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Abstract

The main contribution of this thesis is the development of a novel class of uniformly accurate methods
for Klein–Gordon type equations.
Klein–Gordon type equations in the non-relativistic limit regime, i.e., c � 1, are numerically very chal-
lenging to treat, since the solutions are highly oscillatory in time. Standard Gautschi-type methods suffer
from severe time step restrictions as they require a CFL-condition c2τ < 1 with time step size τ to resolve
the oscillations. Within this thesis we overcome this difficulty by introducing limit integrators, which
allows us to reduce the highly oscillatory problem to the integration of a non-oscillatory limit system.
This procedure allows error bounds of order O(c−2 + τ2) without any step size restrictions. Thus, these
integrators are very efficient in the regime c� 1. However, the limit integrators fail for small values of c.
In order to derive numerical schemes that work well for small as well as for large c, we use the ansatz of
twisted variables, which allows us to develop uniformly accurate methods with respect to c. In particular,
we introduce efficient and robust uniformly accurate exponential-type integrators for the Klein–Gordon
equation which resolve the solution in the relativistic regime as well as in the highly oscillatory non-
relativistic regime without any step size restriction. In contrast to previous works, we do not employ any
asymptotic nor multiscale expansion of the solution. Compared to classical methods our new schemes
allow us to reduce the regularity assumptions as they converge under the same regularity assumptions
required for the integration of the corresponding nonlinear Schrödinger limit system. In addition, the
newly derived first- and second-order exponential-type integrators converge to the classical Lie and Strang
splitting schemes for the nonlinear Schrödinger limit system.
Moreover, we present uniformly accurate schemes for the Klein–Gordon–Schrödinger system which are
also based on the ansatz of twisted variables. Again, our first- and second-order exponential-type in-
tegrators are asymptotically consistent, in the sense of asymptotically converging to the corresponding
limit integrator of the decoupled free Schrödinger limit system.
In contrast to the classical Klein–Gordon equation and the Klein–Gordon–Schrödinger system the ansatz
of twisted variables cannot be applied to the Klein–Gordon–Zakharov system straight forwardly, due to a
loss of derivative in the system. Nevertheless, we construct and analyze a novel class of integrators which
are uniformly accurate. Moreover, the introduced scheme is asymptotically consistent and approximates
the solutions of the corresponding Zakharov limit system in the high-plasma frequency limit.
For all uniformly accurate integrators we establish rigorous error estimates and underline their uniform
convergence property numerically.
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CHAPTER 1

Introduction

1.1 The Numerical Challenge of Highly Oscillatory Problems

Ordinary and partial differential equations play a fundamental role in modeling physical processes in
science. However, only a few of these equations can be solved exactly and a solution can be written
down explicitly. For the remaining equations we have to derive numerical schemes in order to compute
approximations to the solution. For a long time scientists developed and constructed numerical schemes
for different types of equations. However, very often, standard numerical methods are not suitable for all
differential equations in the same way. In particular, if the solution of the underlying equation is highly
oscillatory, it becomes very challenging for numerical methods to resolve the oscillations.
Now, let us assume that we have a highly oscillatory function given (see Figure 1.1) and we want to
compute an approximation of this function numerically.
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Figure 1.1: Plot of a highly oscillatory function in blue. Grid points of the discretization in black. Approximation
in red.
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Therefore, we have to discretize the interval into a finite number of points. At these grid points we
compute approximations of the function values. Afterwards we construct our numerical solution by inter-
polating between the approximated values. Figure 1.1 shows an example where the approximation fails
completely even though we approximate the function values exactly. We can improve the approximation
by introducing a finer grid. However, this is more costly with respect to memory and computational
time, which is important to avoid in numerical analysis.

If we have information about the highly oscillatory structure, in a mathematical sense, we try to filter
out these oscillations (see e.g., [23, 64–67]). Thereafter, we can split the highly oscillatory solution into
a highly oscillatory part and a slowly varying function, called envelope (see Figure 1.2).
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Figure 1.2: Plot of a highly oscillatory function in blue and its envelope in red.

Let us consider a simple example of a highly oscillatory ordinary differential equation, the so-called
harmonic oscillator (see Figure 1.3). For more details on harmonic oscillators we refer to [63, 71]. Math-
ematically, the harmonic oscillator is described by the following ordinary differential equation

y′′(t) = −ω2y(t), y(0) = −1, y′(0) = 0, ω ∈ R, (1.1)

where y(0) describes the initial location and y′(0) the initial velocity of the mass attached to the spring
(see Figure 1.3).

Figure 1.3: Figure of three springs with different stiffness. From left to right the stiffness of the spring decreases.
A soft spring corresponds to a small value of ω and a stiff spring corresponds to a large value of ω. Soft and stiff
springs cause slowly varying and highly oscillatory solutions of the harmonic oscillator, respectively.
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The solution y(t) is slowly varying for small values of ω and highly oscillatory for ω � 1 (see Figure 1.4).
Physically small values of ω describe a soft spring and large ω describe a stiff spring. The exact solution
of (1.1) reads

y(t) = − cos (ωt) .
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Figure 1.4: Plot of the exact solution of the harmonic oscillator for different values of ω.

Now, we apply standard numerical methods to solve the equation (1.1) in order to see how they perform.
We set ω = 10 and discretize with N grid points and grid size τ . As we mentioned before it may happen
that the discretization is not a good choice to obtain a good approximation of the exact solution, even
though the approximation at the grid points is exact (see Figure 1.5).

0 2 4 6
−1

−0.5

0

0.5

1

t

N = 10, τ ≈ 0.63

0 2 4 6
−1

−0.5

0

0.5

1

t

N = 16, τ ≈ 0.39

Figure 1.5: Plot of the exact solution of the harmonic oscillator for ω = 10 in blue. Approximation in red for
different grids.

In order to solve the equation of the harmonic oscillator numerically we rewrite (1.1) as a first-order
system

y′(t) = v(t),

v′(t) = −ω2y(t).
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We apply the variation of constants formula and obtain

y(tn + τ) = y(tn) +
∫ τ

0
v(tn + s)ds,

v(tn + τ) = v(tn)− ω2
∫ τ

0
y(tn + s)ds.

For more details on the variation of constants formula we refer to [2, 3]. Now, it remains to approximate
the integrals in an appropriate way. Firstly, we apply the explicit Euler method, which reads

yn+1 = yn + τvn, y0 = −1,

vn+1 = vn − τω2yn, v0 = 0.

We compare the exact solution with the numerical approximation of the explicit Euler method (see
Figure 1.6). The figure underlines that the explicit Euler method is not stable, i.e., the solution grows as
time progresses. Hence, the numerical solution fails to approximate the exact solution after a certain time.
We would need to choose a much finer time step size, in order to obtain a better numerical approximation.
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Figure 1.6: Plot of the exact solution of the harmonic oscillator for ω = 10 in blue. Numerical approximation
obtained via the explicit Euler method in red. Integration up to T = 10 with a step size τ ≈ 10−3.

Next, we consider the implicit Euler method

yn+1 = 1
1 + τ2ω2 (yn + τvn) ,

vn+1 = 1
1 + τ2ω2

(
vn − τω2yn

)
.

Again we compare the exact solution with the numerical approximation of the implicit Euler method (see
Figure 1.7). The figure underlines that the implicit Euler method is stable, but damps the solution which
means that the numerical solution again fails to approximate the exact solution after a certain time.
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Figure 1.7: Plot of the exact solution of the harmonic oscillator for ω = 10 in blue. Numerical approximation
obtained via the implicit Euler method in red. Integration up to T = 10 with a step size τ ≈ 10−3.

As we know that the exact solution conserves energy, we expect a better approximation with the energy
conserving trapezoidal rule, also known as the Crank–Nicolson method (see [22]). It reads as follows

yn+1 = 1
1 + ω2 τ2

4

(
yn + τvn − ω2 τ

2

4 y
n

)
,

vn+1 = 1
1 + ω2 τ2

4

(
vn − ω2τyn − ω2 τ

2

4 v
n

)
.

The Crank–Nicolson method approximates the solution of our linear ordinary differential equation very
well (see Figure 1.8), but encounters difficulties if the underlying differential equation becomes nonlinear
(see [47, 51]). In this thesis we are interested in nonlinear partial differential equations, the so-called
Klein–Gordon type equations.
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Figure 1.8: Plot of the exact solution of the harmonic oscillator for ω = 10 in blue. Numerical approximation
obtained via the Crank–Nicolson method in red. Integration up to T = 10 with a step size τ ≈ 10−3.

As we have seen the simple explicit Euler and implicit Euler method fail even for linear equations and the
Crank–Nicolson scheme fails for nonlinear equations (cf. [47, 51]). Therefore, numerical methods par-
ticularly suited for highly oscillatory differential equations, e.g., Gautschi-type methods and exponential
integrators, were developed (see [32, 38, 39]).
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In this thesis we consider Klein–Gordon type equations, the simplest one is the Klein–Gordon equation,
which reads

c−2∂ttz(t, x)−∆z(t, x) + c2z(t, x) = |z(t, x)|2z, z(0, x) = z0(x), ∂tz(0, x) = c2z1(x).

Klein–Gordon type equations are very challenging to treat numerically, since the solutions become highly
oscillatory in time for large values of c (see Figure 1.9 for the Klein–Gordon equation).
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Figure 1.9: Plot of the solution of the Klein–Gordon equation for different values of c.

For these nonlinear equations we cannot state an exact solution explicitly. If we apply numerical methods
like the Gautschi-type methods and exponential integrators to Klein–Gordon type equations, they suffer
from severe time step restrictions (see Figure 1.10). The figure underlines that for finer time step sizes
the numerical method approximates the solution of the Klein–Gordon equation better for a fixed value
of c. If we plot the approximation for increasing c, we observe that for slowly varying solutions, i.e., small
values of c these methods work well, but in the highly oscillatory case, i.e., large values of c the methods
fail (see 1.11).
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Figure 1.10: Plot of the numerical approximations of the Klein–Gordon equation for different time step sizes and
fixed c = 10. Approximation computed via a classical exponential integrator in red, reference solution computed
via the scheme itself with a finer time step size in blue.
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Figure 1.11: Plot of the numerical approximations of the Klein–Gordon equation for different values of c at
time T = 0.9. Approximation computed via a classical exponential integrator in red, reference solution computed
via the scheme itself with a finer time step size in blue.

For a large class of Klein–Gordon type equations we know how the oscillations look like. Hence, we can
filter out the highly oscillatory phases and reduce the underlying differential equation to a non-oscillatory
limit system. The solutions of the limit systems are slowly varying and we can solve them numerically
in an efficient way (see [26, 53, 54]). For the Klein–Gordon equation the limit systems reads as follows

i∂tu∞ = 1
2∆u∞ + 1

8
(
|u∞|2 + 2 |v∞|2

)
u∞, u∞(0) = z0 − iz1,

i∂tv∞ = 1
2∆v∞ + 1

8
(
|v∞|2 + 2 |u∞|2

)
v∞, v∞(0) = z0 − iz1.

We can simply obtain an approximation to the original problem by multiplying the highly oscillatory
phases with the solution of the limit system. For the solution of the Klein–Gordon equation we have

z(t, x) = 1
2

(
eic

2t u∞(t, x) + e−ic
2tv∞(t, x)

)
+O(c−2),

where (u∞, v∞) satisfies the limit system. Those limit integrators only work well for highly oscillatory
solutions, since the validity of such a limit integration method depends on the oscillations and so they fail
in the slowly varying case (see Figure 1.12). On the other hand Gautschi-type methods and exponential
integrators only work well in the slowly varying case (see [4, 7, 9]).
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Figure 1.12: Plot of the numerical approximations of the Klein–Gordon equation for different values of c at
time T = 1. Approximation computed via a limit integrator in red, reference solution computed via a classical
exponential integrator with a finer time step size in blue.
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Now, the main challenge is the development of numerical methods, that work well in both cases, i.e., in
the slowly varying and in the highly oscillatory limit regime. We call such methods uniformly accurate
methods.

1.2 Outline of the Thesis

In this thesis, we develop and analyze uniformly accurate methods for Klein–Gordon type equations.
Uniformly accurate methods allow us to solve Klein–Gordon type equations numerically in the slowly
varying as well as in the highly oscillatory regime without any step size restrictions. The thesis is organized
as follows.

In Chapter 2, we start by developing uniformly accurate methods for the Klein–Gordon equation. After a
short introduction to the Klein–Gordon equations we give a formal derivation of the limit system and the
corresponding limit integrators. Then we focus on the derivation of a first- and second-order uniformly
accurate method. We also state and prove convergence bounds for the first- and second-order schemes. At
the end of this chapter we show numerical experiments, where we compare our methods with a standard
Gautschi-type method and a classical exponential integrator. The comparison underlines the favorable
error behavior of our new schemes.

In Chapter 3 we apply and expand the techniques, which were used for the Klein–Gordon equation,
to the coupled Klein–Gordon–Schrödinger system, in order to construct uniformly accurate methods.
Again we give a short introduction and derive formally the limit system and the corresponding limit
scheme. Analogously to the previous chapter we derive a first- and second-order uniformly accurate
scheme and prove their convergence. We close this chapter by presenting numerical experiments, where
we compare our uniformly accurate methods with a standard Gautschi-type method and a classical
exponential integrator. Again the comparison underlines the favorable error behavior of our new schemes.

In Chapter 4 we underline that the techniques, which we use for the Klein–Gordon equation and Klein–
Gordon–Schrödinger system, do not yield a uniformly accurate method in the case of the Klein–Gordon–
Zakahrov system. Here, we have to apply a refined approach. We develop a first-order uniformly accurate
method with the refined approach and prove its first-order convergence. At the end of the chapter we
compare our uniformly accurate method with a standard Gautschi-type method and a classical exponen-
tial integrator. This comparison underlines the favorable error behavior of our new uniformly accurate
scheme.

Finally, in Chapter 5 we give a short summary and a brief outlook.

Prepublications

The results of Chapter 2 have been published in advance in [13]. Moreover, the results of Chapter 3 have
been published in advance in [14]. The results of Chapter 4 have been published in the preprint [12]. We
will point out these results at the appropriate place.
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1.3 Notational Remarks

We start by listing some abbreviations which we will frequently use.
NLS nonlinear Schrödinger KG Klein–Gordon
KGS Klein–Gordon–Schrödinger KGZ Klein–Gordon–Zakharov
ODE ordinary differential equation PDE partial differential equation
UA uniformly accurate MFE modulated Fourier expansion
CFL Courant–Friedrichs–Lewy

The following notation will be used throughout this thesis. The sets N, Z, R and C denote the set of
natural numbers, integers, real and complex numbers, respectively. The d-dimensional torus is denoted
by Td := (R\2πZ)d. The one dimensional torus T is the interval of [0, 2π]. In this thesis t ∈ [0, T ] denotes
the time variable and x ∈ T denotes the spatial variable. For notational simplicity we sometimes omit
the spatial argument and just write z(t) instead of z(t, x) for a function z : R× T→ R.
The complex conjugate of a number z ∈ C is denoted by z and i denotes the imaginary unit, where we
have i :=

√
−1. The real and imaginary part of z is denoted by <(z) and =(z), respectively.

The partial derivatives with respect to x and t are denoted by ∂x and ∂t, respectively. The second
derivative with respect to x and t is denoted by ∂xx and ∂tt, respectively. Sometimes we omit the time
derivatives ∂tz and ∂ttz and write z′, ż and z′′, z̈ instead, respectively. The Laplace operator ∆ denotes
the sum over the second spatial derivatives and is defined by

∆ := ∇2 :=
n∑
i=1

∂2

∂x2
i

.

Applied on a sufficiently smooth scalar function f(x) = f(x1, ..., xn) it reads

∆f(x) :=
n∑
i=1

∂2f(x)
∂x2

i

= ∂x1x1f(x) + ...+ ∂xnxnf(x).

The big O notation is denoted by O(·). If we write z(t, x) = g(t, x) +O(c−2) we mean that

‖z(t, x)− g(t, x)‖ ≤ Kc−2,

for a constant K ∈ R independent of c and with respect to an appropriate norm ‖ · ‖.
We denote the standard Sobolev norm on Td by the formula

‖u‖2r =
∑
k∈Zd

(1 + |k|2)r|ûk|2, where ûk = 1
(2π)d

∫
Td
u(x)e−ik·xdx,

where for k = (k1, . . . , kd) ∈ Zd, we set k · x = k1x1 + · · · + kdxd and |k|2 = k · k. Moreover, for a
given linear bounded operator L we denote by ‖L‖r its corresponding induced norm. For more details
on Sobolev spaces we refer to [1, 26, 57, 73].
We mainly focus on the case r > d/2, which allows us to exploit the well-known bilinear estimate (for
more details see [1, 42])

‖fg‖r ≤ Kr,d‖f‖r‖g‖r (1.2)

which holds for some constant Kr,d > 0 and some sufficiently smooth functions f and g.



10 Chapter 1. Introduction

From [50] we know, that f(t, x) = eitΩcf0 solves the following differential equation

i∂tf(t, x) = −Ωcf(t, x), f(0, x) = f0 ∈ Hr(Td)

with solution f on the torus Td for t ∈ R and the operator Ωc = {c〈∇〉c,− 1
2∆, c2,∆,Ac}. In Fourier

space we denote the symbol of the operator eitΩc as(
eitΩc

)
k

= eitωc(k),

for k ∈ Z, where ωc : Zd → R denotes the corresponding symbol of Ωc. For more details on the properties
of groups and semi-groups we refer to [25, 26, 46, 50].
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CHAPTER 2

The Klein–Gordon Equation

In this chapter we introduce the Klein–Gordon equation and derive uniformly accurate methods. In
Section 2.1 we shortly give an overview of the limit regimes, limit integrators and different uniformly
accurate methods for the Klein–Gordon equation. Then we focus in Section 2.2 on the formal derivation
of the corresponding limit system. We finish this chapter with a detailed derivation of a first- and
second-order uniformly accurate method for the Klein–Gordon equation (see Section 2.3). This chapter
is based on [26], for the derivation of the limit system, and on our contribution [13], for the introduction
of uniformly accurate methods. The results of this chapter, in particular Section 2.1 and Section 2.3,
have been published together with Erwan Faou and Katharina Schratz in [13].

2.1 Introduction to Klein–Gordon Equations

The Klein–Gordon (KG) equation

c−2∂ttz(t, x)−∆z(t, x) + c2z(t, x) = |z(t, x)|2z, z(0, x) = z0(x), ∂tz(0, x) = c2z1(x) (2.1)

is extensively studied numerically in the relativistic regime c = 1, see [31, 72] and the references therein.
In the relativistic limit regime, the solution of the KG equation has a “nice” behavior, i.e. the solu-
tion is non-oscillatory and not hard to treat numerically. In contrast, the non-relativistic regime c � 1
is numerically much more involved due to the highly oscillatory behavior of the solution. We refer to
Chapter 1 and [24, 36] for an introduction and overview on highly oscillatory problems.

Analytically, the non-relativistic limit regime c→∞ is extensively studied (see [52, 53]) and well under-
stood nowadays. More precisely, assuming sufficiently smooth initial data the exact solution z of (2.1)
allows the expansion

z(t, x) = 1
2

(
eic

2t u∗,∞(t, x) + e−ic
2tv∗,∞(t, x)

)
+O(c−2),
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where (u∗,∞, v∗,∞) satisfy the nonlinear Schrödinger (NLS) limit system

i∂tu∗,∞ = 1
2∆u∗,∞ + 1

8
(
|u∗,∞|2 + 2 |v∗,∞|2

)
u∗,∞, u∗,∞(0) = z0 − iz1,

i∂tv∗,∞ = 1
2∆v∗,∞ + 1

8
(
|v∗,∞|2 + 2 |u∗,∞|2

)
v∗,∞, v∗,∞(0) = z0 − iz1

(2.2)

with initial values

z(0, x) c→∞−→ z0(x),
1

c
√
c2 −∆

∂tz(0, x) = c√
c2 −∆

z1(x) c→∞−→ z1(x).

More details can be found in Section 2.2 and [26, Formula (37)] for the periodic setting (i.e. x ∈ Td)
and [53, Formula (1.3)] for the case of x ∈ R.

