
Architectural Data Flow Analysis

Stephan Seifermann
FZI Research Center for Information Technology

Karlsruhe, Germany
seifermann@fzi.de

Abstract—Quality properties including performance, security
and compliance are crucial for a system’s success but are hard
to prove, especially for complex systems. Data flow analyses
support this but often only consider source code and thereby
introduce high costs of repair. Data flow analyses on the ar-
chitectural design level use call-and-return semantics or event-
based communication between components but do not define
data flows as first class entities or consider important runtime
or deployment configurations. We propose introducing data flows
as first class entities on the architectural level. Analyses ensure
that systems meet the quality requirements even after changes
in e.g. runtime or deployment configurations. Having data flows
modeled as first class entities allows analyzing compliance with
privacy laws, requirements for external service providers, and
throughput requirements in big data scenarios on architectural
level. The results allow early, cost-efficient fixing of issues.

I. INTRODUCTION

The complexity of software systems and especially the
importance of non-functional requirements including perfor-
mance, security, or compliance with law increases. Ensuring
quality properties is hard and often shifted to the operations
phase. Fixing issues found in this phase is, however, costly.
Data flow analyses such as JOANA [1] support proving quality
properties such as non-inference but often require source code.
Related security modeling approaches such as UMLSec [2]
require a fine-grained design.

We could not identify an architectural description language
(ADL) in the survey of Aleti et al. [3] that explicilty models
data flows. Instead, they rely on call-and-return semantics or
event-based communication for determining data flows. They
do not consider runtime configurations including access control
or deployment configurations that affect the data locations.
These configurations clearly affect quality properties, espe-
cially when talking about privacy concerns.

We propose first class modeling of data flows by extending
an existing ADL with data sources, sinks and processing
operations. Architects shall model the envisioned data flows
and define data related quality requirements as goals derived
from user requirements, laws, or service level agreements. We
integrate existing deployment and runtime configurations into
the analyses to check the fulfillment of requirements even after
configuration changes. A constraint solving approach provides
the analysis results. A mapping between these results and
architectural elements enables comprehensibility.

The data flow analysis enables early detection of re-
quirement violations regarding privacy laws, external service
providers, and throughput requirements in big data scenarios
on the architectural level. Fixing them is cost-efficient and
thereby establishes quality-by-design.

The remainder of this paper is structured as follows: Sec-
tion II covers the data flow modeling and analysis. In Section
III, we discuss the potential impact on industrial practice.
Section IV concludes the paper.

II. ARCHITECTURAL DATA FLOW ANALYSIS

We suggest realizing data flow analyses by establishing
data flows as first class entities, transforming the model into
constraints, solving them, and mapping results to architectural
elements. We suggest extending the ADL PCM [4] because of
its extensive architectural simulation capabilities. The follow-
ing paragraphs cover the modeling and analysis in detail.

We favor integrating data flows into an existing ADL to
reuse models and thereby reduce the modeling effort. Figure 1
shows the PCM integration for a simplified version of the
MediaStore case study [4]. A WebGUI component provides
services via the IWebGUI interface. The user interface uses a
media and a user management that both use databases to store
information. Databases are deployed on a server that is subject
to another jurisdiction. The ad Usage diagram models a data
source, data, and the transferring of data for the initial call
to the user interface. The ad Register diagram shows how the
UserManagement component processes the data. The note on
the lower left corner is an exemplary analysis goal.

The architects model data on a meta-level, which means
types of data rather than concrete data are the modeling sub-
ject. For instance, architects model that a user provides name
and nickname as part of a registration but do not model that a
user John uses the nickname johndoe during the registration.
Data and data flows have meta-data such as privacy level,
and required bandwith. In case of sensor data, they could
have resolution, and age properties. Data sources such as the
user in the example from Figure 1 emit data and initialize
their meta-data. Data processors affect meta-data and transfer
data between components. Data flow specifications such as ad
Register define the data processing. For instance, a processor
encrypts data before transmitting it to the next component and
thereby reduces its requirements on privacy. Data sinks are
storages or users and terminate data flows. Black boxes with
modeled assumptions, e.g. about the server location, represent
third-party components such as cloud services. Data processors
that use runtime configuration such as access control require
separate modeling or a retrieval interface for policies.

