
Challenges in Secure Software Evolution -

The Role of Software Architecture

Stephan Seifermann, Emre Taşpolatoğlu
FZI Research Center for
Information Technology

{seifermann,taspolat}@fzi.de

Ralf Reussner, Robert Heinrich
Karlsruhe Institute of Technology (KIT)

{reussner,heinrich}@kit.edu

Abstract

Achieving quality properties for software systems and
maintaining them during evolution is challenging. Es-
pecially, security properties often degrade during soft-
ware evolution. This is often not noticed and can
lead to monetary loss and serious damage to the com-
pany’s image. Approaches for maintaining security
properties exist but fail to exploit the knowledge of
the architectural design phase. This results in high
effort and slow reactions on evolutionary changes. In
this paper, we describe five key challenges in main-
taining security properties during software evolution
and show how architecture supports mastering them.

1 Introduction

Developing software with sufficient quality is challeng-
ing. Even if functional requirements are adequately
realized, satisfying quality requirements such as ef-
ficiency, availability and security is difficult. Even
worse, quality properties once established for a sys-
tem often vanish in later steps of evolution. Systems
once performing in an acceptable manner may lose
one or several of these quality properties after an evo-
lutionary change. Consequences on the quality when
introducing new functionality are not well understood.
This is particularly bad for security properties as their
degradation during system evolution is rarely noticed
immediately. In addition, establishing and guarantee-
ing security properties is challenging, as
C1 it is hard to imagine all potential future steps of

intelligent attackers in advance,
C2 security depends on many assumptions on the ex-

ecution context. As this context evolves, some
assumptions may not hold anymore and hence,
the security argument becomes invalid,

C3 security properties not only strongly depend on
the software, but also the execution context’s
configuration, such as access right configurations,

C4 formal analyses and ideally verification of soft-
ware scales bad, and

C5 usually not all attack paths through involved li-
braries, operating systems, middleware-platforms
etc. can be seriously taken into account.

There is a research gap in exploiting software ar-
chitecture to tackle these challenges. Instead, secu-
rity evolution often focuses on fine-grained design and
code. This prohibits efficient identification of parts to
be adapted for maintaining security during evolution.

This paper is structured as follows: In Section 2, we
present the state of the art on secure software evolu-
tion. The mentioned challenges of keeping established
security properties during software evolution with fo-
cus on the architectural level are discussed in Sec-
tion 3. Section 4 presents sketches of potential solu-
tion strategies and Section 5 concludes the paper.

2 State of the Art

Gained attention on the combined field of software
security and evolution in the last years lead to many
approaches with various focuses on the targeted de-
velopment phases, artifacts, used methods, and so on.
Felderer et al. [6] call for integrating security in the
software development lifecycle and considering all ar-
tifacts and phases of the development process. In their
survey, they focus on UML-based modeling and evo-
lution of security-related artifacts. This includes co-
evolution of the security and system artifacts. The
survey identifies a research gap in the evolution of ar-
chitectural security artifacts and lists approaches for
separate security modeling and architecture evolution.
Dai and Cooper [5] also list such modeling approaches
but do not consider evolution as well.

Many security evolution approaches focus on
specific development phases. iObserve [8] eases
transitions between operation-level adaptation and
development-level evolution for distributed cloud-
based systems by extending the MAPE control loop
with shared component-oriented models. A model-
driven engineering approach [7] generates artifacts to
be executed during run-time. Monitoring probes keep
models up-to-date and detects violated security re-
quirements such as location of sensitive data [14].

Developers incorporate security during the imple-
mentation mainly from three viewpoints: a) The con-
structive viewpoint aims for high initial code quality
by applying best practices such as security patterns



[15], increasing the test coverage [11, chap. 4], or per-
forming reviews of the produced code [11, chap. 3].
b) Code analyses focus on certain aspects. For in-
stance, FindBugs [10] detects common bugs by bug
patterns and JOANA [17] analyzes security by infor-
mation flows. These analyzes are fast because of their
narrow focus. c) Formal approaches such as model
checking [4] and verification ensure conformance to a
given specification. Model checking is applicable for
finite-state systems or components. Verification does
not limit the states and therefore usually cannot be
fully automated. KeY [1] provides interactive verifi-
cation of specified contracts, for instance. This intro-
duces high effort w.r.t. the verification itself and the
formalization of the specification as already outlined
in [2]. Modular and incremental analyses or verifica-
tion enable fast reactions on evolutionary changes.

