
Challenges to Trading-Off Performance and Privacy of

Component-Based Systems

Stephan Seifermann
FZI Research Center for
Information Technology
seifermann@fzi.de

Kateryna Yurchenko, Max E. Kramer
Karlsruhe Institute of Technology (KIT)

{kateryna.yurchenko,max.kramer}@kit.edu

Abstract

Determining privacy properties of software systems is
essential for certification in certain domains and gains
importance for users of software services. Late dis-
covery of degraded privacy properties during devel-
opment phases makes fixing issues hard and expen-
sive. Approaches that focus on architectural privacy
predictions are rare and often do not integrate well
with existing tools for performance predictions so that
trade-off analyses are not supported. In this paper,
we suggest extending the Palladio Component Model
(PCM) by means of modeling privacy requirements to
support privacy predictions, code generation, and ver-
ification, as well as trade-off decisions. The goal of this
integration with PCM is to support the development
of quality-aware component-based architectures: Our
approach will allow trade-offs for privacy and perfor-
mance properties during the early design and will ease
the verification of the implementation.

1 Introduction

Recent events such as global surveillance disclosures
and data thefts in companies raised the privacy aware-
ness of system vendors and its users. To create pri-
vacy aware systems cost-efficiently, supporting tools
and methods must consider privacy as early as possi-
ble in the software development process.

Many approaches including verification [1] or infor-
mation flow analyses [5] focus, however, on the imple-
mentation activities only. A survey on model-based
security [7] presents multiple approaches for preserv-
ing privacy but they require a fine-grained design,
which is not available during the architectural design.

We argue for lifting privacy modeling and analyses
from the implementation to the architectural design to
facilitate early, cost-efficient, and structured handling
of privacy issues, and to support trade-off analyses be-
tween privacy and other quality attributes. We are go-
ing to extend the Palladio Component Model (PCM)
[2] as it provides extensive performance analyses and
extension concepts for further quality predictions [8].
Busch et al. [6] already showed that trade-offs for per-
formance and security are feasible with Palladio using
estimated security properties. Our envisioned PCM

extension provides means of modeling and analyzing
privacy of software architectures. Based on this, we
discuss challenges for trade-off analyses.

The remainder of this paper is structured as fol-
lows: In Section 2, we present our approach for an-
alyzing privacy consisting of a) data flow modeling
as analysis foundation, b) analysis for insecurely as-
sembled architectural components, and c) generation
of source code and of verification specifications. The
challenges in privacy and performance trade-offs are
discussed in Section 3. Section 4 concludes the paper.

2 Privacy Modeling and Analyses

We identified four main influence factors for rating ar-
chitectural privacy: a) How and where does a system
process data? b) What are my security requirements?
c) Which capabilities does an adversary have? d) Does
my implementation conform to the design?

Abstractions of system behavior (a) enable qual-
ity analyses. PCM supports abstractions that satisfy
performance analysis needs but lacks support for pri-
vacy. With the first part of our extension [9], privacy
relevant behavior and data flow can be modeled based
on existing behavior specification facilities.

Security requirements (b) provide input for privacy
analyses (c). The second extension part are adver-
sary models and architectural confidentiality analyses.
The analysis uses information flow into data sets for
detecting confidentiality breaches. The allowed flows
can serve as component behavior specifications, or can
be derived from existing behavior specifications.

The implementation must adhere to the privacy-
ensuring architecture (d). The third extension is the
generation of code stubs that can be manually com-
pleted and be verified against the modeled require-
ments. The behavior and data set specification serves
as generation input. This prohibits architectural drift
and degraded privacy.

2.1 Data Flow Modeling

Data flows formalize system behavior in a way that
enables privacy analyses. We envision data flows as
a lightweight, natural behavior specification focused
on privacy analyses. A possible definition of confi-



dentiality is that no information may flow from data
considered confidential to data not considered con-
fidential. More strictly speaking, no information of
data classified as “high” (confidential) may interfere
with information of data classified as “low” (non con-
fidential). This is called non-interference. Modeling
behavior by data instead of control flows is novel in
PCM and requires new model entities.

Classic data flows consist of data sources, sinks,
processings, and actual data flows shown as directed
edges. We extend these elements to make them suffi-
cient for behavior specifications: Data does not only
have a name but also additional meta-data for de-
scribing data properties. We do not model individ-
ual but classes of data like domain models such as
entity-relationship (ER) models. The concrete meta-
data depends on the concrete analysis. For confiden-
tiality, the confidentiality level is considerable meta-
data. Behavior modeling only covers effects relevant
for analyses instead of implementation instructions
such as code: Processing operators meme the effect of
real data processing by adjusting meta-data. Storages
are new PCM elements that meme data containers
such as files. Data sources and sinks can be users and
storages. A new behavioral specification called Data
Flow Service Effect Specification (DF-SEFF) models
data processing inside components. Data exchange is
possible via operation signatures but architects can
associate data with more than one parameter.