Also numerically, the non-relativistic limit regime c � 1 has recently gained a lot of attention. Due to
the difficult structure of the problem Gautschi-type methods (see [38]) which have been analyzed in [4]
suffer from severe time step restrictions as they introduce a global error of order c4τ2. In order to obtain
convergence we thus require the CFL-type condition c2τ < 1. We illustrate this behavior in Figure 2.1
and observe that the Gautschi-type method works well for small c and fails for large values of c.

0 1 2 3 4 5 6
−0.7

0

1.4

x

c = 1
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c = 32
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0

0.7
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c = 100

Figure 2.1: Numerical solution of the Klein–Gordon equation for different c. Exponential Gautschi-type scheme
(red solid line) for different c with time step size τ ≈ 10−2 at time t = 1. The blue dashed line represents the
reference solution at time t = 1, computed via the same exponential Gautschi-type scheme with a small time step
size τ ≈ 10−6. The spatial discretization is done via a Fourier pseudospectral method with mesh-size h = 0.0245.
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To overcome this difficulty, recently limit integrators were introduced (see [10, 18, 26]). This technique
reduces the highly oscillatory problem to a corresponding non-oscillatory limit system (i.e., c → ∞ in
(2.1)). In the following, we give a comparison of these methods focusing on their convergence rates and
regularity assumptions.

Limit integrators: Based on the modulated Fourier expansion (MFE) of the exact solution (see [19, 36]),
numerical schemes for the Klein–Gordon equation in the strongly non-relativistic limit regime c � 1
were introduced in [26]. This MFE ansatz allows us to reduce the task of solving the highly oscillatory
problem (2.1) to the integration of the corresponding non-oscillatory limit Schrödinger system (2.2). As
the limit system is non-oscillatory, its numerical integration with standard numerical schemes is very
efficient and does not require any c−dependent step size restriction. However, as this approach is based
on the asymptotic expansion of the solution with respect to c−2, it only allows error bounds of order

O(c−2 + τp)

when integrating the limit system with a numerical method of order p in time. For more details on the
asymptotic expansion ansatz we refer to [26, 46]. However, the limit integration method only yields an
accurate approximation of the exact solution for sufficiently large values of c (see Figure 2.2). For more
details on the formal derivation of the limit system we refer to Section 2.2.
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Figure 2.2: Numerical solution of the Klein–Gordon equation for different c. Limit integration scheme (red solid
line) for different c with time step size τ ≈ 10−2 at time t = 1. The blue dashed line represents the reference
solution at time t = 1, computed via an exponential Gautschi-type scheme with a small time step size τ ≈ 10−6.
The spatial discretization is done via a Fourier pseudospectral method with mesh-size h = 0.0245.
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Uniformly accurate schemes based on multiscale expansions: Uniformly accurate schemes, i.e., schemes
that work well for small as well as for large values of c were recently introduced for Klein–Gordon equations
in [10, 18]. The idea in the recent work is thereby based on a multiscale expansion of the exact solution.
We also refer to [11] for the construction and analysis in the case of highly oscillatory second-order
ordinary differential equations. The multiscale time integrator (MTI) pseudospectral method derived
in [10] allows two independent error bounds at order

O(τ2 + c−2) and O(τ2c2)

for sufficiently smooth solutions. These error bounds immediately imply that the MTI method converges
uniformly in time with linear convergence rate at O(τ) for all c ≥ 1 thanks to the observation that
min{c−2, τ2c2} ≤ τ . However, the optimal quadratic convergence rate of O(τ2) is only achieved in the
regimes when either 0 < c = O(1) (i.e., the relativistic regime) or 1

τ ≤ c (i.e., the strongly non-relativistic
regime). In the context of ordinary differential equations similar error estimates were established for MTI
methods in [11]. The first-order uniform convergence of the MTI-FP method [10] holds for sufficiently
smooth solutions. First-order convergence in time holds in the Sobolev space H2 uniformly in c for so-
lutions in H7 with sup0≤t≤T ‖z(t)‖H7 + c−2‖∂tz(t)‖H6 ≤ 1 (see [10, Theorem 4.1]). First-order uniform
convergence also holds in H1 under weaker regularity assumptions, namely for solutions in H6 satis-
fying sup0≤t≤T ‖z(t)‖H6 + c−2‖∂tz(t)‖H5 ≤ 1 if an additional CFL-type condition is imposed in space
dimensions d = 2, 3 (see [10, Theorem 4.9]).
A second-order uniformly accurate scheme based on the Chapman-Enskog expansion was derived in [18]
for the Klein–Gordon equation. Thereby, to control the remainders in the expansion, second-order uni-
form convergence in Hr (r > d/2) requires sufficiently smooth solutions with in particular z(0) ∈ Hr+10.
Also, due to the expansion, the problem needs to be considered in d+ 1 dimensions.
For a comparison of asymptotic expansion techniques, i.e. a comparison of the modulated Fourier expan-
sion, the multiscale frequency expansion and the Chapman-Enskog expansion, we refer to the preprint [68].

In Section 2.3 we establish exponential-type integrators of second-order accuracy in time uniformly ac-
curate in c > 0. In comparison, the multiscale time integrators derived in [10, 11] only converge with
first-order accuracy uniformly in all c ≥ 1. This is due to the fact that the MTI methods are based on
the multiscale decomposition

z(t, x) = eic
2tzn+(t, x) + e−ic

2tzn−(t, x) + rn(t, x)

which leads to a coupled second-order system in time in the c2-frequency waves zn± and the remainder
frequency waves rn (cf. [10, System (2.4)]) and only allows numerical approximations at order O(τ2+c−2)
and O(τ2c2).
In contrast to [10, 18, 26], within this thesis we do not employ any asymptotic or multiscale expan-
sion of the solution, but we construct exponential-type integrators based on the following strategy (see
also [13, 14, 45]):

1. In a first step we reformulate the Klein–Gordon equation (2.1) as a coupled first-order system in
time via the transformations

u = z − i
(
c
√
−∆ + c2

)−1
∂tz, v = z − i

(
c
√
−∆ + c2

)−1
∂tz.
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2. In a second step we rescale the coupled first-order system in time by considering at the so-called
twisted variables

u∗(t) = eic
2tu(t), v∗(t) = eic

2tv(t).

Later on, this essential step will allow us to treat the highly oscillatory phases e±ic2t and their
interaction explicitly.

3. Finally, we iterate Duhamel’s formula in (u∗(t), v∗(t)) and integrate the interactions of the highly
oscillatory phases exactly by approximating only the slowly varying parts. For more details on the
Duhamel’s formula we refer to [43, 73].

In the last step, the exact integration of the highly oscillatory phases is significant for the uniformly
accuracy of the scheme. If we only approximate the highly oscillatory phases, we obtain error bounds
which depend on c (see also Section 2.3.1).
This strategy in particular allows us to construct uniformly accurate exponential-type integrators up
to arbitrary order. Here in this thesis we derive methods up to order two (see Section 2.3.2 for the
derivation of the first-order and Section 2.3.3 for the derivation of the second-order UA method) which in
addition asymptotically converge to the classical splitting approximation of the corresponding nonlinear
Schrödinger limit system (2.2) given in [26]. More precisely, the second-order exponential-type integrator
converges for c→∞ to the classical Strang splitting scheme

un+1
∗,∞ = e−i τ2 ∆

2 e−iτ 3
8 |e
−i τ2

∆
2 un∗,∞|2e−i τ2 ∆

2 un∗,∞, u0
∗,∞ = z0 − iz1 (2.3)

associated to the nonlinear Schrödinger limit system (2.2) (see Remark 2.34) where for simplicity we
assumed that z is real-valued such that u∗ = v∗. A similar result holds for the asymptotic convergence of
the first-order exponential-type integration scheme towards the classical Lie splitting approximation (see
also Remark 2.16, below).
The Strang splitting (2.3) has been proposed in [26] for the numerical approximation of non-relativistic
Klein–Gordon solutions. However, in contrast to the uniformly accurate exponential-type integrators
derived here, the scheme in [26] only yields second-order convergence in the strongly non-relativistic
regime c > 1

τ due to its error bound at order O(τ2 + c−2).
The main novelty of our technique thus lies in the development and analysis of efficient and robust
exponential-type integrators for the cubic Klein–Gordon equation (2.1) which

◦ allow second-order convergence uniformly in all c > 0 without adding an extra dimension to the
problem,

◦ resolve the solution z in the relativistic regime c = 1 as well as in the non-relativistic regime c→∞
without any c−dependent step size restriction under the same regularity assumptions as needed for
the integration of the corresponding limit system,

◦ converge uniformly in c and in addition converge asymptotically to the classical Lie and Strang
splitting, respectively, for the corresponding nonlinear Schrödinger limit system (2.2) in the non-
relativistic limit c→∞.
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For notational simplicity, within this thesis we focus on the case of a cubic nonlinearity f(z) = |z|2z, but
our strategy also applies to general polynomial nonlinearities f(z) = |z|2pz with p ∈ N. Furthermore, for
practical implementation issues we impose periodic boundary conditions, i.e., x ∈ Td.
Before presenting our new uniformly accurate technique, in the next section we start off with the formal
derivation of the limit system. The benefit of the latter ansatz lies in the fact that it grants to reduce
the highly oscillatory Klein–Gordon equation (2.1) to a non-oscillatory NLS limit system, which can be
solved very efficiently with standard splitting methods (see also Section 2.4.2), but it only allows error
bounds of order O(τ2 + c−2).
We commence with rescaling the Klein–Gordon equation (2.1) in Section 2.3. This enables us to construct
first- and second-order schemes that converge uniformly in c, see Section 2.3.2 and 2.3.3, respectively.

2.2 Formal Derivation of the Limit System

In this section we give a detailed formal derivation the limit system of the Klein–Gordon equation (2.1)
following the approach in [26]. Later on, in Chapter 3 and 4 we exploit this strategy for the derivation
of the limit systems of the Klein–Gordon–Schrödinger and Klein–Gordon–Zakharov system in a more
compact way.
In a first step we reformulate the Klein–Gordon equation (2.1) as a first-order system in time and apply
a multi scale analysis and a formal asymptotic expansion. For a fixed c > 0, we define the operator

〈∇〉c =
√
−∆ + c2. (2.4)

In this notation, equation (2.1) can be written as

∂ttz + c2〈∇〉2cz = c2|z|2z. (2.5)

Applying the variable transformation

u = z − ic−1〈∇〉−1
c ∂tz,

v = z − ic−1〈∇〉−1
c ∂tz,

we rewrite equation (2.5) as a first-order system in time, such that in particular

z = 1
2 (u+ v). (2.6)

Remark 2.1. If z is real, i.e. z ∈ R, then we have u ≡ v.

A short calculation shows that in terms of the variables u and v equation (2.5) reads

i∂tu = −c〈∇〉cu+ 1
8c〈∇〉−1

c |u+ v|2 (u+ v),

i∂tv = −c〈∇〉cv + 1
8c〈∇〉−1

c |u+ v|2 (u+ v)
(2.7)

with the initial conditions (see (2.1))

u(0) = z(0)− ic−1〈∇〉−1
c ∂tz(0) and v(0) = z(0)− ic−1〈∇〉−1

c ∂tz(0). (2.8)

Based on the following strategy, now we derive the formal limit system.
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1. Multi scale analysis:
Firstly, we introduce a new variable θ := c2t that defines the so-called long time scale. This time
scale is called long, since θ is not negligible when t is of order O(c−2) or larger. We note that in
the actual solution t and θ are in correlation to each other. However, the idea of the method of
multiple scales (see [62]) is to treat t, θ as independent variables, which are connected to each other
via the chain rule of the partial derivative ∂t → ∂t + c2∂θ. Thus we replace ∂t by ∂t + c2∂θ in the
Klein–Gordon equation.

2. Formal asymptotic expansion:
Making an ansatz under the modulated Fourier expansion form (see [36, chapter XIII]) for u and v,
we formally expand the functions u and v in the following way

u(t, x) = U∞ +
∑
m≥1

c−2mUm(t, θ, x), v(t, x) = V∞ +
∑
m≥1

c−2mVn(t, θ, x). (2.9)

For more details on MFE we also refer to [19, 20, 34].

3. Collecting same powers of c:
Firstly, we expand the leading operator c〈∇〉c and its inverse into its formal Taylor series expansion
and plug it into the new PDE, we obtained from the multi scale analysis. Accordingly we expand
the initial condition. This new PDE is obtained due to the fact that we introduced new variables
and therefore we have a new time derivative operator. Then, we collect the terms of same powers
of c. This yields a sequence of PDEs which is yet to be solved in order to find a representation for
the coefficients Um and Vm in the MFE (2.9).

The result of the procedure explained above is the first-order approximation term

z∞ = 1
2 (U∞ + V∞)

which formally satisfies
‖z − z∞‖r = O

(
c−2) .

Now we consider the different strategy points 1. to 3. in detail.

1. Multi scale analysis

Following our strategy above, we thus start with a multi scale analysis. Hence, we introduce the new
variable θ = c2t and obtain

u(t, x) = U(t, c2t, x), v(t, x) = V (t, c2t, x)

with initial values

U(0, 0, x) = z(0)− ic−1〈∇〉−1
c ∂tz(0), V (0, 0, x) = z(0)− ic−1〈∇〉−1

c ∂tz(0).

Plugging U and V into equation (2.7) and after taking the derivative with respect to t,
i.e. ∂tu = ∂tU + c2∂θU and ∂tv = ∂tV + c2∂θV , we have

i∂tU + ic2∂θU = −c〈∇〉cU + 1
8c〈∇〉

−1
c |U + V |2

(
U + V

)
,

i∂tV + ic2∂θV = −c〈∇〉cV + 1
8c〈∇〉

−1
c |U + V |2

(
U + V

)
.

(2.10)

Next we proceed with the formal asymptotic expansion of U , V .
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2. Formal asymptotic expansion

In order to separate the highly oscillatory frequency terms from the slowly varying terms, we expand the
whole system and introduce a formal asymptotic expansion of U and V in the following form

U(t, θ, x) = U∞ +
∑
m≥1

c−2mUm(t, θ, x) = U∞(t, θ, x) +O(c−2),

V (t, θ, x) = V∞ +
∑
m≥1

c−2mVm(t, θ, x) = V∞(t, θ, x) +O(c−2).
(2.11)

We cut off the terms of order O(c−2), due to the fact, that we are only interested in the first-order
correction term z∞.

3. Collecting same powers of c

We devide this part into three subparts. Firstly, we expand the leading operator c〈∇〉c and its inverse
into its formal Taylor series expansion. Then, we plug the expansions into (2.10) and finally we collect
the terms of the same powers of c.

a) Expanding the operators
In order to derive an asymptotic expansion step by step, we follow [26] and the procedure explained
above. Firstly, we expand the operator c〈∇〉c. For given k ∈ Z, the formal Taylor series expansion of this
operator in Fourier space reads as follows

(c〈∇〉c)k = c
√
|k|2 + c2 = c2

√
1 + |k|

2

c2
= c2 + 1

2 |k|
2 +

∑
m≥1

µm+1c
−2m|k|2m+2, (2.12)

for some µn ∈ R. Since k is an arbitrary integer, the expansion for operators has to be understood as an
asymptotic expansion, e.g., for a given sufficiently smooth function U we write

c〈∇〉cU = c2U − 1
2∆U +

∑
m≥1

µm+1c
−2m (−∆)m+1

U. (2.13)

This can be easily proven by using the Taylor series expansion. We estimate (2.13) as follows (see [26])∥∥∥c〈∇〉cU − c2U + 1
2∆U

∥∥∥
r
≤
∑
m≥1

∥∥∥µm+1c
−2m (−∆)m+1

U
∥∥∥
r
≤ Kc−2‖U‖r+4,

for some constant K > 0. Analogously we expand c〈∇〉−1
c and obtain

c〈∇〉−1
c =

(
1− ∆

c2

)− 1
2

= 1 + 1
2c2 ∆ +

∑
m≥2

βmc
−2m(−∆)m, (2.14)

for some coefficients βn ∈ R. Now, we expand the initial conditions with the help of (2.14) as follows

U(0, 0, x) =
∑
m≥0

c−2mΘm(x), V (0, 0, x) =
∑
m≥0

c−2mΦm(x), (2.15)

where

Θ0 = z0 − iz1, Θ1 = − i2∆z1, Θm = βm (−∆)m z1,

Φ0 = z0 − iz1, Φ1 = − i2∆z1, Φm = βn (−∆)m z1.
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b) Plugging the expansions into the PDE
Next we plug the expansion of functions u, v and the operators c〈∇〉c, c〈∇〉−1

c into our differential
equation (2.10) in order to collect the same powers of c. Plugging (2.13) and (2.14) into (2.11) we thus
obtain

i∂tU + ic2∂θU = −c2U + 1
2∆U + 1

8 |U + V |2
(
U + V

)
+R0,

i∂tV + ic2∂θV = −c2V + 1
2∆V + 1

8 |U + V |2
(
U + V

)
+R0,

(2.16)

where the remainder R0 is of order O
(
c−2∆2). Replacing U , V in (2.16) by their formal asymptotic

expansions (2.11), we have

i∂tU∞ + c2(i∂θ + 1)
(
U∞ + c−2U1

)
= 1

2∆U∞ + 1
8 |U∞ + V∞|2

(
U∞ + V∞

)
+R1,

i∂tV∞ + c2(i∂θ + 1)
(
V∞ + c−2V1

)
= 1

2∆V∞ + 1
8 |U∞ + V∞|2

(
U∞ + V∞

)
+R1,

where the R1 is of order O
(
c−2∆2). The above system can be rewritten as

i∂tU∞ + c2(i∂θ + 1)U∞ + (i∂θ + 1)U1 = 1
2∆U∞ + 1

8 |U∞ + V∞|2
(
U∞ + V∞

)
+R1,

i∂tV∞ + c2(i∂θ + 1)V∞ + (i∂θ + 1)V1 = 1
2∆V∞ + 1

8 |U∞ + V∞|2
(
U∞ + V∞

)
+R1.

(2.17)

c) Collecting the same powers of U and V

Now, we collect the terms of same order in c. Firstly, we consider all terms of order O(c2) in (2.17), and
obtain

(i∂θ + 1)U∞ = 0,

(i∂θ + 1)V∞ = 0.
(2.18)

The system above holds if

∂θU∞ = iU∞,

∂θV∞ = iV∞.

The differential equations (2.18) have the following solutions

U∞(t, θ, x) = eiθu∞(t, x), V∞(t, θ, x) = eiθv∞(t, x), (2.19)

where u∞, v∞ are yet to determine. Next, we collect all terms of order O(1) in (2.17) which yields

i∂tU∞ + (i∂θ + 1)U1 = 1
2∆U∞ + 1

8 |U∞ + V∞|2
(
U∞ + V∞

)
,

i∂tV∞ + (i∂θ + 1)V1 = 1
2∆V∞ + 1

8 |U∞ + V∞|2
(
U∞ + V∞

)
.

(2.20)

In order to determine u∞ and v∞ we insert (2.19) into (2.20), and obtain

i∂t
(
eiθu∞

)
+ (i∂θ + 1)U1 = 1

2∆eiθu∞ + 1
8

∣∣∣eiθu∞ + e−iθv∞
∣∣∣2 (eiθu∞ + e−iθv∞

)
,

i∂t
(
eiθv∞

)
+ (i∂θ + 1)V1 = 1

2∆eiθv∞ + 1
8

∣∣∣e−iθu∞ + eiθv∞
∣∣∣2 (e−iθu∞ + eiθv∞

)
.
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Exploiting that

|eiθa+ e−iθb|2 = |a|2 + |b|2 + e−2iθab+ e2iθab,

|eiθa+ e−iθb|2(eiθa+ e−iθb) =
(
|a|2 + |b|2 + e−2iθab+ e2iθab

)
eiθa+

(
|a|2 + |b|2 + e−2iθab+ e2iθab

)
e−iθb

=
(
|a|2 + 2|b|2

)
eiθa+

(
2|a|2 + |b|2

)
e−iθb+ e3iθa2b+ e−3iθab2,

for a, b ∈ C and by orthogonalization with respect to the kernel of (i∂θ + 1), i.e. with respect to eiθ,
which yields the system

i∂tu∞(t, x) = 1
2∆u∞(t, x) + 1

8

(∣∣u∞(t, x)
∣∣2 + 2

∣∣v∞(t, x)
∣∣2)u∞(t, x),

i∂tv∞(t, x) = 1
2∆v∞(t, x) + 1

8

(∣∣v∞(t, x)
∣∣2 + 2

∣∣u∞(t, x)
∣∣2) v∞(t, x).

