observed plateau for 80< T−Tg < 120 °C was prone to a certain error and did not

necessarily reflect an absolute mass crystallinity. In case of the amorphous PBMA, the observed

softening did not reach a state of χ(T ) = 0, which was presumably again a consequence of the

missing data points for the initial 5 µs. By using a static NMR probe with an even shorter dead

time or magic echo pulse sequences together with a broader specified temperature range, the

full interval of 0 < T − Tg < 200 °C could be investigated and reliable values for the mass

crystallinity could be obtained. An alternative based on low-field 1H-NMR relaxometry will be

presented in section 5.4.

5.3.2 Magic angle spinning (MAS)-NMR experiments

Static NMR lines of solid samples, e.g., polymers below their respective glass transition temper-

atures are dominated by strong dipolar coupling in the kiloHertz regime that obscures chemical

shift or J -coupling (see 1H-NMR spectra in the previous section 5.3)1. By a fast rotation of the

sample at the magic angle θ = 54.7° with respect to the static ~B0 field, the angle-dependent

term 3cos2θ−1 of the dipolar coupling Hamiltonian can be effectively suppressed (Figure 5.8,

see Table 4.2). Thus, significant line narrowing is observed, which enables the structural anal-

ysis of functional groups and ultimately an identification of unknown compounds.

In Figure 5.9a, the effect of magic angle spinning (MAS) on the NMR spectra of i-PP-1 at

room temperature is shown for different spinning frequencies. The expected line narrowing

was observed including the appearance of spinning sidebands at multiples of the spinning

frequency, which are caused by field modulations. Even for 10 kHz spinning the centerband

was relatively broad and didn’t exhibit chemical shift resolution. Similar observations were

made for all other investigated semi-crystalline polymers. However, when the materials were

heated to temperatures above their respective Tg ’s in combination with magic angle spinning

1 Another frequently observed property of solid materials is the chemical shift anisotropy (CSA), which can also be
reduced by MAS and is oftentimes studied using 13C-NMR spectroscopy.
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at spinning frequencies of ~10 kHz, the spectra exhibited the expected resonances caused by

different chemical shifts of the functional groups (Figure 5.9b).

Figure 5.8: Magic-angle spinning (MAS) at the magic angle θ = 54.7° to suppress dipolar coupling
(Schmidt-Rohr and Spiess 1994).

a) b)

Figure 5.9: a) 1H-NMR spectra of i-PP-1 at room temperature for different magic angle spinning fre-
quencies. Line narrowing and spinning sidebands at multiples of the spinning frequency were observed.
b) By combining magic angle spinning with an increased temperature above the respective glass tran-
sition temperatures, the different polymers showed expected resonances due to the chemical shift of
their respective functional groups.
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5.4 Polymer crystallinity determined by low-field NMR relaxometry

At low ~B0 fields, NMR shows lower sensitivity (Equation 4.31, p. 52) and is usually accompa-

nied by lower B0 homogeneity as commercial NMR instruments such as the Bruker mq20 min-

ispec come without shim systems. On the other hand, low-field NMR has the advantage that it

can be adapted to serve as an in-situ detector of molecular dynamics, e.g., in combination with

rheology which is presented in chapter 6. In this section, the applicability of 1H-NMR relaxom-

etry to determine the crystallinity of solid samples was investigated by analyzing temperature-

dependent NMR relaxation data. The most commercially relevant semi-crystalline polymers

were studied, and the results were compared with DSC and XRD, which are based on ther-

modynamic and structural quantities and therefore are expected to show a slight difference in

the distinction between crystalline and amorphous fractions (see section 5.1).

5.4.1 Temperature-dependent experiments on various polymers

To overcome the dead time of the low-field NMR probe (10 µs), a mixed magic sandwich echo

sequence was used to study the transverse relaxation behavior of all investigated materials (see

subsection 4.2.3, p. 58 for a detailed description of the MSE sequence). The parameter τφ was

adjusted to obtain the echo maximum after a duration of τMSE = 4τφ+4.5p90/2 (Figure 5.10).

It was found that a value of τφ = 2.2 µs resulted in the highest echo intensity and closest match

between the echo maximum and the corresponding duration of τMSE = 15 µs. For lower values

of τφ the re-creation of spin coherence was not complete after τMSE, which led to a distorted

decay. For higher values of τφ the echo maximum was shifted to earlier times with a lower

signal intensity and overemphasized oscillations in the time range of 10 – 30 µs.

a) b)

Figure 5.10: Mixed magic sandwich echo signals for different values of τφ (see subsection 4.2.3, p. 58).
The optimal τφ value for the highest echo intensity and a close match between the occurence of the
echo maximum and the duration τMSE was found to be τφ = 2.2 µs.

MSE echoes were recorded over a large temperature interval to study the transition from a

fully rigid state below Tg to a state of increased softness above Tg , and finally to a highly

mobile melt state (Figure 5.11). All datasets were normalized to the MSE maximum in order

to remove the effect of different intensities based on the Boltzmann distribution of ground
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and excited spin states. The polymers investigated in this study contain different functional

groups, e.g., methylene, methyl, or phenylene units. Thus, multiple proton-proton dipolar

couplings are present and consequently different patterns were observed at temperatures be-

low and close to Tg .

Figure 5.11: Normalized mixed magic sandwich echo (MSE) decays for different semi-crystalline poly-
mers and temperatures measured at 20 MHz. Strong static coupling was observed for the polyethylenes
below Tg , whereas i-PP, PA-6, and t-PI showed a plateau-like decay in the region of 20 – 50 µs. PS and
PET exhibited a Gaussian decay without an oscillation. The lines represent the fitted model and describe
the curves well over the large temperature range (Equation 5.3, δ= 30 kHz, T2Abr: free parameter with
values of 30 – 50 µs). Reprinted from Räntzsch et al. (2018).

All polymers showed rapid decaying behavior within ~50 µs after the formation of the mixed

magic sandwich echo at the lowest measured temperatures, which was similarly observed for

the high-field free induction decays in section 5.3. Pronounced oscillations between 20 – 50 µs

were visible for the polyethylenes and this was presumably caused by Pake-type interactions

between coupled methylene protons. The data for all other polymers displayed less pro-

nounced oscillations and monotonically decaying curves, which were probably a result of the

more complex dipolar network and a summation of multiple coupling terms. A slowly decay-

ing component appeared with increasing temperature that originated from the rising mobility
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in the amorphous and interfacial regions. The strong oscillation at low temperatures over the

time interval of 20 – 50 µs transformed into a plateau-like behavior with increasing tempera-

ture, which is probably associated with the fraction of semi-rigid protons (Maus et al. 2006).

In comparison to the high field experiments discussed in section 5.3, the Gaussian-type decay

was clearly resolved due to the reconstruction of the full magnetization decay and vanished

gradually with increasing temperature for all polymers. Finally, at temperatures above the

nominal melting points, an almost straight line was observed on the time scale of a few tens

of µs, reflecting T ∗2 relaxation dominated by the ~B0 homogeneity.

All mixed magic sandwich echo (MSE) decays were analyzed using the described AGWE model

(Equation 5.3) to extract information on the fractions of rigid, intermediately mobile, and mo-

bile protons (black lines in Figure 5.11). As for the high-field FIDs, a dedicated Abragamian

with δ= 30 kHz and T2Abr as a free parameter (30 – 50 µs) was chosen to account for the

strong oscillations and plateau-like behavior observed in the data. As shown by the high-field

experiments in section 5.3, polyethylenes are characterized by a relatively weak motional

narrowing at temperatures of Tg+100 K compared to other semi-crystalline polymers. Conse-

quently, analyzing the decays in the time domain requires a different modeling approach. For

the polyethylenes, the Gaussian component was again omitted to achieve high numerical fit-

ting stability and an accurate representation of the data, which might be a consequence of the

simple repeat unit structure consisting only of methylene protons and the regular zig-zag con-

formation in the crystalline domains. Due to the structural complexity of the other polymers

and the associated multiple couplings, an additional Gaussian component was however nec-

essary for these polymers to describe the relaxation behavior sufficiently well. The Weibullian

component could be set to zero for all polymers except of the polyethylenes while still provid-

ing a good representation of the data and with the benefit of fewer free parameters. Hence,

for polymers with a rather complex repeat unit, the domains of intermediate mobility and high

rigidity cannot easily be separated by the selection of one or two dedicated Abragamians and

a Weibullian. The reduction to a simplified two-phase model (crystalline + amorphous) was

necessary to achieve high numerical fit stability. In addition, the different relaxation behavior

of the polyethylenes might also be a consequence of the usually very high nucleation density

(large interfacial area – large content of intermediately mobile protons), which is associated

with the high polydispersity compared to all other polymers.

The temperature dependence of the rigid fraction χ(T ) is shown for all polymers in Fig-

ure 5.12. Below Tg the curves exhibit a plateau (χ(T ) = 1) that ends shortly above Tg when

the amorphous part of the material started to soften due to increased molecular motion. For the

amorphous polystyrene sample, χ(T ) effectively decayed to zero for T ≈ Tg + 50 K. Depend-

ing on the type of semi-crystalline polymer, the softening phase extended until T ≈ Tg + 100 K

where another short plateau was observed marking the region over which the mobility dif-

ference between protons in crystalline and amorphous domains is sufficient to determine the

crystallinity X c . Notably, the temperature that is required to reach this second plateau did not

exactly match the mobile plateau χ(T ) = 0 for the amorphous polystyrene, which suggests
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a) b)

Figure 5.12: a) Temperature-dependence of the rigid fraction χ(T ) for different semi-crystalline poly-
mers and amorphous polystyrene. A plateau-like behavior was observed for all semi-crystalline poly-
mers at T ≈ Tg + 100 K, marking the temperature interval over which there is sufficient mobility
difference between the protons of amorphous and crystalline domains to determine Xc,NMR. Melting set
in at relatively low temperatures for t-PI, i-PP-2, and LDPE. b) DSC melting endotherms, which exhib-
ited the onset of melting at temperatures slightly above T = Tg +100 K. Reprinted from Räntzsch et al.
(2018).

that the activation behavior of molecular motion is higher for semi-crystalline polymers and

that some rigidity is retained, i.e., through linkages of amorphous chains to crystalline do-

mains or additional local physical constraints that shifted the average activation barrier EA to

higher values. With a further increase in temperature, melting started and led to a second

decline of χ(T ) until the parameter vanished completely when the samples were fully molten

(compare with DSC melting endotherms shown in Figure 5.12b). The materials investigated

here were neat pellets in a non-equilibrium state, which makes it very likely that there were

many small and thin lamellae present in the samples which caused melting at relatively low

temperatures, shortly after the plateau at T ≈ Tg + 100 K was reached.

The mixed magic sandwich echo sequence used in the experiments led to higher intensities

than a simple solid echo. However, it was still not able to refocus all magnetization (approx.

10 % signal reduction compared to the melt). In addition, for temperatures at which motional

modes have a similar time scale as the refocusing block duration (10 – 20 µs), the magic

sandwich echo intensity decreased significantly (e.g., for Tg + 50 K for segmental motion of

amorphous chains and Tg + 200 K for helical flips of crystalline chains). However, at this stage

there was no alternative to the mixed magic sandwich echo, and the trends agreed with the

experiments carried out at high field (section 5.3). The values of χ(T ) at T = Tg + 100 K

were chosen as a measure of crystallinity Xc,NMR for further interpretation. A relative error of

±10% was estimated for Xc,NMR, mainly given by fitting uncertainties over the time interval

of 20 – 50 µs and assuming a certain ambiguity in the assignment of protons in crystalline vs.

rigidified amorphous domains.
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5.4.2 Comparison with DSC and XRD

Differential scanning calorimetry (DSC) heating traces of "as received” pellets were integrated

and compared with literature values for theoretically 100% crystalline samples (Mark 2007).

An example of such a melting endotherm is given for i-PP-1 in Figure 5.13a. An average of

three samples was calculated with a relative error of approximately ±10%, which was pre-

sumably resulting from different cooling conditions for each pellet during processing and the

experimental error. Frequent sources of error in DSC are the selection of suitable integration

limits, setting of the baseline, and the literature values for theoretically 100% crystalline sam-

ples (Wunderlich 2005).

X-ray diffractograms were recorded for "as received” pellets at room temperature and above

the nominal melting point to obtain information on the amorphous signal shape. The amor-

phous halo was adjusted in the vertical and horizontal directions to match the minima of the

measured diffractograms at room temperature. Figure 5.13b shows the results for i-PP-1 with

the black line being the shifted amorphous halo. A comparison of the integrals yielded the XRD

crystallinity. This method was found to be more reliable than a simple Gaussian fit because

the amorphous halo is not necessarily symmetric and its shape depends on the polymer type

and experimental set-up. Generally, the sources of error in X-ray diffraction measurements are

the estimation of the amorphous halo, the selection of integration limits and the baseline, and

angle-dependent intensity shifts when a Bragg-Brentano geometry is used for non-flat samples.

Figure 5.13: a) DSC heating trace of i-PP-1 ("as received” pellets) recorded at 10 K/min. Integration
of the melting endotherm and comparison with literature values for a theoretically 100% crystalline
sample yielded a DSC crystallinity of 44%. b) XRD diffractogram of i-PP-1 at 30 °C (blue line) and a
shifted amorphous halo (black line) recorded at 200 °C. A comparison of the integrals yielded an XRD
crystallinity of 45% (additional data in Appendix A). Reprinted from Räntzsch et al. (2018).

A comparison of crystallinity values X c determined by DSC, XRD, and NMR is shown in Fig-

ure 5.14 for all investigated polymer types. The obtained values agreed relatively well within

the estimated experimental errors of ±10% for X c . Each characterization technique measures

a different physical quantity (heat of fusion, unit cell order, molecular dynamics, etc.). There-
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fore, the structural assignment to crystalline, interfacial, and amorphous domains varied based

on the different length and time scales involved in the measurements. For the NMR exper-

iments, the selected model and data analysis method were found to be a good compromise

between an accurate description of the data and high numerical fit stability. At temperatures

of T > Tg + 100 K, the mobility difference between the protons of amorphous and crystalline

domains was sufficient for a determination of the crystallinity in semi-crystalline polymers.

Figure 5.14: Crystallinities X c for different polymers as determined by DSC, XRD, and NMR. The meth-
ods agreed well within an estimated relative error of ±10% (indicated in grey), which could be at-
tributed to experimental uncertainties (temperature control, sensitivity, etc.) and to the data analysis
(baselines, integration ranges, data fitting models, etc.). Reprinted from Räntzsch et al. (2018).

5.5 Monitoring polymer crystallization using low-field NMR
relaxometry

Following the buildup of crystallinity X c(texp) from an isotropic melt using NMR relaxometry at

low field provides important information on crystallization kinetics (subsection 3.3.6, p. 35),

which depend on chain topology, additives, and processing conditions (temperature, pressure,

flow). For such phase transitions, sophisticated decay decomposition tends to be numerically

unstable, and can generally not be applied to measurements on magnets of low ~B0 homogene-

ity, for which T ∗2 is dominated by the ~B0 field and not by the sample. The use of a combined

MSE-CPMG sequence is a robust alternative to distinguish between protons in rigid / crys-

talline and mobile / amorphous domains (Figure 5.15a, subsection 4.2.3, p. 58). The main

idea behind this approach is that only relatively mobile (amorphous) protons are detected by

the CPMG sequence (Carr and Purcell (1954); Meiboom and Gill (1958)), because of the 180°

pulse refocusing properties and an appropriate duration of the relaxation phase before the

first 180° CPMG pulse. The mixed magic sandwich echo (MSE) is recorded as a measure of

all protons for each point in experimental / crystallization time. Examples of transverse relax-

ation decays of an isotactic polypropylene in a super-cooled melt state and and after complete

isothermal crystallization as measured by a combined MSE-CPMG sequence are given in Fig-

ure 5.15b. The determination of evolving crystallinities X c(texp) can be carried out either by a

direct or indirect method, which is similar to the solid fat content (SFC) determination of fats

(AOCS-Cd 16b-93 1997; AOCS-Cd 16-81 2009).
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Figure 5.15: a) Combined mixed magic sandwich echo (MSE) and CPMG sequence to refocus the signal
of a homonuclear dipolar coupled spin system, and to differentiate between rigid and mobile protons
(Maus et al. 2006). b) MSE (open squares) and CPMG data (open circles) for a super-cooled i-PP melt
(texp = 0 h) and at the end of isothermal crystallization (texp = 1 h). Direct or indirect data processing
approaches similar to the SFC determination of fats (AOCS-Cd 16b-93 1997; AOCS-Cd 16-81 2009)
can be applied to extract the buildup in crystallinity X c(texp). Reprinted from Räntzsch et al. (2018).

Direct method. CPMG intensities ICPMG(texp) are back-extrapolated to tNMR = 0 ms for every

point in the experimental / crystallization time (texp) and compared with the total intensity

Itotal(texp) at tNMR = 0 ms:

Xc,direct

�

texp

�

= 1−
C × ICPMG

�

texp

�

Itotal

�

texp

� (5.5)

The direct method is applicable to any type of iso- and non-isothermal protocols because the

point of reference (Itotal) is directly detected within each relaxation curve. However, the pulse

sequences employed to measure Itotal can be non-quantitative if motions within the solid are

on the time scale of the refocusing pulses blocks (e.g., chain flips in polyethylene, Hu et al.

(1999); Bärenwald et al. (2012, 2014)). As Xc,direct (texp) has to be zero for the super-cooled

melt at texp = 0 min, a correction factor C = Itotal(texp = 0 min) / ICPMG(texp = 0 min) is

needed, which depends on fitting uncertainties, the ~B0 homogeneity, and MSE performance.

Indirect method. For the indirect analysis, CPMG intensities ICPMG(texp) are back-extrapolated

to tNMR = 0 ms and compared with the back-extrapolated CPMG intensity at texp = 0 min at

which the sample was in a super-cooled melt state at Tcryst:

Xc,indirect

�

texp

�

= 1−
ICPMG

�

texp

�

ICPMG

�

texp = 0
� (5.6)

The indirect approach is readily applicable to isothermal protocols and to non-isothermal pro-

tocols if a Curie intensity correction is applied (multiplying by the absolute temperature). Fur-

thermore, even polymers with a significant crystal mobility can be investigated as the method
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only relies on the decreasing CPMG intensities. It can be used to analyze data acquired on

magnets of low homogeneity as the CPMG sequence is more robust against gradients in ~B0

than the MSE sequence (Hürlimann and Griffin 2000). Both data analysis methods require

short pulse timings for the CPMG sequence and a distinguished separation between the rigid

and mobile signals to achieve high fit stability. The echo timing is desired to be short in order

to provide a large number of data points and is mainly limited by the acquisition time, the

probe dead time, and the 180° pulse length. To quantitatively detect all mobile protons with

the CPMG sequence, we propose the use of a short MSE recording interval of τinitial = 25 µs

during which only the signal that originates from protons in crystalline domains is decaying.

5.5.1 Experiments on common semi-crystalline polymers

Isothermal crystallizations were carried out for all polymers2 at temperatures that led to com-

plete crystallization within 1 – 2 h. Figure 5.16a shows an isothermal crystallization experi-

ment monitored by a combined MSE-CPMG sequence for i-PP-1 at Tcryst = 136 °C. The MSE part

exhibited a Gaussian-type decay with progressing crystallization, which is in perfect agreement

with the temperature-dependent experiments (section 5.4). The CPMG decays decreased in

intensity with the progression of crystallization and transformed from slow mono-exponential

into bi-exponential decays. The gradual increase of the rigid component pointed towards a

nucleation and growth mechanism, especially as the relaxation behavior of the amorphous

fraction during the transition from the melt to the semi-crystalline state was almost invari-

ant. Consequently, the mesomorphic phase prior to crystallization proposed by Strobl et al.

had to be small compared to the overall sample volume (see subsection 3.3.5, p. 33). The

evolution of CPMG data in "experimental" / "crystallization" and "NMR” time exhibited the

inverse S-shape for the decline in CPMG intensity caused by an effective signal loss during

crystallization (Figure 5.16b).

Figure 5.16: a) Time-series of MSE-CPMG data for an isothermal crystallization of i-PP-1 at 136 °C
(black lines are back-extrapolations to tNMR = 0 ms). b) At tNMR = 0 ms the time evolution of CPMG
intensities shows an inverse S-shape, caused by an effective signal loss during crystallization. Reprinted
from Räntzsch et al. (2018).

2 The temperatures needed for a relatively slow crystallization of PET (Tcryst > 230 °C) could not be reliably main-
tained, and the data was excluded from further analysis.
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The CPMG data was analyzed using a bi-exponential over the range of 0.05 – 10 ms to quantify

the decline of the amorphous fraction. Crystallization curves based on the direct and indirect

data analysis are shown in Figure 5.17a. The shapes were very similar as they mainly depended

on the CPMG part and the final plateaus differed only slightly (final crystallinity ≈ 57%). The

observed scattering of X c(t) was almost identical and was mainly due to the stability of the

CPMG data fitting. A short echo time (τCPMG = 25 µs) improved the numerical stability as

a sufficient number of echoes had to be recorded during the initial 200 µs to achieve stable

fitting with a minimal number of iterations. However, partial spin-locking might occur in a

classical CPMG experiment. As the scope of this work was to analyze intensity ratios rather

than absolute relaxation times, this effect played a minor role in the determination of the

crystallization curves. Isothermal crystallization curves of i-PP-1 obtained by NMR and DSC

are shown in Figure 5.17b. As mentioned before, relative crystallinities were analyzed with

respect to their curve shapes and associated kinetics since isothermal DSC experiments can-

not readily be integrated to yield absolute values and the plateaus of the NMR crystallization

curves depended on the selection of the pulse timings. The trend of slower crystallization with

increasing crystallization temperature for Tcryst > (T0
m+Tg)/2 was well captured by both, DSC

and NMR. The DSC data exhibited slightly more symmetric S-shapes, i.e., a lower slope at the

beginning but higher slope at the turning point, which was probably a result of the smaller

sample size and therefore lower temperature gradient compared to the NMR set-up (40 µl3

vs. 1 cm3).

Figure 5.17: a) Direct and indirect data analysis (Equation 5.5 and Equation 5.6) yielded similar values
with X∞c,NMR ≈ 57%. b) Isothermal crystallization curves of i-PP-1 as measured by NMR (20 MHz,
indirect data analysis) and corresponding DSC data. Reprinted from Räntzsch et al. (2018).

In Figure 5.18, isothermal crystallization curves measured at different temperatures are shown

for all investigated semi-crystalline polymers. The trend "higher crystallization temperature

leads to slower crystallization” for Tcryst > (T0
m + Tg)/2 was observed for all polymers. Over

the investigated temperature intervals, the results for the polyethylenes showed the strongest

dependency on the crystallization temperature. The immediate increase in φc for HDPE and

LDPE upon reaching the crystallization temperature was probably caused by a gradient in

temperature of ~1 K within the sample volume of ~1 cm3.
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Figure 5.18: Isothermal crystallization traces for several different polymers and their crystallization
temperatures (indirect data analysis). All curves exhibit the trend "higher crystallization temperature
leads to slower crystallization” which is usually observed for Tcryst > (T 0

m + Tg)/2. The immediate
increase in the relative crystallinity of HDPE and LDPE upon reaching the crystallization temperature
may have been caused by a temperature gradient in the sample. All curves were fitted using an Avrami
model up to 50% relative crystallinity to obtain the kinetic rate K and the exponent n. Reprinted from
Räntzsch et al. (2018).

The data shown in Figure 5.18 is presented in the form of volume-related crystallinities, which

are related to the mass-dependent counterparts by:

φc (t) =
ρa

ρc
X c(t)

+ρa −ρc
(5.7)

All curves were directly fitted using the volume-related Avrami model up to 50% relative crys-

tallinity to obtain the kinetic rate K and the exponent n (Avrami (1941), subsection 3.3.6, p. 35):

φc (t)
φ∞c

= 1− exp {− [K (t − t0)]
n} (5.8)

φc : volume crystallinity, φ∞c : final volume crystallinity, K: rate, n: exponent, t: time, t0 : in-

duction time, X c : mass crystallinity, ρa,ρc : densities of the fully amorphous and crystalline

material (Van Krevelen and Te Nijenhuis 2009).