The SecVolution approach [3] supports the evolu-
tion of common security apsects such as access con-
trol or confidentiality in all development phases. A
security context knowledge database holds informa-
tion necessary to check the fulfillment of security re-
quirements. Developers use the UMLSec UML profiles
to document requirements. Verification tools such
as CARiSMA1 check conformance to requirements.
When the system or its environment changes, secu-
rity maintenance rules reestablish security properties
by suggesting changes or using the knowledge delta to
transform software or security artifacts such as access
control rules. Monitoring context changes and defin-
ing maintenance rules is a manual task and can be
domain-specific. UMLSec focuses on design-time but
could be applied to architecture as well.

ModelSec [13] spans from requirements elicitation
to implementation. Model transformations incorpo-
rate security models for software artifacts in various
phases to generate implementation code. However,
evolution and maintenance phases are out of scope.

The following approaches do not elicitate or ana-
lyze security properties by software artifacts such as
architectural models or formal requirements directly.
Useful results require considerable security knowledge.
Threat modeling [18] is a manual process of identify-
ing, rating and treating security issues in software sys-
tems. Misuse cases [16] elicitate security requirements
by formulating unwanted use cases. Both approaches
suffer from the error-prone manual process that is ex-
tensive because of fuzzy stop criteria. Additionally,
the only implicit relation to concrete software arti-
facts such as code makes result interpretation hard.

3 Open Issues

We derived five open issues from the identified chal-
lenges (C1-C5): As the UMLSec approach [3] stresses,
system changes and especially to its environment in-
cluding the threats drive the evolution. Treating the

1http://carisma.umlsec.de

fast evolution of the attacker’s capabilities is hard
(C1). Additionally, existing approaches do not exploit
the system context and runtime configuration for rat-
ing the security completely. UMLSec [3] emphasizes
coverage of the system context (C2) but provides no
comprehensive description of relevant information nor
a fully formalized extraction process. The same holds
true for runtime configuration (C3). iObserve [14] ex-
ploits runtime configurations for detecting security is-
sues in cloud environments but gathers and monitors
runtime configuration for a small cloud-relevant sub-
set only. Trade-offs between precise and fast results
are often necessary because of a) badly scaling high-
precision analyses (C4) such as verification approaches
[2] and b) finding a feasible reduction of the analysis’
complexity (C5) by narrowed analysis scopes as done
by JOANA [17] for instance.

The following paragraphs describe the issues from
an architectural viewpoint because this is a research
gap according to Felderer et al. [6]. Therefore, we
focus on scenarios that could benefit from exploiting
architectural artifacts. Nevertheless, the issues are
generalizable for other artifacts as well. When talk-
ing about security analyses, we consider two types:
Determining security properties of the current system
state and observing changes affecting these proper-
ties. Along with security properties, we focus on at-
tacks for virtual scenarios in contrast to physical ones
such as breaking a padlock. Attacks are “the act of
carrying out an exploit, an instance of an attack pat-
tern created to compromise a particular piece of target
software” [9, chap. 2]. We do not limit software evolu-
tion to certain artifacts or phases because they often
depend on each other. Nevertheless, changes must
influence architectural artifacts such as components,
deployment, design decisions or security policies.

C1 Threat Evolution occurs permanently, affects
all development phases, and introduces new problems
for security evolution approaches. Threat modeling is
not limited to attackers relevant for a certain phase
only anymore but spans many phases. Therefore,
developers have to exploit information of all phases
including the often neglected operations phase (C3).
UMLSec [3] proposes this as well. Gathering all rel-
evant information is still an open issue. The archi-
tectural viewpoint is a collection of aspects of differ-
ent stakeholders and combines information from var-
ious phases such as structural and deployment infor-
mation. Unfortunately, little research about exploit-
ing architecture for security information extraction is
available. An resulting attacker model must, how-
ever, still be extended with phase-specific information.
Analyses have to reveal emerging attacks timely be-
cause the development team usually does not recog-
nize security issues by accident. Therefore, fast issue
detecting analyses are required (C4, C5). Addition-
ally, assumptions that affect the security of a system



become invalid fast (C2). A structured approach for
treating invalidated assumptions is necessary.

C2 Context Evolution occurs in a timely similar
matter as (C1). It is permanent and happens in every
software development phase. The context of a soft-
ware consists of not only its environment or configu-
ration, but further includes stakeholders that interact
with the system. Still, due to intentions of attackers,
we separate them from general stakeholders. This al-
lows distinguishing two different evolution aspects –
the execution context and the attackers – despite the
tight coupling between the evolutionary changes of
them (C1, C3). An attacker’s intention and perfor-
mance is based heavily on how the system’s context
is defined. Also the effectiveness of security measures
relies on the kind of contextual execution environment
of the software. Despite the importance also outlined
by Bürger et al. [3], there is hardly support for evo-
lutionary context changes especially on architectural
level. Tracking evolution in multiple steps and es-
pecially in larger long-living systems is hard without
explicit knowledge regarding the context. This intro-
duces uncertainty about validity of security-relevant
components and aspects of the software because im-
plicit context information that is not properly formal-
ized and documented tends to get lost. To overcome
this challenge, it is important to document even the
most implicit security-relevant context assumptions
and possibly their influence on architectural elements.