For more details on the orthogonality condition for MFE we refer to [26, Section 3]. The initial values
are obtained by setting t = 0 in (2.19) and by comparison with (2.15), such that

U∞(0, 0, x) = z0 − iz1
!= ei0u∞(0, x) = u∞(0, x), V∞(0, 0, x) = z0 − iz1

!= ei0v∞(0, x) = v∞(0, x).

Lemma 2.2 (cf. Corollary 4.2 in [26]). Fix r > d
2 and assume z0, z1 ∈ Hr+4. For the cubic Klein–Gordon

equation (2.1) the first-order corrections term z∞ reads

z∞(t, x) = 1
2

(
eic

2tu∞(t, x) + e−ic
2tv∞(t, x)

)
,

where u∞ and v∞ are the solutions of the following cubic nonlinear Schrödinger limit system

i∂tu∞(t, x) = 1
2∆u∞(t, x) + 1

8

(∣∣u∞(t, x)
∣∣2 + 2

∣∣v∞(t, x)
∣∣2)u∞(t, x),

i∂tv∞(t, x) = 1
2∆v∞(t, x) + 1

8

(∣∣v∞(t, x)
∣∣2 + 2

∣∣u∞(t, x)
∣∣2) v∞(t, x),

(2.21)

with initial values given by

u∞(0, x) = z0 − iz1, v∞(0, x) = z0 − iz1.

Then z∞ approximates the exact solution z of (2.1) up to terms of order O(c−2).

Proof. For the detailed proof we refer to the proof of Theorem 3.2 in [26].

The benefit of this procedure is that it allows us to reduce the highly oscillatory problem (2.1) to a non-
oscillatory system of PDEs which can be easily solved numerically, for example via a standard splitting
method (see Section 2.4.2). For the theory of splitting methods and error bounds we also refer to [50].
In particular the Lie splitting method for the cubic NLS limit system (2.21) reads as follows

un+1
∞ = e−iτ ∆

2 e−iτ 1
8 (|un∞|2+2|vn∞|2)un∞, u0

∞ = z0 − iz1,

vn+1
∞ = e−iτ ∆

2 e−iτ 1
8 (|vn∞|2+2|un∞|2)vn∞, v0

∞ = z0 − iz1,

and the Strang splitting scheme reads

un+1
∞ = e−i τ2 ∆

2 e
−iτ 1

8

(∣∣e−i τ2 ∆
2 un∞

∣∣2+2
∣∣e−i τ2 ∆

2 vn∞

∣∣2)
e−i τ2 ∆

2 un∞, u0
∞ = z0 − iz1,

vn+1
∞ = e−i τ2 ∆

2 e
−iτ 1

8

(∣∣e−i τ2 ∆
2 vn∞

∣∣2+2
∣∣e−i τ2 ∆

2 un∞

∣∣2)
e−i τ2 ∆

2 vn∞, v0
∞ = z0 − iz1.

(2.22)
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Remark 2.3. The error of the fully discrete scheme applied to the limit system of the Klein–Gordon
equation is given by ∥∥z(tn)− zn∞

∥∥
r
≤ C

(
τ2 + hr

′
+ c−2

)
,

where zn∞ = 1
2

(
eic2tnun∞ + e−ic2tnvn∞

)
denotes the numerical approximation of the first-order correction

term, obtained by the Strang splitting (2.22). For the space dsicretization we use a Fourier pseudospectral
method with mesh-size h. For more details on the full discrete error result we refer to [26, Theorem 3].

In the next section we derive a uniformly accurate method for the cubic KG equation. Therefore we again
use its representation as the coupled first-order system in time (2.7). Instead of employing asymptotic
expansion techniques we rescale the system by looking at the so-called twisted variables. After this
essential step we iterate Duhamel’s formula in the new variables and integrate the interactions of the
highly oscillatory phases exactly by approximating only the slowly varying parts. Also we show that our
uniformly accurate scheme converges in the limit c → ∞ to our numerical method for the limit system
(see Section 2.3.2.3 and Section 2.3.3.3 for details).

2.3 Uniformly Accurate Methods for the Klein–Gordon Equa-
tion

In this section we give a detailed derivation of the first- and second-order uniformly accurate method for
the KG equation. This section is a detailed version of [13, chapter 2-4].
In a first step, we reformulate the Klein–Gordon equation (2.1) as a first-order system in time which
allows us to resolve the limit behavior of the solution, i.e., its behavior for c→∞ (see also [26, 53]). Due
to the previous section (see equation (2.7)) we know that the first-order system reads

i∂tu = −c〈∇〉cu+ 1
8c〈∇〉−1

c |u+ v|2(u+ v),

i∂tv = −c〈∇〉cv + 1
8c〈∇〉−1

c |u+ v|2(u+ v)

with the initial conditions (see (2.8))

u(0) = z(0)− ic−1〈∇〉−1
c ∂tz(0) and v(0) = z(0)− ic−1〈∇〉−1

c ∂tz(0).

Formally, the definition of 〈∇〉c in (2.4) implies that for c→∞ we have

c〈∇〉cω = c
√
−∆ + c2ω

= c2
√

1− ∆
c2ω

= c2
(
ω − 1

2
∆
c2ω +O(∆2

c4 ω)
)

= c2 + “lower order terms in c”,

(2.23)

for a sufficiently smooth function ω.
This observation motivates us to look at the twisted variables by filtering out the highly oscillatory parts
explicitly. More precisely, we define

u∗(t) = e−ic
2tu(t), v∗(t) = e−ic

2tv(t). (2.24)
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This idea of “twisting” the variable is well known in numerical analysis, for instance in the context of the
modulated Fourier expansion [19, 36], adiabatic integrators [36, 49] as well as Lawson-type Runge–Kutta
methods [48]. In the case of “multiple high frequencies” it is also widely used in the analysis of partial
differential equations in low regularity spaces (see for instance [16]) and has been recently successfully
employed numerically for the construction of low-regularity exponential-type integrators for the KdV and
Schrödinger equation (see [40, 58]).

In terms of (u∗, v∗) the system (2.7) reads (cf. [53, Formula (2.1)])

i∂tu∗ = −Acu∗ + c〈∇〉−1
c e−ic

2tf
(

1
2 (eic2tu∗ + e−ic2tv∗)

)
, u∗(0) = u(0),

i∂tv∗ = −Acv∗ + c〈∇〉−1
c e−ic

2tf
(

1
2 (eic2tv∗ + e−ic2tu∗)

)
, v∗(0) = v(0)

(2.25)

with f(z) := |z|2z and the leading operator

Ac : = c〈∇〉c − c2

= c2
√

1− ∆
c2 − c2

= c2
(

1− ∆
2

1
c2 +O(∆2

c4 )
)
− c2

= − 1
2∆ +O

(
∆2

c2

)
.

Remark 2.4. The numerical advantage of considering (u∗, v∗) instead of (u, v) lies in the fact that
the leading operator −c〈∇〉c in system (2.7) is of order c2 (see (2.23)) whereas its counterpart −Ac in
system (2.25) is “of order one in c” (see Lemma 2.5 below).

In the following we construct integration schemes for (2.25) based on Duhamel’s formula

u∗(tn + τ) = eiτAcu∗(tn)

− ic〈∇〉−1
c

∫ τ

0
ei(τ−s)Ace−ic

2(tn+s)f
(

1
2 (eic2(tn+s)u∗(tn + s) + e−ic2(tn+s)v∗(tn + s))

)
ds,

v∗(tn + τ) = eiτAcv∗(tn)

− ic〈∇〉−1
c

∫ τ

0
ei(τ−s)Ace−ic

2(tn+s)f
(

1
2 (eic2(tn+s)v∗(tn + s) + e−ic2(tn+s)u∗(tn + s))

)
ds.

(2.26)

Thereby, to guarantee uniform convergence with respect to c we make the following important observa-
tions.

Lemma 2.5 (Uniform bound on the operator Ac, cf. Lemma 3 in [13]). For all c ∈ R we have that

‖Acu‖r ≤ 1
2‖u‖r+2. (2.27)

Proof. The operator Ac acts as the Fourier multiplier (Ac)k = c
√
c2 + |k|2 − c2, k ∈ Zd. Thus, the

assertion follows thanks to the bound

‖Acu‖2r =
∑
k∈Zd

(1 + |k|2)r
(
c
√
c2 + |k|2 − c2

)2
|ûk|2 ≤

∑
k∈Zd

(1 + |k|2)r
( |k|2

2

)2

|ûk|2,

where we have used that
√

1 + x2 ≤ 1 + 1
2x

2 for all x ∈ R.
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Lemma 2.6 (cf. Lemma 4 in [13]). For all t ∈ R we have that

‖eitAc‖r = 1 and
∥∥(e−itAc − 1

)
u
∥∥
r
≤ 1

2 |t|‖u‖r+2. (2.28)

Proof. The first assertion is obvious and the second follows thanks to the estimate |(eix− 1)| ≤ |x| which
holds for all x ∈ R together with the essential bound on the operator Ac given in (2.27).

In particular, the time derivatives
(
∂tu∗(t), ∂tv∗(t)

)
:=
(
u′∗(t), v′∗(t)

)
can be bounded uniformly in c.

Lemma 2.7 (Uniform bounds on the derivatives (u′∗(t), v′∗(t)), cf. Lemma 5 in [13]). Fix r > d/2.
Solutions of (2.25) satisfy the following estimates

‖u∗(tn + s)− u∗(tn)‖r ≤
1
2 |s|‖u∗(tn)‖r+2 + 1

8 |s| sup
0≤ξ≤s

(
‖u∗(tn + ξ)‖r + ‖v∗(tn + ξ)‖r

)3
,

‖v∗(tn + s)− v∗(tn)‖r ≤
1
2 |s|‖v∗(tn)‖r+2 + 1

8 |s| sup
0≤ξ≤s

(
‖u∗(tn + ξ)‖r + ‖v∗(tn + ξ)‖r

)3
.

(2.29)

Proof. The assertion follows thanks to Lemma 2.6 together with the bound

‖c〈∇〉−1
c ‖r ≤ 1. (2.30)

Due to Duhamel’s perturbation formula (2.26) this implies

‖u∗(tn + s)− u∗(tn)‖r ≤ |s|‖Acu∗(tn)‖r + 1
8 |s|‖c〈∇〉

−1
c ‖r sup

0≤ξ≤s

(
‖u∗(tn + ξ)‖r + ‖v∗(tn + ξ)‖r

)3
≤ 1

2 |s|‖u∗(tn)‖r+2 + 1
8 |s| sup

0≤ξ≤s

(
‖u∗(tn + ξ)‖r + ‖v∗(tn + ξ)‖r

)3
.

Similarly, we can establish the bound on the derivative v′∗(t).

In the following Definition, we employ the so-called “ϕj functions”.

Definition 2.8 (ϕj functions [39]). Let ξ be the generator of a (semi)group. Then we set

ϕ0(ξ) := eξ and ϕk(ξ) :=
∫ 1

0
e(1−θ)ξ θk−1

(k − 1)!dθ, k ≥ 1

such that in particular

ϕ1(ξ) = eξ − 1
ξ

, ϕ2(ξ) = ϕ1(ξ)− 1
ξ

.

In addition, we define

Ψk(ξ) :=
∫ 1

0
eθξ θk−1

(k − 1)!dθ, k ≥ 1

such that in particular we have that

Ψ2(ξ) := ϕ0(ξ)− ϕ1(ξ)
ξ

.

In the following, we assume local well-posedness (LWP) of (2.25) in Hr.
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Assumption 2.9. Fix r > d/2 and assume that there exists a T > 0 such that the solutions (u∗(t), v∗(t))
of (2.25) satisfy

sup
0≤t≤T

(
‖u∗(t)‖r + ‖v∗(t)‖r

)
≤M

uniformly in c.

Remark 2.10. The previous assumption holds under the following condition on the initial data

‖z(0)‖r + ‖c−1〈∇〉−1
c ∂tz(0)‖r ≤M0,

where M0 does not depend on c. The c-independence of this bound can be easily proved from the formu-
lation (2.26) by using a classical fixed point argument together with the essential uniform bound (2.30)
and (2.28).

For further details on the local well-posedness of highly oscillatory Klein–Gordon equations we refer
to [53, 73] and the references therein.
At this point, we have rewritten the Klein–Gordon equation into a twisted first-order system (2.25),
which only involves bounded operators with respect to c (see Remark 2.4). Thus, why do not we use
standard exponential integrators (see [39]) in order to solve the twisted first-order system numerically?
The answer to this question will be given in the following section.

2.3.1 A Classical Exponential Integrator for the Twisted Klein–Gordon Sys-
tem

In this subsection we show that applying a classical exponential integrator (see [39]) on the twisted
system is not an appropriate ansatz to obtain a uniformly accurate method. See Figure 2.3 for numerical
illustration. In the following we construct an exponential integrator for the twisted system (2.25).
In order to obtain an exponential integrator for (2.25) in a classical way, we exploit Duhamel’s formulas
given in (2.26)

u∗(tn + τ) = eiτAcu∗(tn)

− ic〈∇〉−1
c

∫ τ

0
ei(τ−s)Ace−ic

2(tn+s)f
(

1
2 (eic2(tn+s)u∗(tn + s) + e−ic2(tn+s)v∗(tn + s))

)
ds,

v∗(tn + τ) = eiτAcv∗(tn)

− ic〈∇〉−1
c

∫ τ

0
ei(τ−s)Ace−ic

2(tn+s)f
(

1
2 (eic2(tn+s)v∗(tn + s) + e−ic2(tn+s)u∗(tn + s))

)
ds.

We use the ansatz of exponential integrators and freeze the following terms of the Duhamel’s formulas
at s = 0

e−ic
2(tn+s)f

(
1
2 (eic2(tn+s)u∗(tn + s) + e−ic2(tn+s)v∗(tn + s))

)
,

e−ic
2(tn+s)f

(
1
2 (eic2(tn+s)v∗(tn + s) + e−ic2(tn+s)u∗(tn + s))

)
which yields

u∗(tn+1) ≈ eiτAcu∗(tn)− ic〈∇〉−1
c

∫ τ

0
ei(τ−s)Acds e−ic

2tnf
(

1
2 (eic2tnu∗(tn) + e−ic2tnv∗(tn))

)
,

v∗(tn+1) ≈ eiτAcv∗(tn)− ic〈∇〉−1
c

∫ τ

0
ei(τ−s)Acds e−ic

2tnf
(

1
2 (eic2tnv∗(tn) + e−ic2tnu∗(tn))

)
.
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Integrating the remaining term
∫ τ

0 ei(τ−s)Acds exactly and applying the Definition 2.8 of the ϕ1 function
we have

u∗(tn+1) ≈ eiτAcu∗(tn)− iτc〈∇〉−1
c ϕ1 (iτAc) e−ic

2tnf
(

1
2 (eic2tnu∗(tn) + e−ic2tnv∗(tn))

)
,

v∗(tn+1) ≈ eiτAcv∗(tn)− iτc〈∇〉−1
c ϕ1 (iτAc) e−ic

2tnf
(

1
2 (eic2tnv∗(tn) + e−ic2tnu∗(tn))

)
.

In particular, we obtain for f(z) = |z|2z the following exponential integration scheme

un+1
∗ = eiτAcun∗ − i

8τc〈∇〉−1
c ϕ1 (iτAc)

(∣∣eic2tnun∗ + e−ic2tnvn∗
∣∣2 (un∗ + e−2ic2tnvn∗

))
,

vn+1
∗ = eiτAcvn∗ − i

8τc〈∇〉−1
c ϕ1 (iτAc)

(∣∣eic2tnvn∗ + e−ic2tnun∗
∣∣2 (vn∗ + e−2ic2tnun∗

))
with initial values

u0
∗ = z0 − ic〈∇〉−1

c z1,

v0
∗ = z0 − ic〈∇〉−1

c z1.

Figure 2.3 underlines that the exponential integrator scheme is not uniformly accurate with respect to c.
More precisely for large values of c the exponential integrator scheme fails to approximate numerically
the solution of the Klein–Gordon equation, which can be explained by the following approximation of
the highly oscillatory terms

eic
2(tn+s) = eic

2tn +O(sc2).

0 1 2 3 4 5 6
−0.6

0

1.4

x

c = 1

0 1 2 3 4 5 6
−0.7

0

1.1

x

c = 6

0 1 2 3 4 5 6
−1.1

0

1.2

x

c = 32

0 1 2 3 4 5 6
−1.4

0

0.3

x

c = 100

Figure 2.3: Numerical solution of the Klein–Gordon equation. Exponential integrator scheme (red solid line) for
different c with time step size τ ≈ 10−2 at time t = 0.9. The blue dashed line represents the reference solution at
time t = 0.9, computed via the same exponential integrator scheme with a small time step size τ ≈ 10−6. The
spatial discretization is done via a Fourier pseudospectral method with with mesh-size h = 0.0245.
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Thus, the exponential integrator also suffers from severe time step restrictions similarly to the Gautschi-
type methods shown in Figure 2.1.
In the next section we construct our uniformly accurate exponential-type integrator. Therefore, we also
integrate the highly oscillatory phase terms e±`ic2(tn+s), for ` ∈ N in the Duhamel’s formula exactly. This
simple trick yields to our new uniformly accurate method.

2.3.2 Construction of a First-Order Uniformly Accurate Scheme

In this section we derive a first-order exponential-type integration scheme for the solutions (u∗, v∗)
of (2.25) which allows first-order time-convergence uniform with respect to c. The construction is thereby
based on Duhamel’s formula (2.26) and the essential estimates in Lemma 2.5, 2.6 and 2.7. For the deriva-
tion we will for simplicity assume that z is real, which (by Remark 2.1) implies that u = v such that
system (2.25) reduces to

i∂tu∗ = −Acu∗ + 1
8c〈∇〉

−1
c e−ic

2t
(

eic
2tu∗ + e−ic

2tu∗
)3
, u∗(0) = z0 − ic〈∇〉−1

c z1 (2.31)

with the mild-solution

u∗(tn + τ) = eiτAcu∗(tn)

− i

8c〈∇〉
−1
c

∫ τ

0
ei(τ−s)Ace−ic

2(tn+s)
(

eic
2(tn+s)u∗(tn + s) + e−ic

2(tn+s)u∗(tn + s)
)3

ds.
(2.32)

2.3.2.1 Construction

In order to derive a first-order scheme, we need to impose additional regularity assumptions on the exact
solution u∗(t) of (2.31).

Assumption 2.11. Fix r > d/2 and assume that u∗ ∈ C([0, T ];Hr+2(Td)) and in particular

sup
0≤t≤T

‖u∗(t)‖r+2 ≤M2,

where M2 can be bounded uniformly in c.