The DF-SEFF supports analyses as shown in Fig-
ure 1: Data flows extend the existing Architectural
Description Language (ADL) artifact and enable ana-
lysts to specify analysis goals such as no processing of
personal information in certain geographical locations
with parameterizable goal templates. A transforma-
tion engine maps the extended architecture and goals
to constraints. Constraints can be facts such as the
physical location of a server, rules that deduce infor-
mation such as the physical location of a deployed
component, or goals such as confidential information
must remain in physical locations. A transformation
maps raw results of an off-the-shelf constraint solver
to comprehensible results for architects. The architect
uses the results to improve the architecture.

2.2 Architectural Analysis

We developed an analysis that verifies whether a
component-based architecture is designed in such a
way that confidential information can be leaked to
modeled adversaries. If this analysis does not report
a leak, the implementation has to fulfill the architec-
tural requirements to preserve confidentiality. A dis-
covered potential leak means that unwanted explicit
or implicit information flows to an adversary are pos-
sible. Such an information flow can be avoided by
redesigning the architecture and implementing it ac-
cording to the requirements.

Our architectural analysis is based on confiden-

Figure 1: Envisioned data flow analysis approach.

tiality requirements and information flows defined on
data sets. An adversary model defines which adver-
saries are allowed to obtain information from which
data sets. For PCM models, stereotype tags specify
how information flows from data sets into parameters
and from return parameters into data sets. Other tags
specify the location of resource containers and linking
resources. A comparison of the location tag and the
accessibility of locations by the adversary yields acces-
sible resources. Another tag specifies how resources
process information, which may cause implicit infor-
mation flows. Further tags denote whether a resource
is protected against tampering and which adversaries
are able to break such protections. Based on these
additional specifications, the analysis checks whether
the system is vulnerable because adversaries could un-
intentionally obtain information. This is the case if an
adversary has access to a resource that processes in-
formation that may be influenced by information of
a data set for which no allowed knowledge was speci-
fied. For every vulnerability, the analysis generates an
explanation of how a given adversary may exploit it.
The explanation guides architects or domain experts
to model and specification elements that lead to the
vulnerability.

Our architectural confidentiality analysis is imple-
mented using inference rules encoded in Prolog. These
inference rules directly implement intuitive require-
ments for information flows and access to information
in the architecture. To use these Prolog rules for PCM
models that were extended with our confidentiality
profile, we implemented a model-to-text transforma-
tion. It generates Prolog facts for relevant elements
and properties of these extended PCM models and
for adversary models. The code for the analysis and
Prolog generator are open-source1 and our analysis is
described in detail in a technical report.

2.3 Implementation Verification

In the specification approach for the analysis de-
scribed above, an essential step is to add confiden-
tiality requirements to particularize which data sets

1sdqweb.ipd.kit.edu/wiki/MD-Confidentiality in CBS

2

https://sdqweb.ipd.kit.edu/wiki/MD-Confidentiality_in_CBS


shall not interfere. Here, input and return parame-
ters of components must be separated into groups to
specify information flow properties implied by them.

The stereotype �d includes P�, with data set d
and parameters P , annotates services provided or re-
quired by components and states that all information
of parameters in P is contained in data set d. This
yields to the information flow requirement that a data
set must not contain information of a parameter, for
which no includes relation has been defined. Compo-
nent implementations must obey information separa-
tion regarding data sets specified in the architecture.

To verify the implementation with respect to the
architecture, we aim to automatically generate source
code specifications from the �d includes P� anno-
tations and add them to generated (and eventually
manually completed) method stubs. After develop-
ers implemented the method stubs, KeY [1] can ver-
ify non-interference of the Java program code based
on method contracts formulated in a Java Modeling
Language (JML) extension.

Software engineers must prohibit architectural drift
and degraded privacy during system evolution. Thus,
confidentiality requirements that were verified for the
original system also have to hold for the modified sys-
tem. We plan to investigate the applicability of re-
gression verification, in which privacy specifications
of the previous program version serve as specifications
for the new version. For architectural parts missing
security specifications, we envision a method to prove
that a new version is at least as secure as the previous
one. Hence, developers can verify code modifications
using KeY with regard to change specifications.