The direct Avrami modeling of crystallization curves and the analysis using linearized Avrami

plots were compared and no major difference was found between these two approaches (Fig-

ure 5.19). However, for incomplete crystallization runs and fast experiments with only a small

number of data points, differences in the estimation of the induction time t0 and kinetic param-

eters K and n might be found. In the present work the induction time t0 is merely regarded as

a fitting parameter to shift the Avrami curve on the t-axis. Therefore, it includes contributions

from the time needed for cooling and from the actual induction or pre-nucleation process.

Such a pro-longed nucleation period with no significant change in crystallinity was observed
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for different polymers, especially at higher crystallization temperatures (Lorenzo et al. 2007).

Some researchers attribute it to the pre-nucleation process of cluster formation as discussed

in subsection 3.3.2, p. 25, whereas others suspect that it might be a question of sensitivity to

detect a small number of nuclei at the very beginning of polymer crystallization.

a) b)

Figure 5.19: a) Direct modeling of crystallization data for i-PP-1 recorded at 132 °C using the Avrami
equation up to φc/φ

∞
c = 0.5. An induction time t0 ≈ 4 min was estimated. b) Corresponding Avrami

plot for different values of t0. The value of t0 = 4 min showed the expected linear relationship, whereas
higher and lower values led to nonlinear curves (see also subsection 3.3.6, p. 35).

All crystallization curves for the two i-PPs, PA-6, and t-PI were well described by the direct

Avrami fit over the range of 0 ≤ φc/φ
∞
c ≤ 0.5, which is an indication of predominantly

primary growth up to that point (Figure 5.18). Since the Avrami model does not account

for a growth rate distribution, it is strictly applicable only in the absence of any temperature

gradient, which is experimentally difficult to achieve for the sample volume of ~1 cm3 in a

10 mm NMR probe. The immediate increase in φc for all polyethylene crystallization curves

(Figure 5.18) and the resulting non-symmetric S-shape indicate that there was a temperature

gradient across the sample as these two samples are highly sensitive to even the smallest

crystallization temperature differences over the chosen temperature interval.

5.5.2 Comparison with DSC

Isothermal DSC crystallization experiments were carried out for all polymers using the pro-

tocol established by Lorenzo et al. (2007) (melting, fast cooling with -60 K/min, isothermal

crystallization). As the buildup of crystallinity is obtained by an integration of time-dependent

heat flux curves in DSC (Figure 5.20a), the highest measurable crystallization temperature is

limited by the sensitivity of the instrument, which is different from NMR where in principle

no limitations are pre-determined with respect to the highest crystallization temperature. Fur-

thermore, the absolute area under isothermal crystallization heat flux curves ∆H is strongly

dependent on the baseline, therefore usually values relative to the total area ∆Htotal are com-

pared (Lorenzo et al. 2007). These relative enthalpy ratios are identical to relative crystallinity

ratios φc/φ
∞
c , which are comparable to the relative crystallinity values obtained by NMR.
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a) b)

Figure 5.20: a) DSC heat flux curves for isothermal crystallizations of i-PP-1 at different temperatures.
Integration of the time-dependent heat flux curves and normalization led to relative crystallinity ratios
φc/φ

∞
c (b), which were analyzed using the Avrami model (Equation 5.8).

Figure 5.21: Avrami rate K and exponent n for isothermal crystallization experiments of different poly-
mers measured by DSC (filled symbols) and NMR (open symbols). The rate K showed a good level
of agreement for all polymers. On the other hand, the values for the exponent n only agreed well for
LDPE, t-PI, and PA-6, whereas, for the polypropylenes and especially HDPE, a lower value was deter-
mined by NMR. The origin of this discrepancy is probably a temperature gradient of ~1 K across the
sample for the NMR experiments. Reprinted from Räntzsch et al. (2018).

For all polymers, the Avrami rate K extracted from NMR was in good agreement with the

values obtained by isothermal DSC experiments (Figure 5.21). The Avrami exponent n was

comparable for LDPE, t-PI, and PA-6, whereas, for the polypropylenes and HDPE, a lower

value was determined by NMR. The origin of this discrepancy was the earlier rise in the NMR

crystallinity parameter compared to DSC, and could have been the consequence of the tem-

perature gradient of ~1 K across the sample for the NMR experiments. In (Figure 5.22), the

effect of a growth rate distribution is illustrated using a linear superposition of five curves

with different values for the growth rate K , but identical dimensionalities n. Modeling the
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superposition curve with only a single set of Avrami parameters led a significantly decreased

exponent n′ = 1.4, which didn’t indicate a change in dimensionality, but was an artifact caused

by the distribution of growth rates. By optimizing the temperature control and NMR probe

design, a reduction of temperature gradients and a better comparability could be achieved.

Figure 5.22: Linear superposition of five curves with K = 0.01, 0.025, 0.04, 0.06, 0.08 1/min, and iden-
tical dimensionalities n = 3. Modeling the superposition curve with a single set of Avrami parameters
led to an average growth rate K ′ ≈ 0.046/min, which was in good agreement with the third curve of
intermediate K . However, the obtained apparent dimensionality n′ = 1.4 was significantly lower than
the dimensionalities n of the individual curves.

5.6 Development of a high-temperature LF-NMR probe and an
active Q-switch

Motivation

As NMR has an inherently low sensitivity because of the ~B0-dependent Zeeman splitting, much

effort is put into minimizing losses and improving signal transmission. In order to achieve the

highest possible sensitivity, probes with high quality factors Q are desirable. The quality factor

Q is a dimensionless parameter that characterizes the damping behavior of tank circuits caused

by its internal resistance (high Q = low damping, low Q = high damping). It has a strong effect

on the sensitivity and the ring-down characteristics of NMR probes (high Q – long dead time,

see Figure 5.1b). For a tank circuit, the quality factor is given by:

Q =
1
R
·

√

√ L
C

(5.9)

R: resistance, L: inductance, C: capacitance.

The NMR probe bandwidth ∆ω and the quality factor Q are connected by:

Q =
ω0

∆ω
(5.10)
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The maximum possible NMR probe Q factor is limited by the circuit design, the needed band-

width for excitation, and the relaxation behavior of the material under study. For liquid sam-

ples with slow transverse relaxation, high Q probes (> 150) with long dead times of > 20 µs

can be constructed as the magnetization of liquid samples hasn’t decayed significantly on this

time scale. However, for solid samples the rapid signal decay due to dipolar dephasing limits

the possible quality factor to values Q < 50 with corresponding dead times of ~10 µs. Pulse

sequences such as the magic sandwich echo (MSE) are a way to reconstruct the initial mag-

netization decay (see subsection 4.2.3, p. 58). However, they are prone to errors if dynamic

processes act on the time scale of the refocusing pulses. A different approach is to use an active

Q-switching device in combination with a high-Q NMR probe, which allows for a switching be-

tween states of high and low Q as shown in Figure 5.23 (Conradi 1977; Hoult 1979; Andrew

and Jurga 1987; Anklin et al. 1995; Peshkovsky et al. 2005; Corver et al. 2005; Guthausen and

Kamlowski 2009; Aissani et al. 2014). For pulsing and data acquisition the Q-switch is open,

enabling fast signal transmission and high sensitivity. Right after an NMR pulse, the Q-switch

is closed, which lowers Q and leads to an effective damping of the ring-down.

Figure 5.23: Schematic representation of a high-Q NMR probe with a long dead time (a) and the same
probe together with an active Q-switching device to dampen the pulse and shorten the dead time (b).

Design

A new high-temperature NMR probe for the Bruker "the minispec" spectrometer operating at

20 MHz with high Q, an improved thermal insulation, and simplified match- / tunability was

developed at the Pro2NMR facility under supervision of Prof. G. Guthausen (Figure 5.24). All

metal, plastic, and glass parts were made in-house by colleagues at the ITCP workshop and

the glass blowing facility. Silvering of a glass Dewar and evacuation were carried out by KGW

Isotherm GmbH (Karlsruhe, Germany). NMR probes are designed to resonate at the Larmor

frequency (here: 20 MHz) which is defined by the magnetic field ~B0. The parameters of the

tank circuit (capacitance C , inductance L) are related to the angular frequency ω0 by:

ω0 =
1
p

LC
(5.11)
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Figure 5.24: CAD drawing of the developed high-temperature probe for the Bruker "the minispec" spec-
trometer (20 MHz) at the Pro2NMR facility with a shielded housing for the tank circuit and a silvered
Dewar for thermal insulation (photograph in Appendix A).

For a solenoid coil, the inductance is proportional to the square of the number of turns N2

times the area A, divided by the length l:

L ≈
µ0 · N2 · A

l
(5.12)

µ0: vacuum permeability, N : number of turns, A: area, l: length.

The tank circuit shown in Figure 5.26a was built using two non-magnetic trim capacitors

(Voltronics NMTM120CE, 2 – 120 pF) and flat silver wire (1.5 mm diameter, 999 silver,

Götze GmbH, Berlin) for the solenoid coil (d = 18 mm, N = 12, l = 45 mm). The Q fac-

tor was determined to be ~130 by measuring the bandwidth at full width half maximum

(FWHM) using an Agilent 8712ET RF network analyzer.3

The Q-switch was developed in a joint project between the Pro2NMR facility led by Prof. Gisela

Guthausen and Dr. Martin Sack (Institute for Pulsed Power and Microwave Technology - IHM,

group of Prof. John Jelonnek) and his student Paul Dietrich who worked on this project during

his Bachelor thesis. It was designed as an accessory that could be used together with different

NMR probes. Its position in the set-up was selected to be in between the pre-amplifier and

the NMR probe (Figure 5.25). Triggering the Q-switch was carried out by transistor–transistor

logic (TTL) pulses using the Bruker minispec software. The circuit was designed by Dr. Mar-

3 The definition of bandwidth ∆ω differs between the communities of NMR and electrical engineering. The latter
group measures the bandwidth at -3 dB, which leads to lower Q values. For this work, the NMR convention of
measuring bandwidth at FWHM of the resonance was employed.
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Figure 5.25: Schematic layout of the Bruker minispec with the Q-switch as an accessory that can be
used together with different NMR probes. Its position in the set-up was selected to be in between the
pre-amplifier and the NMR probe to ensure high flexibility and accessibility.

tin Sack and Paul Dietrich based on works by Anklin et al. (1995); Peshkovsky et al. (2005);

Corver et al. (2005); Guthausen and Kamlowski (2009). The main components were a trans-

former (ferrit core) for transferring energy into the Q-switch, two transistors T1 and T2 for

switching (SPP04N60S5 type, max. 600 V and 4.5 A), three trim capacitors CPrim, CSec1 and

CSec2 for power matching, and two resistors RQ1 and RQ2 for energy absorption (max. 3 W,

combinations of SMD 1210 type resistors).

Figure 5.26: a) Circuit design of the developed high-Q NMR probe operating at 20 MHz. b) Q-switch
circuit developed by Dr. Martin Sack and Paul Dietrich (photograph in Appendix A).
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Performance Tests

The Q-switch was tested externally using an oscilloscope to evaluate and optimize the damp-

ing performance. The data shown in Figure 5.27a was obtained for a transformer with three

windings and a NiZn ferrit type 67 core (Fair Rite Corp., Wallkill, USA). It showed almost no

signal loss in the open case, and a damping of -11 dB in the closed state (TTL on). The signal

needed only 2 – 3 ns to reach stable damping conditions.

For performance testing under real conditions, the developed NMR probe and the Q-switch

were assembled inside of the Bruker minispec and matched iteratively to ensure the highest

energy transfer (50 Ωmatching). The switching functionality was tested using a 90°-FID pulse

program (dead time measurement). To prevent arcing within the NMR probe, a pulse atten-

uation of 24 dB was applied, which led to a 90° pulse length of 7.8 µs. TTL-triggering was

carried out by inserting Bruker ExpSpel st-commands right after the pulse. In Figure 5.27b,

results are shown for different experimental configurations. Notably, the mere presence of

the Q-switch in the signal path led to a lower dead time. The reason was certain coupling

to the Q-switch even in its open state. Turning the Q-switch on and off produced substan-

tial crosstalk. Therefore, the active damping functionality of the Q-switch was tested using a

50 µs closed state following the 90° pulse. The data showed a prolonged decay and not the

damping effect which was seen in the experiments using an oscilloscope. This was presum-

ably associated with a lower energy transfer in the switched case due to a modified impedance

( 6= 50 Ω). Inserting cables of different lengths between the preamp and the Q-switch didn’t

change this trend significantly. Placing the Q-switch electrically on the other side of the capac-

itor C1 (Figure 5.26a) might help to improve the energy transfer and to lower the dead time.

Alternatively, an inductive coupling to the NMR coil as suggested by Peshkovsky et al. (2005)

could in the future be realized at the cost of lower flexibility.

a) b)

Figure 5.27: a) External measurements of the Q-switch damping performance using an oscilloscope.
The loss in the open state was minimal, whereas in the closed state a dampening of -11 dB was observed.
b) NMR probe dead time measurements for different experimental configurations in combination with
the Q-switch (not switched / switched, different cable lengths between the preamp and the Q-switch).
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5.7 Concluding remarks

In this chapter, the molecular dynamics of commercially relevant semi-crystalline polymers

were investigated using 1H-NMR. In the first part, high-field solid-state NMR experiments were

presented, which displayed the broad line shape of semi-crystalline polymers due to strong

homonuclear dipolar coupling. Free induction decays were analyzed using semi-empirical

models to describe the temperature-dependent relaxation of semi-crystalline polymers. The

experiments were limited by the accessible temperature range that didn’t allow for a full series

of measurements between the glass transition temperature and the nominal melting points.

In the second part, low field 1H-NMR relaxometry was used to investigate the temperature-

dependent relaxation behavior over a wider temperature range and T = Tg + 100 K was

identified as the minimum temperature for which the mobility difference between protons in

crystalline and amorphous fractions is sufficient for an unambiguous determination of polymer

crystallinity. The obtained bulk crystallinities X c were compared to DSC and XRD data, and

showed good agreement for all polymers within an estimated relative error of ±10% for the

respective methods. Additionally, we focused on the determination of crystallization kinet-

ics, i.e., monitoring of isothermal crystallization, which required a robust design of the pulse

sequence, precise temperature calibration, and careful data analysis. We found the combi-

nation of a mixed magic sandwich echo (MSE) with a short acquisition duration followed by

a CPMG echo train with short pulse timings to be the most suitable sequence for crystalliza-

tion experiments. For all polymers, the relaxation behavior within the amorphous domains

was rather invariant during crystallization, pointing towards a nucleation and growth mech-

anism for polymer crystallization. Two different methods of data analysis (direct, indirect)

were evaluated. The indirect data analysis was found to be more robust because it relies only

on the analysis of CPMG data and is independent of the MSE efficiency. When compared to

isothermal DSC experiments, a quantitative analysis using the Avrami model showed good

agreement for the rate K , but certain deviations in the exponent n were seen that were pre-

sumably caused by temperature gradients.

In the third part of this chapter, the use of an active Q-switching device for lowering the dead

time of high-Q NMR probes was studied in a joint project between the Pro2NMR facility led by

Prof. Gisela Guthausen and Dr. Martin Sack and Paul Dietrich (Institute for Pulsed Power and

Microwave Technology - IHM, group of Prof. John Jelonnek). The developed NMR probe had

an improved thermal insulation and simplified match- and tunability. When tested externally

using an oscilloscope, the closed Q-switch dampened a 20 MHz signal by -11 dB, whereas in the

open state it showed almost no signal loss. When tested together with the built high-Q NMR

probe, no substantial signal dampening could be observed. This behavior was presumably

caused by an impedance mismatch once the Q-switch was turned on. By placing the Q-switch

electrically closer to the NMR coil, the performance could be improved.
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6 Interplay between Molecular Dynamics and
Rheology in Polymer Crystallization: RheoNMR

In the following chapter, simultaneous investigations of molecular dynamics and the associ-

ated hardening behavior during polymer crystallization are presented, which are an important

cornerstone in understanding the rheology of crystallizing polymer melts. In this context, the

influence of crystallization temperature, polymer grade, fillers, and additives were analyzed.

Furthermore, the effect of well-defined flow profiles on the process of polymer crystallization

with respect to the changes in molecular dynamics and rheology is discussed. Finally, the mor-

phology as revealed by ex-situ scanning electron microscopy was connected with the observed

flow phenomena and the changes in molecular dynamics. Parts of this chapter are based on

recently published conference contributions (Räntzsch et al. 2017a,b).

6.1 Introduction

The flow and deformation behavior of polymer melts can be thoroughly studied using rheol-

ogy, whereas low-field NMR relaxometry is a powerful technique for the characterization of

molecular dynamics (chapter 5). To achieve a substantial insight into the interplay of these do-

mains, especially under flow, these two methods were combined into one set-up (Ratzsch et al.

2017; Räntzsch et al. 2017b). This approach is different from other RheoNMR set-ups, as its

main purpose is the study of molecular dynamics rather than molecular or macroscopic struc-

ture via NMR spectroscopy (Grabowski and Schmidt 1994; Lukaschek et al. 1995; Schmidt

2006; Ohgo et al. 2008; Medronho et al. 2010) and magnetic resonance imaging (Callaghan

1999; Callaghan and Gil 2000; Callaghan and Komlosh 2002; Callaghan 2006, 2008; Galvosas

and Callaghan 2006; Hollingsworth et al. 2004; Kilfoil and Callaghan 2000; Lopez-Gonzalez

et al. 2006). The length and time scales of rheometry are millimeters and seconds whereas

in low-field NMR relaxometry (also called Time Domain (TD)-NMR) they are both 103 – 106

times smaller. Besides polymer crystallization, low-field RheoNMR can also be used to study

the curing of resins, the cross-linking of rubbers, or the crystallization of edible fats. Based on

the changes in molecular dynamics, a quantitative compositional analysis of multiphase soft

matter systems during or upon the application of linear and non-linear shear deformations

can be obtained (chapter 5).

The buildup of semi-crystalline spherulites in a polymer melt leads to strong thickening, which

has some similarity to a suspension of rigid, potentially interacting particles in a viscoelastic

fluid. Early studies by Pogodina and Winter (1998); Pogodina et al. (1999, 2001) showed
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a gelation-like transition during polymer crystallization similar to small molecules that form

into a gel. The suspension-like hardening behavior of crystallizing polymer melts was de-

scribed in great detail by Lamberti et al. (2007); Lamberti (2012); Pantani, De Meo, Speranza

and Titomanlio (2015) and incorporated into a hardening model by Roozemond et al. (2012).

However, the detailed physics behind this process remain a subject of debate. Due to the ex-

tremely high temperature-dependence of polymer crystallization, the correlation of data on

the evolving crystallinity and flow behavior from separate instruments (e.g., DSC and rhe-

ology) is very difficult to practically achieve. In-situ techniques such as low-field RheoNMR

determine polymer crystallinity and flow properties simultaneously, leading to a substantially

better correlation of data with the additional benefit of being able to apply shear protocols.

6.2 Experimental

RheoNMR set-up

The hyphenated low-field RheoNMR set-up was developed by Dr. Karl-Friedrich Ratzsch and is

based on a portable 1H NMR unit (~B0= 0.7 T,ωL/2π= 30 MHz for 1H) that was integrated into

a commercial strain-controlled TA / Rheometrics ARES shear rheometer (Figure 6.1, Ratzsch

et al. (2017), see Appendix A for a photograph). This unique combination can be employed to

make a full rheological characterization (G′, G′′, |η∗|, FT-Rheology: I3,1, Q0) and to apply well-

defined shear protocols while monitoring molecular dynamics in-situ via 1H NMR relaxometry.

a) b)

Figure 6.1: Low-field RheoNMR set-up based on a portable 1H time domain (TD)-NMR unit (30 MHz)
implemented in a strain-controlled shear rheometer (TA ARES). Adapted from Ratzsch et al. (2017);
Räntzsch et al. (2017b).

The NMR magnet consists of a Halbach array of 92 NdFeB permanent magnets that permits its

facile integration into a rheometer due to its low stray field, light weight and small dimensions

(Figure 6.1). A Dewar was placed between the temperature-sensitive permanent magnets and

sample space to achieve good thermal insulation (silvered glass with an un-silvered window

to avoid ring currents). The sample temperature can be controlled from -15 to +210 °C using

a N2-based convective heating system and a Bruker Variable Temperature unit (BVT). The

broadband NMR probe used in these experiments is based on a parallel tank circuit equipped
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with a solenoid coil (l = 33 mm, d = 16 mm) and two capacitors (match & tune) exhibiting

a dead time of 12 µs and pulse lengths of ~3 µs (90°) and ~6 µs (180°) at 0 dB pulse at-

tenuation, respectively. Pulsing, data acquisition and processing were performed by a Bruker

"the minispec" electronic unit. A requirement for 1H NMR experiments are proton-free and

non-conducting geometries, which were made from ceramics (13 mm parallel-plate and cone-

plate). Such an NMR unit can also be used e.g., in combination with an extruder to monitor

flow instabilities and polymer crystallization simultaneously by NMR and a pressure-sensitive

detection system (Ratzsch et al. 2013).

The characteristics of the magnet were tested by recording free induction decays of a silicone

oil for different positions inside of the magnet (Appendix A). The middle position resulted

in the longest FID with the corresponding most narrow resonance (FWHM ≈ 50 kHz). In all

cases, the FID exhibited certain oscillations, which were probably caused by the two stacked

Halbach arrays. The ~B0 homogeneity was substantially lower than on the Bruker minispec

mq20 (FWHM ≈ 250 Hz), which was used in chapter 5. Consequently, a multi-component

analysis of the FID or a reconstructed counterpart (e.g., a mixed magic sandwich echo) was

not possible. However, the performance was sufficient for monitoring polymer crystallizations

using a combined MSE-CPMG pulse sequence as described in section 5.5, p. 82.

Procedures

Quiescent and flow-induced crystallization of isotactic polypropylene were studied under

isothermal conditions in a temperature interval of +130 to +150°C. The nominal average

sample temperature was calibrated prior to all experiments using a digital thermometer (RS

Components, Mörfelden-Walldorf, Germany) equipped with a type K thermocouple (see Ap-

pendix A for a calibration curve). Due to a temperature uncertainty of ±1 °C, the effective

average crystallization temperatures denoted in this chapter are given based on a compar-

ison with results from DSC and standalone NMR to ensure at most comparability (subsec-

tion 5.5.2, p. 87). Prior to all crystallization experiments, the polypropylene samples were

molten at 200 °C for 15 min to erase the thermal history. The changes in molecular dynamics

and the buildup of crystallinity from an isotropic melt were monitored by 1H NMR relax-

ometry as described in section 5.5, p. 82 using a combined MSE-CPMG pulse sequence. A

bi-exponential function was fitted to the CPMG data to extrapolate to the theoretical initial

intensity ICPMG at tNMR = 0. Based on the indirect data evaluation approach the evolving

mass fraction of crystalline material was determined (Equation 5.6, p. 83). Different from our

paper presented at the Novel Trends in Rheology Conference VI (Räntzsch et al. 2017b), no

density-dependent correction term was included, the temperature was re-calibrated, and rela-

tive crystallinities were evaluated. In some experiments, the CPMG part was acquired without

a preceding magic sandwich echo, as it was unnecessary for the indirect data evaluation. Ob-

tained mass crystallinities X c(t) were converted to volume fractions φc(t) by considering the

densities for a fully amorphous and a theoretically 100% crystalline sample (Mark 2007).

97



6 Interplay between Molecular Dynamics and Rheology in Polymer Crystallization: RheoNMR

All polymer crystallizations were monitored by rheological time sweeps with low strain am-

plitude γ0 = 0.5% and angular frequency ω = 1 rad/s to detect the change in flow behavior

without disturbing crystal formation. For all flow-induced crystallizations, a steady shear step

was included right after the desired crystallization temperature was reached (Figure 6.2).

Parallel-plate geometries (13 mm) with a gap of 1.5 mm were used in all experiments, as

the contraction of the sample during crystallization required step-wise lowering of the upper

geometry, which prevented the use of cone-plate geometries with a fixed gap.

Figure 6.2: Short-term shear protocol proposed by Janeschitz-Kriegl and co-workers to separate the in-
fluences of temperature and flow on polymer crystallization (Janeschitz-Kriegl 1992; Eder et al. 1992).
For i-PP: tmelt ≈ 15 min, tcool − tmelt ≈ 5 min, Tisomelt ≈ Tm+ 35 K, Tcryst ≈ Tm− 35 K.