Note that the above assumption can be easily played back to the initial value thanks to Remark 2.10.
Applying Lemma 2.6 and Lemma 2.7 in (2.32) allows us to employ the following expansion

u∗(tn + τ) = eiτAcu∗(tn)− i

8c〈∇〉
−1
c eiτAc

∫ τ

0
e−ic

2(tn+s)
(

eic
2(tn+s)u∗(tn) + e−ic

2(tn+s)u∗(tn)
)3

ds

+R(τ, tn, u∗),
(2.33)

where the remainder R(τ, tn, u∗) satisfies thanks to the bounds (2.28), (2.29) and (2.30) that

‖R(τ, tn, u∗)‖r ≤ τ2kr,M2 , (2.34)

for some constant kr,M2 which depends on M2 (see Assumption 2.11) and r, but is independent of c.
Furthermore, solving the integral in (2.33) (in particular, integrating the highly oscillatory phases e±ilc2s

exactly, for ` ∈ N0) yields by adding and subtracting the term τ 3i
8 eiτAc |u∗(tn)|2u∗(tn) (see Remark 2.19
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below for the purpose of this manipulation) that

u∗(tn + τ) = eiτAc
(

1− τ 3i
8 |u∗(tn)|2

)
u∗(tn)− τ 3i

8
(
c〈∇〉−1

c − 1
)

eiτAc |u∗(tn)|2u∗(tn)

− τ i8c〈∇〉
−1
c eiτAc

{
e2ic2tnϕ1(2ic2τ)u3

∗(tn) + e−2ic2tnϕ1(−2ic2τ)3|u∗(tn)|2u∗(tn)

+ e−4ic2tn ϕ1(−4ic2τ)u∗3(tn)
}

+R(τ, tn, u∗)

(2.35)

with ϕ1 given in Definition 2.8. For more details on the practical implementation of the scheme we refer
to Remark 2.12.
As the operator eitAc is a linear isometry (see Lemma 2.6 or [25, 46, 50]) in Hr and by Taylor series
expansion

|1− x− e−x| = O(x2)

we obtain for r > d/2 that∥∥∥∥eiτAc
(

1− τ 3i
8 |u∗(tn)|2

)
u∗(tn)− eiτAce−τ 3i

8 |u∗(tn)|2u∗(tn)
∥∥∥∥
r

≤ kr3τ2‖u∗(tn)‖3r, (2.36)

for some constant kr independent of c. Exploiting the bound (2.36) we can express (2.35) as follows

u∗(tn + τ) = eiτAce−τ 3i
8 |u∗(tn)|2u∗(tn)− τ 3i

8
(
c〈∇〉−1

c − 1
)

eiτAc |u∗(tn)|2u∗(tn)

− τ i8c〈∇〉
−1
c eiτAc

{
e2ic2tnϕ1(2ic2τ)u3

∗(tn) + e−2ic2tnϕ1(−2ic2τ)3|u∗(tn)|2u∗(tn)

+ e−4ic2tn ϕ1(−4ic2τ)u∗3(tn)
}

+R(τ, tn, u∗),

(2.37)

where the remainder R(τ, tn, u∗) satisfies thanks to (2.34) and (2.36) that

‖R(τ, tn, u∗)‖r ≤ τ2kr,M2 , (2.38)

for some constant kr,M2 which depends on M2 (see Assumption 2.11) and r, but is independent of c.
Based on the expansion (2.37) we construct the following exponential-type integration scheme, in order
to approximate the exact solution u∗(tn+1) at time tn+1 = tn + τ . The scheme reads as follows

un+1
∗ = eiτAce−τ 3i

8 |un∗ |2un∗ − τ
3i
8
(
c〈∇〉−1

c − 1
)

eiτAc |un∗ |2un∗

− τ i8c〈∇〉
−1
c eiτAc

{
e2ic2tn ϕ1(2ic2τ)(un∗ )3 + e−2ic2tn ϕ1(−2ic2τ)3|un∗ |2un∗

+ e−4ic2tnϕ1(−4ic2τ)(un∗ )3
}
,

u0
∗ = z(0)− ic−1〈∇〉−1

c ∂tz(0)

with ϕ1 given in Definition 2.8. Note that the definition of the initial value u0
∗ follows from (2.8).

For complex-valued functions z (i.e., for u 6≡ v) we similarly derive the exponential-type integration
scheme

un+1
∗ = eiτAce−τ

i
8

(
|un∗ |2+2|vn∗ |2

)
un∗ − τ

i

8
(
c〈∇〉−1

c − 1
)

eiτAc
(
|un∗ |2 + 2|vn∗ |2

)
un∗

− τ i8c〈∇〉
−1
c eiτAc

{
e2ic2tn ϕ1(2ic2τ)(un∗ )2vn∗ + e−2ic2tn ϕ1(−2ic2τ)

(
2|un∗ |2 + |vn∗ |2

)
vn∗

+ e−4ic2tnϕ1(−4ic2τ)(vn∗ )2un∗
}
,

u0
∗ = z(0)− ic−1〈∇〉−1

c ∂t z(0),

(2.39)
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where the scheme in vn+1
∗ is obtained by replacing un∗ ↔ vn∗ on the right-hand side of (2.39) with initial

value v0
∗ = z(0)− ic−1〈∇〉−1

c ∂tz(0) (see (2.8)).

Remark 2.12 (Practical implementation). To reduce the computational effort we may express the first-
order scheme (2.39) in its equivalent form

un+1
∗ = eiτAc

(
e−τ

i
8

(
|un∗ |2+2|vn∗ |2

)
un∗ + τ

i

8
(
|un∗ |2 + 2|vn∗ |2

)
un∗

)
− iτ

8 c〈∇〉
−1
c eiτAc

{(
|un∗ |2 + 2|vn∗ |2

)
un∗ + e2ic2tn ϕ1(2ic2τ)(un∗ )2vn∗

+ e−2ic2tn ϕ1(−2ic2τ)
(
2|un∗ |2 + |vn∗ |2

)
vn∗ + e−4ic2tnϕ1(−4ic2τ)(vn∗ )2un∗

}
,

u0
∗ = z(0)− ic−1〈∇〉−1

c ∂tz(0)

which after a Fourier pseudo-spectral space discretization only requires the usage of two Fast Fourier
transforms (and its corresponding inverse counter parts) instead of three.

In Section 2.3.2.2 below we prove that the exponential-type integration scheme (2.39) is first-order conver-
gent uniformly in c for sufficiently smooth solutions. Furthermore, we give a fractional convergence result
under weaker regularity assumptions and analyze its behavior in the non-relativistic limit regime c → ∞.
In Section 2.3.2.3 we give some simplifications in the latter regime.

2.3.2.2 Convergence Analysis

The exponential-type integration scheme (2.39) converges (by construction) with first-order in time uni-
formly with respect to c, see Theorem 2.13. Furthermore, a fractional convergence bound holds true for
less regular solutions, see Theorem 2.15. In particular, in the limit c → ∞ the scheme converges to the
classical Lie splitting applied to the nonlinear Schrödinger limit system, see Lemma 2.17.

Theorem 2.13 (Convergence bound for the first-order scheme, cf. Theorem 11 in [13]). Fix r > d/2
and assume that

‖z(0)‖r+2 + ‖c−1〈∇〉−1
c ∂tz(0)‖r+2 ≤M2 (2.40)

uniformly in c. For (un∗ , vn∗ ) defined in (2.39) we set

zn := 1
2

(
eic

2tnun∗ + e−ic
2tnvn∗

)
.

Then, there exists a T > 0 and τ0 > 0 such that for all τ ≤ τ0 and tn ≤ T we have for all c > 0 that

‖z(tn)− zn‖r ≤ τK∗r,T,M,M2
,

where the constant K∗r,T,M,M2
can be chosen independently of c.

Now we state a detailed version of the proof of [13, Theorem 11].

Proof. Fix r > d/2. First note that the regularity assumption on the initial data in (2.40) implies the
regularity Assumption 2.11 on (u∗, v∗), i.e., there exists a T > 0 such that

sup
0≤t≤T

(
‖u∗(t)‖r+2 + ‖v∗(t)‖r+2

)
≤ kT,M2 ,
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for some constant k that depends on M2 and T , but can be chosen independently of c. For the local
well-posedness we refer to [73] and the references therein.

In the following let (φtu∗ , φ
t
v∗) denote the exact flow of (2.25) and let (Φτu∗ ,Φ

τ
v∗) denote the numerical

flow defined in (2.39), i.e.,

u∗(tn+1) = φτu∗(u∗(tn), v∗(tn)), un+1
∗ = Φτu∗(u

n
∗ , v

n
∗ ),

and a similar formula for the functions v∗(tn) and vn∗ . For more details on numerical flows we refer
to [25, 36]. In the literature the numerical flow is often denoted by ϕ, here we use φ, since ϕ denotes
the ϕ functions (see Definition 2.8). This allows us to split the global error as follows

u∗(tn+1)− un+1
∗ = φτu∗(u∗(tn), v∗(tn))− Φτu∗(u

n
∗ , v

n
∗ )

= Φτu∗(u∗(tn), v∗(tn))− Φτu∗(u
n
∗ , v

n
∗ ) + φτu∗(u∗(tn), v∗(tn))− Φτu∗(u∗(tn), v∗(tn)).

(2.41)

Local error bound: With the aid of (2.38), the expansion of the exact solution in (2.37) and the definition
of the numerical scheme (2.39) allows us to write

‖φτu∗(u∗(tn), v∗(tn))− Φτu∗(u∗(tn), v∗(tn))‖r = ‖R(τ, tn, u∗, v∗)‖r ≤ τ2kr,M2 , (2.42)

for some constant k which depends on M2 and r, but can be chosen independently of c.
Stability bound: Note that for all l ∈ Z we have that∣∣ϕ1(iτc2l)

∣∣ ≤ 1 (2.43)

which can be easily seen from the definition of the ϕ1 function (see Definition 2.8). This yields that

∣∣ϕ1(iτc2l)
∣∣ =

∣∣∣ ∫ 1

0
e(1−θ)iτc2ldθ

∣∣∣ ≤ ∫ 1

0

∣∣∣eiτc2l∣∣∣ ∣∣∣e−θiτc2l∣∣∣ dθ =
∫ 1

0
1dθ = 1. (2.44)

We have

Φτu∗(u∗(tn), v∗(tn)) = eiτAce−τ
i
8

(
|u∗(tn)|2+2|v∗(tn)|2

)
u∗(tn)

− τ i8
(
c〈∇〉−1 − 1

)
eiτAc

(
|u∗(tn)|2 + 2|v∗(tn)|2

)
u∗(tn)

− τ i8c〈∇〉
−1eiτAc

{
e2ic2tn ϕ1(2ic2τ)(u∗(tn))2v∗(tn)

+ e−4ic2tnϕ1(−4ic2τ)(v∗(tn))2u∗(tn)

+ e−2ic2tn ϕ1(−2ic2τ)
(
2|u∗(tn)|2 + |v∗(tn)|2

)
v∗(tn)

}
= E1 + E2 + E3,

where we set

E1 := eiτAce−τ
i
8

(
|u∗(tn)|2+2|v∗(tn)|2

)
u∗(tn),

E2 := −τ i8
(
c〈∇〉−1 − 1

)
eiτAc

(
|u∗(tn)|2 + 2|v∗(tn)|2

)
u∗(tn),

E3 := −τ i8c〈∇〉
−1eiτAc

{
e2ic2tn ϕ1(2ic2τ)(u∗(tn))2v∗(tn) + e−4ic2tnϕ1(−4ic2τ)(v∗(tn))2u∗(tn)

+ e−2ic2tn ϕ1(−2ic2τ)
(
2|u∗(tn)|2 + |v∗(tn)|2

)
v∗(tn)

}
.
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Furthermore, we have

Φτu∗(u
n
∗ , v

n
∗ ) = eiτAce−τ

i
8

(
|un∗ |2+2|vn∗ |2

)
un∗

− τ i8
(
c〈∇〉−1 − 1

)
eiτAc

(
|un∗ |2 + 2|vn∗ |2

)
un∗

− τ i8c〈∇〉
−1eiτAc

{
e2ic2tn ϕ1(2ic2τ)(un∗ )2vn∗ + e−2ic2tn ϕ1(−2ic2τ)

(
2|un∗ |2 + |vn∗ |2

)
vn∗

+ e−4ic2tnϕ1(−4ic2τ)(vn∗ )2un∗
}

= N1 +N2 +N3,

where we set

N1 := eiτAce−τ
i
8

(
|un∗ |2+2|vn∗ |2

)
un∗ ,

N2 := −τ i8
(
c〈∇〉−1 − 1

)
eiτAc

(
|un∗ |2 + 2|vn∗ |2

)
un∗ ,

N3 := −τ i8c〈∇〉
−1eiτAc

{
e2ic2tn ϕ1(2ic2τ)(un∗ )2vn∗ + e−4ic2tnϕ1(−4ic2τ)(vn∗ )2un∗

+ e−2ic2tn ϕ1(−2ic2τ)
(
2|un∗ |2 + |vn∗ |2

)
vn∗
}
.

Next we take the difference of E1 and N1. As eiτAc and e−i`c2t are linear isometries for all t ∈ R
and ` ∈ R (see Lemma 2.6) we obtain that

‖E1 −N1‖r =
∥∥∥e−τ

i
8

(
|u∗(tn)|2+2|v∗(tn)|2

)
u∗(tn)− e−τ

i
8

(
|un∗ |2+2|vn∗ |2

)
un∗

∥∥∥
r

≤
∥∥∥e−τ

i
8

(
|u∗(tn)|2+2|v∗(tn)|2

)
u∗(tn)− e−τ

i
8

(
|u∗(tn)|2+2|v∗(tn)|2

)
un∗

∥∥∥
r

+
∥∥∥e−τ

i
8

(
|u∗(tn)|2+2|v∗(tn)|2

)
un∗ − e−τ

i
8

(
|un∗ |2+2|vn∗ |2

)
un∗

∥∥∥
r

≤
∥∥∥e−τ

i
8

(
|u∗(tn)|2+2|v∗(tn)|2

)∥∥∥
r
‖u∗(tn)− un∗‖r

+
∥∥∥e−τ

i
8

(
|u∗(tn)|2+2|v∗(tn)|2

)
− e−τ

i
8

(
|un∗ |2+2|vn∗ |2

)∥∥∥
r
‖un∗‖r.

(2.45)

In the following we assume that

‖u∗(tn)‖r ≤M and ‖un∗‖r ≤ 2M. (2.46)

Furthermore, we define constants Kr and Kr,M , which depend only on r and r,M respectively, but can
be chosen independently of c. Exploiting the Taylor series expansion of the exponential function, we
obtain ∥∥∥e− iτ8 (|u|2+2|v|2) − 1

∥∥∥
r
≤ τKr,M

and
1 + τKr,M ≤ eτKr,M . (2.47)

Therefore, (2.45) implies

‖E1 −N1‖r ≤ (1 + τKr,M )‖u∗(tn)− un∗‖r + τKr,M‖u∗(tn)− un∗‖r
≤ (1 + τKr,M )‖u∗(tn)− un∗‖r
≤ eτKr,M ‖u∗(tn)− un∗‖r.

(2.48)
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Thanks to the bound ‖c〈∇〉−1‖r ≤ 1, we obtain for the difference of E2 and N2 that

‖E2 −N2‖r ≤ τKr

∥∥∥(|u∗(tn)|2 + 2 |v∗(tn)|2
)
u∗(tn)−

(
|un∗ |2 + 2 |vn∗ |2

)
un∗

∥∥∥
r

= τKr

∥∥∥|u∗(tn)|2 u∗(tn) + 2 |v∗(tn)|2 u∗(tn)− |un∗ |2 un∗ − 2 |vn∗ |2 un∗
∥∥∥
r

= τKr

∥∥∥|u∗(tn)|2 u∗(tn)− |un∗ |2 un∗ + 2 |v∗(tn)|2 u∗(tn)− 2 |vn∗ |2 un∗
∥∥∥
r

≤ τKr

(∥∥∥|u∗(tn)|2 u∗(tn)− |un∗ |2 un∗
∥∥∥
r

+ 2
∥∥∥|v∗(tn)|2 u∗(tn)− |vn∗ |2 un∗

∥∥∥
r

)
≤ τKr

(
F1 + 2F2

)
.

(2.49)

We estimate F1 as follows

F1 =
∥∥|u∗(tn)|2u∗(tn)− |un∗ |2un∗

∥∥
r

=
∥∥u∗(tn)u∗(tn)u∗(tn)− un∗un∗un∗

∥∥
r

=
∥∥u∗(tn)

(
u∗(tn)u∗(tn)

)
− un∗

(
u∗(tn)u∗(tn)

)
+ un∗

(
u∗(tn)u∗(tn)

)
−
(
un∗un∗

)
u∗(tn)

+
(
un∗un∗

)
u∗(tn)−

(
un∗un∗

)
un∗
∥∥
r

=
∥∥(u∗(tn)− un∗

)(
u∗(tn)u∗(tn)

)
+
(
un∗u∗(tn)

)(
u∗(tn)− un∗

)
+
(
un∗un∗

)(
u∗(tn)− un∗

)∥∥
r

≤
∥∥u∗(tn)− un∗

∥∥
r

(∥∥u∗(tn)
∥∥2
r

+
∥∥u∗(tn)un∗

∥∥
r

+
∥∥un∗∥∥2

r

)
.

With the aid of (2.46) we find

F1 ≤ Kr,M

∥∥u∗(tn)− un∗
∥∥
r
.

Now, we estimate F2 and using (2.46) we obtain the following bound for F2

F2 =
∥∥|v∗(tn)|2u∗(tn)− |vn∗ |2un∗

∥∥
r

=
∥∥v∗(tn)v∗(tn)u∗(tn)− vn∗ vn∗un∗

∥∥
r

=
∥∥v∗(tn)v∗(tn)u∗(tn)− vn∗ v∗(tn)u∗(tn) + vn∗ v∗(tn)u∗(tn)− vn∗ vn∗u∗(tn) + vn∗ vn∗u∗(tn)− vn∗ vn∗un∗

∥∥
r

≤
∥∥(v∗(tn)− vn∗

)
v∗(tn)u∗(tn) +

(
v∗(tn)− vn∗

)
vn∗u∗(tn) +

(
u∗(tn)− un∗

)
vn∗ vn∗

∥∥
r

≤ Kr,M

(∥∥u∗(tn)− un∗
∥∥
r

+
∥∥v∗(tn)− vn∗

∥∥
r

)
.

Inserting the estimates of F1 and F2 into (2.49) and exploiting (2.47), yields∥∥E2 −N2
∥∥
r
≤ τKr,M

(∥∥u∗(tn)− un∗
∥∥
r

+
∥∥v∗(tn)− vn∗

∥∥
r

)
≤ (1 + τKr,M )

(∥∥u∗(tn)− un∗
∥∥
r

+
∥∥v∗(tn)− vn∗

∥∥
r

)
≤ eτKr,M

(∥∥u∗(tn)− un∗
∥∥
r

+
∥∥v∗(tn)− vn∗

∥∥
r

)
.

(2.50)

Next, we take the difference of E3 and N3. We use that eiτAc , e−i`c2t are linear isometries for all t ∈ R
and ` ∈ R. We use (2.43) and ‖c〈∇〉−1‖r ≤ 1 such that we obtain

‖E3 −N3‖r ≤ τKr

(∥∥(u∗(tn))2v∗(tn)− (un∗ )2vn∗
∥∥
r

+
∥∥(v∗(tn))2u∗(tn)− (vn∗ )2un∗

∥∥
r

+
∥∥(2|u∗(tn)|2 + |v∗(tn)|2

)
v∗(tn)−

(
2|un∗ |2 + |vn∗ |2

)
vn∗
∥∥
r

)
.
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With similar estimates as for F1 , F2 and with (2.47), we have that

‖E3 −N3‖r ≤ eτKr,M
(∥∥u∗(tn)− un∗

∥∥
r

+
∥∥v∗(tn)− vn∗

∥∥
r

)
. (2.51)

Combining the bounds (2.48), (2.50), and (2.51), we obtain that as long as (2.46) holds, that we have

‖Φτu∗(u∗(tn), v∗(tn))− Φτu∗(u
n
∗ , v

n
∗ )‖r ≤ eτKr,M

(
‖u∗(tn)− un∗‖r + ‖v∗(tn)− vn∗ ‖r

)
. (2.52)

Analogously we can show that a similar bound holds for v∗, i.e.

‖Φτv∗(u∗(tn), v∗(tn))− Φτv∗(u
n
∗ , v

n
∗ )‖r ≤ eτKr,M

(
‖u∗(tn)− un∗‖r + ‖v∗(tn)− vn∗ ‖r

)
. (2.53)

Global error bound: Plugging the stability bounds (2.52) and (2.53) as well as the local error bound (2.42)
into (2.41) yields that the global error at time tn+1 = tn + τ satisfies∥∥∥∥∥

(
u∗(tn+1)− un+1

∗
v∗(tn+1)− vn+1

∗

)∥∥∥∥∥
r

≤ eτKr,M
∥∥∥∥∥
(
u∗(tn)− un∗
v∗(tn)− vn∗

)∥∥∥∥∥
r

+ τ2kr,M2 .