C3 Changing Runtime Configuration is often
ignored because interfaces between architecture mod-
els and configuration properties do not exist. As the
integration of runtime configuration into the software
and its context environment fails, it is hard to include
into analyses. Existing approaches such as iObserve
often derive component structures, deployments and
usage characteristics but do not provide information
required for security analysis [14]. Nevertheless, fail-
ing to integrate runtime configuration influences the
system security massively. It can invalidate security
mechanisms e.g. by introducing holes in a firewall.
Compliance checks of configuration and requirements
are necessary. Tracking of configurations and their
changes enable this but are hard to realize because
multiple stakeholders introduce these changes and the
linking to software artifacts such as deployment de-
scription or code is ambiguous.

C4 Bad Scaling of Analyses occurs especially for
analyses that produce high-precision results such as
verification approaches [2]. At a certain complexity,
a full analysis is not feasible anymore. A guideline
has to define a trade-off between the time needed and
the accuracy or coverage. Individuals must not decide
this on their own because of incomparable results or
missed issues in important modules. To cope with
this issue, the guideline can lower the coverage of the

analysis by selecting important modules for a more
detailed analysis or lower the accuracy by increasing
the level of abstraction. A high level of abstraction
can still produce important results. Bürger et al. [3]
showed this in their case study for design level anal-
yses using UMLSec. Increasing the abstraction level
further to the architectural level reduces the analysis
effort even more but also implies a different set of de-
tectable issues. Nevertheless, detecting a few issues
early with little effort can reduce the overall effort
because of cheaper fixing of issues in earlier develop-
ment stages. Analyses on the architectural level are,
however, still rare as pointed out by Felderer et al. [6].

C5 Complexity of Analyses occurs because there
are too many possible attack paths through a software
system and future attacks cannot be foreseen because
of fast evolving attackers (C1). We cannot solve the
latter issue but reduce its impact by providing means
to react fast to emerging attacks. Fast analyses enable
fast reactions. Demanding full path coverage, how-
ever, often does not allow fast analyses. Therefore,
a feasible abstraction level is necessary. Nevertheless,
creating such an analysis model can be challenging
because of the abstraction gap between the concrete
software artifacts such as code or requirements and
the model: Developers have to map the known ele-
ments to the analysis counterparts when creating and
interpreting the results. During evolution, they must
calculate the change in the software artifacts, trans-
form and apply this change to the analysis model, and
find the difference in the analysis result. Furthermore,
choosing the correct abstraction level can be challeng-
ing e.g. in threat modeling [18]. In this case, reducing
the analysis effort increases the preparation and evo-
lution effort for analyses. General analysis construc-
tion guidelines cannot eliminate this effort completely
but reduce it: The level of abstraction of the concrete
software artifacts to be analyzed and the analysis ele-
ments should be similar. Reusing existing artifacts of
software and also of analysis as much as possible is a
way to achieve this. This reduces the analysis specific
part that has to be evolved separately and enables
comprehensibility. Using software artifacts with an
inherent high level of abstraction such as the architec-
tural description is beneficial to achieve fast analyses.

4 Vision

We do not suggest replacing existing analyses. In-
stead, we argue for improving and running them
more efficiently by incorporating architectural knowl-
edge: Architectural security analyses enable targeted
fine-grained analyses by suggesting meaningful tar-
gets with less effort. Additionally, developers can fix
architecture-related security issues cost-efficiently in
an early development stage or can find new types of
security issues such as deployment issues.

There is, however, still a research gap in considering



architectural artifacts in security evolution as outlined
in the state of the art. We suggest two approaches
to reduce this gap: 1) An architectural data flow
analysis for finding security issues in design decisions
and 2) a documentation and validation approach for
security patterns, threats and their respective context
assumptions regarding software evolution.

Data flow analyses usually operate on code to de-
termine security properties. We plan to lift the anal-
ysis to the architectural level. This requires high
level data flow specifications similar to control flow
specifications used in Palladio [12], which is a soft-
ware architecture modeling and simulation approach
to determine quality attributes. The specification will
cover data sources, sinks, properties and processing
operators. Runtime configuration information like ac-
cess control policies is another specification input thus
tackling (C3). The architect defines types of data
and data flows instead of individual data flows for
the analysis. Reusing existing architectural descrip-
tion artifacts lowers analysis’ complexity (C5) and
is possible by an integration in modeling frameworks
such as Palladio. The architect defines analysis goals
in terms of normative data properties derived from
requirements or user preferences. The analysis pro-
vides actual properties at any point in architecture,
ensures compliance with user preferences and require-
ments, and derives requirements for external service
providers. This becomes possible by using all infor-
mation available in the architecture such as often ne-
glected deployment information (C1). Fast analysis
execution on high level artifacts enables fast reactions
to changes and tackles the scaling issue (C4).