The semi-crystalline morphologies were analyzed using ex-situ scanning electron microscopy

(SEM). All samples were etched with an acidic permanganate solution (0.2 mol/l KMnO4 in

10:4:1 H2SO4 (96%), o-H3PO4 (85%), H2O for 2 h at room temperature with subsequent

washing using H2O2 (30%)/H2O and sonication for 30 min in acetone). A 2 nm thick coating

of Pt was deposited onto the specimens using a Leica EM ACE 600 sputter coater. SEM images

were taken using a Zeiss Gemini/LEO 1530 system with 5 kV and 30/60 µm aperture.

Materials

The main material of investigation was a Ziegler-Natta polypropylene grade i-PP-1 (batch 1:

Mw = 246 kg/mol, -D = 2.7, batch 2: Mw = 282 kg/mol, -D = 3.4). Additional experiments

were performed on a metallocene-catalyzed polypropylene grade i-PP-2 (Mw = 202 kg/mol,
-D = 1.9) in order to unravel the effect of regio-defects on the crystallization behavior (see

section 2.4, p. 19 for further information on the used polymer grades). The influence of nucle-

ating agents was studied using compounds of i-PP-1’ (batch 2) with 250, 500, 750, 1500 ppm

of N, N’, N”-tris(3-methylbutyl)-1,3,5-benzene tricarboxamide (DH677), which were prepared

by our collaborators Dr. K. Kreger and D. Kremer in the group of Prof. H.W. Schmidt (University

of Bayreuth, Germany) using a lab-scale twin-screw extruder. Furthermore, the effect of fillers

on the crystallization behavior was analyzed using compounds of i-PP-1 with 1 – 5 wt% fumed

silica (CAB-O-SIL TS-530, Cabot Corporation, Alpharetta, USA), which were compounded by

Dr. J. Palacios in the group of Prof. A. Müller (Universidad del País Vasco, San Sebastián, Spain).
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6.3 Quiescent crystallization of isotactic polypropylene

The isothermal crystallization behavior of neat isotactic polypropylene i-PP-1 was investigated

by simultaneous monitoring of the flow behavior via rheology and the emerging polymer

crystallinity φc via 1H NMR relaxometry. The sample kept at 200 °C for 15 min was rapidly

cooled to the crystallization temperature Tcryst ≈ 130 °C. The experimental parameters for

monitoring G′, G′′ and tan(δ) = G′′/G′ during crystallization were chosen as γ0 = 0.5% and

ω = 1 rad/s to stay in a non-perturbing regime with regard to the crystallization kinetics. In

Figure 6.3a, simultaneously measured evolving moduli G′ and G′′ are plotted together with

the volume-related crystallinity φc extracted from NMR relaxation data by the indirect data

analysis (Figure 6.3b, see also section 5.5, p. 82).

a) b)

Figure 6.3: Simultaneously measured low-field RheoNMR data on the isothermal crystallization of iso-
tactic polypropylene i-PP-1. a) Evolution of the rheological moduli G′ and G′′ plotted together with the
volume-related crystallinityφc as determined by NMR. b) Corresponding series of transverse relaxation
data as captured by an MSE-CPMG sequence.

An immediate increase in both the storage modulus G′ and the loss modulus G′′ was observed

when the temperature was decreased (t ≈ 3 min in Figure 6.3a). The time needed for cooling

was approximately 5 min, which resulted in a nominal cooling rate of ~15 K/min. Crystalliza-

tion started right after the temperature Tcryst ≈ 130 °C was reached, which was indicated by

another rise in the moduli G′ and G′′, and the crystallinityφc . With further progression of crys-

tallization, the material became increasingly elastic and a crossover (G′ = G′′) was observed

at t = 11 min. Notably, the absolute crystallinity φc was as low as ~5% when the crossover

occurred, which will be extensively discussed later in this section. The time t1/2 needed to

reach half crystallinity (φc = 0.3) was identified as a second characteristic time of the crystal-

lization process. By that time, the moduli reached almost their final plateau values on a log

scale, whereas the crystallinity φc kept further increasing until a final crystallinity of φc = 0.6

was obtained. The magic sandwich echoes recorded prior to the CPMG echo train showed a

decaying behavior that was mainly determined by the ~B0 homogeneity (Figure 6.3b). Differ-

ent deconvolution approaches were tested, but no analytical expression was found that could

accurately describe the magnet-inherent decaying behavior and allowed a separation from
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additional relaxation contributions caused by the sample. Results of the direct and indirect

data analysis for obtaining crystallinity values are shown in Figure 6.4a. The direct approach

is based on a comparison of CPMG intensities with the respective MSE maxima within one

combined MSE-CPMG experiment, whereas the indirect approach relies on a comparison of

CPMG intensities with the initial CPMG intensity of the supercooled melt. It was found that

the indirect approach led to less noisy data and its final crystallinities were in the range of the

values determined in chapter 5.

b) a)

Figure 6.4: a) Comparison of the direct and indirect data evaluation methods of RheoNMR decay data
for monitoring of the crystallinity buildup curves (section 5.5, p. 82). b) Transverse relaxation rates
and intensities extracted from NMR relaxation data as captured by an MSE-CPMG sequence.

Characteristic transverse relaxation rates 1/T2,1 and 1/T2,2 and their corresponding intensities

were obtained by modeling the NMR relaxation data with a bi-exponential function:

A(t) = A1 · exp

�

−
t

T2,1

�

+ A2 · exp

�

−
t

T2,2

�

(6.1)

The relaxation rates 1/T2,1 and 1/T2,2 showed an inverse evolution compared to the corre-

sponding intensities A1 and A2 (Figure 6.4b). The highly mobile component was character-

ized by the relaxation rate 1/T2,1, which increased only slightly during the crystallization

process. This indicated the buildup of additional physical constraints during crystallization

that hindered molecular motion to some degree. Both, the relaxation rate 1/T2,2 and the

corresponding intensity A2 of the semi-mobile or intermediately mobile component increased

during crystallization. The early appearance of this intermediately mobile component might

be an indication of a pre-forming mesomorphic phase which is located at the growth front as

proposed by Strobl (see subsection 3.3.5, p. 33, Strobl (2000, 2009)). Overall, the transfor-

mation process had a comparable effect on the local molecular dynamics (1/T2,1, 1/T2,2) and

the macroscopic flow behavior (G′, G′′), which was in accordance with previous isothermal

crystallization experiments on trans-polyisoprene (Räntzsch et al. 2014).
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Repeatability

The test-retest reliability or repeatability of the RheoNMR set-up was analyzed by carrying out

multiple isothermal crystallizations of i-PP-1 at a relatively high crystallization temperature of

Tcryst ≈ 136 °C, which ensures the detectability of variations in the crystallization kinetics due

to its strong temperature-dependence and a large total number of data points. In Figure 6.5a,

rheological time sweep data from different experiments is shown in an overlay plot. The cor-

responding evolution of the relative crystallinities φc/φ
∞
c as monitored by NMR relaxometry

is shown in Figure 6.5b. The earliest measurement from November 2015 (no. 1) displayed

higher moduli than the later experiments, which might have been caused by a slightly too low

gap using the thermal expansion correction feature of the TA ARES. In all later experiments,

the zero-gap routine was carried out at the crystallization temperature, which didn’t require

the use of a thermal expansion correction. All experiments performed in July 2016 showed

similar curve behavior. The two measurements from July 25 (no. 2/3) were done using the

exact same sample, whereas for the experiment on July 26 (no. 4), a new sample was loaded

into the setup. Importantly, the NMR unit was not disassembled between these tests, which

ensured a similar average temperature and temperature distribution within the sample. In

contrast, the measurement in August 2016 (no. 5) was done using a re-calibrated set-up and

a new sample, which led to slightly different results.

a) b)

Figure 6.5: a) Overlay plot of multiple rheological time sweeps in chronological order following the
isothermal crystallization of i-PP-1 at nominal crystallization temperatures Tcryst ≈ 136 °C. b) Corre-
sponding evolution of the relative crystallinities φc/φ

∞
c .

For further comparison, the times needed for the onset and endset of crystallization were

determined by estimating the intersection of linear extrapolations of the storage modulus G′

(Figure 6.6). On an absolute time scale, tendset showed the highest variation, whereas tonset and

tG′=G′′ were rather similar and not that much affected by potential differences in the average

sample temperature and its distribution. Again, the experiments carried out in a short period

of time (July 2016) showed strong correlation with a low variation of tG′=G′′ below ±0.5 min,

which was lower than the respective standard deviations.
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a) b)

Figure 6.6: a) Determination of the on- and end-set crystallization times using linear extrapolations of
the storage modulus G′ from the experiments shown in Figure 6.5. b) Resulting times extracted from
the experiments no. 1-5. The crossover time tG′=G′′ and the onset time tonset showed low variations for
experiments conducted close in time (dashed lines: mean, grey areas: standard deviation).

6.3.1 Temperature-dependence of isothermal crystallization

The temperature-dependence of isothermal polymer crystallization was investigated by si-

multaneously monitoring the flow behavior and the emerging relative polymer crystallinity

φc/φ
∞
c . In Figure 6.7, the evolution of the moduli G′, G′′, and relative crystallinities φc/φ

∞
c

is shown for i-PP-1. The sensitivity of polymer crystallization towards temperature is high in

the chosen interval: a decrease of 2 K led to a two times faster crystallization as detected by the

crossover times. The trend of faster crystallization with decreasing crystallization temperature

for Tcryst > (T0
m+Tg)/2 assuming a Gaussian distribution of growth rates was well captured by

both, the moduli G′, G′′ and the relative crystallinity φc/φ
∞
c . To further evaluate the data, all

crystallinity curves were directly fitted using the Avrami model up to φc/φ
∞
c = 0.5 to obtain

the kinetic rate K and the exponent n (Avrami (1941), subsection 3.3.6, p. 35):

φc (t)
φ∞c

= 1− exp {− [K (t − t0)]
n} (6.2)

φc : volume crystallinity, φ∞c : final volume crystallinity, K: rate, n: exponent, t: time, t0 : in-

duction time.

All crystallinity curves shown in Figure 6.7b were well described by an Avrami fit using nonlin-

ear regression up to 50% relative crystallinity. As the number of data points acquired during

the initial nucleation period was rather low, the numerical Avrami fit showed strong depen-

dencies between the dimensionality parameter n and the induction time t0. The interval t0

included the experimental time spent for acquiring a melt signal (~3 min), the time needed

for cooling (~5 min for 200 to 136 °C), and the reorganization time preceding nucleation.

The most reasonable set of t0 values was found to be: 8.5 min (130 °C), 9 min (132 °C),

10 min (134 °C), and 12 min (136 °C) and kept constant during the nonlinear fit using a
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a) b)

Figure 6.7: Simultaneously acquired moduli G′, G′′ (a) and relative crystallinities φc/φ
∞
c (b) dur-

ing isothermal crystallization of isotactic polypropylene (i-PP-1) from the melt at different crystal-
lization temperatures. The known trend "higher temperature leads to slower crystallization” for
Tcryst > (T 0

m+ Tg)/2 was well reflected. For every crystallinity curve, a direct Avrami fit was performed
over the interval 0≤ φc/φ

∞
c ≤ 0.5 to facilitate the correlation of rheological parameters with polymer

crystallinity from NMR relaxometry.

Levenberg-Marquardt algorithm (Figure 6.8a). As the curves showed an asymmetric behavior,

an additional pre-factor of ~0.6 was needed on the right hand side of Equation 6.2 to account

for the nominal lower final crystallinity caused by primary crystallization. This set of parame-

ters led to a good representation of the curves up to 50% relative crystallinity, which was the

main goal of this analysis.

a) b)

Figure 6.8: a) Detailed Avrami fits using different parameter sets for t0. b) Kinetic data obtained by
modeling the crystallization curves of Figure 6.7b.

The kinetic results obtained from the different evaluation methods are compared in Fig-

ure 6.8b. Overall, K decreased at higher temperatures from ~0.15 min-1 at 130 °C to 0.05 min-1

at 136 °C. The rate parameter K was independent of the chosen analysis method, whereas the

dimensionality n depended on the data point density, the induction time, and the overall noise

level. For the experiments presented here, the dimensionality parameter n was not found

to be a reliable measure of the type of nucleation (heterogeneous / homogeneous) or the

dimensionality of growth.
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6.3.2 Physical gelation – characteristics and modeling

The temperature-dependent experiments discussed in the previous section were further eval-

uated with respect to the characteristic hardening behavior. Crystallization half times t ′1/2 for

φc/φ
∞
c = 0.5 were plotted against the crossover / gelation times t ′gel(G′ = G′′) in Figure 6.9a.

The time spent at 200 °C and the time needed for cooling (in total 8 min) were subtracted:

t ′ = t − 8 min. The exact gelation time t ′gel can be unambiguously obtained by multi-wave

experiments and the detection of a frequency-independent tan(δ) (see Figure 6.10a). As we

selected a low angular velocity of 1 rad/s, the crossover time at which G′ = G′′ is practically

identical to the exact gelation time (± 1 min) and thus will be considered as the gelation time

t ′gel. The relationship between t ′1/2 and t ′gel is well described by the dotted line (t ′1/2 = 2t ′gel).

Before spherulitic impingement, the effective volume / degree of space filling is approximately

given by the relative crystallinity φc/φ
∞
c .

a) b)

Figure 6.9: a) Crystallization half times t ′1/2 for φc/φ
∞
c = 0.5 as a function of the crossover times for

different crystallization temperatures. The time spent at 200 °C and the time needed for cooling (in total
8 min) were subtracted: t ′ = t − 8 min. The relationship between the two times for the temperature
series is well described by t ′1/2 = 2t ′gel. b) Absolute and relative crystallinities (degree of space filling)
at the crossover vs. the crossover time. The values were extremely low compared to other material
systems such as suspensions or emulsions.

In Figure 6.9b, the absolute and relative crystallinities at the crossover were plotted against the

crossover time t ′gel. Compared to other materials such as suspensions or composites, the degree

of space filling needed to achieve an elastic gel-like state with strongly increased viscosity is

relatively low (φc/φ
∞
c ≤ 15%). Another feature of crystallizing polymer melts is the appear-

ance of a maximum in the relative third harmonic I3,1 (Dötsch et al. 2003). In Figure 6.10b,

the evolution of the relative third harmonic I3,1 and the loss tangent tan(δ) are compared for

the temperature series of Figure 6.7. A correlation of the I3,1 maxima and tan(δ) = 1 was

found, which revealed the strong nonlinear rheological behavior close to the point of gelation.

Using small angle light scattering (SALS), Pogodina and Winter identified long-range density

fluctuations at the gel point, which might be the origin for the nonlinear behavior (Pogodina

et al. 1999, 2001). The observations of low degrees of space filling and density fluctuations at

the gel point will be further discussed in chapter 8 on RheoMicroscopy.
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a) b)

Figure 6.10: a) Multiwave oscillatory data for an isothermal crystallization of i-PP-1 at ~134 °C. The
rheological gel point, characterized by a frequency-independence of tan(δ) (Winter and Mours 1997),
was practically identical with the crossover time (G′ = G′′, tan(δ) = 1). b) Loss tangent tan(δ) and
relative third harmonic I3,1 vs. time for different isothermal crystallizations of i-PP-1 (nonlinearity at
lower times not shown for clarity).

By plotting a normalized rheological function, e.g., the reduced absolute complex viscosity

|η∗|/|η∗|0, as a function of the degree of space filling (relative crystallinity) φc/φ
∞
c , the effect

of temperature on the time-dependence of the polymer crystallization is removed (Lamberti

et al. 2007). In Figure 6.11, a correlation plot is shown for the temperature series of Fig-

ure 6.7. A higher viscosity was seen at lower crystallization temperatures before the curves

collapsed onto one line. A strong relative increase in viscosity occurred at degrees of space

filling below φc/φ
∞
c ≈ 10 to 15%, which indicated some form of long-range interaction be-

tween the growing spherulites (see chapter 8). As the obtained hardening curves had some

similarity to those of solid-particle suspensions, they were evaluated using different suspen-

sion and semi-empirical models (Mewis and Wagner 2012; Mueller et al. 2009; Kotula and

Migler 2018):

|η∗|
|η∗|0

= 1+ 2.5φ (Einstein) (6.3)

|η∗|
|η∗|0

=
�

1−
φ

φmax

�−2.5φmax

(Krieger-Dougherty) (6.4)

|η∗|
|η∗|0

=
�

1−
φ

φmax

�−2

(Quemada) (6.5)

|η∗|
|η∗|0

= 1+ A

�

1− exp
�

−
φ

B

�C�

≈ 1+ DφC (Sigmoidal / Power law) (6.6)

|η∗|
|η∗|0

= 1+ 2.5φ + D′φC′ (Extended Einstein) (6.7)

|η∗|/|η∗|0: reduced absolute complex viscosity, φ: degree of space filling, φmax: maximum

packing fraction, A, B, C , D: fitting parameters.
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a) b)

c) d)

e) f)

Figure 6.11: Reduced absolute complex viscosity vs. relative crystallinity (degree of space filling) for
the temperature series of Figure 6.7. a & b) Suspension-like modeling: Einstein (1), Krieger-Dougherty
withφmax = 64% (2), Quemada withφmax = 64% (3), Quemada withφmax = 30% (4). c & d) Empirical
sigmoidal model (Equation 6.6). e & f) Extended Einstein model Equation 6.7 based on a combination
of Equation 6.3 and Equation 6.6.

The Einstein model is known to be valid only for very dilute systems. Consequently, it provided

a relatively good fit for small values of φc/φ
∞
c ≤ 0.05, but did not describe the steep increase

observed atφc/φ
∞
c ≈ 0.1 as shown in Figure 6.11a & b. Using a maximum packing fraction of
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φmax = 64%, which is usually found for hard sphere suspensions (Mewis and Wagner 2012),

the Krieger-Dougherty and Quemada models did not provide a good description of the exper-

imental data. A better match was achieved, when the Quemada equation was modified by

assuming a packing fraction of φmax = 30% ( Figure 6.11b, curve 4). On the other hand, the

empirical three-parameter sigmoidal model described the rise around φc/φ
∞
c ≈ 0.1 and the

curves at higher degrees of space filling sufficiently well, but showed an underestimation of

the reduced viscosity at low degrees of space filling (Figure 6.11c & d). The sigmoidal model

could also be simplified to a power law by using a Taylor series expansion, which reduces

the amount of free parameters (C , D). The combination of an Einstein model to describe

the behavior at low degrees of space filling plus a power law (extended Einstein model) gave

the best fitting results (Figure 6.11c & d). Taking into account that it only requires two free

parameters, it is very suitable for an analysis of the hardening curves of different samples

or crystallization conditions. The parameter D′ represents the dynamic range of |η∗|/|η∗|0,

whereas C ′ might be associated with the coordination of growing spherulites.

The extracted fitting parameters from the sigmoidal and extended Einstein models are given in

Table 6.1 and showed a trend to higher parameter values with increasing crystallization tem-

perature. Even though the sigmoidal model is purely empirical, there is a certain similarity

to the maximum packing fraction (B) and the exponent (C) of the suspension models. Addi-

tionally, the parameter A describes the dynamic range of the hardening curves. The parameter

D′ was substantially higher for the extended Einstein model compared to the calculated D

values from the sigmoidal model, which was presumably a consequence of the combination

with the linear 2.5φ term of the Einstein model. Simply speaking, the sigmoidal model de-

scribed the whole hardening curve with one nonlinear term, whereas the description based

on the extended Einstein model was based on two distinct regimes (before and after gelation).

a)

Tcryst [°C] A [-] B [-] C [-] D = AC/B [-]

130 1423 0.46 4.2 13 · 103

132 1172 0.44 4.8 13 · 103

134 1581 0.51 4.9 15 · 103

136 1845 0.51 5.1 19 · 103

b)

Tcryst [°C] C ′ [-] D′ [-]

130 4.1 29 · 103

132 4.6 44 · 103

134 5.0 46 · 103

136 5.1 58 · 103

Table 6.1: Parameters determined by modeling the data in Figure 6.11 with an empirical sigmoidal
model (a) (Equation 6.6), and with a semi-empirical extended Einstein model (b) (Equation 6.7).

Similar to the reduced viscosity, other parameters such as the reduced storage or loss mod-

uli, the loss tangent, or the relative intensity of the third harmonic can be analyzed in plots

against the degree of space filling (see Figure 6.12). For the moduli, the observed behavior is

very similar to the reduced viscosity as expected. However, as most hardening models were

derived for the reduced viscosity and not the moduli (Mewis and Wagner 2012), comparisons

of different materials and conditions were usually carried out based on the reduced viscosity
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by most researchers (Lamberti et al. 2007). The correlation of the loss tangent and the third

harmonic with the degree of space filling again illustrated that the crossover (tan(δ) = 1) and

the peak maximum in I3,1 occurred always at degrees of space filling 0.1 ≤ φc/φ
∞
c ≤ 0.15.

Furthermore, the loss tangent showed a dependence on crystallization temperature, especially

up to the point of gelation where the correlation plots of the reduced viscosity or the moduli

didn’t exhibit a clear temperature dependence.

a) b)

Figure 6.12: Reduced storage G′/G′0 and loss G′′/G′′0 moduli (a), and loss tangent tan(δ) and the rela-
tive third harmonic I3,1 (b) vs. the degree of space filling (relative crystallinity).

6.3.3 Influence of the polymer grade, fillers, and nucleating agents

To further explore the crystallization behavior of isotactic polypropylene, experiments on more

complex material systems will be presented in the following. In many applications multi-

component materials are used, which potentially include fillers, nucleating and clarifying

agents, pigments, or processing additives. Furthermore, changing molecular weight, its distri-

bution, stereo– / regioregularity, or branching can have a strong effect on the crystallization

kinetics, the morphology, and the realized crystal structures (see section 2.3, p. 13).

Polymer grade

The metallocene-catalyzed isotactic polypropylene i-PP-2 of approximately the same molecular

weight as the Ziegler-Natta grade i-PP-1 (section 2.4, p. 19) was analyzed with respect to

its isothermal crystallization behavior using the RheoNMR routine described in the previous

section. In Figure 6.13, simultaneously acquired moduli G′ and G′′ are shown together with

the evolution of the relative crystallinity φc/φ
∞
c as determined by NMR relaxometry. Taking

into account the much lower crystallization temperatures of Tcryst ≈131 –134 °C compared to

the experiments on i-PP-1, the crystallization was significantly slower as indicated by the rise

in the moduli G′ and G′′, and the relative crystallinity φc/φ
∞
c , respectively. This phenomenon

might have been a consequence of the 1 mol% of 2,1-erythro defects and an associated kinetic

hindering effect (see Appendix A for 13C NMR spectra).
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a) b)

Figure 6.13: Simultaneously acquired moduli G′, G′′ (a) and relative crystallinities φc/φ
∞
c (b) during

isothermal crystallization of isotactic polypropylene (i-PP-2) from the melt at different crystallization
temperatures. For every crystallinity curve, a direct Avrami fit was performed over the interval 0 ≤
φc/φ

∞
c ≤ 0.5 to facilitate the correlation of rheological parameters with polymer crystallinity from

NMR relaxometry.

All crystallinity curves were directly fitted using the Avrami model up to 50% relative crys-

tallinity to facilitate the correlation of rheological parameters with the degree of space filling

(subsection 3.3.6, p. 35). The extracted kinetic data is shown in Figure 6.14a considering

the following t0 values that provided a reasonable description of the data: 11 min (131 °C),

14 min (132 °C), 18 min (133 °C), and 23 min (134 °C). The rate K decreased at higher

temperatures from ~0.04 min-1 at 131 °C to 0.015 min-1 at 134 °C and was lower than for

i-PP-1. The dimensionality n was on the order of the value for i-PP-1 taking into account the

experimental uncertainty depending on the data point density, the induction time, and the

overall noise level.

a) b)

Figure 6.14: a) Kinetic crystallization data extracted from Figure 6.13b by applying an Avrami model
(Equation 6.2). b) Crystallization half times t ′1/2 for φc/φ

∞
c = 0.5 as a function of the crossover times

for different crystallization temperatures.
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In Figure 6.14, the crystallization half times t ′1/2 are plotted as a function of the crossover

times for different crystallization temperatures. Despite the drastically lower crystallization

rate compared to i-PP-1, the data could be well described by the linear relationship t ′1/2 = 2t ′gel.

a) b)

Figure 6.15: Reduced absolute complex viscosity vs. relative crystallinity (degree of space filling) for
the temperature series of Figure 6.13 analyzed using an extended Einstein model (Equation 6.7).