Iteratively applying the above local error and stability bounds implies that∥∥∥∥∥
(
u∗(tn+1)− un+1

∗
v∗(tn+1)− vn+1

∗

)∥∥∥∥∥
r

≤ eτKr,M
∥∥∥∥∥
(
u∗(tn)− un∗
v∗(tn)− vn∗

)∥∥∥∥∥
r

+ τ2kr,M2

≤ eτKr,M
(

eτK
1
r,M

∥∥∥∥∥
(
u∗(tn−1)− un−1

∗
v∗(tn−1)− vn−1

∗

)∥∥∥∥∥
r

+ τ2kr,M2

)
+ τ2kr,M2 .

Using iteratively (2.42), (2.52) and (2.53) we have∥∥∥∥∥
(
u∗(tn+1)− un+1

∗
v∗(tn+1)− vn+1

∗

)∥∥∥∥∥
r

≤ enτ supnKn
r,M

(∥∥∥∥∥
(
u∗(0)− u0

∗
v∗(0)− v0

∗

)∥∥∥∥∥
)

+ enτ supnKn
r,Mnτ2kr,M2

= eT supnKn
r,M

(∥∥∥∥∥
(
u∗(0)− u0

∗
v∗(0)− v0

∗

)∥∥∥∥∥
)

+ eT supnKn
r,MTτkr,M2 .

Hence, we obtain the following bound by a Lady Winderemere’s fan argument (see, e.g. [35, 50])

‖u∗(tn)− un∗‖r + ‖v∗(tn)− vn∗ ‖r ≤ τKr,M2eTKr,M ≤ τK∗r,T,M,M2
, (2.54)

where the constant K∗r,T,M,M2
is independent of c. This implies first-order convergence of (un∗ , vn∗ )

towards (u∗(tn), v∗(tn)) uniformly in c. Furthermore, by (2.6) and (2.24) we have

‖z(tn)− zn‖r =
∥∥∥ 1

2
(
u(tn) + v(tn)

)
− 1

2
(
eic

2tn un∗ + e−ic
2tn vn∗

)∥∥∥
r

≤
∥∥∥eic

2tn
(
u∗(tn)− un∗

)∥∥∥
r

+
∥∥∥eic

2tn
(
v∗(tn)− vn∗

)∥∥∥
r

= ‖u∗(tn)− un∗‖r + ‖v∗(tn)− vn∗ ‖r.

Together with the bounds in (2.54) this completes the proof.

Remark 2.14. Note that the regularity assumption (2.40) is satisfied for initial values

z(0, x) = z0(x), ∂tz(0, x) = c2z1(x) with z0, z1 ∈ Hr+2.

Thanks to (2.30) we have as a consequence∥∥c−1〈∇〉−1
c ∂tz(0)

∥∥
r

=
∥∥c〈∇〉−1

c z1
∥∥
r
≤ ‖z1‖r.
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Under weaker regularity assumptions on the exact solution we obtain uniform fractional convergence of
the formally first-order scheme (2.39).

Theorem 2.15 (Fractional convergence bound for the first-order scheme, cf. Theorem 13 in [13]).
Fix r > d/2 and assume that for some 0 < γ ≤ 1

‖z(0)‖r+2γ + ‖c−1〈∇〉−1
c ∂tz(0)‖r+2γ ≤M2γ (2.55)

uniformly in c. For (un∗ , vn∗ ) defined in (2.39) we set

zn := 1
2

(
eic

2tnun∗ + e−ic
2tnvn∗

)
.

Then, there exists T > 0 and τ0 > 0 such that for all τ ≤ τ0 and tn ≤ T we have for all c > 0 that

‖z(tn)− zn‖r ≤ τγK∗r,T,M,M2γ
,

where the constant K∗r,T,M,M2γ
can be chosen independently of c.

Proof. The proof follows the same steps as in the proof of Theorem 2.13 using “fractional estimates” of
the operator Ac.
Fix r > d/2 and 0 < γ ≤ 1. Firstly, note that similarly to Lemma 2.5 we obtain that

‖Aγc f‖r ≤ 2−γ‖f‖r+2γ .

Furthermore, as
∣∣eix − 1

∣∣ ≤ 2|x|γ for all x ∈ R we have that∥∥(e−itAc − 1
)
f
∥∥
r
≤ 2‖Aγc f‖r ≤ 21−γ |t|γ‖f‖r+2γ .

In particular, Duhamel’s formula (2.26) together with the bound in (2.30) yields for r > d/2 that

‖u∗(tn + s)− u∗(tn)‖r + ‖v∗(tn + s)− v∗(tn)‖r ≤ |s|γ
(
‖Aγcu∗(tn)‖r + ‖Aγc v∗(tn)‖

)
+ |s|(1 +M0)3.

The above bounds imply the corresponding fractional estimates of Lemma 2.5, 2.6, and 2.7. With these
fractional error bounds, the proof then follows the same steps as in the proof of Theorem 2.13.

Next, we point out the interesting observation, that for sufficiently smooth solutions the exponential-type
integration scheme (2.39) converges in the limit c →∞ to the classical Lie splitting of the corresponding
nonlinear Schrödinger limit (2.2).

Remark 2.16 (Approximation in the non-relativistic limit c → ∞). The exponential-type integration
scheme (2.39) converges, for sufficiently smooth solutions, in the limit (un∗ , vn∗ ) c→∞−→ (un∗,∞, vn∗,∞),
essentially to the Lie Splitting (see [25, 50])

un+1
∗,∞ = e−iτ ∆

2 e−iτ
1
8

(
|un∗,∞|2+2|vn∗,∞|2

)
un∗,∞, u0

∗,∞ = z0 − iz1,

vn+1
∗,∞ = e−iτ ∆

2 e−iτ
1
8

(
|vn∗,∞|2+2|un∗,∞|2

)
vn∗,∞, v0

∗,∞ = z0 − iz1

(2.56)

applied to the cubic nonlinear Schrödinger system (2.2) which is the limit system of the Klein–Gordon
equation (2.1) for c→∞ with initial values

z(0) c→∞−→ z0 and c−1〈∇〉−1
c ∂tz(0) c→∞−→ z1.

More precisely, the following Lemma holds.
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Lemma 2.17 (cf. Lemma 15 in [13]). Fix r > d/2 and let 0 < δ ≤ 2. Assume that

‖z(0)‖r+2δ+ε + ‖c−1〈∇〉−1
c ∂tz(0)‖r+2δ+ε ≤M2δ+ε (2.57)

for some ε > 0 uniformly in c and suppose that the initial value approximation (there exist functions
z0, z1 such that)

‖z(0)− z0‖r + ‖c−1〈∇〉−1
c ∂tz(0)− z1‖r ≤ krc−δ (2.58)

holds for some constant kr independent of c.
Then, there exists T > 0 and τ0 > 0 such that for all τ ≤ τ0 the difference of the first-order scheme (2.39)
for system (2.25) and the Lie splitting (2.56) for the limit Schrödinger equation (2.2) satisfies for tn ≤ T
and all c > 0 with

τc2−δ ≥ 1 (2.59)

that

‖un∗ − un∗,∞‖r + ‖vn∗ − vn∗,∞‖r ≤ c−δkr,T,M2δ+ε ,

for some constant kr,T,M2δ+ε that depends on M2δ+ε and T , but is independent of c.

Proof. In the following fix r > d/2, 0 < δ ≤ 2 and ε > 0:
1. Initial value approximation: Thanks to (2.58) and to the definition of the initial value u0

∗ in (2.39),
respectively, u0

∗,∞ in (2.56), we have that

‖u0
∗ − u0

∗,∞‖r = ‖z(0)− ic−1〈∇〉−1
c ∂tz(0)− (z0 − iz1)‖r ≤ krc−δ,

for some constant kr independent of c. A similar bound holds for v0
∗ − v0

∗,∞.
2. Regularity of the numerical solutions (un∗ , vn∗ ): Thanks to the regularity assumption (2.57) we have by
Theorem 2.15 that there exists a T > 0 and τ0 > 0 such that for all τ ≤ τ0 we have

‖un∗‖r+2δ + ‖vn∗ ‖r+2δ ≤ m2δ (2.60)

as long as tn ≤ T for some constant m2δ depending on M2δ+ε and T , but not on c.
3. Regularity of the numerical solutions (un∗,∞, vn∗,∞): Thanks to the regularity assumption (2.57) and
due to the assumption on the initial data (2.58), the global first-order convergence result of the Lie
splitting for semilinear Schrödinger equations (see for instance [25, 50]) implies that there exists a T > 0
and τ0 > 0 such that for all τ ≤ τ0 we have

‖un∗,∞‖r + ‖vn∗,∞‖r ≤ m0 (2.61)

as long as tn ≤ T for some constant m0, which depends on Mr and T , but not on c.
4. Approximations: Using the following bounds∣∣∣∣√1 + x2 − 1− 1

2x
2
∣∣∣∣ ≤ x2γ and

∣∣∣∣ 1√
1 + x2

− 1
∣∣∣∣ ≤ x2γ−2, for γ > 1.

Together with the Definition of ϕ1 (see Definition 2.8) we have for every f ∈ Hr+2+2δ,∥∥ (Ac + ∆
2
)
f
∥∥
r

+
∥∥ (c〈∇〉−1

c − 1
)
f
∥∥
r+2 +

∥∥ϕ1(i`c2τ)f
∥∥
r+2+δ ≤ krc

−δ ‖f‖r+2+2δ, (2.62)
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for ` = ±2,−4 and for some constant kr independent of c. For the last estimate we used (2.59).
5. Difference of the numerical solutions: Thanks to the a priori regularity of the numerical solu-
tions (2.60) and (2.61) we obtain with the aid of (2.62) under assumption (2.59) for the
difference un∗ − un∗,∞ that∥∥un+1

∗ − un+1
∗,∞
∥∥
r
≤
(
1 + τk(m0)

)∥∥un∗ − un∗,∞∥∥r + (c−2+δ + τ)c−δk(m2δ)

≤
(
1 + τk(m0)

)∥∥un∗ − un∗,∞∥∥r + 2τc−δk(m2δ)

and a similar bound on vn∗ − vn∗,∞. Resolving the recursion yields the assertion.

2.3.2.3 Simplifications in the “Weakly to Strongly non-relativistic Limit Regime”

In the strongly non-relativistic limit regime, i.e., for large values of c, we may simplify the first-order
scheme (2.39) and nevertheless obtain a well suited, first-order approximation to (u∗, v∗) in (2.25).

Remark 2.18. Note that for ` = ±2,−4 and c > 0 we have (see Definition 2.8)∥∥τϕ1(i`c2τ)
∥∥
r

=
∥∥∥ei`c2τ − 1

i`c2

∥∥∥
r
≤ ‖e

i`c2τ‖r + ‖1‖r
‖`c2‖r

≤ 1 + 1
c2

= 2c−2.

Furthermore, (2.62) yields that

‖
(
c〈∇〉−1

c − 1
)
u∗(t)‖r ≤ c−2 kr‖u∗(t)‖r+2,

for some constant kr independent of c. Thus, for sufficiently large values of c, more precisely if

τc > 1,

and under the same regularity assumption (2.55) we may take instead of (2.39) the scheme

un+1
∗,c>τ = eiτAce−iτ

1
8

(
|un∗,c>τ |2+2|vn∗,c>τ |2

)
un∗,c>τ ,

vn+1
∗,c>τ = eiτAce−iτ

1
8

(
|vn∗,c>τ |2+2|un∗,c>τ |2

)
vn∗,c>τ

as a first-order numerical approximation to
(
u∗(tn+1), v∗(tn+1)

)
in (2.25).

However, note that in the strongly non-relativistic limit regime (such that in particular cτ � 1) we
may immediately take the Lie splitting scheme proposed in [26] as a suitable first-order approximation
to (2.25) thanks to the following observation:

Remark 2.19 (Limit scheme [26]). For sufficiently large values of c and sufficiently smooth solutions,
i.e., if

‖z(0)‖r+2 + ‖c−1〈∇〉−1
c ∂tz(0)‖r+2 ≤M2 and τc > 1,

the classical Lie splitting scheme (see [25, 50]) for the nonlinear Schrödinger limit equation (2.2)

un+1
∗,∞ = e−iτ 1

2 ∆e−iτ
1
8

(
|un∗,∞|2+2|vn∗,∞|2

)
un∗,∞,

vn+1
∗,∞ = e−iτ 1

2 ∆e−iτ
1
8

(
|vn∗,∞|2+2|un∗,∞|2

)
vn∗,∞

yields a first-order numerical approximation to (u∗(tn+1), v∗(tn+1)) in (2.25).
This assertion follows from [26] thanks to the approximation

‖u∗(tn)− un∗,∞‖r ≤ ‖u∗(tn)− u∗,∞(tn)‖r + ‖u∗,∞(tn)− un∗,∞‖r = O
(
c−2 + τ

)
,

and a similar bound on v∗(tn)− vn∗,∞.
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2.3.3 Construction of a Second-Order Uniformly Accurate Scheme

In this section we derive a second-order exponential-type integration scheme for the solutions (u∗, v∗)
of (2.25) which allows second-order time-convergence uniform with respect to c. For notational simplicity
we assume that z is real, i.e. z(t, x) ∈ R, which reduces the coupled system (2.25) to equation (2.31)
with mild-solutions (2.32) (see also Remark 2.1).
The construction of the second-order scheme is again based on Duhamel’s formula (2.32) and the essential
estimates in Lemma 2.5, 2.6 and 2.7. However, the construction of a second-order approximation is much
more involved due to the fact that

u′∗(t) = O(1), but u′′∗(t) = O(c2).

The latter observation prevents us from simply applying the higher-order Taylor series expansion

u∗(tn + s) = u∗(tn) + su′∗(tn) +O
(
s2u′′∗(tn + ξ)

)
in Duhamel’s formula (2.32) as this would lead to the “classical” c−dependent error at order O(τ2c2).
Therefore, we need to carry out a much more careful frequency analysis by iterating Duhamel’s
formula (2.32) twice and controlling the appearing highly oscillatory terms e±ic2t and their
interactions ei`c2t (` ∈ Z) precisely.

2.3.3.1 Construction of a Second-Order Uniformly Accurate Scheme

In this subsection we state the necessary regularity assumptions on the solution u∗ and derive two useful
expansions. Moreover, we collect some useful lemmata on highly oscillatory integrals and their approx-
imations. These approximations then allow us to construct a uniformly accurate second-order scheme.
The rigorous convergence analysis is given in Section 2.3.3.2.

Regularity and expansion of the exact solution
In order to derive a second-order scheme, we need to impose additional regularity on the exact
solution u∗(t) of (2.31).

Assumption 2.20. Fix r > d/2 and assume that u∗ ∈ C([0, T ];Hr+4(Td)) and in particular

sup
0≤t≤T

‖u∗(t)‖r+4 ≤M4,

where M4 can be bounded uniformly in c.

In Lemma 2.23 below we derive two useful expansions of the exact solution u∗ of (2.31). For this purpose
we introduce the following definition.

Definition 2.21. For some function v and tn, t ∈ R we set

Ψc2(tn, t, v) := 1
2ic2

(
e2ic2(tn+t) − e2ic2tn

)
v3 + 3

−2ic2
(

e−2ic2(tn+t) − e−2ic2tn
)
|v|2v

+ 1
−4ic2

(
e−4ic2(tn+t) − e−4ic2tn

)
v3

= te2ic2tnϕ1
(
2ic2t

)
v3 + 3te−2ic2tnϕ1

(
−2ic2t

)
|v|2v + te−4ic2tnϕ1

(
−4ic2t

)
v3.

(2.63)
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Remark 2.22. With the above definition, the first-order scheme (2.39) for real valued z, i.e. for u∗ = v∗,
may be written in compact form as

un+1
∗ = eiτAc

(
e−iτ 3

8 |un∗ |2un∗ + τ
3i
8 |u

n
∗ |2un∗

)
− i

8c〈∇〉
−1
c eiτAc

(
Ψc2(tn, τ, un∗ ) + 3τ |un∗ |2un∗

)
.

Furthermore, Defintion 2.21 allows us the following expansions of the exact solution u∗.

Lemma 2.23 (cf. Lemma 20 in [13]). Fix r > d/2. Then the exact solution of (2.31) satisfies the
expansions

u∗(tn + s) = eisAcu∗(tn)− 3i
8 c〈∇〉

−1
c

∫ s

0
ei(s−ξ)Ac

∣∣eiξAcu∗(tn)
∣∣2 (eiξAcu∗(tn)

)
dξ

− i

8c〈∇〉
−1
c Ψc2(tn, s, u∗(tn)) +R1(tn, s, u∗)

and

u∗(tn + s) = eisAcu∗(tn)− i

8c〈∇〉
−1
c

(
3s |u∗(tn)|2 u∗(tn) + Ψc2(tn, s, u∗(tn))

)
+R2(tn, s, u∗)

with Ψc2 defined in (2.63). The remainders satisfy

‖R1(tn, s, u∗)‖r + ‖R2(tn, s, u∗)‖r ≤ s2kr,M2 ,

for some constant kr,M2 which depends on M2, but is independent of c.

Proof. Note that by Duhamel’s perturbation formula (2.32) we have that

u∗(tn + s) = eisAcu∗(tn)− i

8c〈∇〉
−1
c

∫ s

0
ei(s−ξ)Ac

(
3 |u∗(tn + ξ)|2 u∗(tn + ξ) + e2ic2(tn+ξ)u∗(tn + ξ)3

+3e−2ic2(tn+ξ) |u∗(tn + ξ)|2 u∗(tn + ξ) + e−4ic2(tn+ξ)u∗(tn + ξ)3
)

dξ.

Therefore, the bound on c〈∇〉−1
c given in (2.30) in particular implies that for ξ ∈ R

‖u∗(tn + ξ)− eiξAcu∗(tn)‖r ≤ ξkr(1 +M0)3,

for some constant kr which is independent of c. Together with Lemma 2.6 and 2.7 the assertion then
follows by integrating the highly oscillatory phases e±i`c2ξ exactly.

In the next section we collect important definitions and useful lemmata on highly oscillatory integrals.

Preliminary lemmata on highly oscillatory integrals
The construction of a second-order approximation to u∗ based on the iteration of Duhamel’s formula (2.32)
that holds uniformly in all c > 0 leads to interactions of the highly oscillatory phases eic2t. More precisely,
we need to handle highly oscillatory integrals of type∫ τ

0
eis(δc

2−Ac) (eisAcv)` (e−isAcv)m ds, δ ∈ {−4,−2, 2}. (2.64)

In order to control these integrals, we first need to distinguish the non-resonant case δ ∈ {−4,−2} where

∀c > 0, k ∈ N : (δc2 −Ac)k = δc2 − c
√
c2 + k2 + c2 6= 0
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from the resonant case δ = 2 in which the operator δc2 −Ac may become singular.
In Lemma 2.24 we outline how to control the non-resonant case δ ∈ {−4,−2}. Lemma 2.26 treats the
resonant case δ = 2.

Lemma 2.24 (cf. Lemma 21 in [13]). Fix r > d/2 and assume that v ∈ C
(
[0, T ];Hr+4(Td)

)
. Then we

have δ1 = −2 and δ2 = −4 that for j = 1, 2 and `,m ∈ N∗,∫ τ

0
eis(δjc

2−Ac) (eisAcv)` (e−isAcv)m ds = τϕ1
(
iτ(δjc2 −Ac)

)
v`vm

+ iτ2Ψ2
(
iτ(δjc2 −Ac)

) (
`v`−1vmAcv −mv`vm−1Acv

)
+R(tn, s, v),

(2.65)

where the remainder satisfies

‖R(tn, s, v)‖r ≤ krτ3‖v‖r+4‖v‖`+m−1
r , (2.66)

for some constant kr which is independent of c.

Proof. By Taylor series expansion of eisAc and from (2.27) we obtain that∫ τ

0
e−isAceiδjc

2s
(
eisAcv

)` (e−isAcv)m ds =
∫ τ

0
eis(δjc

2−Ac) (v`vm + is
(
`v`−1vmAcv −mv`vm−1Acv

))
ds

+R(tn, s, v),

where thanks to (2.27) we have for r > d/2 that (2.66) holds for the remainder R(tn, s, v). The assertion
then follows by the definition of the ϕj and Ψj functions given in Definition 2.8.