The data flow analysis operates on two inputs: The archi-
tectural model extended by data flows and potential additional
information sources such as access control policies, and the
analysis goals. The architect can choose between predefined
and self-defined goals. The goal given in Figure 1 could be
predefined because it is commonly used in privacy laws. A

Stephan Seifermann
The paper has been presented at WICSA'16 (https://icsa-conferences.org/series/WICSA/2016).
The paper has been published by IEEE (https://doi.org/10.1109/WICSA.2016.49).




Figure 1. Overview of the envisioned PCM data flow modeling extension (ad Usage and ad Register) for a simplified web media store.

model transformation uses the inputs to generate constraints.
A standard constraint solver determines if the analysis goals
can be met for the generated constraints. The choice for a
constraint solver depends on the analysis goals. For instance,
constraint logic programming is sufficient for privacy re-
lated data location analyses while sophisticated access control
mechanism might require more powerful constraint languages.
Mapping solver results to architectural elements is the last step
and important to make results comprehensible for architects.

Goals usually compare normative with derived data prop-
erties. For instance, the goal in Figure 1 compares actual with
allowed data locations. Such horizontal analyses through the
architecture determine data properties at any architectural point
and check if user or provider requirements are met. Vertical
analyses check if the infrastructure such as provided by cloud
services supports the user requirements for the overall system.

III. POTENTIAL IMPACT ON INDUSTRIAL PRACTICE

We see a potential impact on industrial practice in three ar-
eas: Improved development processes, easier negotiation with
external service providers, and improved customer experience.

The data flow analysis is another building block for in-
tegrating quality requirements in early design phases. This
allows detecting issues and fixing them with less costs than
required in later phases. Especially for security concerns, this
becomes possible because even non-security experts can carry
out impact analyses of changes and decide for more secure
solutions. Code-based data flow analyses do not allow cost-
efficient fixing because the potential bad design decision has to
be implemented first. Additionally, these analyses miss runtime
and deployment configurations. Our analysis allows finding
new security issues related to the operations phase.

Contract negotiation with external service providers be-
comes easier as contracts can be tailored to the needs found
in our analyses exactly. For instance, vendors know the data
transferred to an external service and can negotiate server
locations to comply with privacy laws that prescribe them.

Using the analysis results can improve user experience:
Vendors become confident about data usage and compliance
with laws – especially privacy laws. Users can rely on vendor

statements regarding privacy and choose services accordingly.
Compliance statements are possible timely after changing sys-
tems that utilize external services. Users are no quality testers
anymore after service changes but the provider determines
quality properties before application deployment. This prevents
the vendor’s image from damage. Especially, the analysis also
tackles context and performance related challenges for secure
software evolution defined in our previous work [5].

IV. CONCLUSION

In this paper, we argued for integrating data flows as
first class entities into the existing ADL PCM to enable new
analyses regarding privacy or SLAs, for instance. The data flow
modeling reuses existing architectural descriptions and thereby
lowers the preparation and consistency overhead for the anal-
ysis model. A constraint solver produces analysis results that
are mapped to the architecture for comprehensibility. We also
discussed the impact on industrial practice.

We plan to implement a prototype of our modeling and
analysis approach for a simple privacy related scenario and
later for more complex scenarios. Thereby, we want to investi-
gate if the required data is available at architectural design time
and how much effort the extension of existing architectural
descriptions requires in practice.

ACKNOWLEDGMENTS

This work was supported by the German Federal Ministry
of Labour and Social Affairs under grant 01KM141108.

REFERENCES

[1] G. Snelting et al., “Checking probabilistic noninterference using joana,”
it - Information Technology, vol. 56, pp. 280–287, 2014.

[2] J. Bürger et al., “Restoring Security of Long-Living Systems by Co-
Evolution,” in COMPSAC’15, vol. 2. IEEE, 2015, pp. 153–158.

[3] A. Aleti et al., “Software architecture optimization methods: A sys-
tematic literature review,” IEEE Transactions on Software Engineering,
vol. 39, no. 5, pp. 658–683, May 2013.

[4] Reussner, Ralf H. et al., Ed., Modeling and Simulating Software Architec-
tures – The Palladio Approach. MIT, 2016, iSBN: 978-0-262-03476-0,
to appear.

[5] S. Seifermann et al., “Challenges in secure software evolution - the role
of software architecture,” in EMLS’16, 2016, accepted, to appear. Avail-
able at http://sdqweb.ipd.kit.edu/publications/pdfs/seifermann2016b.pdf.