The correlation of the reduced absolute complex viscosity |η∗|/|η∗|0 with the degree of space

filling φc/φ
∞
c is shown in Figure 6.15. An increase at lower values of φc/φ

∞
c was observed

compared to i-PP-1 (Figure 6.11). This effect might have been a consequence of the inherently

higher nucleation density and smaller average spherulite sizes of the regio-defective grade i-

PP-2 (d ≈ 5 µm vs. 50 µm, see chapter 8). Results from an analysis based on an extended

Einstein model (Equation 6.7) are shown in Table 6.2. Both parameters C ′ and D′ were lower

for i-PP-2 compared to the Ziegler-Natta grade i-PP-1. The low C ′ values can be rationalized

as showing a more parabolic curve compared to the hardening curves of i-PP-1. Consequently,

the transition from the Einstein regime at low φc/φ
∞
c to an increasingly solid-like material

was relatively smooth.

a)

i-PP-2 (regio-defective)

Tcryst [°C] C ′ [-] D′ [-]

131 2.8 4.0 · 103

132 2.2 2.3 · 103

133 2.0 1.7 · 103

134 2.3 2.4 · 103

b)

i-PP-1 (regio-regular)

Tcryst [°C] C ′ [-] D′ [-]

130 4.1 29 · 103

132 4.6 44 · 103

134 5.0 46 · 103

136 5.1 58 · 103

Table 6.2: Parameters determined by modeling the data in Figure 6.15 with a semi-empirical extended
Einstein model (a) (Equation 6.7) and compared to the values for i-PP-1 (b).
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Fillers

Isothermal crystallization experiments were performed at five different temperatures (Tcryst ≈
132 – 136 °C) for a compound of i-PP-1 with 3 wt% of silica (section 2.4, p. 19) using the

RheoNMR routine of the previous sections. In Figure 6.16, simultaneously acquired moduli G′

and G′′ are shown together with the evolution of the relative crystallinity φc/φ
∞
c . The trend

of faster crystallization with decreasing crystallization temperature for Tcryst > (T0
m + Tg)/2

was again well captured by both, the moduli G′, G′′ and the relative crystallinity φc/φ
∞
c .

Compared to the neat i-PP-1 grade, a slightly faster crystallization was observed.

a) b)

Figure 6.16: Simultaneously acquired moduli G′, G′′ (a) and relative crystallinities φc/φ
∞
c (b) during

isothermal crystallization of isotactic polypropylene i-PP-1 with 3 wt% silica from the melt at different
crystallization temperatures. For every crystallinity curve, a direct Avrami fit was performed over the
interval 0≤ φc/φ

∞
c ≤ 0.5.

All crystallinity curves were directly fitted using the Avrami model up to 50% relative crys-

tallinity (subsection 3.3.6, p. 35). Other than for neat i-PP-1, constant t0 values of ~8 min

were found to provide a good description of the data. This indicated that the time needed

for crystal nucleation was decreased by the addition of silica. The extracted kinetic data is

shown in Figure 6.17a. The rate parameter K was higher for the filled sample compared to

neat i-PP-1 over the entire temperature range, and the difference increased for lower crystal-

lization temperatures. The dimensionality n stayed relatively constant at ~3.0, which was

higher than for the neat i-PP-1 (n ≈ 2.5), but still within the relative error of approximately

±10 – 20%. Thus, even though heterogeneous nucleation was certainly present, no indication

of a substantially lower n value as proposed by the Avrami framework was observed (compare

with subsection 3.3.6, p. 35).

The speed-up of crystallization as indicated by the Avrami parameter K was presumably a con-

sequence of increased nucleation during the early stages of polymer crystallization. Possibly,

the hydrophobically modified silica offered surfaces that lowered the free surface energy of

forming pre-nuclei, which then had a higher probability to grow further and survive the initial

time period (see chapter 3, especially Equation 3.20, Equation 3.23, and Equation 3.26 for
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details on the thermodynamics of crystal nucleation). The accelerating effect of fillers at low

filler loadings has been been frequently observed by other researchers (Jain et al. 2005; Palza

et al. 2011; Papageorgiou et al. 2005). For high filler loadings (> 5wt%), a reduction of the

overall crystallization speed is usually observed as the dynamics of polymer chains become

significantly hindered (Nitta et al. 2006; Fukuyama et al. 2013; Räntzsch et al. 2014). This

effect can be rationalized as an increase of the activation energy in the transport term β of

the Hoffman-Lauritzen model, which leads to lower nucleation rates I and growth rates G,

respectively (Equation 3.27, Equation 3.35 in chapter 3).

a)
b)

Figure 6.17: a) Kinetic crystallization data extracted from Figure 6.16b by applying an Avrami model
(Equation 6.2). b) Crystallization half times t ′1/2 for φc/φ

∞
c = 0.5 as a function of the crossover times

for different crystallization temperatures. The relationship between the two times for the temperature
series is well described by t ′1/2 = 1.5t ′gel, which differs from the unfilled case (Figure 6.9).

In Figure 6.17b, the crystallization half times t ′1/2 for φc/φ
∞
c = 0.5 are plotted as a function

of the crossover times for different crystallization temperatures. Interestingly, a linear rela-

tionship t ′1/2 = 1.5t ′gel described the data fairly well, which was different from the neat case

(Figure 6.9) and might have been a consequence of heterogeneous nucleation.

a) b)

Figure 6.18: Reduced absolute complex viscosity vs. relative crystallinity (degree of space filling) for
the temperature series of Figure 6.16 analyzed using an extended Einstein model (Equation 6.6).
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The correlation of the reduced absolute complex viscosity |η∗|/|η∗|0 with the degree of space

fillingφc/φ
∞
c is shown in Figure 6.18. The behavior of the filled sample was very similar to the

neat sample Figure 6.11 and did also display a certain shift with respect to the crystallization

temperature. Results from an analysis based on an extended Einstein model (Equation 6.7)

are shown in Table 6.3. All values were rather similar to the neat case and increased with

increasing crystallization temperatures, except for Tcryst ≈ 133 °C where the fit didn’t converge.

Overall, the hardening behavior was found to be relatively independent of the filler and the

associated changes in the crystallization kinetics.

a)

i-PP-1 + 3wt% SiO2

Tcryst [°C] C ′ [-] D′ [-]

132 4.9 32 · 103

133 (4.0)* (12 · 103 )*

134 5.1 31 · 103

135 5.8 43 · 103

136 6.3 49 · 103

b)

i-PP-1 (neat)

Tcryst [°C] C ′ [-] D′ [-]

130 4.1 29 · 103

132 4.6 44 · 103

134 5.0 46 · 103

136 5.1 58 · 103

Table 6.3: Parameters determined by modeling the data of Figure 6.18 with a semi-empirical extended
Einstein model (a) (Equation 6.7) and compared against the values for neat i-PP-1 (b). (*) Fit didn’t
converge.

Nucleating Agents

The influence of nucleating agents on the isothermal crystallization behavior of isotactic

polypropylene was studied in a joint project with Dr. Klaus Kreger and Daniel Kremer (both

members of Prof. Hans-Werner Schmidt’s group at the University of Bayreuth) on the example

of a 1,3,5-benzene tricarboxamide derivative (Figure 6.19, Kristiansen et al. (2009); Blomen-

hofer et al. (2005)) and i-PP-1’ (Ziegler-Natta grade, batch 2). The nucleation mechanism for

different nucleating agents is not fully understood in all cases. However, providing an epitax-

ial surface (e.g., with many alkyl groups in the case of polypropylene) and a lower surface

free energy for new nuclei seems to be a common principle (see chapter 3, (Bernland 2010)).

RheoNMR experiments following the same routine as in the previous sections were performed

at a crystallization temperature of 136 °C for all samples (neat i-PP-1’, i-PP-1’ + 250, 500, 750,

1500 ppm by weight of N, N’, N”-tris(3-methylbutyl)-1,3,5-benzene tricarboxamide – abbrev.

"DH677"). The repeatability for selected crystallization conditions was again checked for this

series of experiments, as a relatively large number of different samples had to be measured

(see Appendix A). A two-step sigmoidal behavior and an earlier crossover (G′ = G′′) was

observed compared to older experiments, which was potentially due to an inhomogeneous

temperature distribution.
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Figure 6.19: Chemical structures of generic 1,3,5-benzene tricarboxamides (a) and the used N, N’, N”-
tris(3-methylbutyl)-1,3,5-benzene tricarboxamide derivative (b).

In Figure 6.20, simultaneously acquired data on G′, G′′ (a) and φc/φ
∞
c (b) is shown as a

function of experimental time t. The relative crystallinity φc/φ
∞
c showed a shift to earlier

times with increasing additive content up to 750 ppm. The curve for the 1500 ppm sample

displayed no further speed-up and was practically identical to the curve of the 750 ppm sample.

The rheological moduli G′ and G′′ did not exactly follow the trend seen in φc/φ
∞
c , with the

250 ppm sample having had an earlier rise in the moduli than the 500 ppm sample. Differences

in sample loading, edge effects, etc. might have led to this behavior. The 750 ppm sample

again displayed the earliest change in G′ and G′′.

a) b)

Figure 6.20: Simultaneously acquired moduli G′, G′′ (a) and relative crystallinities φc/φ
∞
c (b) during

isothermal crystallization of isotactic polypropylene i-PP-1’ with different amounts of nucleating agent
(DH677) from the melt at Tcryst ≈ 136 °C. For every crystallinity curve, a direct Avrami fit was performed
over the interval 0 < φc/φ

∞
c < 0.5.

The crystallinity curves were directly fitted using the Avrami model up to 50% relative crys-

tallinity to facilitate the correlation of rheological parameters with the degree of space filling

(subsection 3.3.6, p. 35). Similarly to the silica filled sample in the previous section, constant

t0 values of ~10 min were found to provide the best description of the experimental data. The

extracted kinetic results are shown in Figure 6.21a. The rate parameter K increased slightly

with increasing NA content compared to neat i-PP-1 up to 750 ppm. The dimensionality n was

~3.0 for 500 and 750 ppm, whereas for the other samples it was closer to 2.5 as in the neat
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case (relative error approximately ±10 – 20%). A similar behavior was observed for the filled

sample in the previous section, which showed no indication of a substantially lower n value

as proposed by the Avrami framework (compare with subsection 3.3.6, p. 35). The speed-up

of crystallization as indicated by the Avrami parameter K was potentially caused by increased

nucleation during the early stages of polymer crystallization. Nucleating agents are designed

to offer surfaces that lower the free surface energy of forming pre-nuclei, which then had

a higher probability to grow further and survive the initial time period. In the present sys-

tem, the nucleating agent precipitated at temperatures above the crystallization temperature,

which is a characteristic feature of clarifying agents. However, the formed fibrils were not very

effective in nucleating new spherulites as revealed by electron microscopy (see section 6.5).

The 1500 ppm sample was already above the optimum concentration of ~750 ppm, which led

to the formation of large agglomerates rather than a dispersed fibrillar network.

b) a)

Figure 6.21: a) Kinetic crystallization data extracted from Figure 6.20b by applying an Avrami model
(Equation 6.2). b) Crystallization half times t ′1/2 for φc/φ

∞
c = 0.5 as a function of the crossover times

for different crystallization temperatures. The relationship between the two times for the temperature
series is well described by t ′1/2 = 2t ′gel+6 min, which differs from the non-nucleated case (Figure 6.9).

In Figure 6.21b, the crystallization half times t ′1/2 for φc/φ
∞
c = 0.5 are plotted as a function

of the crossover times for different crystallization temperatures. Similar to the temperature-

dependent experiments, a linear relationship with a slope of 2 described the data fairly well.

However, all data including the one for the neat sample exhibited low crossover times, which

required a shift of the describing linear relationship by 6 min, and was presumably a conse-

quence of an inhomogeneous temperature distribution within the sample. Overall, the addi-

tion of the nucleating agent had a similar effect on the crystallization behavior as a decrease in

crystallization temperature. As the 1500 ppm sample was above the optimum concentration

for the formation of a fibrillar network, it showed again a prolonged crystallization despite the

overall higher NA content. In Figure 6.22, the correlation of the reduced absolute complex

viscosity |η∗|/|η∗|0 with the degree of space filling φc/φ
∞
c is shown for all investigated sam-

ples. Over the entire range of φc/φ
∞
c an increasing additive content up to 750 ppm led to

higher relative absolute viscosities. The 1500 ppm sample displayed a behavior that was sim-

ilar to the 500 ppm sample, which might have been caused by a lower content of nucleating
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dispersed fibrils. As a nucleating agent primarily changes the nucleation density & spherulite

sizes, flow behavior during crystallization from the melt was found to be sensitive to these

quantities and not only on the volume fraction φc as for low-viscous suspensions. This might

also be the reason for the observed trends in the temperature-dependent experiments (lower

crystallization temperature – increased nucleation / smaller spherulites).

a) b)

Figure 6.22: Reduced absolute complex viscosity vs. relative crystallinity (degree of space filling) for
isothermal crystallization of i-PP-1’ with different contents of nucleating agent.

As even the hardening curve for the neat sample showed a kink in the slope at φc/φ
∞
c ≈ 0.2

(Figure 6.22a), the proposed extended Einstein and empirical sigmoidal model were not suit-

able to describe the hardening curves and consequently no quantitative parameters C ′ and D′

could be extracted. Likely this was not a consequence of the difference in molecular weight

compared to batch 1 (see section 2.4, p. 19), but rather due to a temperature gradient across

the sample. In the meantime, the heating system was improved by replacing the heating wire

and including a vortex element, which opens up the possibility to carry out experiments with

a more homogeneous temperature distribution in the future.

6.4 Flow-induced crystallization of isotactic polypropylene

Besides measuring the flow behavior and crystallinity evolution simultaneously at varying tem-

peratures, for different polymer grades, or incorporated additives, one can also impose a non-

equilibrium state prior to crystallization using short-term steady shear or LAOS protocols of

varying shear rate, strain and duration. Flow is known to have a strong effect on the crystal-

lization kinetics, the morphology, and material properties of semi-crystalline polymers as intro-

duced in section 3.4, p. 38. To separate the effects of flow and crystallization temperature, the

protocol by Janeschitz-Kriegl was employed in the following experiments (Figure 6.2). As the

criteria for the formation of row-nucleated structures are not fully resolved yet (Kumaraswamy

2005; Lamberti 2014), experiments with variations of the strain rate, the shear duration, and

the total strain were carried out at different crystallization temperatures.
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6.4.1 Variations of strain rate, shear duration, and total strain

Two different temperature regimes were selected for the study of flow-induced crystallization:

a high temperature regime where usually no crystallization is observed on relevant time scales

(here: 146 °C), and a lower temperature regime where quiescent crystallization is observed

(here: 136 °C), but shows a prolonged induction period before significant crystallinity is being

developed (compare with Figure 6.7). In Figure 6.23, experimental results for flow-induced

crystallizations of i-PP-1 at Tcryst ≈ 146 °C are shown where the steady shear protocols were

selected to have a similar total strain (γ ≈ 200). As all experiments were carried out using

parallel-plate geometries, the imposed shear rates and total strains were the maximum values

applied to the outer parts of the sample.

a) b)

Figure 6.23: Simultaneously acquired moduli G′, G′′ (a) and relative crystallinities φc/φ
∞
c (b) during

flow-induced crystallization of i-PP-1 at 146 °C. Upon cooling, different steady shear protocols with a
similar total strain γ≈ 200 were applied.

For Tcryst ≈ 146°C, the isothermal experiment under quiescent conditions didn’t show any in-

dication of crystallization as the moduli stayed constant and the relative crystallinity φc/φ
∞
c

didn’t grow. The behavior changed drastically when flow was applied, as then a significant in-

crease in crystallinity and a rise in moduli were observed, which depended on the applied flow

conditions. With increasing shear rate γ̇, the acceleration effect was more pronounced. In the

cases of γ̇ = 25/s and 50/s, the recovery from a shear-thinned state right after the cessation

of flow led to moduli that were a factor of two higher compared to the plateau preceding the

steady shear interval. This behavior was presumably caused by an immediate formation of

athermal nuclei, which then grew further over time. Furthermore, a crossover of G′ and G′′

was detected for these experiments. The observation that the shear rate γ̇ plays a dominant

role in accelerating polymer crystallization agrees with previous works by other researchers

(Somani et al. 2000; Somani, Yang, Hsiao, Sun, Pogodina and Lustiger 2005; Kumaraswamy

2005; Elmoumni and Winter 2006). In Figure 6.24, experimental results for flow-induced

crystallizations at Tcryst ≈ 136 °C are shown where the steady shear protocols were selected to

have either a similar total strain (γ ≈ 50) or a similar strain rate (γ̇ ≈ 10/s). All pre-sheared
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melts showed a significantly faster crystallization which was seen in the moduli G′ and G′′ as

well as in the relative crystallinity φc/φ
∞
c . For the two samples exposed to the highest strain

rate (17/s for 3 s) and total strain (10/s for 20 s), the curves exhibited an almost immedi-

ate increase in moduli G′ / G′′ and relative crystallinity φc/φ
∞
c after the cessation of flow.

Even though the shear rate was lower in the "10/s for 20 s" experiment, it showed the fastest

crystallization and earliest rise in the moduli G′ and G′′. Hence, the higher total strain and

the associated shearing time ts were overcompensating the lower shear rate. The immediate

increase in moduli and crystallinity suggested that not only the overall speed was affected, but

that changes in the morphology of the crystallizing polymer might have occurred. Indeed, the

presence of row-nucleated structures (cylindrites) was confirmed later on by ex-situ scanning

electron microscopy (SEM), and will be discussed in section 6.5.

a) b)

Figure 6.24: Simultaneously acquired moduli G′, G′′ (a) and relative crystallinities φc/φ
∞
c (b) during

flow-induced crystallization of i-PP-1 at 136 °C. Upon cooling, different steady shear protocols were
applied, which either had a similar total strain or strain rate. A substantial increase in the speed at
which G′, G′′, and φc/φ

∞
c developed was observed for all experiments, which followed the trend

"higher shear rate and longer duration lead to faster crystallization”.

a) b)

Figure 6.25: Kinetic crystallization data extracted from Figure 6.23b and Figure 6.24b by applying
Avrami models (Equation 6.2). For Tcryst ≈ 136 °C, a second set of Avrami parameters was added
to account for the additional crystallization process induced by the applied flow (see Figure 6.24b).
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All crystallinity curves were again directly fitted using the volume-related Avrami model up

to 50% relative crystallinity to facilitate the correlation of rheological parameters with the de-

gree of space filling (subsection 3.3.6, p. 35). In case of the experiments at Tcryst ≈ 136 °C, a

second set of Avrami parameters was added to account for the additional crystallization pro-

cess induced by the applied flow. The extracted kinetic results are shown in Figure 6.25. For

the experiments at Tcryst ≈ 146 °C, the kinetic rate parameter K increased with higher shear

rates whereas the dimensionality n stayed relatively constant within the error margin. For the

experiments carried out at Tcryst ≈ 136 °C, the rate parameters K1 and K2 were separated by

one order of magnitude, but didn’t display a clear trend. The dimensionality n1 and n2 stayed

again relatively constant around n= 2.0. The relative contribution of the second Avrami com-

ponent (K2, n2) increased from 2.5% for the "5/s for 10 s" experiment to 8.5% for the "10/s for

20 s" experiment. This result accorded well with the qualitatively observed trend of an addi-

tional crystallization process at earlier times for higher shear rates and longer shear durations

at the chosen crystallization temperature. For the evaluation of flow-induced crystallization

experiments, applied shear rates γ̇ are usually compared against the characteristic flow relax-

ation time λ at the chosen temperature (see section 3.4, p. 38 and section 4.1, p. 44). This

relationship can be expressed using the Weissenberg number Wi = λγ̇. A second important

relationship is found between the relaxation time λ and the shearing time ts, which is given

by the Deborah number De = λ/ts. This dimensionless quantity can be seen as a relative fre-

quency, which helps to describe the state of the material during the application of flow (small

De – liquid-like, large De – solid-like). In Figure 6.26a, temperature-dependent frequency

sweeps of i-PP-1 are shown from which the relaxation time λcross was calculated as one over

the crossover frequency (ω(G′ = G′′)). An exponential decrease in the relaxation time λcross

with increasing temperature was observed as the polymer dynamics became more and more

mobile. Thus, applying flow at lower temperatures is more likely to have an effect on polymer

crystallization compared to the application of flow at higher temperatures.

a) b)

Figure 6.26: a) Temperature series of frequency sweeps for i-PP-1. b) Temperature-dependence of the
crossover frequencies and corresponding relaxation times λcross.

For polydisperse polymers, the relaxation time λcross as measured by the crossover is not

necessarily the longest relaxation time of the material. Experiments by Wingstrand et al.

(2017) on blends of commercial high-density polyethylene (HDPE) with low amounts of ultra
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high-molecular weight polyethylene (UHMWPE) revealed that the crossover frequency was

practically identical to that of neat HDPE, whereas the terminal regime showed a modified

behavior (Wingstrand et al. 2017). When a 6-mode Maxwell model was applied to a master-

curve constructed from the frequency data of Figure 6.26a, significant contributions of modes

with higher relaxation times were observed (Figure 6.27). Similarly, the conversion of the

mastercurve into a relaxation spectrum H(λ) showed the presence of slower relaxing compo-

nents (see Appendix A). Considering a minimum contribution of >1%, the longest relaxation

times λM were on the order of 1 s, which was a factor of 30 higher than λcross. These slowly

relaxing components were most certainly associated with the high molecular weight tail of the

rather polydisperse i-PP-1 material (-D = 2.7).

a) b)

Figure 6.27: a) Rheological mastercurve for Tref ≈ 140 °C, which was constructed from frequency
sweeps measured at different temperatures (Figure 6.26a). b) Parameter extracted from a 6-mode
Maxwell model applied to the mastercurve in a).

The Deborah and Weissenberg numbers for the respective flow-induced crystallization condi-

tions are summarized in Table 6.4. In all experiments the Deborah numbers were below 1,

which implied that steady-state conditions were achieved for the majority of polymer chains

after a short amount of time. It is a widely accepted rule for flow-induced crystallization

that the shear rate has to be larger than the inverse of the longest flow relaxation time λ to

induce row-nucleated structures (Wi > 1), as the altered chain conformation has to persist

over certain periods of time in order to form threadlike nuclei (Elmoumni and Winter 2006).

Here, the Weissenberg numbers Wicross based on the relaxation time λcross were smaller than

1, with the exception of one experiment (50/s for 4 s at 146 °C). As already pointed out, the

relaxation time λcross does not characterize the slowest relaxation mode, but rather the most

dominant one. The Weissenberg number WiM(axwell) based on the longest significant relaxation

time λM ≈ 1 s extracted from a 6-mode Maxwell model exhibited values larger than 1. Even

though the chosen 1% criterion for a significant contribution to the relaxation behavior was

arbitrary, a certain non-negligible fraction of polymer chains was certainly affected by the ap-

plied shear rate. As will be seen in chapter 7, shear rates as low as γ̇= 3/s were able to induce

row-nucleated morphologies, which accorded well with the observation that only a very small

amount of long chains is needed to form row-nucleated structures (Wingstrand et al. 2017).

120



6 Interplay between Molecular Dynamics and Rheology in Polymer Crystallization: RheoNMR

Tcryst [°C] γ̇ [1/s] ts [s] γ λcross [s] Decross Wicross λM [s] DeM WiM

146 10 20 200 0.026 0.0013 0.26 ~1 0.05 10

25 8 200 0.026 0.0033 0.65 ~1 0.1 25

50 4 200 0.026 0.0065 1.3 ~1 0.3 50

136 5 10 50 0.037 0.0037 0.19 ~1 0.1 5

10 5 50 0.037 0.0074 0.37 ~1 0.2 10

17 3 51 0.037 0.012 0.63 ~1 0.3 17

10 20 200 0.037 0.0019 0.37 ~1 0.05 10

Table 6.4: Characteristics of the flow-induced crystallization experiments in terms of the shear rate γ̇,
the shearing time ts, the total strain γ, the relaxation times λ, the Deborah numbers De, and the
Weissenberg numbers Wi, respectively.