As the construction of our numerical scheme is based on the approximation in (2.65) we need to guarantee
that the constructed term

τ2Ψ2
(
iτ(δjc2 −Ac)

) (
`v`−1vmAcv −mv`vm−1Acv

)
is uniformly bounded with respect to c in Hr for all functions v ∈ Hr. This stability analysis is carried
out in Remark 2.25 below, where we especially exploit the bilinear estimate (see (1.2))

‖vw‖r ≤ k ‖v‖r1‖w‖r2 for all r ≤ r1 + r2 − d
2 with r1, r2,−r 6= d

2 and r1 + r2 ≥ 0. (2.67)

Remark 2.25 (Stability in Lemma 2.24). Note that for δ1 = −2, respectively, δ2 = −4 we have that

0 6= δjc
2 −Ac = δjc

2 − c〈∇〉c + c2 =
{
−(c2 + c〈∇〉c) if j = 1
−(3c2 + c〈∇〉c) if j = 2

. (2.68)

With

(〈∇〉c)k =
√
c2 + |k|2 ≤

√
c2 +

√
|k|2 = c+ |k|,

and

1
c2 + c (〈∇〉c)k

≤ min
{
|c|−2, |c

√
c2 + k2|−1

}
≤ min

{
|c|−2, (c|k|)−1} ,
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we obtain together with the bilinear estimate (2.67) and (2.68) that for δj = −2,−4 we have∥∥τ2Ψ2
(
iτ(δjc2 −Ac)

)
(vAcw)

∥∥
r

= τ

∥∥∥∥ϕ0(iτ(δjc2 −Ac))− ϕ1(iτ(δjc2 −Ac))
(δjc2 −Ac)

(vAcw)
∥∥∥∥
r

≤ 2τ
∥∥∥∥ 1

(c2 + c〈∇〉c)
(vAcw)

∥∥∥∥
r

≤ 2τ
∥∥∥∥ 1

(c2 + c〈∇〉c)
(
v2c2w

)∥∥∥∥
r

+ 2τ
∥∥∥∥ 1

(c2 + c〈∇〉c)
(vc〈∇〉cw)

∥∥∥∥
r

≤ 4krτ‖v‖r‖w‖r,

(2.69)

for all r > d/2 and all functions v, w ∈ Hr, and some constant kr > 0. The estimate (2.69) guarantees
stability of our numerical scheme built on the approximation in (2.65).

A simple manipulation allows us to treat the resonant case, i.e., δ = 2 in (2.64), similarly to Lemma 2.24.

Lemma 2.26 (cf. Lemma 23 in [13]). Fix r > d/2, assume that v ∈ C([0, T ];Hr+4(Td)) and let c 6= 0.
Then we have that∫ τ

0
eis(2c

2−Ac) (eisAcv)` (e−isAcv)m ds = τϕ1
(
iτ(2c2 − 1

2∆)
) (
v`vm

)
+ iτ2Ψ2

(
iτ(2c2 − 1

2∆)
) [

( 1
2∆−Ac)

(
v`vm

)
+
(
`v`−1vmAcv −mv`vm−1Acv

) ]
+R(tn, s, v),

(2.70)

where the remainder satisfies

‖R(tn, s, v)‖r ≤ krτ3‖v‖r+4‖v‖`+m−1
r , (2.71)

for some constant kr which is independent of c.

Proof. Due to the identity
2c2 −Ac = 2c2 − 1

2∆ + 1
2∆−Ac

we obtain∫ τ

0
eis(2c

2−Ac) (eisAcv)` (e−isAcv)m ds =
∫ τ

0
eis(2c

2− 1
2 ∆)eis( 1

2 ∆−Ac) (eisAcv)` (e−isAcv)m ds

=
∫ τ

0
eis(2c

2− 1
2 ∆)
[(

1 + is( 1
2∆−Ac)

) (
v`vm

)
+ is

(
`v`−1vmAcv −mv`vm−1Acv

) ]
ds+R(tn, s, v).

Thanks to (2.27) we have for r > d/2 that (2.71) holds for the remainder R. The assertion then follows
by the definition of the ϕj and Ψj functions given in Definition 2.8.

Again, we need to verify that the term

τ2Ψ2
(
iτ(2c2 − 1

2∆)
) [

( 1
2∆−Ac)

(
v`vm

)
+
(
`v`−1vmAcv −mv`vm−1Acv

) ]
in (2.70) can be bounded uniformly with respect to c in Hr for all functions v ∈ Hr. This is done in the
following remark.

Remark 2.27 (Stability in Lemma 2.26). Note that the operator 2c2 − 1
2∆ satisfies the bounds

c|k|(
2c2 − 1

2∆
)
k

= c|k|
2c2 + 1

2 |k|2
≤ 2,

c2(
2c2 − 1

2∆
)
k

= c2

2c2 + 1
2 |k|2

≤ 1
2 ,
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and furthermore
(Ac)k = c

√
c2 + |k|2 − c2 ≤ 2c2 + c|k|.

The above estimates together with the bilinear estimate (2.67) imply that for r > d/2∥∥∥τ2Ψ2
(
iτ(2c2 − 1

2∆)
)

(vAcw)
∥∥∥2

r
≤ τ

∑
k

(1 + |k|2)r

(2c2 + 1
2 |k|2)2

∣∣∣ ∑
k=k1+k2

vk1(Ac)k2wk2

∣∣∣2
≤ τmr

∑
k

(1 + |k|2)rc4

(2c2 + 1
2 |k|2)2

( ∑
k=k1+k2

|vk1 ||wk2 |
)2

+ τmr

∑
k

(1 + |k|2)rc2

(2c2 + 1
2 |k|2)2

( ∑
k=k1+k2

|vk1 ||k2||wk2 |
)2

≤ τmr

∑
k

(1 + |k|2)r
( ∑
k=k1+k2

|vk1 ||wk2 |
)2

+ τmr

∑
k

(1 + |k|2)r−1
( ∑
k=k1+k2

|vk1 ||k2||wk2 |
)2

≤ τmr‖v‖2r‖w‖2r + τkr‖v‖2r‖∂xw‖2r−1

≤ τkmr‖v‖2r‖w‖2r,

(2.72)

for some constant mr > 0 which guarantees stability of the numerical method built on the approximation
in Lemma 2.26.

Next, we need to analyze integrals involving the highly oscillatory function Ψc2 defined in (2.21). The
following lemma yields a uniform approximation.

Lemma 2.28 (cf. Lemma 25 in [13]). Fix r > d/2. Then for any polynomial p(v) in v and v we have
that ∫ τ

0
ei(τ−s)Acp

(
eisAcv

)
c〈∇〉−1

c Ψc2(tn, s, v)ds = τ2p(v)c〈∇〉−1
c ϑc2(tn, τ, v) +R(tn, τ, v)

with

ϑc2(tn, τ, v) := e2ic2tn ϕ1
(
2ic2τ

)
− 1

2iτc2 v3 + 3e−2ic2tn ϕ1
(
−2ic2τ

)
− 1

−2iτc2 |v|2v + e−4ic2tn ϕ1
(
−4ic2τ

)
− 1

−4iτc2 v3

= e2ic2tnϕ2
(
2iτc2

)
v3 + 3e−2ic2tnϕ2

(
−2iτc2

)
|v|2v + e−4ic2tnϕ2

(
−4iτc2

)
v3.

(2.73)

The remainder satisfies
‖R(tn, τ, v)‖r ≤ krτ3 (1 + ‖v‖r+2)5

, (2.74)

for some constant kr independent of c.

Proof. Thanks to the approximation (2.28) and the fact that Ψc2(tn, s, u∗(tn)) is of order one in s uni-
formly in c we have that∫ τ

0
ei(τ−s)Acp

(
eisAcv

)
c〈∇〉−1

c Ψc2(tn, s, v)ds = p (v) c〈∇〉−1
c

∫ τ

0
Ψc2(tn, s, v)ds+R(tn, τ, v),

where the remainder satisfies the bound (2.74) for r > d/2.

Finally, we need to handle the interaction of highly oscillatory phases ei`c2t with the highly oscillatory
function Ψc2 defined in (2.21).

Lemma 2.29 (cf. Lemma 26 in [13]). Let c 6= 0. Then, we have for ` ∈ N that

Ωc2,`(tn, τ, v) := 1
τ2

∫ τ

0
ei`c

2sΨc2(tn, s, v)ds

= e2ic2tn ϕ1
(
(`+ 2)ic2τ

)
− ϕ1

(
`ic2τ

)
2iτc2 v3 + e−4ic2tn ϕ1

(
(`− 4)ic2τ

)
− ϕ1

(
`ic2τ

)
−4iτc2 v3

+ 3e−2ic2tn ϕ1
(
(`− 2)ic2τ

)
− ϕ1

(
`ic2τ

)
−2iτc2 |v|2v

(2.75)
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and that ∫ τ

0
ei`c

2ssds = τ2 Ψ2(i`c2τ).

Proof. Due to Definition 2.21 we have that

ei`c
2sΨc2(tn, s, v) = ei`c

2s
(
se2ic2tnϕ1(2ic2s)v3 + 3se−2ic2tnϕ1(−2ic2s)|v|2v + se−4ic2tnsϕ1(−4ic2s)v3

)
which implies the assertion by the Definition 2.8 of ϕ1 and Ψ2.

With the above lemmata we can commence the construction of the second-order uniformly accurate
scheme.

Uniform second-order discretization of Duhamel’s formula
Our starting point is again Duhamel’s perturbation formula (see (2.32))

u∗(tn + τ) = eiτAcu∗(tn)

− i

8c〈∇〉
−1
c

∫ τ

0
ei(τ−s)Ace−ic

2(tn+s)
(

eic
2(tn+s)u∗(tn + s) + e−ic

2(tn+s)u∗(tn + s)
)3

ds

which we split into two parts by separating the linear and classical cubic part |u∗|2u∗ from the terms
involving u3

∗, u∗3 and |u∗|2u∗. More precisely, we set

u∗(tn + τ) = I∗(τ, tn, u∗)−
i

8c〈∇〉
−1
c Ic2(τ, tn, u∗) (2.76)

with the linear as well as classical cubic part |u∗|2u∗ defined in I∗

I∗(τ, tn, u∗) := eiτAcu∗(tn)− 3i
8 c〈∇〉

−1
c

∫ τ

0
ei(τ−s)Ac |u∗(tn + s)|2u∗(tn + s)ds (2.77)

and the terms involving u3
∗, u∗

3 and |u∗|2u∗ defined in Ic2

Ic2(τ, tn, u∗) :=
∫ τ

0
ei(τ−s)Ac

(
e2ic2(tn+s)u3

∗(tn + s)

+ 3e−2ic2(tn+s)|u∗(tn + s)|2u∗(tn + s) + e−4ic2(tn+s)u∗
3(tn + s)

)
ds.

(2.78)

In order to obtain a second-order uniformly accurate scheme based on the decomposition (2.76) we need
to carefully analyze the highly oscillatory phases in I∗(τ, tn, u∗) and Ic2(τ, tn, u∗). We commence with
the analysis of I∗(τ, tn, u∗).

1.) First term I∗(τ, tn, u∗): By Lemma 2.23 we have that

u∗(tn + s) = eisAcu∗(tn)− 3i
8 c〈∇〉

−1
c

∫ s

0
ei(s−ξ)Ac

∣∣eiξAcu∗(tn)
∣∣2 (eiξAcu∗(tn)

)
dξ

− i

8c〈∇〉
−1
c Ψc2(tn, s, u∗(tn)) +R1(tn, s, u∗)

(2.79)

with Ψc2 defined in (2.63) and where the remainder R1 is of order O(s2) uniformly in c. Plugging the
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approximation (2.79) into I∗(τ, tn, u∗) defined in (2.77) yields that

I∗(τ, tn, u∗) = eiτAcu∗(tn)− 3i
8 c〈∇〉

−1
c

∫ τ

0
ei(τ−s)Ac |u∗(tn + s)|2u∗(tn + s)ds

= eiτAcu∗(tn)− 3i
8 c〈∇〉

−1
c I1
∗ (τ, tn, u∗)

+ 3i
8 c〈∇〉

−1
c

i

8

∫ τ

0
ei(τ−s)Ac

{
2
∣∣eisAcu∗(tn)

∣∣2 c〈∇〉−1
c Ψc2(tn, s, u∗(tn))

−
(
eisAcu∗(tn)

)2
c〈∇〉−1

c Ψc2(tn, s, u∗(tn))
}

ds

+R(τ, tn, u∗),

(2.80)

where we have set

I1
∗ (τ, tn, u∗) :=

∫ τ

0
ei(τ−s)Ac

{∣∣eisAcu∗(tn)
∣∣2 eisAcu∗(tn)

− 3i
4
∣∣eisAcu∗(tn)

∣∣2 c〈∇〉−1
c

∫ s

0
ei(s−ξ)Ac |eiξAcu∗(tn)|2eiξAcu∗(tn)dξ

+ 3i
8
(
eisAcu∗(tn)

)2
c〈∇〉−1

c

∫ s

0
e−i(s−ξ)Ac |eiξAcu∗(tn)|2e−iξAcu∗(tn)dξ

}
ds.

The remainder satisfies
‖R(τ, tn, u∗)‖r ≤ τ3kr,M4 , (2.81)

for some constant kr,M4 which depends on M4, but is independent of c.
Lemma 2.28 allows us to handle the highly oscillatory integrals involving the function Ψc2 in (2.80). Thus,
in order to obtain a uniform second-order approximation of I∗(τ, tn, u∗), it remains to derive a suitable
second-order approximation to I1

∗ (τ, tn, u∗).
1.1.) Approximation of I1

∗ (τ, tn, u∗): The midpoint rule yields the following approximation

I1
∗ (τ, tn, u∗) = τei τ2Ac

{∣∣ei τ2Acu∗(tn)
∣∣2 ei τ2Acu∗(tn)

− 3i
4
∣∣ei τ2Acu∗(tn)

∣∣2 c〈∇〉−1
c

∫ τ/2

0
ei( τ2−ξ)Ac |eiξAcu∗(tn)|2eiξAcu∗(tn)dξ

+ 3i
8
(
ei τ2Acu∗(tn)

)2
c〈∇〉−1

c

∫ τ/2

0
e−i( τ2−ξ)Ac |eiξAcu∗(tn)|2e−iξAcu∗(tn)dξ

}
+R(τ, tn, u∗(tn)),

(2.82)

where the remainder satisfies thanks to (2.27) and (2.30) that

‖R(τ, tn, u∗(tn))‖r ≤ τ3kr,M4 (2.83)

with kr,M4 independent of c.
Next, we approximate the two remaining integrals in (2.82) with the right rectangular rule, i.e.,∫ τ/2

0
ei( τ2−ξ)Ac |eiξAcu∗(tn)|2eiξAcu∗(tn)dξ = τ

2 |e
i τ2Acu∗(tn)|2ei τ2Acu∗(tn) +R(τ, tn, u∗(tn)), (2.84)

where, again thanks to (2.27), the remainder satisfies

‖R(τ, tn, u∗(tn))‖r ≤ τ2kr,M4 (2.85)
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with kr,M4 independent of c.
Plugging (2.84) into (2.82) and using the notation

U∗(tn) = ei τ2Acu∗(tn)

yields that

I1
∗ (τ, tn, u∗) = ei τ2Ac

{
τ |U∗(tn)|2 U∗(tn)

− τ2

2
3i
4 |U∗(tn)|2 c〈∇〉−1

c |U∗(tn)|2U∗(tn) + τ2

2
3i
8 U∗(tn)2c〈∇〉−1

c |U∗(tn)|2U∗(tn)
}

+R(τ, tn, u∗(tn)),

where thanks to (2.81), (2.83) and (2.85) the remainder satisfies the bound ‖R(τ, tn, u∗(tn))‖r ≤ τ2kr,M4

with kr,M4 independent of c.
In order to obtain asymptotic convergence to the classical Strang splitting scheme (2.3) associated to the
nonlinear Schrödinger limit (2.2), we add and subtract the term

ei τ2Ac τ
2

2
3i
8 |U∗(tn)|4U∗(tn)

in the above approximation to I1
∗ (τ, tn, u∗). This yields that

I1
∗ (τ, tn, u∗) = ei τ2Ac

{
τ |U∗(tn)|2 U∗(tn)− τ2

2
3i
8 |U∗(tn)|4U∗(tn)

− τ2

2
3i
4 |U∗(tn)|2

(
c〈∇〉−1

c − 1
)
|U∗(tn)|2U∗(tn)

+ τ2

2
3i
8 U∗(tn)2(c〈∇〉−1

c − 1
)
|U∗(tn)|2U∗(tn)

}
+R(τ, tn, u∗(tn)).

(2.86)

The above decomposition allows us a second-order approximation of I∗(τ, tn, u∗) which holds uniformly
in all c.
1.2.) Final approximation of I∗(τ, tn, u∗): Plugging (2.86) into (2.80) and exploiting Lemma 2.28 yields
that

I∗(τ, tn, u∗) = ei τ2Ac
{
U∗(tn)− 3i

8 τ |U∗(tn)|2 U∗(tn) +
(
−3i

8

)2
τ2

2 |U∗(tn)|4U∗(tn)
}

− τ 3i
8

(
c〈∇〉−1

c − 1
)

ei τ2Ac |U∗(tn)|2 U∗(tn) + τ2θc〈∇〉c−1 (tn, τ,U∗(tn))

− τ2 3
32c〈∇〉

−1
c |u∗(tn)|2 c〈∇〉−1

c ϑc2(tn, τ, u∗(tn))

+ τ2 3
64c〈∇〉

−1
c (u∗(tn))2

c〈∇〉−1
c ϑc2(tn, τ, u∗(tn)) +R(τ, tn, u∗)

with a remainder R of order O(τ3) uniformly in c. Furthermore, The formal Taylor series expansion∣∣∣1 + x+ x2

2 − ex
∣∣∣ = O(x3)

allows us the following final representation of I∗:

I∗(τ, tn, u∗) = ei τ2Acexp
(
−3i

8 τ |U∗(tn)|2
)
U∗(tn)

− τ 3i
8

(
c〈∇〉−1

c − 1
)

ei τ2Ac |U∗(tn)|2 U∗(tn) + τ2θc〈∇〉c−1 (tn, τ,U∗(tn))

− τ2 3
32c〈∇〉

−1
c |u∗(tn)|2 c〈∇〉−1

c ϑc2(tn, τ, u∗(tn))

+ τ2 3
64c〈∇〉

−1
c (u∗(tn))2

c〈∇〉−1
c ϑc2(tn, τ, u∗(tn)) +R(τ, tn, u∗)

(2.87)
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with

θc〈∇〉c−1(tn, τ, v) := −1
2

9
64ei τ2Ac

(
c〈∇〉−1

c − 1
)
|v|4 v − 1

2
9
32c〈∇〉

−1
c ei τ2Ac |v|2

(
c〈∇〉−1

c − 1
)
|v|2v

+ 1
2

9
64c〈∇〉

−1
c ei τ2Acv2

(
c〈∇〉−1

c − 1
)
|v|2v

(2.88)

and where ϑc2 is defined in (2.73) and the remainder R(τ, tn, u∗) satisfies

‖R(τ, tn, u∗(tn))‖r ≤ τ3kr,M4 (2.89)

with kr,M4 independent of c. The approximation of I∗(τ, tn, u∗) given in (2.87) provides the first terms
in our numerical scheme. In order to obtain a full approximation to u∗(tn + τ) in (2.76) we next derive
a second-order approximation to the integral term Ic2(τ, tn, u∗).