3 Challenges for Trade-Off Analyses

Trade-off analyses find sweet spots in a bunch of
design alternatives that balance relevant quality at-
tributes. Criteria for good balances are highly indi-
vidual and depend on many factors such as domains,
use cases, or external factors. Therefore, optimiza-
tion approaches such as PerOpteryx [3] often present
pareto-sets that contain a small selection of alterna-
tives to the analyst. We identified the following three
preliminary challenges for the optimization process it-
self but would like to discuss further challenges with
respect to our modeling and analysis approach:

Design Space Definition specifies available al-
ternatives selectable by the optimization approach.
Privacy and performance modeling have to provide
design alternatives that specify the effect on privacy
and performance. In case of privacy, security patterns
can serve as design alternatives but have to be aug-
mented with performance effects.

Evaluation Functions allow ordering alternatives
with respect to quality. Finding an ordinal scale for
security is not trivial in contrast to performance. For
privacy, combining exploitation probability with the
value of endangered data can be reasonable.

Consistency of Architectural Views enables
up-to-date ratings of all quality properties after
changing an architectural aspect. For instance, chang-
ing the location of a node because of data protection
laws in the data flow view affects performance prop-
erties of the link to this node such as latency and
throughput. A consistency preserving approach such
as Vitruvius [4] can ease the definition of consistency
rules but finding them still remains a challenge.

4 Conclusions

In this paper, we presented our proposed Palladio ex-
tensions that allow predicting privacy properties of
a system architecture. We exploit the expressiveness
and comprehensibility of data flow models to specify
component behaviors in a data-oriented, natural way.
A confidentiality analysis uses this specification, de-
rives a constraint logic problem, solves it, and thereby
ensures confidentiality preservation. Additionally, we
presented our vision to enforce the privacy-aware ar-
chitecture in source code by generating stubs for code
verification. We identified design space definition,
evaluation function definition, and consistency preser-
vation of architectural views as the major challenges
in trading-off performance and privacy.

Acknowledgments

This work was partly supported by the German Fed-
eral Ministry of Education and Research within the
framework of the project “Security for the Internet
of Everything” in the Competence Center for Applied
Security Technology (KASTEL).

References

[1] B. Beckert et al., eds. Verification of Object-Oriented
Software: The KeY Approach. Springer-Verlag, 2007.

[2] S. Becker et al. “The Palladio component model for
model-driven performance prediction”. In: Journal of
Systems and Software 82 (2009), pp. 3–22.

[3] A. Koziolek et al. “PerOpteryx: automated application
of tactics in multi-objective software architecture op-
timization”. In: Proceedings of QoSA-ISARCS. 2011,
pp. 33–42.

[4] M. E. Kramer et al. “View-centric engineering with
synchronized heterogeneous models”. In: Proceedings
of VAO. 2013, 5:1–5:6.

[5] G. Snelting et al. “Checking Probabilistic Noninterfer-
ence Using JOANA”. In: it - Information Technology
56 (2014), pp. 280–287.

[6] A. Busch et al. “Assessing Security to Compare Archi-
tecture Alternatives of Component-Based Systems”.
In: Proceedings of QRS. 2015, pp. 99–108.

[7] P. H. Nguyen et al. “An extensive systematic review on
the Model-Driven Development of secure systems”. In:
Information and Software Techn. 68 (2015), pp. 62–81.

[8] M. Strittmatter et al. “A Modular Reference Structure
for Component-based Architecture Description Lan-
guages”. In: Proceedings of ModComp. 2015, pp. 36–
41.

[9] S. Seifermann. “Architectural Data Flow Analysis”.
In: Proceedings of WICSA. 2016, pp. 270–271.

3

http://dx.doi.org/10.1016/j.jss.2008.03.066
http://dx.doi.org/10.1016/j.jss.2008.03.066
http://dx.doi.org/10.1515/itit-2014-1051
http://dx.doi.org/10.1515/itit-2014-1051
http://www.sciencedirect.com/science/article/pii/S0950584915001482
http://www.sciencedirect.com/science/article/pii/S0950584915001482
http://ceur-ws.org/Vol-1463/paper6.pdf
http://ceur-ws.org/Vol-1463/paper6.pdf
http://ceur-ws.org/Vol-1463/paper6.pdf

	Introduction
	Privacy Modeling and Analyses
	Data Flow Modeling
	Architectural Analysis
	Implementation Verification

	Challenges for Trade-Off Analyses
	Conclusions