As presented in the beginning of this chapter, NMR relaxometry not only provides information

on the amount of protons in mobile or rigid fractions, but also on their respective NMR relax-

ation times / rates (see Figure 6.4b). Generally, the application of flow can have a substantial

effect on the NMR relaxation behavior of polymer melts (Räntzsch et al. 2014). As in all ex-

periments presented in this section a short-term steady shear protocol was employed and flow

relaxation was relatively fast (Figure 6.27b), the overall polymer dynamics were expected to

behave similarly to a non-perturbed system soon after the cessation of flow. Figure 6.28 shows

a comparison of a crystallization experiment at 136 °C under quiescent conditions, and with a

preceding steady shear step of 10/s for 20 s. The point density of ~1 data point per minute was

too low to resolve the potentially increased mobility during and shortly after the application

of flow as indicated by the rheological shear-thinning behavior (Figure 6.24a). For the main

part of crystallization the relaxation rates 1/T21 and 1/T22 showed very similar curve shapes

and absolute values for both, the quiescent and the pre-sheared case, which confirmed that

there was no persistent change in polymer dynamics for the chosen experimental conditions.

a) b)

Figure 6.28: NMR transverse relaxation rates and intensities extracted from MSE-CPMG data using
Equation 6.1 for the quiescent crystallization of i-PP-1 at 136 °C (a) and with a preceding steady shear
step of 10/s for 20 s (b).
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6.4.2 Physical gelation during flow-induced crystallization

To further compare the different flow-induced crystallization experiments, crystallization half

times forφc/φ
∞
c = 0.5 and crossover times for G′ = G′′ were plotted against each other in Fig-

ure 6.29. For the quiescently crystallized temperature-dependent experiments of Figure 6.7,

the relationship between t ′1/2 and t ′gel was well described by the dotted line (t ′1/2 = 2t ′gel). The

data for the flow-induced crystallization experiments at Tcryst = 146 °C roughly fell on this line,

even though the uncertainty in estimating the crystallization half time was considerable (ex-

trapolation based on the Avrami fit). For the pre-sheared experiments at Tcryst ≈ 136 °C, a

shift to lower times was observed at moderate shear conditions. At higher strain rates and

total strains, the gelation times t ′gel decreased further and the crystallization half times t ′1/2
remained almost constant. This behavior indicated that there was a change in the nucleation

and growth characteristics. Indeed, a high nucleation density and row-nucleated structures

were confirmed for the "10/s for 20 s" sample by ex-situ scanning electron microscopy, which

will be discussed in section 6.5.

a) b)

Figure 6.29: Crystallization half times t ′1/2 for φc/φ
∞
c = 0.5 as a function of the crossover/gelation

times t ′gel for G′ = G′′ at different crystallization temperatures (open squares) and pre-shear experi-
ments (semi-filled squares) in a linear (a) and logarithmic plot (b).

The shorter time needed to achieve a gel state for higher shear rates and longer shear durations

might have been a consequence of the strongly increased nucleation density and the potential

influence of row-nucleated structures (cylindrites). It is well established that elongated objects

have a substantial effect on the rheology of multi-component systems as seen for e.g., fiber-

reinforced composites (Pötschke et al. 2002), and suspensions of ellipsoidal (Madivala et al.

2009) or rod-like particles (Abbasi et al. 2009). An illustration of the potential morphology

at the rheological gel point is given in Figure 6.30 for three different scenarios: a) quiescent

conditions; b) mild applied flow conditions; c) strong and long applied flow. At relatively mild

flow conditions, nucleation is thought to be increased, which leads to lower average spherulite

sizes at the gel point. For experiments under stronger and longer applied flow, the formation of

row-induced structures might lead to even earlier gelation compared to experiments at lower
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shear rates. However, also the strain rate distribution present in parallel-plate geometries has

to be taken into account, which presumably caused faster crystallization at the outer parts of

the sample. As the torque is proportional to the radius, changes at the outer parts of the sample

have a strong effect on rheology, whereas NMR is sensitive to the sample average. The detailed

morphology at the gel point and build-up of row-nucleated structures was further studied

using RheoSAXS and RheoMicroscopy, which will be discussed in chapter 7 and chapter 8,

respectively.

a) b) c)

Figure 6.30: Potential morphology at the gel point for three different scenarios: a) quiescent conditions;
b) mild applied flow conditions with increased nucleation; c) strong and long applied flow conditions
with the formation of ellipsoidal and rod-like structures.

The correlation of the reduced absolute complex viscosity |η∗|/|η∗|0 with the degree of space

filling φc/φ
∞
c is shown in Figure 6.31 for all experiments carried out at Tcryst ≈ 146 °C (a)

and Tcryst ≈ 136 °C (b), respectively. An increase proportional to the applied shear rate γ̇

at very lower values of φc/φ
∞
c was observed for the experiments at Tcryst ≈ 146 °C. This

behavior might have been caused by the creation of a small number of athermal nuclei that

were below the detection threshold of NMR. For higher degrees of space filling, the curve

shape was similar to that of quiescently crystallized i-PP-1 (Figure 6.11). The correlation plots

for the experiments at Tcryst ≈ 136 °C didn’t exhibit a clear trend with respect to the applied

flow conditions. It remained inconclusive at this stage, if this behavior was caused by a change

in the nucleation and growth characteristics or the presence of a certain temperature gradient.

a) b)

Figure 6.31: Reduced absolute complex viscosity vs. relative crystallinity (degree of space filling) for
flow-induced isothermal crystallizations of i-PP-1 at 146 °C (a) and 136 °C (b).
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6.5 Morphology investigations using scanning electron microscopy

To further evaluate the effects of different polymer grades, fillers, nucleating agents, and flow

on the crystallization of isotactic polypropylene, ex-situ scanning electron microscopy (SEM)

investigations were carried out on the recovered specimen upon complete crystallization. All

samples were etched prior to SEM using an acidic permanganate solution as described by

Sawyer et al. (2008) (experimental details were given in section 6.2). The etchant concen-

tration and etching time were optimized to achieve a substantial removal of the amorphous

fraction without heavily damaging the crystalline structure. All images presented in this sec-

tion were recorded at a position of ~3 mm from the edge of the sample.

Quiescently crystallized isotactic polypropylene

For the Ziegler-Natta grade i-PP-1, large spherulites (~100 µm) were observed that formed a

densely packed lattice with no observable voids (Figure 6.32). This confirmed that the degree

of space filling φc/φ
∞
c was close to 1 at the end of crystallization. The detailed crystalline

structure (Figure 6.33) consisted of 10 – 20 nm thick stacked lamellae, which grew radially

from the center of the spherulites. At the highest magnification, a cross-hatched morphol-

ogy was observed with short daughter lamellae bridging the parent or primary lamellae at a

splaying angle of ~90°. This feature was frequently observed for isotactic polypropylene and

associated with the 3-1 helix structure of the unit cell.

Figure 6.32: SEM images of etched i-PP-1 crystallized at 136 °C under quiescent conditions. Large
spherulites with a lamellar substructure were observed throughout the sample.
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Figure 6.33: SEM images of etched i-PP-1 crystallized at 136 °C under quiescent conditions. The sub-
structure consisted of stacked lamellae, which grew radially from the center of a spherulite and dis-
played some splaying.
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Influence of the polymer grade

The regio-defective polypropylene grade i-PP-2 exhibited a substantially higher nucleation

density compared to the regio-regular i-PP-1 sample at comparable crystallization conditions

(Figure 6.34). Furthermore, it had an anisotropic, bundle-like microstructure with less clearly

visible stacked lamellae. The high nucleation density and exceptional spherulitic structure are

very likely a consequence of the 1 mol% 2,1-erythro regio defects (see Appendix A), which

are known to induce the observed γ-form crystallization with non-parallel chain packing and

a high tendency to form anisotropic lamellar structures (see section 2.3, p. 13, Thomann et al.

(1996)).

Figure 6.34: SEM image of etched i-PP-2 crystallized at 134 °C under quiescent conditions, which re-
vealed a higher nucleation density and anisotropic spherulites compared to the regio-regular i-PP-1
grade.
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Influence of fillers

The effect of fillers on the crystallization of isotactic polypropylene was studied by incorpo-

ration of 3 wt% silica into i-PP-1. An increase in the nucleation density was observed, which

explained the overall faster crystallization behavior (Figure 6.35). EDX analysis confirmed

that the silica was located mostly in the center of the spherulites acting as a nucleation agent.

However, some larger silica agglomerates were also present in the sample.

Figure 6.35: SEM image of etched i-PP-1 + 3wt% silica crystallized at 132 °C under quiescent condi-
tions. The nucleation density was higher compared to the neat i-PP-1 sample crystallized under similar
conditions (see Appendix A). The silica was confirmed by EDX analysis to be located mostly in the
center of the spherulites. However, also larger agglomerates of silica were observed.
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Influence of nucleating agents

The influence nucleating agents on the crystallization of isotactic polypropylene was studied by

an addition of different amounts of a 1,3,5-benzene tricarboxamide derivative to the Ziegler-

Natta grade i-PP-1’. An increase in nucleation density was observed up to a weight content of

750 ppm. However, the nucleation efficiency of individual nucleating agent fibrils was found

to be relatively low. The diameter of the fibrils was on the order of 200 – 500 nm, whereas

their length was 10 – 20 µm. For the 1500 ppm sample large agglomerates of nucleating agent

were present in the sample, which explained the overall lower nucleating efficiency and slower

crystallization kinetics.

Figure 6.36: SEM image of etched i-PP-1’ + 750 ppm N, N’, N”-tris(3-methylbutyl)-1,3,5-benzene tri-
carboxamide crystallized at 136 °C under quiescent conditions. The nucleation density was the highest
compared to all other samples of the series. The nucleating agent fibrils were found throughout the
sample and some of them acted as nucleation points for the formation of spherulites.
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Flow-induced crystallized isotactic polypropylene

The effect of flow on the morphology of isotactic polypropylene was studied by applying short-

term steady shear before crystallization of i-PP-1. The recovered specimen from a test which

showed the strongest speed-up of crystallization (10/s for 20 s, Tcryst ≈ 136 °C) had a sub-

stantially increased nucleation density with very small spherulite sizes (~5 µm) compared to

the quiescently crystallized i-PP-1 sample (see section 6.4). Furthermore, row-nucleated struc-

tures / cylindrites were found throughout the sample with a strong directional orientation of

the grown lamellae perpendicular to the flow direction and, to a limited degree, also daughter

lamellae in the direction of flow. The latter is known to be caused by the large splaying angle

of ~90° in isotactic polypropylene due to the 3-1 helix structure. The lamellar thickness was

similar to that measured in the quiescent case, which suggested that while nucleation was

indeed strongly affected by the application of flow, growth proceeded instead rather unper-

turbed on the time scale of hours with the exception of template-based orientation of growth

in the row-nucleated structures. The high anisotropy of these objects is a potential reason for

the observed shorter gelation times t ′gel (Figure 6.29) for the samples that were subject to the

strongest flow in these experiments (17/s for 3 s and 10/s for 20 s).

Figure 6.37: SEM images of etched i-PP-1 crystallized at 136 °C with a preceding steady shear experi-
ment (10/s for 20 s). A very high nucleation density and row nucleated structures the direction of flow
were found.
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Figure 6.38: SEM images of etched i-PP-1 crystallized at 136 °C with a preceding steady shear step (10/s
for 20 s). The detailed row-nucleated structure exhibited lamellae that were grown perpendicular to
the direction of flow.
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6.6 Concluding remarks

The crystallization of isotactic polypropylene under quiescent conditions and with preced-

ing steady shear protocols was investigated using a hyphenated RheoNMR set-up based on a

commercial strain-controlled shear rheometer with a portable low-field 1H NMR unit. Evolv-

ing crystallinities φc were determined using a multi-echo-based NMR relaxometry sequence,

which measures molecular mobility of protons. As the sample was studied simultaneously by

rheology and NMR relaxometry, correlation plots such as e.g., |η∗|/|η∗|0 vs. φc/φ
∞
c were

constructed, which were evaluated using suspension (Einstein, Quemada, Krieger-Dougherty)

and semi-empirical models (sigmoidal, extended Einstein). The best description of the hard-

ening behavior of a neat Ziegler-Natta grade i-PP was achieved using an extended Einstein

model with exponents C ′ ≈ 4 to 5 and dynamic ranges D′ ≈ 30000 to 60000 for the chosen

crystallization temperatures of Tcryst ≈ 132 to 136 °C.

Different isotactic polypropylene grades were compared with respect to their crystallization ki-

netics and physical gelation behavior. A metallocene-catalyzed, regio-defective polypropylene

grade showed a three times slower crystallization rate at comparable temperatures and an un-

usually fast rising hardening curve for low degrees of space filling compared to the previously

examined regio-regular Ziegler-Natta grade. The influence of fillers and nucleating agents

on the crystallization behavior of i-PP was studied in close collaboration with the groups of

Prof. A. Müller (Universidad del País Vasco, San Sebastián, Spain) and Prof. H.W. Schmidt (Uni-

versity of Bayreuth, Germany). The tested silica increased the crystallization rate by ~30% at

3wt% loading, which was comparable to the effect of a 2 °C lower crystallization temperature.

Similarly, the employed nucleating agent of the 1,3,5-benzene tricarboxamide type showed a

~30% faster crystallization at the determined optimum concentration of 750 ppm by weight.

Due to the simultaneous acquisition of rheology and NMR data, it was possible to correlation

plots that characterized the hardening behavior of filled and nucleated isotactic polypropy-

lene. It was found that the incorporated silica filler didn’t change the hardening behavior

significantly, whereas the 1,3,5-benzene tricarboxamide nucleating agent led to a faster rising

hardening curve at the optimum concentration of 750 ppm.

Flow-induced crystallization was studied using short-term steady shear protocols with either

similar total strains or strain rates. An increase in the speed of crystallization was detected

for the pre-shear experiments, with the samples that were subjected to the strongest flow con-

ditions of 10/s for 20 s showing an almost immediate increase in the viscosity |η∗| upon the

cessation of flow. Scanning electron microscopy confirmed that a substantially higher nucle-

ation density with small spherulites (~5 µm) was present in the sheared samples. In addition,

anisotropic row-nucleated structures were observed for experiments at Weissenberg numbers

Wi >> 1 for at least 1% of the polymer chains that may be the origin of rigidification at very

low crystallinities. Further experiments using monodisperse polymers of different molecular

weights would help to fully clarify the relationship between the imposed flow as characterized

by the Weissenberg number Wi and potentially formed row-nucleated morphologies.
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7 Correlation between Nano-Scale Morphology and
Rheology in Polymer Crystallization: RheoSAXS

In the following chapter, simultaneous RheoSAXS investigations on the nanostructure and

rheology during quiescent and flow-induced polymer crystallization are presented. All exper-

iments were carried out at the beam line P10 of the German Electron Synchrotron (DESY) in

collaboration with Dr. Eric Stellamanns and Dr. Michael Sprung. The effect of flow profiles

on the process of polymer crystallization with respect to the changes in the morphology and

rheology will be discussed. The obtained sample morphologies were further evaluated using

ex-situ scanning electron microscopy.

7.1 Introduction

Investigating the X-ray scattering of soft matter under flow conditions has been of high inter-

est for several decades, since changes in the nano-scale morphology are oftentimes strongly

connected with modified properties such as the tensile strength of fibers, the long-range or-

dering of block copolymers, or the optical properties of liquid crystals. Time-resolved ex-

periments of phase transitions and ordering processes can usually only be performed using

synchrotron radiation to achieve the required high photon intensities for a time resolution on

a millisecond to second scale. Early hyphenated set-ups were based on flow cells that allowed

for the application of steady shear protocols in combination with wide and small angle X-ray

scattering. Investigations were conducted on e.g., liquid crystals (Hongladarom et al. 1996;

Berghausen et al. 2000), copolymers (Hamley et al. 1998; Castelletto et al. 2001, 2005), and

semi-crystalline polymers (Somani et al. 2000, 2001; Nogales et al. 2001; Somani et al. 2002;

Agarwal et al. 2003; Kumaraswamy et al. 2004; Balzano et al. 2008, 2009). More recently, slit-

flow experiments on crystallizing polymers based on a multipass rheometer were presented

by Portale et al. (2013); Ma et al. (2012, 2014), and Balzano et al. (2016). The structure

formation during polymer processing such as extrusion (Schrauwen et al. 2004), film blow-

ing (van Drongelen et al. 2014), and fiber spinning (Samon et al. 1999; Kolb et al. 2000;

Schultz et al. 2000; Ran et al. 2000) was also investigated by several groups using respective

hyphenated set-ups. Despite the very valuable insights in the structural buildup during qui-

escent and flow-induced crystallization of polymers, these studies lacked information on the

in-situ rheology of the materials under investigation. Hyphenated set-ups that allowed for si-

multaneous measurements of rheology and X-ray scattering based on shear rheometers were

realized by Panine et al. (2003) who studied liquid crystals and polymer latices in a Couette

cell rheometer, by Polushkin et al. (2004, 2005) who developed a tooth geometry to study the

alignment of block copolymer supramolecules in the radial and tangential shear direction, by
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Pfleiderer et al. (2014) who built a shear cell rheometer that allowed for the study of X-ray

scattering of fluids in the vorticity direction, and by Struth et al. (2011); Meins et al. (2011);

Stellamanns et al. (2013) who developed a hyphenated set-up based on a commercial stress-

controlled rheometer with a unique beam path for the study of low to highly viscous samples.

The latter set-up was used in the experiments on polymer crystallization presented here, and

furthermore by other researchers to study block copolymers (Meins et al. 2012; Pulamagatta

et al. 2012), platelet dispersions (Lettinga et al. 2012), and colloidal systems (Kim et al. 2013;

Westermeier et al. 2016). Recently, also hyphenations of extensional rheometers and X-ray

scattering techniques were presented by Yan et al. (2009); Liu et al. (2011), and Wingstrand

et al. (2017) with the aim of understanding the interplay of the structural buildup and elon-

gational rheology during the processing of semi-crystalline polymers.

7.2 Experimental

RheoSAXS set-up

The hyphenated RheoSAXS set-up was developed in collaboration between the groups of Prof.

Wilhelm (KIT) and the beam line P10 group at the German Electron Synchrotron (DESY) (Fig-

ure 7.1, Struth et al. (2011); Meins et al. (2011); Stellamanns et al. (2013), see Appendix A for

a photograph). A unique feature of this set-up is that the incident X-ray beam is reflected by a

Ge333 crystal in order to maintain the horizontal shear flow direction of the used Haake MARS

II rheometer (Thermo Scientific, Karlsruhe, Germany). The rheometer motor was flipped to

open up the top space for the beam path and the 2D-SAXS detector. By using the synchrotron

source DESY PETRA III in combination with a Pilatus 300k 2D-SAXS detector (Dectris, Baden-

Dättwil, Switzerland), experiments with up to 500 frames per second can be conducted. The

q-range of the instrument can be adjusted by selecting a respective sample-to-detector distance

(limits ~0.02 – 4/Å for λ= 1.54 Å). The home-built oven allows to perform experiments over

a temperature interval of 10 – 300 °C under a nitrogen atmosphere.

Figure 7.1: RheoSAXS set-up based on a stress-controlled Haake MARS II rheometer that was imple-
mented into the beam path at beam line P10 of the German Electron Synchrotron (DESY). A unique
feature of this set-up is the Ge333 reflector that guides the X-rays vertically to the detector, thereby
allowing to maintain the horizontal shear flow direction of the rheometer.
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Procedures

Quiescent and flow-induced crystallization of isotactic polypropylene were studied under

isothermal conditions at temperatures of 130 – 140 °C. Prior to all crystallization experiments,

the polypropylene samples were molten at 200 °C for 15 min to erase the thermal history. All

polymer crystallizations were monitored by rheological time sweeps with low strain amplitude

γ0 = 0.5% and angular frequency ω = 1 rad/s to detect the change in flow behavior without

disturbing crystal formation. For all flow-induced crystallizations, a steady shear step was

included right after the desired crystallization temperature was reached (Figure 6.2). Parallel-

plate geometries (35 mm) with X-ray transmissive windows made from polyimide were used

in the presented experiments. The X-ray beam size was 250 × 250 µm and the position at

r = 14 mm. The 2D-SAXS patterns were accumulated over 5 s and processed using idltools

(Version 0.3, provided by A. Rothkirch, DESY, 2012). Upon complete crystallization, the semi-

crystalline morphologies were analyzed using ex-situ scanning electron microscopy (SEM).

All samples were etched with an acidic permanganate solution and coated with 2 nm Pt (see

section 6.2, p. 96 for experimental details). SEM images were taken using a Zeiss Gemini/LEO

1530 system with 5 kV and 30/60 µm aperture.

Materials

As in chapter 6, the main material of investigation was a Ziegler-Natta polypropylene grade

i-PP-1 (batch 1: Mw = 246 kg/mol, -D = 2.7). Additional experiments were performed on

a metallocene-catalyzed polypropylene grade i-PP-2 (Mw = 202 kg/mol, -D = 1.9). Further

information on the used materials can be found in section 2.4, p. 19.

7.3 Quiescent crystallization of isotactic polypropylene

The isothermal crystallization behavior of neat isotactic polypropylene i-PP-1 was investigated

by simultaneous monitoring of the flow behavior via rheology and the emerging nano-scale

morphology via 2D-SAXS. The sample was rapidly cooled from an isotropic melt (200 °C for

15 min) to the crystallization temperature Tcryst ≈ 138 °C. In Figure 7.2, simultaneously mea-

sured moduli G′ and G′′ are plotted together with 2D-SAXS images recorded at 15, 30, 45,

and 60 min, respectively. The 2D-SAXS image at 15 min was chosen as a background image

to reveal the difference scattering pattern of the forming lamellar structure in contrast to the

supercooled melt state. At the end of the crystallization, an isotropic ring was formed, indi-

cating an unoriented sample morphology. Notably, the pattern at 30 min showed an increased

intensity close to the beam stop at low q values, which points towards a process that preceded

the nucleation of polymeric crystals. At the same time, the rheological moduli G′ and G′′

showed an increase and the expected hardening behavior with a crossover at t ≈ 40 min. The

final absolute G′ and G′′ values were lower compared to the experiments on the same polymer

presented in chapter 6, which could have been a consequence of the large diameter (35 mm)

in combination with the inherent compliance of the geometry.
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Figure 7.2: Simultaneously measured moduli G′ and G′′ plotted together with selected 2D-SAXS pat-
terns for the quiescent crystallization of i-PP-1 at 138 °C (background image: 15 min, scale bar: 0.05/Å).

7.3.1 Quantitative analysis of the 2D-SAXS and rheology data

The radially averaged intensity profiles I(q) shown in Figure 7.3 were extracted from the 2D-

SAXS patterns acquired during quiescent crystallization of i-PP-1. The intensity of the reflex

at ~0.02/Å, corresponding to the isotropic ring in Figure 7.2, increased strongly with crystal-

lization time, whereas its position remained relatively constant. This type of scattering arises

from the semi-crystalline substructure of the spherulites, which are being formed by radially

growing lamellae (Baltá-Calleja and Vonk 1989).

a) b)

Figure 7.3: Radially averaged 2D-SAXS intensities I(q) for the quiescent crystallization of i-PP-1 at
138 °C (a) and selected data for the initial pre-nucleation period (b). A substantial intensity increase
for q ≤ 0.01/Å was observed before a reflex became visible at q ≈ 0.02/Å.