2.) Second term Ic2(τ, tn, u∗): Combining the second approximation in Lemma 2.23 yields together with
Lemma 2.6 and by the definition of Ic2(τ, tn, u∗) in (2.78) that

Ic2(τ, tn, u∗) =
∫ τ

0
ei(τ−s)Ac

{
e2ic2(tn+s) (eisAcu∗(tn)

)3 + 3e−2ic2(tn+s) ∣∣eisAcu∗(tn)
∣∣2 e−isAcu∗(tn)

+ e−4ic2(tn+s) (e−isAcu∗(tn)
)3 }ds

+
∫ τ

0

{
− 3i

8 e2ic2(tn+s) (u∗(tn))2
c〈∇〉−1

c

[
3s|u∗(tn)|2u∗(tn) + Ψc2(tn, s, u∗(tn))

]
+ 3e−2ic2(tn+s)

(
− i

8 (u∗(tn))2
c〈∇〉−1

c

[
3s|u∗(tn)|2u∗(tn) + Ψc2(tn, s, u∗(tn))

]
+ 2i

8 |u∗(tn)|2 c〈∇〉−1
c

[
3s|u∗(tn)|2u∗(tn) + Ψc2(tn, s, u∗(tn))

])
+ 3i

8 e−4ic2(tn+s) (u∗(tn))2
c〈∇〉−1

c

[
3s|u∗(tn)|2u∗(tn) + Ψc2(tn, s, u∗(tn))

]}
ds

+R(tn, τ, u∗)

with Ψc2 defined in (2.63) and where thanks to Lemma 2.6, Lemma 2.23, and due to the fact that Ψc2 is
of order one in s uniformly in c the remainder satisfies ‖R(τ, tn, u∗(tn))‖r ≤ τ3kr,M4 with kr independent
of c.

Lemma 2.24, 2.26 together with Lemma 2.29 thus allow us the following expansion of Ic2 , i.e., we have

Ic2(τ, tn, u∗) = I1
c2(τ, tn, u∗) +R(tn, τ, u∗) (2.90)



2.3. Uniformly Accurate Methods for the Klein–Gordon Equation 45

with the highly oscillatory term

I1
c2(τ, tn, u∗) := τe2ic2tneiτAcϕ1

(
iτ(2c2 − 1

2∆)
)
u3
∗(tn)

+ iτ2e2ic2tneiτAcΨ2
(
iτ(2c2 − 1

2∆)
) [

( 1
2∆−Ac)u3

∗(tn) + 3u2
∗(tn)Acu∗(tn)

]
+ 3τe−2ic2tneiτAcϕ1(iτ(−2c2 −Ac)) |u∗(tn)|2 u∗(tn)

+ 3iτ2e−2ic2tneiτAcΨ2(iτ(−2c2 −Ac))
[
u∗

2(tn)Acu∗(tn)− 2|u∗(tn)|2Acu∗(tn)
]

+ τe−4ic2tneiτAcϕ1(iτ(−4c2 −Ac))u∗3(tn)

− iτ2e−4ic2tneiτAcΨ2(iτ(−4c2 −Ac))3u∗2(tn)Acu∗(tn)

− τ2 3i
8 e2ic2tn (u∗(tn))2

c〈∇〉−1
c

[
3Ψ2(2ic2τ)|u∗(tn)|2u∗(tn) + Ωc2,2,(tn, τ, u∗(tn))

]
− τ2 3i

8 e−2ic2tn (u∗(tn))2
c〈∇〉−1

c

[
3Ψ2(−2ic2τ)|u∗(tn)|2u∗(tn) + Ωc2,−2(tn, τ, u∗(tn))

]
+ τ2 6i

8 e−2ic2tn |u∗(tn)|2 c〈∇〉−1
c

[
3Ψ2(−2ic2τ)|u∗(tn)|2u∗(tn) + Ωc2,−2(tn, τ, u∗(tn))

]
+ τ2 3i

8 e−4ic2tn (u∗(tn))2
c〈∇〉−1

c

[
3Ψ2(−4ic2τ)|u∗(tn)|2u∗(tn) + Ωc2,−4(tn, τ, u∗(tn))

]
+R(tn, τ, u∗),

(2.91)

where Ωc2,` is defined in Lemma 2.29, and the remainder satisfies

‖R(tn, τ, u∗)‖r ≤ τ3kr,M4 (2.92)

with kr,M4 independent of c.

3.) Final approximation of u∗(tn + τ): Plugging (2.87) as well as (2.90) into (2.76) builds the basis of
our second-order scheme. As a numerical approximation to the exact solution u∗ at time tn+1 we take
the second-order uniform accurate exponential-type integrator

Un∗ = ei τ2Acun∗

and obtain

un+1
∗ = ei τ2Ace−iτ 3

8 |Un∗ |2Un∗

− τ 3i
8

(
c〈∇〉−1

c − 1
)

ei τ2Ac |Un∗ |2 Un∗ + τ2θc〈∇〉c−1 (tn, τ,Un∗ )

− τ2 3
64c〈∇〉

−1
c

[
2 |un∗ |2 c〈∇〉−1

c ϑc2(tn, τ, un∗ )− (un∗ )
2
c〈∇〉−1

c ϑc2(tn, τ, un∗ )
]

− i

8c〈∇〉
−1
c I1

c2(τ, tn, un∗ ),

u0
∗ = z(0)− ic−1〈∇〉−1

c ∂tz(0),

(2.93)

where I1
c2(τ, tn, un∗ ) is defined in (2.91) and with ϕ1,Ψ2 given in Definition 2.8, θc〈∇〉c−1 given in (2.88), ϑc2

in (2.73) and Ωc2,` in (2.75).

We continue with the convergence analysis of the uniformly accurate second-order scheme.
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2.3.3.2 Convergence Analysis

By construction the exponential-type integration scheme (2.93) converges with second-order accuracy in
time uniformly with respect to c.

Theorem 2.30 (Convergence bound for the second-order scheme, cf. Theorem 27 in [13]). Fix r > d/2
and assume that

‖z(0)‖r+4 + ‖c−1〈∇〉−1
c ∂tz(0)‖r+4 ≤M4 (2.94)

uniformly in c. For un∗ defined in (2.93) we set

zn := 1
2

(
eic

2tnun∗ + e−ic
2tnun∗

)
.

Then, there exists a T > 0 and τ0 > 0 such that for all τ ≤ τ0 and tn ≤ T we have for all c > 0 that

‖z(tn)− zn‖r ≤ τ2K∗r,T,M,M4
,

where the constant K∗r,T,M,M4
can be chosen independently of c.

Proof. Firstly, note that the regularity assumption on the initial data in (2.94) implies the regularity
Assumption 2.20 on u∗(t), i.e., there exists a T > 0 such that

sup
0≤t≤T

‖u∗(t)‖r+4 ≤ k(M4),

for some constant k that depends on M4 and T , but can be chosen independently of c.
Furthermore in the following, we denote by kr, Kr and Kr,M constants depending only on r or r,M
respectively, but which can be chosen independently of c.
In the following let φt denote the exact flow of (2.31), i.e., u∗(tn+1) = φτ (u∗(tn)) and let Φτ denote the
numerical flow defined in (2.93), i.e.,

un+1
∗ = Φτ (un∗ ).

For the further analysis, we consider the difference of (2.32) and (2.93), i.e.,

u∗(tn+1)− un+1
∗ = φτ (u∗(tn))− Φτ (un∗ )

= Φτ (u∗(tn))− Φτ (un∗ ) + φτ (u∗(tn))− Φτ (u∗(tn))
(2.95)

which represents an expression of the global error of our scheme.
Local error bound: With the aid of the expansions (2.87) and (2.90) we obtain by the representation of
the exact solution in (2.76) together with the error bounds (2.89) and (2.92) that

‖φτ (u∗(tn))− Φτ (u∗(tn))‖r = ‖R(τ, tn, u∗)‖r ≤ τ3kr,M4 , (2.96)

for some constant kr,M4 which depends on M4 and r, but can be chosen independently of c.
Stability bound: Note that by definition of Ψ2 in Definition 2.8, θc〈∇〉c−1 in (2.88), ϑc2 in (2.73) and Ωc2,`
in (2.75) we have for ` = −4,−2, 2 that

τ2
(
‖Ψ2(`ic2t)(f − g)‖r + ‖Ωc2,`(tn, τ, f)− Ωc2,`(tn, τ, g)‖r + ‖ϑc2(tn, τ, f)−ϑc2(tn, τ, g)‖r

)
≤ τkr (‖f‖r, ‖g‖r) ‖f − g‖r

(2.97)

for some constant kr independent of c .



2.3. Uniformly Accurate Methods for the Klein–Gordon Equation 47

We have

u∗(tn+1) = ei τ2Ace−iτ 3
8 |U∗(tn)|2U∗(tn)− τ 3i

8

(
c〈∇〉−1

c − 1
)

ei τ2Ac |U∗(tn)|2 U∗(tn)

+ τ2θc〈∇〉c−1 (tn, τ,U∗(tn))

− τ2 3
64c〈∇〉

−1
c

[
2 |u∗(tn)|2 c〈∇〉−1

c ϑc2(tn, τ, u∗(tn))− (u∗(tn))2
c〈∇〉−1

c ϑc2(tn, τ, u∗(tn))
]

− i

8c〈∇〉
−1
c I1

c2(τ, tn, u∗(tn))

= E1 + E2 + E3 + E4 + E5

with U∗(tn) = ei
τ
2Acu∗(tn) and where we set

E1 := ei τ2Ace−iτ 3
8 |U∗(tn)|2U∗(tn),

E2 := −τ 3i
8

(
c〈∇〉−1

c − 1
)

ei τ2Ac |U∗(tn)|2 U∗(tn),

E3 := τ2θc〈∇〉c−1 (tn, τ,U∗(tn)) ,

E4 := −τ2 3
64c〈∇〉

−1
c

[
2 |u∗(tn)|2 c〈∇〉−1

c ϑc2(tn, τ, u∗(tn))− (u∗(tn))2
c〈∇〉−1

c ϑc2(tn, τ, u∗(tn))
]
,

E5 := − i8c〈∇〉
−1
c I1

c2(τ, tn, u∗(tn)).

We also have

un+1
∗ = ei τ2Ace−iτ 3

8 |Un∗ |2Un∗ − τ
3i
8

(
c〈∇〉−1

c − 1
)

ei τ2Ac |Un∗ |2 Un∗ + τ2θc〈∇〉c−1 (tn, τ,Un∗ )

− τ2 3
64c〈∇〉

−1
c

[
2 |un∗ |2 c〈∇〉−1

c ϑc2(tn, τ, un∗ )− (un∗ )
2
c〈∇〉−1

c ϑc2(tn, τ, un∗ )
]

− i

8c〈∇〉
−1
c I1

c2(τ, tn, un∗ )

= N1 +N2 +N3 +N4 +N5

with Un∗ = ei
τ
2Acun∗ and where we set

N1 := ei τ2Ace−iτ 3
8 |Un∗ |2Un∗ ,

N2 := −τ 3i
8

(
c〈∇〉−1

c − 1
)

ei τ2Ac |Un∗ |2 Un∗ ,

N3 := τ2θc〈∇〉c−1 (tn, τ,Un∗ ) ,

N4 := −τ2 3
64c〈∇〉

−1
c

[
2 |un∗ |2 c〈∇〉−1

c ϑc2(tn, τ, un∗ )− (un∗ )
2
c〈∇〉−1

c ϑc2(tn, τ, un∗ )
]
,

N5 := − i8c〈∇〉
−1
c I1

c2(τ, tn, un∗ ).

Now, we take the difference of E1 and N1. As eitAc is a linear isometry (see Lemma 2.6) for all t ∈ R we
obtain

‖E1 −N1‖r =
∥∥∥ei τ2Ace−iτ 3

8 |U∗(tn)|2U∗(tn)− ei τ2Ace−iτ 3
8 |Un∗ |2Un∗

∥∥∥
r

=
∥∥∥e−iτ 3

8 |U∗(tn)|2U∗(tn)− e−iτ 3
8 |Un∗ |2Un∗

∥∥∥
r

≤
∥∥∥e−iτ 3

8 |U∗(tn)|2U∗(tn)− e−iτ 3
8 |U∗(tn)|2Un∗

∥∥∥
r

+
∥∥∥e−iτ 3

8 |U∗(tn)|2Un∗ − e−iτ 3
8 |Un∗ |2Un∗

∥∥∥
r

≤
∥∥∥e−iτ 3

8 |U∗(tn)|2
∥∥∥
r
‖U∗(tn)− Un∗ ‖r +

∥∥∥e−iτ 3
8 |U∗(tn)|2 − e−iτ 3

8 |Un∗ |2
∥∥∥
r
‖Un∗ ‖r.
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We use the definitions of Un∗ , U∗(tn) and obtain

‖E1 −N1‖r ≤
∥∥∥e−iτ

3
8

∣∣ei τ2Acu∗(tn)
∣∣2∥∥∥

r
‖ei τ2Acu∗(tn)− ei τ2Acun∗‖r

+
∥∥∥e−iτ

3
8

∣∣ei τ2Acu∗(tn)
∣∣2 − e−iτ

3
8

∣∣ei τ2Acun∗ ∣∣2∥∥∥
r
‖ei τ2Acun∗‖r

=
∥∥∥e−iτ

3
8

∣∣ei τ2Acu∗(tn)
∣∣2∥∥∥

r
‖u∗(tn)− un∗‖r +

∥∥∥e−iτ
3
8

∣∣ei τ2Acu∗(tn)
∣∣2 − e−iτ

3
8

∣∣ei τ2Acun∗ ∣∣2∥∥∥
r
‖un∗‖r.

In the following we assume that

‖u∗(tn)‖r ≤M and ‖un∗‖r ≤ 2M.

Exploiting these assumptions, the linear isometry property of eitAc and the Taylor series expansion of
the exponential function we obtain that∥∥∥∥e−iτ

3
8

∣∣ei τ2Acu∗(tn)
∣∣2 − 1

∥∥∥∥
r

≤ τKr,M ,

1 + τKr,M ≤ eτKr,M .

Therefore, we have

‖E1 −N1‖r ≤ eτKr,M ‖u∗(tn)− un∗‖r +KM

∥∥∥∥e−iτ
3
8

∣∣ei τ2Acu∗(tn)
∣∣2 − e−iτ

3
8

∣∣ei τ2Acun∗ ∣∣2∥∥∥∥
r

.

Applying once more the Taylor series expansion of the exponential function again and using that eitAc is
a linear isometry for all t ∈ R we obtain analogously to the proof of Theorem 2.13 that

‖E1 −N1‖r ≤ eτKr,M ‖u∗(tn)− un∗‖r.

Similar bounds can be established for ‖E2 − N2‖r, ‖E3 − N3‖r, ‖E4 − N4‖r, and ‖E5 − N5‖r by using
the same trick as for ‖E1 − N1‖r and applying the estimate (2.97) together with the bound (2.30), the
definition of ϕ1 in Definition 2.8, and the stability estimates (2.69) and (2.72). For ‖E5 −N5‖r we have
also take into account Remark 2.25 and in particular the estimate (2.72).
As long as ‖u∗(tn)‖r ≤M and ‖un∗‖r ≤ 2M , we thus find the stability bound

‖Φτ (u∗(tn))− Φτ (un∗ )‖r ≤ eτKr,M ‖u∗(tn)− un∗‖r, (2.98)

where the constant Kr,M depends on r and M , but can be chosen independently of c.
Global error bound: Plugging the stability bound (2.98) as well as the local error bound (2.96) into (2.95)
yields by a bootstrap argument that

‖u∗(tn)− un∗‖r ≤ τ2Kr,M4eTKr,M ≤ τ2K∗r,T,M,M4
, (2.99)

where the constants Kr,M4 , Kr,M , and K∗r,T,M,M4
are uniformly bounded in c. Since z is real and

thus u = v, the identities z = 1
2 (u+ v) from (2.6) and u∗ = e−ic2tu, v∗ = e−ic2tv from (2.24) imply that

‖z(tn)− zn‖r =
∥∥∥ 1

2
(
u(tn) + u(tn)

)
− 1

2
(
eic2tn un∗ + e−ic2tn un∗

)∥∥∥
r

≤ ‖u(tn)− eic
2tnun∗‖r

= ‖eic2tn(u∗(tn)− un∗ )‖r = ‖u∗(tn)− un∗‖r.

Together with the bound in (2.99) this completes the proof.
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Remark 2.31 (Fractional convergence and convergence in L2). A fractional convergence result as The-
orem 2.15 for the first-order scheme also holds for the second-order exponential-type integrator (2.93):
Fix r > d/2 and let 0 ≤ γ ≤ 1. Assume that

‖z(0)‖r+2+2γ + ‖c−1〈∇〉−1
c ∂tz(0)‖r+2+2γ ≤M2+2γ .

Then, the scheme (2.93) is convergent of order τ1+γ in Hr uniformly with respect to c.
Furthermore, for initial values satisfying

‖z(0)‖r+4 + ‖c−1〈∇〉−1
c ∂tz(0)‖r+4 ≤M4

the exponential-type integration scheme (2.93) is second-order convergent in L2 uniformly with respect
to c by the strategy presented in [50].

In analogy to Remark 2.16 we make the following observation: for sufficiently smooth solutions the
exponential-type integration scheme (2.93) converges in the limit c →∞ to the classical Strang splitting
of the corresponding nonlinear Schrödinger limit equation (2.2).

Remark 2.32 (Approximation in the non-relativistic limit c → ∞). The exponential-type integration
scheme (2.93) converges for sufficiently smooth solutions in the limit un∗

c→∞−→ un∗,∞, essentially to the
Strang Splitting (see [25, 50])

un+1
∗,∞ = e−i τ2 ∆

2 e−iτ 3
8 |e
−i τ2

∆
2 un∗,∞|2e−i τ2 ∆

2 un∗,∞, u0
∗,∞ = z0 − iz1, (2.100)

for the cubic nonlinear Schrödinger limit system (2.2).

More precisely, the following Lemma holds.

Lemma 2.33 (cf. Lemma 30 in [13]). Fix r > d/2. Assume that

‖z(0)‖r+3 + ‖c−1〈∇〉−1
c ∂tz(0)‖r+3 ≤M3,

for some ε > 0 uniformly in c and let the initial value approximation (there exist functions z0, z1 such
that)

‖z(0)− z0‖r + ‖c−1〈∇〉−1
c ∂tz(0)− z1‖r ≤ krc−1

hold for some constant kr independent of c.
Then, there exists a T > 0 and τ0 > 0 such that for all τ ≤ τ0 the difference of the second-order
scheme (2.93) for system (2.31) and the Strang splitting (2.100) for the limit Schrödinger equation (2.2)
satisfies for tn ≤ T and all c > 0 with

τc ≥ 1

that
‖un∗ − un∗,∞‖r ≤ c−1kr,T,M3 ,

for some constant kr,T,M3 that depends on M3 and T , but is independent of c.

Proof. The proof follows the same step as in the proof of Lemma 2.17 by noting that
for ` = −4,−2 and n = −4,−2, 2

τ
(
‖ϕj(2iτ〈∇〉2c)‖r + ‖ϕj

(
iτ(`c2 −Ac)

)
‖r + ‖ϕj(nic2τ)‖r

)
≤ krc−2,

for some constant kr independent of c.
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2.3.3.3 Simplifications in the “Weakly to Strongly non-relativistic Limit Regime”

In the “weakly to strongly non-relativistic limit regime”, i.e., for large values of c, we may again (sub-
stantially) simplify the second-order scheme (2.93) and nevertheless obtain a well suited, second-order
approximation to u∗(tn) in (2.31).

Remark 2.34 (Limit scheme [26]). For sufficiently large values of c and sufficiently smooth solutions,
more precisely, if

‖z(0)‖r+4 + ‖c−1〈∇〉−1
c ∂tz(0)‖r+4 ≤M4 and τc > 1

we may take instead of (2.93) the classical Strang splitting (see [25, 50]) for the nonlinear Schrödinger
limit equation (2.2), this yields

un+1
∗,∞ = e−i τ2 ∆

2 e−iτ 3
8 |e
−i τ2

∆
2 un∗,∞|2e−i τ2 ∆

2 un∗,∞

as a second-order numerical approximation to u∗(tn) in (2.31). The assertion follows from [26] thanks to
the approximation

‖u∗(tn)− un∗,∞‖r ≤ ‖u∗(tn)− u∗,∞(tn)‖r + ‖u∗,∞(tn)− un∗,∞‖r = O
(
c−2 + τ2).

In the next section we numerically underline the first- and second-order convergence results of the uni-
formly accurate exponential-type integration schemes. Furthermore, we numerically compare our uni-
formly accurate methods with standard time integration schemes in Section 2.4.4.