Evaluating the system regarding its security prop-
erties after an evolutionary change focuses heavily on
information that is available based on limited views
and stakeholders. The applicability and validity of
security solutions depends on many software artifacts
ranging from business matters to usage as well as code
itself. This joint information needs to be persisted
over several cross-cutting borders during the entire
life-cycle of the software. Formal consideration of
context evolution to analyze security properties plays
a crucial role to provide secure application against
changing conditions. Therefore, we plan to provide
a formal documentation approach which covers (C1)
and (C2) as well as (C3). It contains security pat-
terns and threat models and combines them logically
by using formal context assumptions covering large
aspects of the underlying software system. As these
security-related artifacts are to be represented on ar-
chitectural level, they are model-based and combined
with the Palladio approach [12]. The architect doc-
uments context information formally by considering
security relevant aspects including threats, solutions,
stakeholders, or configurations. The planned analysis
uses this information as input to evaluate the security

state of the software after evolutionary changes (e.g.
in the runtime configuration or attacker profiles) by
tracking down and validating the impacted architec-
tural elements related to made security decisions.

5 Conclusion

In this paper, we introduced five key challenges in de-
tail for the evolution of security properties in software
systems that cover complexity and context dependen-
cies of security analyses. We motivated, that includ-
ing knowledge and analyses of various software arti-
facts on the architectural level is essential in tackling
the mentioned challenges, and introduced our planned
approaches to achieve this.

Acknowledgements
This work was supported by the German Federal Ministry
of Education and Research (grant 01IS13023C), by the Ger-
man Federal Ministry of Economic Affairs and Energy (IGF-
Vorhaben 18363 N) and German Research Foundation in the
Priority Programme SPP 1593. We want to thank the research
groups of Jörn Müller-Quade at the KIT and the FZI for the
fruitful discussion about the topic.

References
[1] W. Ahrendt et al. The KeY tool. SoSyM, 4:32–54, 2005.
[2] C. Baumann et al. Lessons learned from microkernel ver-

ification: Specification is the new bottleneck. In SSV’12,
number 102 in EPTCS, 2012.

[3] J. Bürger et al. Restoring Security of Long-Living Systems
by Co-Evolution. In COMPSAC’15, volume 2, pages 153–
158. IEEE, 2015.

[4] E. M. Clarke, O. Grumberg, and D. Peled. Model checking.
MIT, 2001.

[5] L. Dai and K. Cooper. A survey of modeling and analysis
approaches for architecting secure software systems. I. J.
Network Security, 5(2):187–198, 2007.

[6] M. Felderer et al. Evolution of security engineering arti-
facts: A state of the art survey. IJSSE, 5(4):48–98, 2014.

[7] R. Heinrich et al. Integrating run-time observations and
design component models for cloud system analysis. In
Models@run.time, pages 41–46. CEUR, 2014.

[8] R. Heinrich et al. Architectural run-time models for
operator-in-the-loop adaptation of cloud applications. In
MESOCA, pages 36–40. IEEE, 2015.

[9] G. Hoglund and G. McGraw. Exploiting software: How to
break code. Pearson Education India, 2004.

[10] D. Hovemeyer and W. Pugh. Finding Bugs is Easy. In
ACM SIGPLAN Notices, volume 39, pages 92 – 106. ACM,
2004.

[11] G. J. Myers, T. Badgett, and C. Sandler. The art of soft-
ware testing. John Wiley & Sons, 3rd edition, 2012.

[12] Reussner, Ralf H. et al., editor. Modeling and Simulating
Software Architectures – The Palladio Approach. MIT,
2016. ISBN: 978-0-262-03476-0, to appear.

[13] Ó. Sánchez et al. Modelsec: A generative architecture for
model-driven security. J. UCS, 15(15):2957–2980, 2009.

[14] E. Schmieders, A. Metzger, and K. Pohl. Architectural
runtime models for privacy checks of cloud applications.
In PESOS’15, pages 17–23. IEEE, 2015.

[15] M. Schumacher et al. Security Patterns: Integrating Secu-
rity and Systems Engineering. John Wiley & Sons, 2005.

[16] G. Sindre and A. Opdahl. Eliciting security requirements
with misuse cases. volume 10, pages 34–44. Springer, 2005.

[17] G. Snelting et al. Checking probabilistic noninterference
using joana. it - Information Technology, 56:280–287, 2014.

[18] F. Swiderski and W. Snyder. Threat Modeling. Microsoft,
1st edition, 2004.