135



7 Correlation between Nano-Scale Morphology and Rheology in Polymer Crystallization: RheoSAXS

A substantial intensity increase for q ≤ 0.01/Å was observed before a reflex became visible at

q ≈ 0.02/Å. This feature was seen by other researchers as discussed in subsection 3.3.4, p. 32

and could be rationalized by assuming long-range density fluctuations preceding crystal nu-

cleation (Imai et al. 1994, 1995; Ezquerra et al. 1996). More recently, Hikosaka et al. (2003)

suggested that the observed scattering is more likely a consequence of nuclei with a low de-

gree of lamellar ordering. Potential density fluctuations were studied by e.g., Xiao and Akpalu

(2007) and Baert and Van Puyvelde (2008), who came to the conclusion that the forma-

tion of small sheaf-like nuclei sufficiently well explain the observed phenomenon. To extract

quantitative information on the dimensions of the growing lamellae, a Lorentz correction was

performed by multiplying the intensities I(q) with q2 (Cser 2001). In Figure 7.4, the obtained

corrected intensity profiles are shown for the entire crystallization process (a) and the initial

nucleation period (b). The maxima were shifted to higher values of q ≈ 0.025/Å, correspond-

ing to a long period d = 2π/q ≈ 250 Å, which was in the range of the lamellar substructure

for this material as determined by scanning electron microscopy (see section 6.5, p. 124).

a) b)

Figure 7.4: Evolution of the Lorentz-corrected intensity profiles I(q)q2 for the entire crystallization pro-
cess (a) and for the early stages of crystallization (b). An overall shift to higher q values was observed
compared to the non-corrected intensity profiles of Figure 7.3.

By applying a Fourier transform to the baseline-corrected and smoothed intensity profile I(q)q2

at the end of the crystallization (83 min), the correlation function K(z) was obtained (see sec-

tion 4.3, p. 61, especially Equation 4.58, p. 64). The correlation function K(z) displayed a

behavior that was characteristic for a lamellar system with certain variations in the spacing,

thickness, and surface of the grown lamellae (Baltá-Calleja and Vonk 1989). As proposed by

Strobl and Schneider (1980), the mean lamellar thickness L̄c was deduced from the intersec-

tion of a linear fit to the initial decay in Figure 7.5 (solid line) and the dashed horizontal line

marking the minimum of the correlation function. The obtained value of L̄c ~90 Å was smaller

than half of the long period d ≈ 250 Å, which possibly indicated an interphase of 20 – 30 Å

that marked the transition regime from the amorphous to the crystalline phase. However, the

linear fit also depended on the selection of the fitting limits (here: 0 to 75 Å), causing an

uncertainty of ± 10 Å in the determination of the average lamellar thickness L̄c .
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a) b)

Figure 7.5: Integrated intensity profile I(q) (baseline-corrected and smoothed using a 5-point moving
average) for the end of the crystallization of i-PP-1 at 138 °C (a) and the corresponding correlation
function K(z) (b).

7.3.2 Correlation of the SAXS invariants and the rheological parameters

As a quantitative measure of the evolving crystallinity, the normalized invariants Qnorm were

calculated by integrating the Lorentz-corrected intensity profiles of Figure 7.4 from 0 – 0.1/Å

and normalizing the values to [0,1]:

Q =

∫

I(q)q2dq (7.1)

The resulting buildup curve is shown in Figure 7.6a. The sigmoidal behavior was similar to

the crystallinity curves in chapter 5 and chapter 6 as determined by NMR. However, a plateau

at ~50 min (Qnorm ≈ 0.5) was seen, which might have been the consequence of secondary

crystallization and the associated decrease in scattering intensity due to the disruption of the

periodic lamellar structure (Figure 7.6b). This cross-hatched morphology is frequently found

for isotactic polypropylene and is assumed to be caused by the 3-1 helix chain structure.

a) b)

Figure 7.6: Normalized scattering invariant Qnorm for the crystallization of i-PP-1 at 138 °C under qui-
escent conditions (a). Illustration of the growth processes in radial and tangential direction (b).
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By plotting the reduced absolute complex viscosity |η∗|/|η∗|0 as a function of the invariant

Qnorm, a hardening curve was constructed (Figure 7.7a). Compared to the correlation plots

determined by RheoNMR in the previous chapter (e.g., Figure 6.11), an increase of |η∗|/|η∗|0
at lower values of Qnorm was observed. The extended Einstein model (Equation 6.7) was

indicated by the dashed line, but could only roughly describe the hardening data. The loss

tangent shown in Figure 7.7b displayed a decrease at low values of Qnorm, and the crossover

of G′ and G′′ occured at Q ≈ 0.06. A reason for the different behavior compared to the results

measured by RheoNMR could have been sensitivity towards periodic structures instead of the

actual crystalline fraction. Furthermore, the position of the beam at the edge of the sample

(r = 14 mm) in combination with the beam size of only 250 × 250 µm probed the material

locally, whereas in the RheoNMR experiments a sample average was determined.

a) b)

Figure 7.7: Reduced absolute complex viscosity |η∗|/|η∗|0 (a) and loss tangent (b) vs. the normalized
scattering invariant Qnorm for the quiescent crystallization of i-PP-1 at 138 °C. The absolute complex
viscosity at 16 min was selected as |η∗|0.

7.3.3 Effect of regio defects on the morphology under quiescent conditions

As in chapter 5 and chapter 6, the metallocene-catalyzed, regio-defective isotactic polypropy-

lene i-PP-2 was analyzed with respect to its isothermal crystallization behavior using a similar

RheoSAXS routine as for the Ziegler-Natta grade i-PP-1. In Figure 7.8, simultaneously ac-

quired moduli G′ and G′′ are shown together with the evolution of the 2D-SAXS patterns.

The crystallization was significantly slower compared to the experiments on i-PP-1 as indi-

cated by the late rise in the moduli G′ and G′′ at an even lower crystallization temperature of

Tcryst ≈ 132 °C. Notably, the isotropic ring at ~0.04/Å was weak in intensity, indicating a low

degree of periodic lamellar order. It appeared at an early stage of crystallization together with

an increased scattering intensity at q values below 0.02/Å, where the moduli G′ and G′′ didn’t

show any significant rise yet. As this pattern persisted over the course of the crystallization

it was likely caused by stacks of lamellae with a low periodicity and random orientation that

still led to some degree of scattering rather than long-range density fluctuations as proposed

by e.g., Imai et al. (1994); Ezquerra et al. (1996).
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Figure 7.8: Simultaneously measured moduli G′ and G′′ plotted together with selected 2D-SAXS pat-
terns for the quiescent crystallization of i-PP-2 at 132 °C (background image: 15 min, scale bar: 0.05/Å).

a) b)

Figure 7.9: Radially averaged 2D-SAXS intensities I(q) for the quiescent crystallization of i-PP-2 at
132 °C (a) and selected data for the initial pre-nucleation period (b). A substantial intensity increase
for q ≤ 0.02/Å was observed before a reflex became visible at q ≈ 0.04/Å.

A Lorentz correction was performed by multiplying the intensities I(q)with q2 to extract quan-

titative information on the dimensions of the grown lamellae. In Figure 7.10, the obtained

corrected intensity profiles are shown for the entire crystallization process (a) and the initial

nucleation period (b). The maxima were shifted to higher values of q ≈ 0.05/Å, correspond-

ing to a long period d = 2π/q ≈ 125 Å, which was half of the determined values for i-PP-1. A

pronounced baseline drift was observed, potentially caused by the total increased scattering

intensity that was independent of the q vector (light blue color in Figure 7.8).

Similarly to i-PP-1, the correlation function K(z) was determined by applying a Fourier trans-

form to the baseline-corrected and smoothed intensity profile I(q)q2 at the end of the crys-
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a) b)

Figure 7.10: Evolution of the Lorentz-corrected intensity profiles I(q)q2 for the entire crystallization
process (a) and for the beginning of crystallization (b). A shift to higher maxima and a strong increase
at higher q values was observed compared to the non-corrected intensity profiles of Figure 7.9.

tallization (Figure 7.11). It showed again an oscillating behavior that was characteristic for

a lamellar system with certain variations in the spacing, thickness, and surface of the grown

lamellae (Baltá-Calleja and Vonk 1989). As proposed by Strobl and Schneider (1980), the

mean lamellar thickness L̄c was deduced from the intersection of a linear fit to the initial

decay in Figure 7.5 (solid line) and the dashed horizontal line marking the minimum of the

correlation function. The obtained value of L̄c ~50 Å was smaller than half of the long pe-

riod d, which could again indicate a potential interphase of 20 – 30 Å between the amorphous

and the crystalline phase. As for i-PP-1, the linear fit also depended on the selection of the

fitting limits (here: 25 to 50 Å), causing an uncertainty of approximately ± 10 Å in the deter-

mination of the average lamellar thickness L̄c .

As a quantitative measure of the evolving crystallinity, the normalized invariants Qnorm were

calculated by integrating the Lorentz-corrected intensity profiles of Figure 7.10 from 0.025 –

0.075/Å and normalizing the values to [0,1] (Equation 7.1, p. 137). The resulting buildup

curve is shown in Figure 7.10b. Qualitatively, the curve was characterized by an almost im-

mediate increase upon reaching the crystallization temperature at t ≈ 15 min, indicating

an instantaneous formation of some sort of a lamellar structure. Because of the rather low

absolute scattering intensity compared to i-PP-1 that was potentially due to a low degree of

periodicity, the invariant Qnorm was most probably not a quantitative measure of the total

crystallinity for this polymer. The data shown in Figure 7.12a exhibited a rather uncorrelated

behavior with an increase of the reduced absolute complex viscosity at high values for Qnorm.

Consequently, the data was not well described by an extended Einstein model (Equation 6.7).
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a) b)

Figure 7.11: Correlation function K(z) for the end of the crystallization of i-PP-2 at 132 °C (a) and time
evolution of the normalized scattering invariant Qnorm for the entire crystallization under quiescent
conditions (b).

a) b)

Figure 7.12: Reduced absolute complex viscosity |η∗|/|η∗|0 (a) and loss tangent (b) vs. the normalized
scattering invariant Qnorm for the quiescent crystallization of i-PP-2 at 132 °C (a). The absolute complex
viscosity at 16 min was selected as |η∗|0.

7.4 Flow-induced crystallization of isotactic polypropylene

Appling flow during polymer crystallization is known to alter the semi-crystalline morphology

as discussed in section 3.4, p. 38. As in chapter 6, the short-term shear protocol by Janeschitz-

Kriegl (Figure 6.2) was employed to study the effects of flow independently from the chosen

crystallization temperature. In Figure 7.13, rheological moduli G′ and G′′ (a) and the corre-

sponding loss tangent (b) are plotted together with selected simultaneously acquired 2D-SAXS

patterns (c). With increasing maximum shear rate a speed-up of crystallization was detected by

the rheological parameters. All experiments under flow conditions exhibited dumbbell-shaped

2D-SAXS patterns, indicating the formation of anisotropic structures perpendicular to the flow

direction. The corresponding q values were on the order of 0.02/Å as for the quiescent case.

Thus, the observed patterns were likely caused by lamellae that were grown perpendicular to

the flow direction starting from flow-induced elongated nuclei.
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a) b)

c)
Exp.1 (no shear)

Exp. 2 (max. 5/s 60 s)

Exp. 3 (max. 3/s 60 s)

Exp. 4 (max. 8/s 30 s)

15 min 30 min 45 min 60 min

Figure 7.13: Simultaneously acquired moduli G′, G′′ (a), the corresponding loss tangent (b), and se-
lected 2D-SAXS patterns (c) for crystallizations of i-PP-1 at 138 °C under quiescent and flow condi-
tions. A speed-up of crystallization with increasing maximum shear rate was detected by the rheo-
logical parameters. The 2D-SAXS data showed the formation of dumbbell-shaped patterns, indicating
an anisotropic structure perpendicular to the flow direction (background images: 15 min, scale bar:
0.05/Å).
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In contrast to the observed speed-up of crystallization with higher maximum shear rates as

determined by a faster increase of G′ and G′′, the 2D-SAXS patterns showed a different trend

for the experiments at maximum shear rates of 5/s and 3/s. As the used stress-controlled

rheometer needed some time to reach the desired shear rates, the actually applied shear rate

and total strain during the initial 30 s were higher for the experiment at a maximum shear

rate of 3/s (Figure 7.14). Likely, this fact led to a higher degree of conformational anisotropy

and in the end a higher number of extended row nuclei for this experiment compared to the

experiment at a maximum shear rate of 5/s. On the other hand, for the latter experiment

an overall larger number of flow-induced nuclei (higher nucleation density) might have been

attained because of the higher total strain. Further potential origins of this behavior include:

• A spatially inhomogeneous sample morphology which was probed locally by the X-ray

beam of 250 × 250 µm at r = 14 mm (however, the sample thickness was ~1.5 mm,

which should have been enough to provide an averaged signal);

• A loss of sample material at the probed position for the experiment at 5/s (however, the

moduli at the end of the crystallization were similar to the other experiments);

• A pre-oriented state for the experiment at 3/s as indicated by the low moduli for

t ≤ 5 min (however, the longest relaxation times at the selected crystallization tem-

perature of 138 °C are on the order of seconds as discussed in section 6.4, p. 116);

The difficulty in achieving steady shear using a stress-controlled rheometer could be over-

come by applying a defined stress instead of a feedback-loop-controlled shear rate. However,

as the granted beam time was limited, no such experiments could be conducted. In chapter 8,

RheoMicroscopy experiments using the same stress-controlled rheometer are presented where

controlled stresses were applied.

a) b)

Figure 7.14: Applied shear rates (a) and total strains (b) during the short-term steady shear routine for
the experiments in Figure 7.13. Notably, the experiment with a maximum shear rate of 3/s showed a
higher shear rate and total strain during the initial 30 s compared to the experiments at a maximum
shear rate of 5/s.
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7.4.1 Quantitative analysis of the azimuthally integrated 2D-SAXS patterns

The acquired 2D-SAXS data was azimuthally integrated over a range of 0.01 ≤ q ≤ 0.03/Å in

order to extract information on the time evolution of the scattering patterns. In Figure 7.15,

contour plots with identical scaling are shown for the experiments on i-PP-1 at 138 °C under

different crystallization conditions (see Appendix A for the corresponding waterfall plots).

In all experiments that contained short-term steady shear profiles (b – d), two characteristic

stripes at χ1 ≈ 90° and χ2 ≈ 270° were observed, corresponding to the dumbbell patterns of

Figure 7.13. Experiment 4 showed an immediate formation of this pattern upon the cessation

of flow and its intensity remained almost constant over time. For experiments 2 and 3, these

patterns were less pronounced and a time-wise buildup and decrease in scattering intensity

was seen. The latter feature indicated a loss in anisotropy at later stages of the crystallization,

which was possibly caused by a combination of secondary crystallization (cross-hatching)

and a lower degree of orientation at the growth front further away from the nucleus (Ku-

maraswamy et al. 2004).

a) b)

c) d)

Figure 7.15: Evolution of the azimuthally integrated 2D-SAXS intensity profiles with identical scaling
for crystallizations of i-PP-1 at 138 °C under different crystallization conditions. Background image:
15 min, integration from 0.01 ≤ q ≤ 0.03/Å.
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Analyzing the time-dependent azimuthally integrated intensity profiles

All azimuthally integrated 2D-SAXS patterns obtained from experiments with applied flow

profiles were smoothed using a 10-point moving average (adjacent averaging). Numerical fits

were performed using Lorentzian functions to extract quantitative information on the time

evolution of the peak widths, positions, and heights. As shown in Figure 7.16, all curves were

sufficiently well described by two dedicated Lorentzian components:

I =
�

2A1

π

�

·
�
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I : scattering intensity, I0: baseline intensity, A1, A2: peak maximum intensities, χ1, χ2: peak

maximum positions, ∆χ1, ∆χ2: full width half maximum.

a) b) c)

Figure 7.16: Lorentzian model fitted to the azimuthally integrated and smoothed intensity profiles for
crystallization experiments of i-PP-1 at 138 °C under different flow conditions.

a) b) c)

Figure 7.17: Fit parameters extracted from a peak analysis using two dedicated Lorentzian functions
for crystallizations of i-PP-1 at 138 °C under different flow conditions.

The obtained results from the performed peak analysis are shown in Figure 7.17. For all exper-

iments, the peak positions χ1 and χ2 remained constant over the entire crystallization process.

Interestingly, the absolute χ values were lower for higher applied maximum shear rates, in-

dicating a slightly different structural orientation. The respective peak widths ∆χ became
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larger with time as shown in Figure 7.17b, possibly because the degree of order further away

from the induced nuclei was getting lower. The strongest broadening was seen for experiment

2, which might have been a result of the overall low degree of anisotropy.

Orientiation analysis using Herman’s orientation function

The flow-induced anisotropy during polymer crystallization as detected by the acquired 2D-

SAXS patterns was further analyzed using Herman’s orientation function (Hermans 1946;

Wilchinsky 1968; White and Spruiell 1983):

FH =
3



cos2φ
�

− 1

2
(7.3)

FH : orientation parameter, φ = χ −90°: orientation vector with respect to the flow direction.

Equation 7.3 was initially employed to describe the degree of orientation in drawn fibers by

measuring their birefringence. As the periodicity of orientation phenomena is 180°, the second

Legendre polynomial was chosen by Herman to obtain a quantitative measure of orientation

(see section 4.2.1, p. 53 for the use of the second Legendre polynomial in the description of

NMR dipolar coupling and chemical shift anisotropy). The average intensity term



cos2φ
�

in

Equation 7.3 is given by the fraction of two sinφ-weighted integrals over dφ:




cos2φ
�

=

∫

I(φ)cos2φsinφdφ
∫

I(φ)sinφdφ
(7.4)

a) b)

Figure 7.18: Herman’s orientation parameter FH vs. time t (a) and vs. the reduced absolute complex
viscosity |η∗|/|η∗|0 (b) for crystallizations of i-PP-1 at 138°C under quiescent and flow conditions.

In Figure 7.18a, the obtained orientation parameters FH for the crystallization experiments

of i-PP-1 under different conditions are plotted against time. Experiment 4 with a maximum

shear rate of 8/s and the strongest overall scattering intensity showed the highest degree

of orientation and a slight decrease with crystallization time. Lower degrees of orientation
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were seen for the other experiments, with the experiment under quiescent conditions exhibit-

ing a final plateau value of FH ≈ 0 as expected. In Figure 7.18b, all obtained orientation

parameters were correlated with the reduced absolute complex viscosity. During the initial

period of 1 ≤ |η∗|/|η∗|0 ≤ 10, experiments 1 – 3 showed a rapid decrease in FH , whereas for

10 ≤ |η∗|/|η∗|0 ≤ 1000 only a minor loss in orientation was detected. The data for experi-

ment 4 had a maximum at |η∗|/|η∗|0 ≈ 10, and followed the decreasing trend of the other

experiments at higher values of |η∗|/|η∗|0. Interestingly, all experiments including the one un-

der quiescent conditions showed a high level of orientation for t ≈ 20 – 30 min. Generally, even

experiments under nominally quiescent conditions show some form of inherent local flow due

to convection upon cooling. Thus, the observed high degrees of orientation at the beginning

of all crystallization processes might have originated from the alignment of anisotropic nuclei

at the very early stages of polymer crystallization (see section 8.3, p. 159 on RheoMicroscopy).

7.4.2 Effect of regio defects on the flow-induced semi-crystalline morphology

In addition to the investigations of the regio-defective grade i-PP-2 under quiescent condi-

tions presented in section 7.3, also experiments with applied flow profiles were performed. In

Figure 7.20, acquired rheological moduli G′ and G′′ (a) and the corresponding loss tangent

(b) are plotted together with selected simultaneously acquired 2D-SAXS patterns (c). An in-

tense cross-shaped pattern at q values below 0.02/Å was formed, which was different from

the dumbbell 2D-SAXS patterns that were observed for i-PP-1. As discussed in the previous

section, the used stress-controlled rheometer needed some time to reach the desired shear

rates due to its feedback-loop for the application of certain shear conditions. In Figure 7.19,

the applied shear rate γ̇ and the absolute shear deformation γ are plotted against time for ex-

periments 6 and 7. The raw data for exp. 7 was smoothed using a 30-point moving average.

In both cases, steady-state conditions were reached after approximately 20 s.

a) b)

Figure 7.19: Applied shear rates (a) and total strains (b) during the short-term steady shear routine for
the experiments in Figure 7.20.
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a) b)

c)
Exp. 5 (no shear)

Exp. 6 (max. 5/s 60 s)

Exp. 7 (max. 30/s 60 s)

15 min 30 min 45 min 60 min

Figure 7.20: Simultaneously acquired moduli G′, G′′ (a), the corresponding loss tangent (b), and se-
lected 2D-SAXS patterns (c) for crystallizations of i-PP-2 at 132 °C under quiescent and flow conditions.
A speed-up of crystallization with increasing maximum shear rate was detected by the rheological pa-
rameters. The 2D-SAXS data showed the formation of cross-shaped patterns at low q values, indicating
a certain degree of orientation parallel and perpendicular to the flow direction (background images:
15 min, scale bar: 0.05/Å).

The 2D-SAXS patterns were azimuthally integrated over a range of 0.005 ≤ q ≤ 0.02/Å in

order to extract information on the evolution of the formed patterns with time. In Figure 7.21,

contour plots are shown for the experiments on i-PP-2 at 132 °C under different crystalliza-

tion conditions. In all experiments that contained short-term steady shear profiles (b – c),

characteristic patterns at χ1 ≈ 90° and χ2 ≈ 270° were observed, corresponding to the equa-
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torial part of the cross-shaped patterns as displayed in Figure 7.20. The meridional part was

visible for experiment 7 by an increased intensity at χ3 ≈ 0° and χ4 ≈ 180°. Different from

the experiments on i-PP-1, the patterns showed up some time after the cessation of flow and

increased gradually in intensity with time. Interestingly, also the experiment under quiescent

conditions (Figure 7.21a) displayed an increased intensity at 90° and 270°, corresponding to

the non-symmetric pattern in Figure 7.20.

a) b) c)

Figure 7.21: Evolution of the azimuthally integrated 2D-SAXS intensity profiles with identical scaling
for crystallizations of i-PP-2 at 132 °C under different crystallization conditions.

Analyzing the time-dependent azimuthally integrated intensity profiles

All azimuthally integrated 2D-SAXS intensity profiles including the experiment under qui-

escent conditions were smoothed using a 10-point moving average (adjacent averaging).

Numerical fits were performed on the equatorial peaks at χ1 ≈ 90° and χ2 ≈ 270° using

Lorentzian functions to extract quantitative information on the time evolution of the peak

widths, positions, and heights (Equation 7.2). As shown in Figure 7.22, the equatorial peaks

were sufficiently well described by two dedicated Lorentzian components for all curves.

a) b) c)

Figure 7.22: Lorentzian model fits to the azimuthally integrated intensity profiles for crystallizations of
i-PP-2 under different conditions.
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The obtained results from the performed peak analysis are shown in Figure 7.23. For all

experiments, the peak positions χ1 and χ2 remained constant over the entire crystallization

process. The absolute χ values were lower for higher applied maximum shear rates, indicating

a slightly different structural orientation. The respective peak widths ∆χ became larger with

time as shown in Figure 7.23b, possibly because the degree of order further away from the

induced nuclei was getting lower (lamellar splaying). The strongest broadening was seen

for experiment 2, which might have been a result of the overall low degree of anisotropy as

indicated by the lowest final scattering intensity A (Figure 7.23c).

a) b) c)

Figure 7.23: Fit parameters extracted from a peak analysis using two dedicated Lorentzian functions
for crystallizations of i-PP-2 at 132 °C under different conditions.

Orientiation analysis using Herman’s orientation function

For all experiments on i-PP-2, an analysis using Herman’s orientation function (Equation 7.3

and Equation 7.4) was performed. Similarly to the experiments on the Ziegler-Natta grade

i-PP-1 (Figure 7.18), experiments 5 and 6 showed a loss in orientation for t ≈ 20 – 30 min

(Figure 7.24a). The observed high degrees of orientation at the beginning of the crystallization

process might again have been a consequence from locally induced oriented nuclei.

a) b)

Figure 7.24: Herman’s orientation parameter FH vs. time t (a) and vs. the reduced absolute complex
viscosity |η∗|/|η∗|0 (b) for crystallizations of i-PP-2 at 132°C under quiescent and flow conditions.
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The experiment with a maximum shear rate of 30/s showed the highest degree of orientation

at later stages of the crystallization process and no decrease, which was different from experi-

ment 4 on i-PP-1. In Figure 7.24b, all obtained orientation parameters FH were correlated with

the reduced absolute complex viscosity. All curves stayed relatively constant over the crystal-

lization process, which was different from the results for i-PP-1. The high nucleation density

of the metallocene-catalyzed grade i-PP-2 in combination with applied flow fields possibly led

to a very locally ordered morphology instead of large extended row-nucleated structures as in

the case of i-PP-1.

7.5 Morphology investigations using scanning electron microscopy

To further investigate the effects of different flow profiles on the nano-scale morphology of iso-

tactic polypropylene, scanning electron microscopy (SEM) was carried out on the recovered

specimen upon complete crystallization as in section 6.5, p. 124. All samples were etched

prior to SEM using an acidic permanganate solution as described by Sawyer et al. (2008)

(experimental details were given in section 7.2). The images were recorded at a position

of ~3 mm from the edge of the sample where the X-ray beam penetrated the material. On

the following pages, only micrographs from experiments with applied flow profiles will be dis-

cussed (see section 6.5, p. 124 and Appendix A for images of quiescently crystallized samples).

The analysis of the sample from experiment 3 with a maximum shear rate of 3/s confirmed

an increased nucleation density with spherulite sizes of ~20 – 30 µm compared to the qui-

escently crystallized i-PP-1 sample (Figure 7.25, compare with section 6.5, p. 124). Further-

more a relatively small number of elongated, but still spherulitic structures was observed.

Some cross-hatching was visible, especially further away from the row nucleus. This feature

is known to be caused by the large splaying angle of ~90° in isotactic polypropylene due to

the 3-1 helix structure and might explain the decrease in scattering intensity at later stages of

the crystallization process. Unfortunately, no ex-situ scanning electron microscopy could be

conducted on the sample from experiment 2 as it was molten prior to experiment 3, thereby

preventing a direct comparison of the obtained morphologies for these two experiments.

The recovered specimen from experiment 4 (max. 8/s for 30 s) which showed the high-

est degree of orientation had a substantially increased nucleation density with very small

spherulite sizes of ~10 – 20 µm (Figure 7.26). Extended row-nucleated structures (cylin-

drites) were found throughout the sample with a strong directional orientation of the grown

lamellae perpendicular to the flow direction. Likely, this structural motif caused the observed

dumbbell-shaped scattering pattern.
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Figure 7.25: SEM images at different magnifications of etched i-PP-1 crystallized at 138 °C under flow
(exp. 3, max. 3/s 60 s).
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Figure 7.26: SEM images at different magnifications of etched i-PP-1 crystallized at 138 °C under flow
(exp. 4, max. 8/s 30 s).
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The regio-defective grade i-PP-2 sample from experiment 7 (max. 30/s 60 s) exhibited an

extremely high nucleation density with spherulite sizes below 10 µm (compare with Fig-

ure 6.34 in section 6.5, p. 124). Thus, the application of flow further increased the already

inherently high nucleation density due to the 1 mol% of 2,1-erythro regio defects. A strongly

cross-hatched micro-structure was observed, which might explain the overall low scattering

intensity due to a disruption of the periodic lamellar structure as illustrated in Figure 7.6.

No long-extending row-nucleated structures with perpendicularly grown lamellae as in the

case of i-PP-1 were clearly visible. Consequently, the cross-shaped scattering pattern and the

increased degree of orientation probably resulted from an average alignment of the lamellae

rather than from a particular structural motif.

Figure 7.27: SEM images of etched i-PP-2 crystallized at 132 °C under flow conditions (exp. 7, max.
30/s 60 s).
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7.6 Concluding remarks

In this chapter, the nano-scale morphology and rheology of isotactic polypropylene during crys-

tallization under quiescent and flow conditions was investigated using hyphenated RheoSAXS.

The vertical set-up was based on a commercial stress-controlled shear rheometer that was inte-

grated into a reflected X-ray beam path of beam line P10 at the German Electron Synchrotron

(DESY). All works were carried out in collaboration with Dr. Eric Stellamanns and Dr. Michael

Sprung (both DESY, Hamburg, Germany).

Under quiescent crystallization conditions, the tested Ziegler-Natta and metallocene-catalyzed

polypropylene grades showed the formation of ring-type scattering patterns, indicating an

isotropic orientation of the grown lamellae. From the scattering curves of the fully crystal-

lized samples correlation functions based on a lamellar scattering model were deduced and

lamellar thicknesses in the range of ~9 nm for the Ziegler-Natta grade and ~5 nm in case

of the metallocene-catalyzed grade were determined. As in both cases the long period was

larger than twice the lamellar thickness (d ≈ 25 nm (ZN) and 13 nm (metalloc.), a potential

interphase of 2 – 3 nm between the crystalline and amorphous domains seemed plausible.

The early stages of crystallization were characterized by an increase in scattering intensity at

low scattering vectors that were most probably caused by the formation of nuclei instead of

long-range density fluctuations as will be discussed in chapter 8. Correlating the calculated

SAXS invariants with the simultaneously measured reduced absolute complex viscosities dur-

ing isothermal polymer crystallization led to noisy hardening curves compared to the results

obtained by RheoNMR in chapter 6. Ultimately, the SAXS invariants were not found to pro-

vide a quantitative measure of crystallinity as the sample was probed locally and secondary

crystallization decreased the absolute scattering intensity.

Flow-induced crystallization of isotactic polypropylene was studied using short-term steady

shear profiles as in chapter 6. Because a stress-controlled rheometer was used, achieving the

desired shear rates and steady-state conditions during the startup phase required 20 to 40 s

depending on the chosen maximum shear rate. The lower degree of orientation for the ex-

periment at a maximum applied shear rate of 5/s compared to an experiment at 3/s could

be explained by the actually applied higher shear rates during the initial startup phase. For

all pre-shear experiments, an overall increase in the speed of crystallization was detected by

the rheological parameters and the appearance of anisotropic scattering patterns. The Ziegler-

Natta grade showed characteristic dumbbell patterns soon after the cessation of flow that were

likely caused by lamellae perpendicular to the applied flow direction. On the other hand, the

metallocene-catalyzed, regio-defective material displayed cross-type patterns that might have

originated from an average orientation of the fine cross-hatched microstructure. Herman’s

orientation function was employed to quantify the degree of orientation, independent of the

absolute scattering intensity. The analysis revealed a certain degree of structural anisotropy at

the early stages of polymer crystallization (FH ≈ 0.3), even for the experiment under quiescent

conditions. A potential explanation is that convection upon cooling caused an alignment of
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sheaf-like nuclei. When correlated with the simultaneously measured reduced absolute com-

plex viscosity, a decrease in the average degree of orientation over the entire crystallization

process was observed for the Ziegler-Natta grade, whereas for the metallocene-catalyzed grade

it stayed almost constant. The obtained sample morphologies were further evaluated using

ex-situ scanning electron microscopy, confirming a substantially higher nucleation density with

small spherulites in the sheared samples (diameter: ~10 – 20 µm for the highest shear rate).

Row-nucleated structures were observed for the Ziegler-Natta grade that was subjected to

the highest shear rate, which were 100 – 150 µm long and most certainly the origin of the

measured strong anisotropic scattering. For the regio-defective grade, a highly cross-hatched

morphology was found that explained the overall lower scattering intensities.

Hyphenated RheoSAXS provided correlated information on the effects of flow on the nano-

scale morphology and related rheology of semi-crystalline polymers, which was not directly

accessible before. By applying different flow conditions, we identified highly anisotropic struc-

tures as a potential cause for the observed strong increase in absolute viscosity at the early

stages of the crystallization process, which supports the findings in the chapter on RheoNMR.

The degree of orientation as quantified by Herman’s orientation function FH served as a sen-

sitive measure for the relative number and dimensions of oriented lamellar structures. In

future experiments, switching to applied stresses instead of shear rates would further en-

hance the comparability of the results as the used rheometer was a stress-controlled Thermo

Haake MARS II. Furthermore, experiments using monodisperse polymers of different molec-

ular weights would help to further clarify the mechanism between the imposed flow and the

formed row-nucleated morphologies.
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8 Relationship between Microstructure and
Rheology in Polymer Crystallization:
RheoMicroscopy

The following chapter contains results from simultaneous optical RheoMicroscopy investiga-

tions on the microstructure and rheology during quiescent and flow-induced polymer crystal-

lization. All experiments were carried out in collaboration with Dr. Eric Stellamanns (German

Electron Synchrotron (DESY), Hamburg, Germany). The effect of flow profiles on polymer

crystallization with respect to the changes in the microstructure and rheology will be presented

and compared against the results from RheoNMR (chapter 6) and RheoSAXS (chapter 7).

8.1 Introduction

Rheo-optical set-ups based on microscopy, scattering, or absorption of visible light in combi-

nation with flow cells and rheometers have been extensively used in the past to study soft

matter. Reviews of different rheo-optical set-ups and their application can be found in texts by

e.g., Fuller (1995), Wagner (1998), and Janeschitz-Kriegl (2012). As oftentimes micron-sized

structural features determine the observed flow behavior of complex materials, simultaneous

investigations of microstructure and rheology have been performed on suspensions (Champion

et al. 1996; Paulin et al. 1997), emulsions (Montesi et al. 2004; Kawaguchi and Kubota 2004),

or liquid crystals (Berghausen et al. 1997; Onogi and Asada 1980; Walker et al. 1997). Fur-

thermore, experiments on amorphous polymeric material systems such as polymer solutions

(Bossart and Oettinger 1995; Friedenberg et al. 1996; Kume et al. 1997; Pathak and Hudson

2006), block copolymers (Chen and Kornfield 1998; Kannan and Kornfield 1994), and poly-

mer melts (Dietz et al. 1978; Lee and Mackley 2001) have been carried out to investigate the

effects of flow on the conformation of polymeric chains.

The structural buildup of semi-crystalline polymers under quiescent crystallization conditions

has been studied to investigate the relationship between the microstructure and hardening be-

havior of crystallizing polymers by e.g., Pogodina et al. (1999, 2001), Elmoumni et al. (2003),

and Pantani, Speranza and Titomanlio (2015). In experiments using small angle light scatter-

ing (SALS), Pogodina et al. (1999) could show that the observed long-range density fluctua-

tions have a maximum at the gel point, which might be the origin for the nonlinear rheolog-

ical behavior as pointed out in chapter 6 and will be further evaluated in this chapter. Flow-

induced crystallization was studied by numerous groups using rheo-optical methods and some

selected references are given in the following. Pioneering works were carried out by A. Keller
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and M. Mackley at the University of Bristol (Mackley and Keller 1973; Mackley et al. 1975).

They developed a multipass rheometer with in-situ microstructural characterization and could

study crystallizing polymers under process-like conditions (Mackley et al. 1975, 2000; Has-

sell and Mackley 2008; Scelsi and Mackley 2008). The group of H. Winter at the University

of Massachusetts (Amherst) investigated the molecular-weight dependence of flow-induced

crystallization (Elmoumni et al. 2005; Elmoumni and Winter 2006). More recently, Pantani et

al. studied the kinetics of crystallizing polymers under flow conditions using RheoMicroscopy

(Pantani et al. 2010, 2014; De Santis et al. 2016). Further works were carried out by Koscher

and Fulchiron (2002) and Housmans, Steenbakkers, Roozemond, Peters and Meijer (2009)

who aimed at the validation of theoretical models for flow-induced crystallization.

8.2 Experimental

RheoMicroscopy set-up

The hyphenated RheoMicroscopy set-up shown in Figure 8.1 was developed by Dr. Eric Stel-

lamanns from the German Electron Synchrotron (DESY) (see Appendix A for a photograph of

the set-up). Similar to the RheoSAXS set-up presented in chapter 7, it was based on a stress-

controlled Haake MARS II rheometer (Thermo Scientific, Karlsruhe, Germany) for which the

motor was flipped by 180° to open up the top space for accessories. To be able to carry out

in-situ microscopy, it was equipped with 35 mm parallel-plate geometries made from glass.

The home-built optical microscopy unit consisted of a polarized white LED light source, an

objective (achromatic triplet f = 16 mm), tubus lenses (achromatic doublets: f = 10 and

100 mm), and a 12-bit monochrome digital camera with a 1/1.2" CMOS sensor, 1936 ×
1216 px (IDS Imaging Development Systems GmbH, Obsersulm, Germany). The home-built

oven was identical to that used for RheoSAXS and allowed to perform experiments over a

temperature interval of 10 – 300 °C under a nitrogen atmosphere.

Figure 8.1: Rheo-Microscopy set-up based on a Thermo Haake MARS II rheometer equipped with
35 mm parallel-plate geometries made from glass and a home-built optical microscopy unit consist-
ing of a polarized white LED light source, an objective, tubus lenses, and a 12-bit monochrome camera.
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Procedures

All optical RheoMicroscopy experiments were conducted using the set-up described in the pre-

vious paragraph. Quiescent and flow-induced crystallization of isotactic polypropylene were

studied under isothermal conditions at temperatures of 128 – 138 °C. Prior to all crystallization

experiments, the 13 mm polypropylene samples were molten at 200 °C for 15 min to erase the

thermal history. The sample thickness was adjusted to 200 – 250 µm to achieve a completely

filled geometry. The observation window was at r = 14 mm as in the RheoSAXS experiments.

All polymer crystallizations were monitored by rheological time sweeps with low strain am-

plitude γ0 = 0.5% and angular frequency ω = 1 rad/s to detect the change in flow behavior

without disturbing crystal formation. For all flow-induced crystallizations, a steady shear step

was included right after the desired crystallization temperature was reached (Figure 6.2). All

micrographs were acquired in monochrome mode and under non-cross polarized conditions

to be able to observe the flowing polymer melt prior to crystallization. Upon complete crystal-

lization, the semi-crystalline morphologies were analyzed using ex-situ optical microscopy.

Materials

As in chapter 6 and chapter 7, the main material of investigation was a Ziegler-Natta polypropy-

lene grade i-PP-1 (batch 1: Mw = 246 kg/mol, -D = 2.7, 94% mmmm). Further information

on the used material can be found in section 2.4, p. 19.

8.3 Quiescent crystallization experiments

The crystallization of isotactic polypropylene under quiescent conditions was studied using in-

situ RheoMicroscopy (Figure 8.1). The evolution of the rheological moduli and simultaneously

acquired micrographs for a crystallization of the Ziegler-Natta grade i-PP-1 at Tcryst = 138 °C

is shown in Figure 8.2. Soon after the temperature was reached small nuclei formed that grew

into larger spherulites over time. At this stage, the rheological moduli didn’t indicate any sig-

nificant change, yet. The experiment was most likely dominated by heterogeneous nucleation

from e.g., dust particles as there was no indication of a continuous nucleation process as it

would be expected for homogeneous nucleation (see Figure 3.13 in subsection 3.3.6, p. 35).

For t ≥ 30 min, the moduli G′ and G′′ displayed an increasing behavior when considerably

grown spherulites were present in the polymer melt. The crossover G′ = G′′ was reached

shortly before 40 min and the micrographs showed a more and more dense microstructure with

increasing time. As the sample gap of 250 µm was on the order of the growing spherulites,

a distortion of the rheological parameters (especially G′′) at later stages of the crystalliza-

tion process was expected and observed. Furthermore, the final absolute values were lower

compared to the experiments on the same polymer presented in chapter 6. This effect could

have been a consequence of the large diameter (35 mm) in combination with the inherent

compliance of the geometry as discussed in chapter 7.
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a)

b)
20 min 30 min 40 min 50 min

Figure 8.2: Moduli G′ and G′′ for a quiescent crystallization of i-PP-1 at 138 °C (a) and simultaneously
acquired micrographs (b) using hyphenated RheoMicroscopy. Scale bar: 50 µm.

8.3.1 Early stages of crystallization

As already pointed out in chapter 7, crystallizing polymer melts under quiescent conditions

might still be subject to certain flows during heating and cooling. Here, these flows were

observed by monitoring the position of dust particles during the nucleation phase as shown

in Figure 8.3 (see Appendix A for additional micrographs recorded at t = 0 – 20 min). The

intrinsic shear rates are several orders of magnitude smaller compared to the extra applied

flow during steady-shear (e.g., 10−2/s vs. 1/s) and do not lead to row-nucleated morpholo-

gies. However, they are likely to have an effect on the orientation of the formed anisotropic

nuclei at the early stages of crystallization. In Figure 8.3d, the ellipsoid nuclei were oriented

along the flow direction. Likely, these nuclei were rotated under the influence of intrinsic flow

as indicated in Figure 8.4. The combination of slightly anisotropic nuclei and their alignment
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by intrinsic flow explains the net orientation at early stages of crystallization under quiescent

conditions as determined by RheoSAXS in chapter 7. With increasing time these ellipsoid

nuclei grow into spherulites and the net orientation is decreasing.

17 min 18 min 19 min 20 min

21 min 22 min 23 min 24 min

Figure 8.3: Micrographs of i-PP-1 crystallized at Tcryst ≈ 138 °C under quiescent conditions acquired by
RheoMicroscopy. Scale bar: 50 µm. White arrow indicates the direction of intrinsic flow.

Figure 8.4: Schematic representation of the rotation of nuclei under the influence of intrinsic flow,
which leads to a net orientation at early stages of the crystallization process. With increasing time,
spherulitic growth leads to an again isotropic state of the material.
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8.3.2 The microstructure at the point of gelation

Because the rheology data and the micrographs were acquired simultaneously, an analysis of

the microstructure at the crossover of G′ and G′′ was possible. At low excitation frequencies the

crossover is practically identical with the rheological gel point as shown in section 6.3, p. 98.

Figure 8.5 shows the microstructure at the point of gelation for a quiescent crystallization

of i-PP-1 at 138 °C. As the sample had a thickness of 250 µm, the micrograph represents a

projection along the vertical sample direction.

Figure 8.5: Micrograph recorded at the crossover of G′ and G′′ for a crystallization of i-PP-1 at 138 °C
under quiescent conditions using RheoMicroscopy. By assuming monodisperse spheres of radius
30 µm ± 10%, the degree of space filling was calculated (circles in blue were counted half).

The degree of space filling φ was calculated by assuming a set of monodisperse spheres:

Box dimensions : a× b× c : 600× 375× 250 µm3

90 spheres with r ≈ 30 µm, 24 spheres at the edges counted half⇒ 78 equiv. spheres

⇒ degree of space filling : φcrit =
78 · 4/3π · 303

600 · 375 · 250
=

8821592
56250000

≈ 16%

The determined degree of space filling φ ≈ 16% ± 5% agreed well with the results obtained

by RheoNMR for high crystallization temperatures (see chapter 6). Such low degrees of

space filling point towards a percolation phenomenon of the growing and potentially inter-
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acting spherulites. Theoretical site percolation threshold for the random close packing of hard

spheres pcrit ≈ 0.3 (Powell 1979; Ziff and Torquato 2017). Taking into account the geomet-

rical filling factor of spheres ( f = 4/3π · (r = 0.5)3 = 0.524), the critical volume fraction

φcrit = pcrit · f ≈ 16% (Scher and Zallen 1970). This value agrees perfectly with the here

observed degree of space filling φcrit ≈ 16% ± 5% at the point of gelation. At lower crystal-

lization temperatures, and consequently faster crystallizations, the values for φcrit went down

(e.g., 10% for Tcryst ≈ 132 °C as shown in Figure 6.9b, p. 104b). This behavior might be the

consequence of a hydrodynamic effect due to the difference in density between the amorphous

melt and the semi-crystalline spherulites. In Figure 8.6, potential hydrodynamic flows and the

resulting boundary layer are illustrated. For faster crystallizations at lower temperatures, these

stresses might lead to percolation at lower degrees of space filling. The boundary layer would

be dependent on temperature, which explained the trends seen in chapter 6. Another reason

for lower degrees of space filling at the point of gelation would be an anisotropy of the grow-

ing spherulites as observed for the regio-defective grade i-PP-2 (see section 6.5, p. 124), which

indeed showed lower φcrit values of ~5 – 10%. As shown by (Akagawa and Odagaki 2007),

particles with an aspect ratio of 5:1 (major : minor axis) exhibit half the critical volume frac-

tion φcrit ≈ 8% of round particles. For needles or fibers with even higher aspect ratios, φcrit

decreases to values below 5%.

a) b)

Figure 8.6: (a) Illustration of the potential temperature-dependent interaction of growing spherulites.
The difference in density between the amorphous melt and the semi-crystalline spherulites might lead
to stresses pointing towards the center of each spherulite. b) Anisotropic spherulites might percolate
at lower degrees of space filling due to their higher aspect ratio.

8.4 Flow-induced crystallization experiments

The microstructure of semi-crystalline polymers gets drastically changed upon the application

of flow (section 3.4, p. 38). The main two effects are an increase in nucleation density for

relatively mild flow conditions and the formation of elongated row-nucleated structures for

higher shear rates and longer shear durations. As in chapter 6 and chapter 7, the short-term

shear protocol by Janeschitz-Kriegl (Figure 6.2) was employed to study the effects of flow in-

dependently from the chosen crystallization temperature. In Figure 8.8, acquired rheological

moduli G′ and G′′ are plotted for different experimental conditions. Stresses of 12 – 24 kPa

were applied for 60 s each, which led to an almost instantaneously application of shear rates
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between 1 – 9/s and a linear increase of the total strain depending on the applied stress (Fig-

ure 8.8). As the Haake MARS II is a stress-controlled rheometer, this approach was found

to provide better defined flow profiles compared to the Controlled Rate (CR) mode used in

chapter 7. Up to 21 kPa, the rheological parameters indicated a speed-up of crystallization.

For the highest applied stress of σ = 24 kPa, a slower overall crystallization was observed. In

Figure 8.9), micrographs recorded at different points in time during the experiments of Fig-

ure 8.7 are shown. The microstructure of the experiment with 12 kPa was relatively similar

to the quiescent case. However, at higher applied stresses, a significantly higher nucleation

density was observed. For the experiment at 24 kPa the formation of row-nucleated structures

was detected in the window of observation (see Appendix A for additional micrographs).

Figure 8.7: Moduli G′ and G′′ for the crystallization of i-PP-1 at 138 °C under different applied flow
conditions acquired using hyphenated RheoMicroscopy.

a) b)

Figure 8.8: Applied shear rates (a) and total strains (b) during the short-term steady shear routine for
the experiments in Figure 8.7.
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no shear

12 kPa 60 s

18 kPa 60 s

21 kPa 60 s

24 kPa 60 s

t = 17 min 20 min 30 min 40 min 50 min

Figure 8.9: Micrographs of i-PP-1 crystallized at Tcryst ≈ 138 °C under different flow conditions simulta-
neously acquired to the rheological data shown in Figure 8.7 using hyphenated RheoMicroscopy. Scale
bar: 50 µm.
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8.4.1 The point of gelation under flow conditions

In Figure 8.10, micrographs of the microstructure at the crossover of G′ and G′′ are shown

for each experiment. Again, as the sample had a thickness of 250 µm, the micrographs repre-

sented a projection along the vertical sample direction. For the experiment with σ = 12 kPa,

a similar microstructure as for the experiment under quiescent conditions was observed. The

experiments at higher applied stresses showed significantly increased nucleation and an over-

all higher degree of space filling at the point of gelation. Notably, many nuclei were formed

close to the surface of the glass plates under stronger flow conditions. This effect might have

been associated with a reduction in surface stresses of the growing nuclei as discussed in sub-

section 3.3.2, p. 25 in chapter 3. As the microstructure of strongly sheared samples becomes

more and more heterogeneous, the micrographs shown in Figure 8.10 represented snapshots

of the local microstructure at r = 14 mm. Thus, the degree of space filling was relatively high

at the surfaces when the crossover of G′ and G′′ was detected.

no shear,
37 min

12 kPa 60 s,
35 min

18 kPa 60 s,
35 min

21 kPa 60 s,
30 min

24 kPa 60 s,
31 min

Figure 8.10: Micrographs recorded at the rheological crossover (G′ = G′′) for i-PP-1 crystallized at
Tcryst ≈ 138 °C under different conditions using hyphenated RheoMicroscopy. Scale bar: 50 µm.

8.4.2 Ex-situ polarized light microscopy

To further investigate the microstructure upon complete crystallization, the specimens from

the tests with applied stresses of 21 kPa and 24 kPa were analyzed using ex-situ polarized light

microscopy (Zeiss Axiophot, Oberkochen, Germany). In Figure 8.11, obtained micrographs

with magnifications of 25x and 200x are shown for both samples. In case of the sample from

the 24 kPa experiment (a, b) voids and cracks were seen that pointed to a detachement from

the glass surfaces during steady shear. Row-nucleated structures were confirmed for this sam-

ple close to the edges, which agreed with the findings in chapter 7. The micrograph for the

experiment with an applied stress of 21 kPa displayed a more homogeneous microstructure

with higher nucleation densities further away from the center of the specimen. However, no

long extending row-nucleated structures (cylindrites) were visible, which was reasonable tak-

ing into account the relatively low shear rate of ~3/s and agreed with the observations made

in chapter 7.
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a) b)

c) d)

Figure 8.11: Micrographs of i-PP-1 crystallized at Tcryst ≈ 138 °C with an applied stress of 24 kPa for
60 s (a, b) and 21 kPa for 60 s (c, d) recorded upon complete crystallization using a Zeiss Axiophot
microscope.

8.5 Concluding remarks

In this chapter, the microstructure and rheology of isotactic polypropylene during crystalliza-

tion under quiescent and flow conditions was investigated using optical RheoMicroscopy. This

project was carried out in collaboration with Dr. Eric Stellamanns (DESY, Hamburg, Germany)

using their hyphenated RheoMicroscopy set-up based on a stress-controlled Thermo Haake

MARS II rheometer.

The tested Ziegler-Natta isotactic polypropylene grade showed an expected spherulitic crys-

tallization behavior with final spherulite sizes on the order of 100 µm. During the nucleation

period, ellipsoid nuclei were formed that grew into round spherulites over time. Interestingly,

these nuclei were oriented in the direction of inherent intrinsic flows, which explained the

observed anisotropic scattering patterns discussed in chapter 7. The occurrence of nuclei soon

after reaching the desired crystallization temperature strongly suggested that the observed

X-ray scattering at low scattering vectors was in fact caused by small nuclei and not long-

range density fluctuations. Therefore, the mechanism was likely dominated by nucleation and

growth under the tested experimental conditions. The microstructure at the point of gelation

as characterized by the crossover of G′ and G′′ at low excitation frequencies showed a consider-

able degree of space filling φcrit ≈ 16%, which agreed with the results obtained by RheoNMR.

167



8 Relationship between Microstructure and Rheology in Polymer Crystallization: RheoMicroscopy

Taking into account the filling factor f ≈ 0.5 of spherical objects, physical gelation was well

explained by the percolation of randomly packed spherulites with a percolation threshold pcrit

of ~0.3. For lower crystallization temperatures, a hydrodynamic effect might lead to gelation

at lower degrees of space filling due to the difference in densities between the amorphous melt

and the semi-crystalline spherulites. Furthermore, anisotropically growing spherulites might

generally percolate at lower loadings due to the higher aspect ratio as discussed in the context

of rod-like particle suspensions.

Flow-induced crystallization of isotactic polypropylene was studied using short-term steady

shear profiles as in chapter 6 and chapter 7. Here, selected stresses were applied that led

to better defined steady shear conditions compared to the RheoSAXS experiments using the

same stress-controlled rheometer in controlled rate mode. For all pre-shear experiments, an

overall increase in the speed of crystallization was detected by the rheological parameters.

The simultaneously recorded microstructure via polarized light microscopy revealed an in-

creased nucleation density with increasing applied stresses. For the experiment under the

highest applied stress of 24 kPa, row-nucleated structures (cylindrites) were confirmed. How-

ever, during this experiment parts of the sample detached from the smooth glass surfaces of

the parallel-plate geometries, resulting in a heterogeneous microstructure that explains the

overall slower crystallization behavior. Notably, a large number of nuclei that were created

by the application of flow were formed close to the surfaces of the geometries, indicating the

importance of surface stresses for the creation of stable nuclei.

Overall, hyphenated optical RheoMicroscopy provided correlated information on the effects

of flow on the microstructure and related rheology of semi-crystalline polymers. This tech-

nique was found to be a useful complement to the investigations using RheoNMR chapter 6

and RheoSAXS (chapter 7) that focused on the in-situ characterization of molecular dynamics

and nano-scale morphology, respectively. Generally, micrographs represent local microstruc-

ture, which limits the comparability if heterogeneities on larger length scales are present due

to the application of flow, incorporated additives, or temperature gradients. Image analy-

sis can become inherently difficult when the material turns turbid and the formed structures

overlay each other. Additionally, uncertainties in the detection of rheological parameters in-

crease when the formed semi-crystalline structures are on the order of the gap selected for

in-situ optical microscopy. For a quantitative analysis of e.g., the degree of space filling at the

rheological point of gelation, the presented RheoNMR method provides higher accuracy as it

delivers global sample average values rather than position-dependent information.
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In this thesis, new hyphenated characterization techniques were employed to study the crys-

tallization behavior of synthetic polymers under quiescent and flow conditions. A main focus

was the study of the relationships between the molecular dynamics, morphology, and rheol-

ogy of crystallizing polymers using custom-built RheoNMR, RheoSAXS, and RheoMicroscopy

set-ups. Furthermore, a method to determine the crystallinity and crystallization kinetics of

commercially relevant polymers via low-field 1H-NMR was evaluated in detail and compared

against established characterization techniques.

The molecular dynamics of semi-crystalline polymers were investigated using 1H-NMR under

the supervision of Prof. Gisela Guthausen (KIT-MVM, Pro2NMR) with support from Prof. Harald

Horn (KIT-EBI). Low-field 1H-NMR relaxometry was used to study the temperature-dependent

NMR relaxation behavior over a wide temperature range and T = Tg + 100 K was identified

as the minimum temperature with respect to the glass transition temperature Tg at which the

mobility difference between the protons of crystalline and amorphous domains is sufficient

for an unambiguous determination of polymer crystallinity. The obtained bulk crystallinities

were compared to DSC and XRD data, and showed good agreement for all polymers within

an estimated relative error of ±10% for the respective methods. Additionally, we focused

on the determination of crystallization kinetics, i.e., monitoring of isothermal crystallization,

where we found the combination of a mixed magic sandwich echo (MSE) followed by a Carr

Purcell Meiboom Gill (CPMG) echo train to be the most suitable sequence for crystallization

experiments. For all polymers, the relaxation behavior within the amorphous domains was

rather invariant during crystallization, pointing towards a nucleation and growth mechanism

for polymer crystallization. When compared to isothermal differential scanning calorimetry

experiments, a quantitative analysis using the Avrami model showed good agreement for the

crystallization rate, but deviations in the dimensionality parameter were seen. This behavior

could have been caused by higher temperature gradients in the NMR experiments and there-

fore a growth rate distribution which lowered the apparent dimensionality value. Overall,

low-field 1H-NMR relaxometry was found to deliver valuable information on the molecular

dynamics during polymer crystallization and was successfully employed to obtain information

on the bulk crystallinity and crystallzation kinetics of polymers.

The interplay between the molecular dynamics and macroscopic flow behavior during polymer

crystallization was studied using a unique hyphenated low-field RheoNMR set-up. This novel

characterization technique was based on a commercial strain-controlled shear rheometer with

a portable 1H NMR relaxometry unit, which allowed for the study of soft matter rheological

169



9 Conclusion and Outlook

behavior while monitoring the molecular dynamics in-situ via 1H NMR relaxometry. The crys-

tallization of isotactic polypropylene under quiescent conditions and with a preceding steady

shear protocol was investigated at varying the crystallization temperatures and applied flow

conditions. The evolving crystallinities were determined in-situ using the previously evaluated

multi-echo-based NMR sequence. As the sample was studied simultaneously by rheology and

NMR relaxometry, hardening curves of e.g., the viscosity vs. the degree of space filling, were

constructed and then evaluated using suspension and semi-empirical models. The analysis re-

vealed that the relationship between viscosity and the degree of space filling is highly nonlinear

with multiple regimes that are indicative of a physical gelation process. The best description

of the hardening behavior of a neat Ziegler-Natta isotactic polypropylene grade was achieved

using an extended Einstein model with exponents C ′ ≈ 4 to 5 and dynamic ranges D′ ≈
30000 to 60000 for the chosen crystallization temperatures of Tcryst ≈ 132 to 136 °C. Differ-

ent isotactic polypropylene grades were compared with respect to their crystallization kinetics

and physical gelation behavior. A metallocene-catalyzed and regio-defective polypropylene

grade showed a drastically inhibited crystallization speed and an unusually steeply increasing

hardening curve at low degrees of space filling. The influence of fillers and nucleating agents

on the crystallization behavior of isotactic polypropylene was studied in close collaboration

with the groups of Prof. Alejandro Müller (Universidad del País Vasco, San Sebastián, Spain)

and Prof. Hans-Werner Schmidt (University of Bayreuth, Germany). It was found that both

fillers and nucleating agents sped up the crystallization of isotactic polypropylene by increas-

ing the nucleation density when low amounts of well dispersed additives were embedded into

the polymer matrix. It was found that the incorporated silica filler didn’t change the hard-

ening behavior significantly, whereas the 1,3,5-benzene tricarboxamide nucleating agent led

to a faster rising hardening curve at the optimum concentration of 750 ppm. Flow-induced

crystallization was studied using short-term steady shear protocols with either similar total

strains or strain rates. An increase in the speed of crystallization was detected for the pre-

shear experiments, with the samples that were subjected to the strongest flow conditions of

10/s for 20 s showing an almost immediate increase in the viscosity |η∗| upon the cessation of

flow. Scanning electron microscopy confirmed that a substantially higher nucleation density

with small spherulites (~5 µm) was present in the sheared samples. In addition, anisotropic

row-nucleated structures (cylindrites) were observed that may be the origin of rigidification

at very low crystallinities. The hyphenation of low-field NMR and rheometry into a RheoNMR

set-up was a useful tool in studying polymer crystallization and could be further employed to

study the crystallization of low molecular weight substances, gelation or curing reactions and

to investigate how the application of shear can affect these processes.

To unravel the relationship between the evolving nano-scale morphology and rheology during

polymer crystallization, experiments using hyphenated RheoSAXS were conducted at the Ger-

man Electron Synchrotron (DESY) in collaboration with Dr. Eric Stellamanns and Dr. Michael

Sprung (both DESY, Hamburg, Germany). The custom-built vertical set-up was based on a

commercial stress-controlled shear rheometer that was integrated into a reflected X-ray beam

path of the P10 beam line. Under quiescent crystallization conditions, the tested Ziegler-Natta
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and metallocene-catalyzed polypropylene grades showed the formation of ring-type scatter-

ing patterns, indicating an isotropic orientation of the formed lamellae. The early stages of

crystallization were characterized by an increase in scattering intensity at small scattering vec-

tors that were most certainly caused by the formation of small nuclei rather than long-range

density fluctuations. Ultimately, the SAXS invariants were not found to provide a quantita-

tive measure of crystallinity as the sample was probed locally and secondary crystallization

decreased the absolute scattering intensity. For all flow-induced crystallization experiments,

an overall increase in the speed of crystallization was detected by the change in the rheo-

logical parameters and the appearance of anisotropic scattering patterns. The Ziegler-Natta

grade showed characteristic dumbbell patterns soon after the cessation of flow that were

likely caused by lamellae perpendicular to the applied flow direction. On the other hand,

the metallocene-catalyzed, regio-defective material displayed cross-type patterns that might

originate from an average orientation of the fine cross-hatched microstructure. The Herman’s

orientation function was employed to quantify the degree of orientation, independent of the

absolute scattering intensity. The analysis revealed structural anisotropy at the early stages of

polymer crystallization (FH ≈ 0.3), even for the experiment under quiescent conditions. Pos-

sibly, convection upon cooling caused local flow fields which directed the growth of sheaf-like

nuclei. When correlated with the simultaneously measured viscosity, a decrease in the degree

of orientation over the entire crystallization process was observed for the Ziegler-Natta grade,

whereas for the metallocene-catalyzed grade, it stayed almost constant. The obtained sample

morphologies were further evaluated using ex-situ scanning electron microscopy, confirming a

substantially higher nucleation density with small spherulites in the sheared samples (diame-

ter: ~10 – 20 µm for the highest shear rate). Row-nucleated structures were observed for the

Ziegler-Natta grade that was subjected to the highest shear rate, which were 100 – 150 µm

long and most certainly the origin of the measured strong anisotropic scattering. The occur-

rence of this morphology was well explained by the necessity of a higher applied shear rate

compared to the inverse of the longest relaxation time (Weissenberg criterion). Hyphenated

RheoSAXS provided correlated information on the effects of flow on the nano-scale morphol-

ogy and related rheology of semi-crystalline polymers, which was not directly accessible before.

By applying different flow conditions, we identified highly anisotropic structures as a poten-

tial cause for the observed hardening behavior at the early stages of the crystallization process.

The microstructure and rheological behavior during polymer crystallization under quiescent

and flow conditions was investigated using hyphenated optical RheoMicroscopy. All experi-

ments were carried out in collaboration with Dr. Eric Stellamanns (DESY, Hamburg, Germany)

on a custom-built set-up based on a commercial stress-controlled rheometer. The tested

Ziegler-Natta polypropylene grade showed the expected spherulitic crystallization behavior

with final spherulite sizes on the order of 100 µm. During the nucleation period, ellipsoidal

nuclei were formed that grew into round spherulites over time. Interestingly, these nuclei

were oriented in the direction of inherent convectional flows, which explained the previously

observed anisotropic SAXS patterns at small scattering vectors and ruled out the occurrence

of spinodal decomposition. The microstructure at the point of gelation showed a considerable
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degree of space filling (16%), which agreed with the results obtained by RheoNMR. The ob-

served physical gelation process was well explained by the percolation of randomly packed

spherulites with a percolation threshold of ~0.3, taking into account the filling factor of spher-

ical objects (~0.5). For lower crystallization temperatures, a hydrodynamic effect might have

led to gelation at lower degrees of space filling due to the difference in densities between

the amorphous melt and the semi-crystalline spherulites. Furthermore, anisotropically grow-

ing spherulites might generally percolate at lower loadings due to the higher aspect ratio.

Flow-induced crystallization of isotactic polypropylene was studied using short-term steady

shear profiles. For all pre-shear experiments, an overall increase in the speed of crystallization

was detected by the rheological parameters. The simultaneously recorded microstructure via

polarized light microscopy revealed an increased nucleation density with increasing applied

stress. For the experiment under the highest applied stress, row-nucleated structures were

confirmed. Notably, a large number of nuclei that were created by the application of flow

were formed close to the surfaces, indicating the importance of surface stress for the creation

of stable nuclei. Overall, hyphenated optical RheoMicroscopy was found to be a useful com-

plement to the presented RheoNMR and RheoSAXS techniques and helped to span the gap

between microscopic structural features and the observed rheological phenomena.

In conclusion, new characterization methods, especially when combined into hyphenated set-

ups, helped to clarify the crystallization mechanism, the formation of row-nucleated struc-

tures, and the hardening behavior during quiescent and flow-induced crystallization. They

allowed for a reliable correlation of experimental data as the average crystallization tempera-

ture and the temperature distribution were identical for both sets of data. They permitted the

application of flow profiles and the study of the resulting molecular dynamics, morphology,

and rheology during polymer crystallization, respectively. The obtained results point towards

a nucleation mechanism for the early stages of polymer crystallization rather than spinodal

decomposition because of the dependence on temperature, additives, and flow conditions.

Furthermore, the observed intensity at small scattering vectors during nucleation is most cer-

tainly a consequence of scattering from small nuclei rather than of spontaneous demixing. The

growth of lamellae might be accompanied by a mesomorphic phase transition at the growth

front instead of a stem-wise addition, which however has to be a local phenomenon due to

the invariance of the molecular dynamics of amorphous material during polymer crystalliza-

tion. The hardening behavior of crystallizing polymer melts was almost certainly associated

with the percolation of growing and interacting superstructures and was successfully mod-

eled using semi-empirical suspension models. In future works, experiments on monodisperse

polymers of different molecular weights would help to further understand the relationship be-

tween imposed flow and the formation of row-nucleated morphologies. Hyphenated set-ups

using capillary rheometers would furthermore allow for the application of higher shear rates

that mimic process conditions. Finally, experiments using hyphenated techniques based on

strain-controlled shear rheometers and wide angle X-ray scattering, infrared or dielectric spec-

troscopy, could lead to an even better understanding of polymer crystallization on macroscopic

and microscopic length and time scales.
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A.1 Additional experimental data

A.1.1 Solid-state 1H-NMR (400 MHz)

Figure A.1: 1H-NMR spectra (400 MHz) of HDPE’, LDPE, and i-PP-2 recorded at different temperatures.
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Figure A.2: 1H-NMR spectra (400 MHz) of PA-6, PET, and PBMA recorded at different temperatures.
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A.1.2 Liquid-state 13C-NMR (400 MHz)

Figure A.3: Decoupled 13C-NMR spectra of i-PP-1 (top) and i-PP-2 (bottom) dissolved in trichloroethy-
lene (TCE) at 125 °C, which revealed a pentad isotacticity mmmm = 94% for both samples (peak at
δ = 21.8 ppm over all pentad-related peaks at 20 – 22 ppm) and 1 mol% of 2,1-erythro regio defects
for the metallocene catalyzed i-PP-2 grade (peaks at ~18 ppm, Busico and Cipullo (2001)).
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A.1.3 Differential scanning calorimetry (DSC)

Figure A.4: DSC heating traces and obtained crystallinities for different polymers (heating rate:
10 K/min).
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Figure A.5: Buildup of the relative crystallinity during isothermal crystallization as determined by DSC.
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A.1.4 X-ray diffraction (XRD)

Figure A.6: X-ray diffractograms recorded at 30 °C (blue) for different neat polymer samples and shifted
amorphous halos (black) from experiments on molten samples.
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A.1.5 RheoNMR

Figure A.7: Left: free induction decays of Wacker AK500 silicone oil (500 mPas, 1 mm sample height)
and distilled water (completely filled NMR tube) for different positions in the Halbach magnet. Right:
corresponding spectrum for the middle position (∆ω/2π≈ 50 kHz).

Figure A.8: 1H-NMR spectra of Wacker AK500 silicone oil (500 mPas, 1 mm sample height) for different
positions within the RheoNMR magnet.

Figure A.9: RheoNMR temperature calibration using a digital thermometer and a type K thermocouple.
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Figure A.10: Left: Loss tangent tan(δ) and relative third harmonic I3,1 vs. time for different isother-
mal crystallizations of i-PP-2. Right: corresponding correlation plot against the degree of space filling
φc/φ

∞
c (nonlinearity at lower and higher times not shown for clarity).

Figure A.11: Left: Loss tangent tan(δ) and relative third harmonic I3,1 vs. time for different isothermal
crystallizations of i-PP-1 + 3wt% silica. Right: corresponding correlation plot against the degree of
space filling φc/φ

∞
c (nonlinearity at lower and higher times not shown for clarity).

Figure A.12: Simultaneously acquired RheoNMR data for the crystallization of a neat isotactic
polypropylene i-PP-1 at Tcryst = 136°C. The repeatability is fairly high as the set-up was not disas-
sembled between consecutive runs. However, an earlier crossover (G′ = G′′) was observed compared
to older experiments, which was potentially due to an inhomogeneous temperature distribution.
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Figure A.13: Loss tangent tan(δ) vs. time (left) and degree of space filling φc/φ
∞
c (right) for isother-

mal crystallizations of i-PP-1’ + different amounts of nucleating agent.

Figure A.14: Relaxation spectrum H(γ) extracted from the mastercurve shown in Figure 6.27a.

Figure A.15: Shear rate-dependent viscosity and normal force of i-PP-1 at 148 °C using the ARES oven
+ stainless steel geometry (left) and the RheoNMR set-up + ceramic geometries (right).
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A.1.6 RheoSAXS

Figure A.16: Waterfall plots of radially averaged 2D-SAXS intensities for the quiescent crystallization
of i-PP-1 at 138 °C (top) and i-PP-2 at 132 °C (bottom).

Figure A.17: Waterfall plots of azimuthally integrated 2D-SAXS intensity profiles for crystallizations of
i-PP-1 at 138 °C under different crystallization conditions.
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a)

b) c)

Figure A.18: Waterfall plots of azimuthally integrated 2D-SAXS intensity profiles for crystallizations of
i-PP-2 at 132 °C under different crystallization conditions.
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A.1.7 RheoMicroscopy

5 min 10 min 15 min 20 min

Figure A.19: Micrographs of i-PP-1 cooled from T ≈ 200 °C to at Tcryst ≈ 138 °C acquired using hy-
phenated RheoMicroscopy. Scale bar: 50 µm. The white arrow indicates the direction of intrinsic
flow.

17 min 18 min 19 min 20 min

21 min 22 min 23 min 24 min

Figure A.20: Micrographs of i-PP-1 crystallized at Tcryst ≈ 138 °C with a preceding steady-shear step
of 24 kPa for 60 s acquired using hyphenated RheoMicroscopy. Scale bar: 50 µm. The white arrow
indicates the direction of intrinsic flow.
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A.1.8 Scanning electron microscopy (SEM)

Figure A.21: SEM images of etched isothermally crystallized i-PP-1 at 131 °C under quiescent conditions
with different magnifications.

186



A Appendix

Figure A.22: SEM images of etched isothermally crystallized i-PP-1 at 136 °C under quiescent conditions
recorded at different positions.
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A.2 Photographs

Figure A.23: High-temperature low-field NMR probe (20 MHz) with Q ≈ 150, improved thermal insu-
lation, and simplified match- and tunability.

Figure A.24: Q-switch circuit.
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Figure A.26: RheoSAXS set-up at DESY (beamline P10) used in chapter 7.
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Figure A.27: RheoMicroscopy set-up at DESY used in chapter 8.
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Nomenclature

Acronyms

CPMG Carr-Purcell-Meiboom-Gill sequence

DSC Differential scanning calorimetry

FID Free induction decay

FT Fourier transform

GPC Gel permeation chromatography

HDPE High-density polyethylene

HL theory Hoffman-Lauritzen theory

i-PP Isotactic polypropylene

LAOS Large amplitude oscillatory shear

LDPE Low-density polyethylene

LLDPE Linear low-density polyethylene

MAOS Medium amplitude oscillatory shear

MAS Magic angle spinning

MSE Magic sandwich echo

NMR Nuclear magnetic resonance

PA-6 Polyamide 6

PBMA Poly(butyl methacrylate)

PE Polyethylene

PET Polyethylene terephthalate

PLOM / PLM Polarized light optical microscopy

PS Polystyrene

SAOS Small amplitude oscillatory shear

SAXS Small-angle X-ray scattering

SE Solid echo

SEM Scanning electron microscopy

t-PI Trans-1,4 polyisoprene

WAXS Wide-angle X-ray scattering

WLF model Williams-Landel-Ferry model

XRD X-ray diffraction

Greek Symbols

χ Azimuthal scattering angle

δ Phase angle

η Viscosity
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Nomenclature

η∗ Complex viscosity

γ Magnetogyric ratio

γ Strain

γ̇ Strain rate

λ Relaxation time

~̂µ Magnetic moment

ν Frequency

ω Angular frequency

ωL Larmor angular frequency

φ Pulse phase

φc Volume crystallinity

ψ(t) Wave function

ρ Density

σ Stress

τ Time

θ Scattering angle

Roman Symbols

A Amplitude

A Area

aT Shift factor
~B Magnetic field

d Long period

De Deborah number

E Energy

f Frequency
~F Force

G Gibbs free energy

G Shear modulus

g Lateral spreading rate

G Radial growth rate

G′ Storage modulus

G′′ Loss modulus

G(τ) Autocorrelation / memory function

G∗ Complex shear modulus

H Free enthalpy

h Height

h Planck constant (~6.6 · 10−34 J s)

Ĥ Hamiltonian

~ Reduced Planck constant (~1 · 10−34 J s)

H(λ) Relaxation time distribution

I Intensity
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Nomenclature

I Nucleation rate

i Secondary nucleation rate
~̂I Spin angular moment

I31 Third harmonic normalized to the fundamental

J(ω) Spectral density

K Avrami rate

k Boltzmann constant (~1.4 · 10−23 J/K)

Kg Secondary nucleation constant

L Length

m Magnetic quantum number

m Mass
~M Magnetization

N Number

n Avrami dimensionality

n Number

P Probability

Q NMR probe quality factor

~q Scattering vector

r Radius

S Entropy

T Temperature

t Time

T1 Longitudinal / spin-lattice relaxation time

T2 Transverse / spin-spin relaxation time

T1ρ Spin-lattice relaxation time in the rotating frame

V Volume

~p Momentum

Wi Weissenberg number

x Length

X c Mass crystallinity
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