2.4 Numerical Experiments for the Klein–Gordon Equation

In this section we numerically underline first-, respectively, second-order convergence uniformly in c of the
newly developed exponential-type integration schemes (2.39) and (2.93). We also confirm the convergence
of the first- and second-order uniformly accurate schemes to the corresponding limit integrator for c→∞.
We consider the Klein–Gordon equation on the one dimensional torus, i.e. x ∈ T = [0, 2π] and on a
finite time interval, i.e. t ∈ [0, T ]. In all numerical experiments we use a standard Fourier pseudospectral
method for the spatial discretization. For more details on pseudospectral methods we refer to [27, 69, 70].
The mesh-size is denoted by h = 2π

M , for M ∈ N with grid points xj = jh and time step size τ = T
N with

grid points tn = nτ , for j = 0, ...,M and n = 0, ..., N , respectively. In order to use the Fourier transform
efficiently we choose M = 2k, with k ∈ N. For practical implementation of the Fourier transform in
Matlab, we introduce the Fourier grid K =

[
−M2 : −1, 0, 1 : M2 − 1

]
.

In the following we choose M = 210, i.e. we have the spatial mesh-size h = 0.0061, and integrate up
to T = 1 in all numerical simulations.
In all numerical methods for the Klein–Gordon equation we use the following initial values

z(0, x) = 1
2

cos(3x)2sin(2x)
2− cos(x) ,

∂tz(0, x) = c2
1
2

sin(x)cos(2x)
2− cos(x) .

(2.101)
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Since we cannot state an exact solution of the Klein–Gordon we have to compute a reference solution.
Therefore, in Section 2.4.1 we derive a Gautschi-type method following the ansatz of [9] in order to
compute the reference solution. We also derive a classical exponential integrator. Then, we recall the nu-
merical method for the limit system in Section 2.4.2 and the uniformly accurate methods in Section 2.4.3.
Finally, we compare the different numerical methods in Section 2.4.4.

2.4.1 Numerical Methods for the Reference Solution

In this subsection based on [4, 39] we state two types of numerical reference methods, namely a second-
order Gautschi-type method in Section 2.4.1.1 and a first-order exponential integrator in Section 2.4.1.2
for the Klein–Gordon equation.

2.4.1.1 A Gautschi-type Method for the Klein–Gordon Equation

We use the techniques of [4] for the construction of a two step Gautschi-type method. Therefore, we
recall the Klein–Gordon equation

∂ttz + c2〈∇〉2cz = c2|z|2z, z(0) = z0, ∂tz(0) = c2z1.

Using the variation of constants formula for second-order equations, we obtain

z(tn + τ) = cos(τc〈∇〉c)z(tn) + τ
sin(τc〈∇〉c)
τc〈∇〉c

ż(tn) + c2
∫ τ

0

sin ((τ − s)c〈∇〉c)
c〈∇〉c

|z(tn + s)|2z(tn + s)ds,

ż(tn + τ) = −c〈∇〉c sin(τc〈∇〉c)z(tn) + cos(τc〈∇〉c)ż(tn)

+ c2
∫ τ

0
cos ((τ − s)c〈∇〉c) |z(tn + s)|2z(tn + s)ds,

(2.102)

where ż denotes the partial derivative of z with respect to t.
For n = 0 we have

z(t1) = cos(τc〈∇〉c)z(0) + τ
sin(τc〈∇〉c)
τc〈∇〉c

ż(0) + c2
∫ τ

0

sin ((τ − s)c〈∇〉c)
c〈∇〉c

|z(s)|2z(s)ds,

ż(t1) = −c〈∇〉c sin(τc〈∇〉c)z(0) + cos(τc〈∇〉c)ż(0) + c2
∫ τ

0
cos ((τ − s)c〈∇〉c) |z(s)|2z(s)ds.

(2.103)

For n ≥ 1, we consider the solution z in tn+1 and tn−1 in (2.102) and add z(tn+1) and z(tn−1), such that
with cos(−x) = cos(x) and sin(−x) = − sin(x) we have that

z(tn+1) + z(tn−1) = 2 cos(τc〈∇〉c)z(tn)

+ c2
∫ τ

0

sin ((τ − s)c〈∇〉c)
c〈∇〉c

(
|z(tn + s)|2z(tn + s) + |z(tn − s)|2z(tn − s)

)
ds,

ż(tn+1) + ż(tn−1) = 2 cos(τc〈∇〉c)ż(0)

+ c2
∫ τ

0
cos ((τ − s)c〈∇〉c)

(
|z(tn + s)|2z(tn + s) + |z(tn − s)|2z(tn − s)

)
ds.
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We solve the equations for z(tn+1), ż(tn+1) and obtain

z(tn+1) = 2 cos(τc〈∇〉c)z(tn)− z(tn−1)

+ c2
∫ τ

0

sin ((τ − s)c〈∇〉c)
c〈∇〉c

(
|z(tn + s)|2z(tn + s) + |z(tn − s)|2z(tn − s)

)
ds,

ż(tn+1) = 2 cos(τc〈∇〉c)ż(tn)− ż(tn−1)

+ c2
∫ τ

0
cos ((τ − s)c〈∇〉c)

(
|z(tn + s)|2z(tn + s) + |z(tn − s)|2z(tn − s)

)
ds.

(2.104)

We approximate the integrals in (2.104) as follows∫ τ

0

sin ((τ − s)c〈∇〉c)
c〈∇〉c

(
|z(tn + s)|2z(tn + s) + |z(tn − s)|2z(tn − s)

)
ds

≈ 2
∫ τ

0

sin ((τ − s)c〈∇〉c)
c〈∇〉c

ds |z(tn)|2z(tn)

= 21− cos(τc〈∇〉c)
c2〈∇〉2c

|z(tn)|2z(tn),∫ τ

0
cos ((τ − s)c〈∇〉c)

(
|z(tn + s)|2z(tn + s) + |z(tn − s)|2z(tn − s)

)
ds

≈ 2
∫ τ

0
cos ((τ − s)c〈∇〉c) ds |z(tn)|2z(tn)

= 2sin(τc〈∇〉c)
c〈∇〉c

|z(tn)|2z(tn).

(2.105)

Next, we compute the integrals in (2.103) with the same approximation as in (2.105) and insert the
approximations (2.105) into (2.104). Therefore, we obtain the following two step iteration scheme for
n = 0

z1 = cos(τc〈∇〉c)z0 + τ
sin(τc〈∇〉c)
τc〈∇〉c

ż0 + c2
1− cos(τc〈∇〉c)

c2〈∇〉2c
|z0|2z0,

ż1 = −c〈∇〉c sin(τc〈∇〉c)z0 + cos(τc〈∇〉c)ż0 + c2
sin(τc〈∇〉c)
c〈∇〉c

|z0|2z0,

and for n ≥ 1

zn+1 = 2 cos(τc〈∇〉c)zn − zn−1 + 2c2 1− cos(τc〈∇〉c)
c2〈∇〉2c

|zn|2zn,

żn+1 = 2 cos(τc〈∇〉c)żn − żn−1 + 2c2 sin(τc〈∇〉c)
c〈∇〉c

|zn|2zn

with initial data
z0 = z(0), ż0 = ∂tz(0).

For a detailed error analysis of this method we refer to [4]. We implement the Gautschi-type method
in order to obtain a reference solution for our Klein–Gordon equation. For the spatial discretization we
use a Fourier pseudospectral method with the largest Fourier mode M = 210 (i.e., the spatial mesh-
size h = 0.0061) and integrate up to time T = 1. In Figure 2.4 we plot (double logarithmic) the time
step size versus the error in z measured in a discrete H1 norm for different values c = 1, 5, 10, 50, 100. As
a reference solution we use the scheme itself with a finer time step size τ ≈ 10−6. Figure 2.4 confirms
the behavior of the numerical solution, shown in Figure 2.1, i.e., that it suffers from severe time step
restrictions.
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Figure 2.4: Order plot of the Gautschi-type method (double logarithmic scale). Time step size versus error.
The slope of the dashed line is two. Reference solution computed via the scheme itself with a finer time step
size τ ≈ 10−6.

2.4.1.2 A Classical Exponential Integrator for the Klein–Gordon Equation

Based on [39], we now derive a classical exponential integration scheme for the Klein–Gordon equation.
For more details and a rigorous error analysis of exponential integrators we refer to [39]. The KG equation
in its first-order formulation in time (see (2.7)) reads

i∂tu = −c〈∇〉cu+ 1
8c〈∇〉

−1
c |u+ v|2(u+ v), u(0) = z0 − ic〈∇〉−1

c z1,

i∂tv = −c〈∇〉cv + 1
8c〈∇〉

−1
c |u+ v|2(u+ v), v(0) = z0 − ic〈∇〉−1

c z1.

In a first step, we apply Duhamel’s formula to the above system, i.e.,

u(tn + τ) = eiτc〈∇〉cu(tn)− i

8c〈∇〉
−1
c

∫ τ

0
ei(τ−s)c〈∇〉c |u(tn + s) + v(tn + s)|2(u(tn + s) + v(tn + s))ds,

v(tn + τ) = eiτc〈∇〉cv(tn)− i

8c〈∇〉
−1
c

∫ τ

0
ei(τ−s)c〈∇〉c |u(tn + s) + v(tn + s)|2(u(tn + s) + v(tn + s))ds

and then approximate the integrals in the simplest way, i.e. by freezing the nonlinearity at s = 0 and
integrating the remaining exponential term exactly. This yields the following first-order exponential
integration scheme

un+1 = eiτc〈∇〉cun − τ i8c〈∇〉
−1
c eiτc〈∇〉cϕ1 (−iτc〈∇〉c) |un + vn|2(un + vn),

vn+1 = eiτc〈∇〉cvn − τ i8c〈∇〉
−1
c eiτc〈∇〉cϕ1 (−iτc〈∇〉c) |un + vn|2(un + vn),

which we implement for our numerical experiments, in order to obtain a reference solution for our Klein–
Gordon equation. In Figure 2.5 we plot (double logarithmic) the time step size versus the error in z



54 Chapter 2. The Klein–Gordon Equation

measured in a discrete H1 norm for different values c = 1, 5, 10, 50, 100, 500. As a reference solution we
use the scheme itself with a finer time step size τ ≈ 10−7. Furthermore, Figure 2.5 also underlines the
time step restrictions for large values of c, similar to the Gautschi scheme (see Figure 2.4).
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Figure 2.5: Order plot of the first-order exponential integrator (double logarithmic scale). The slope of the dashed
line is one. Reference solution computed via the scheme itself with a finer time step size τ ≈ 10−7.

2.4.2 Numerical Methods for the Limit System

In Section 2.2 we derived the following limit system of the Klein–Gordon equation for c → ∞, were the
solution z satisfies

z(t, x) = 1
2

(
eic

2tu∞(t, x) + e−ic
2tv∞(t, x)

)
+O(c−2),

where u∞, v∞ solve the following NLS system

i∂tu∞ = 1
2∆u∞ + 1

8

(∣∣u∞∣∣2 + 2
∣∣v∞∣∣2)u∞,

i∂tv∞ = 1
2∆v∞ + 1

8

(∣∣v∞∣∣2 + 2
∣∣u∞∣∣2) v∞ (2.106)

with initial values

u∞(0) = z0 − iz1, v∞(0) = z0 − iz1.

Because this system is independent of c, its solution is non-oscillatory, which is a huge benefit from the
numerical point of view. This allows us to solve it via a classical splitting method. For more details on
splitting methods and a detailed analysis we refer to [25, 50]. Thus, we naturally split the right hand
side of (2.106) for u∞ into the subproblems

(S1) i∂tu∞ = 1
2∆u∞,

(S2) i∂tu∞ = 1
8
(
|u∞|2 + 2|v∞|2

)
u∞.
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Analogously we split the equation for v∞. The solution of (S1) is given through

u∞(tn + τ) = e− i
2 τ∆u∞(tn).

Before considering (S2) we take a closer look on |u∞|2 and derivate it with respect to t. This yields

∂t|u∞|2 = ∂t(u∞u∞) = u∞∂tu∞ + u∞∂tu∞

= u∞

(
− i8

(
|u∞|2 + 2|v∞|2

)
u∞

)
+ u∞

(
− i8 (|u∞|2 + 2|v∞|2)u∞

)
= − i8

(
|u∞|2 + 2|v∞|2

)
|u∞|2 + i

8
(
|u∞|2 + 2|v∞|2

)
|u∞|2 = 0.

Thus, the term |u∞(t)|2 = |u∞(0)|2 is constant with respect to t, which allows us to also solve subprob-
lem (S2) exactly in time. Therefore, we obtain

u∞(tn + τ) = e− i
8 τ(|u∞(tn)|2+2|v∞(tn)|2)u∞(tn).

Connecting the two subproblems, we obtain the following iterative Lie splitting scheme

un+1
∞ = e− i

2 τ∆e− i
8 τ(|un∞|2+2|vn∞|2)un∞.

The Lie splitting scheme is a first-order numerical method. In order to compare the limit integration
scheme with the methods for the reference solution and our uniformly accurate methods, we state a
second-order splitting method called Strang splitting scheme. The Strang splitting reads

un+1
∞ = e− i

2
τ
2 ∆e

− i
8 τ

(∣∣e− i2 τ2 ∆un∞

∣∣2+2
∣∣e− i2 τ2 ∆vn∞

∣∣2)
e− i

2
τ
2 ∆un∞.

In Figure 2.6 we numerically confirm the convergence order in time of our first- and second-order splitting
method for our limit system, respectively. In the figure we plot time step size versus the error of the
Lie and Strang splitting method. The error in u∞ is measured in a discrete H1 norm. As a reference
solution we use the scheme itself with a finer time step size τ ≈ 10−7. For the spatial discretization we
use a Fourier pseudospectral method with the largest Fourier mode M = 210 and integrate up to T = 1.
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Figure 2.6: Order plot of the first- and second-order limit method (double logarithmic scale). The slope of the
yellow dashed line is one and the slope of the purple dashed line is two. Reference solution computed via the
scheme itself with a finer time step size τ ≈ 10−7.
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2.4.3 Uniformly Accurate Methods for the Klein–Gordon Equation

In this subsection we underline the first- and second-order convergence rate of our newly derived uniformly
accurate methods with numerical experiments. Recall that in Section 2.3.2 we derived the first-order
uniformly accurate scheme for the Klein–Gordon equation, which reads

un+1
∗ = eiτAce−τ 3i

8 |un∗ |2un∗ − τ
3i
8
(
c〈∇〉−1

c − 1
)

eiτAc |un∗ |2un∗

− τ i8c〈∇〉
−1
c eiτAc

{
e2ic2tn ϕ1(2ic2τ)(un∗ )3 + 3e−2ic2tn ϕ1(−2ic2τ)|un∗ |2un∗

+ e−4ic2tnϕ1(−4ic2τ)(un∗ )3
}
,

u0
∗ = z0 − ic〈∇〉−1

c z1,

and in Section 2.3.3 the second-order uniformly accurate method

un+1
∗ = ei τ2Ace−iτ

3
8

∣∣ei τ2Acun∗ ∣∣2ei τ2Acun∗

− τ 3i
8

(
c〈∇〉−1

c − 1
)

ei τ2Ac
∣∣ei τ2Acun∗ ∣∣2 ei τ2Acun∗ + τ2θc〈∇〉c−1

(
tn, τ, ei

τ
2Acun∗

)
− τ2 3

64c〈∇〉
−1
c

[
2 |un∗ |2 c〈∇〉−1

c ϑc2(tn, τ, un∗ )− (un∗ )
2
c〈∇〉−1

c ϑc2(tn, τ, un∗ )
]

− i

8c〈∇〉
−1
c I1

c2(τ, tn, un∗ ),

u0
∗ = z0 − ic〈∇〉−1

c z1

with the abbreviations

θc〈∇〉c−1
(
tn, τ, ei

τ
2Acun∗

)
= −1

2
9
64ei τ2Ac

(
c〈∇〉−1

c − 1
) ∣∣ei τ2Acun∗ ∣∣4 ei τ2Acun∗

− 1
2

9
32c〈∇〉

−1
c ei τ2Ac

∣∣ei τ2Acun∗ ∣∣2 (c〈∇〉−1
c − 1

) ∣∣ei τ2Acun∗ ∣∣2 ei τ2Acun∗

+ 1
2

9
64c〈∇〉

−1
c ei τ2Acv2

(
c〈∇〉−1

c − 1
) ∣∣ei τ2Acun∗ ∣∣2 e−i τ2Acun∗ ,

ϑc2(tn, τ, un∗ ) = e2ic2tnϕ2
(
2iτc2

)
(un∗ )3 + 3e−2ic2tnϕ2

(
−2iτc2

)
|un∗ |2un∗

+ e−4ic2tnϕ2
(
−4iτc2

)
(un∗ )3,

and

I1
c2(τ, tn, un∗ ) = τe2ic2tneiτAcϕ1

(
iτ(2c2 − 1

2∆)
)

(un∗ )3

+ iτ2e2ic2tneiτAcΨ2
(
iτ(2c2 − 1

2∆)
) [

( 1
2∆−Ac)(un∗ )3 + 3(un∗ )2Acun∗

]
+ 3τe−2ic2tneiτAcϕ1(iτ(−2c2 −Ac)) |un∗ |2 un∗
+ 3iτ2e−2ic2tneiτAcΨ2(iτ(−2c2 −Ac))

[
un∗

2Acun∗ − 2|un∗ |2Acun∗
]

+ τe−4ic2tneiτAcϕ1(iτ(−4c2 −Ac))un∗
3

− iτ2e−4ic2tneiτAcΨ2(iτ(−4c2 −Ac))3un∗
2Acun∗

− τ2 3i
8 e2ic2tn (un∗ )

2
c〈∇〉−1

c

[
3Ψ2(2ic2τ)|un∗ |2un∗ + Ωc2,2,(tn, τ, un∗ )

]
− τ2 3i

8 e−2ic2tn (un∗ )
2
c〈∇〉−1

c

[
3Ψ2(−2ic2τ)|un∗ |2un∗ + Ωc2,−2(tn, τ, un∗ )

]
+ τ2 6i

8 e−2ic2tn |un∗ |2 c〈∇〉−1
c

[
3Ψ2(−2ic2τ)|un∗ |2un∗ + Ωc2,−2(tn, τ, un∗ )

]
+ τ2 3i

8 e−4ic2tn (un∗ )
2
c〈∇〉−1

c

[
3Ψ2(−4ic2τ)|un∗ |2un∗ + Ωc2,−4(tn, τ, un∗ )

]
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and

Ωc2,l(tn, τ, un∗ ) = e2ic2tn ϕ1
(
(l + 2)ic2τ

)
− ϕ1

(
lic2τ

)
2iτc2 (un∗ )3

+ 3e−2ic2tn ϕ1
(
(l − 2)ic2τ

)
− ϕ1

(
lic2τ

)
−2iτc2 |un∗ |2un∗

+ e−4ic2tn ϕ1
(
(l − 4)ic2τ

)
− ϕ1

(
lic2τ

)
−4iτc2 (un∗ )3.

In Figure 2.7 we numerically confirm the convergence order in time of the first- and second-order uni-
formly accurate method, respectively. We plot time step size versus the error of our uniformly accurate
schemes for different values of c = 1, 5, 10, 50, 100, 500, 1000, 5000, 10000. The error in z is measured in a
discrete H1 norm. As a reference solution we use the scheme itself with a finer time step size τ ≈ 10−7.
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Figure 2.7: Order plot of the first- and second-order uniformly accurate method (double logarithmic scale).
First-order method on the left, second-order method on the right. The slope of the dashed line is one and two,
respectively. Reference solution computed via the scheme itself with a finer time step size τ ≈ 10−7.

2.4.4 Comparison of the Numerical Methods

In this subsection we compare our uniformly accurate methods with the established Gautschi-type
method, exponential integrator and limit scheme. We confirm that our newly derived uniformly ac-
curate methods are uniformly accurate with respect to c and that they converge asymptotically to the
corresponding limit scheme. Finally, we consider work-precision plots and compare the error constants.

We compare our newly derived uniformly accurate first- and second-order method with the first-order
exponential integrator. This comparison (see Figure 2.8) confirms that our UA methods are uniformly
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accurate with respect to c. We use the first-order exponential integrator in order to compute the reference
solution with time step size τ ≈ 10−7 for different values of c = 1, 5, 10, 50, 100. The error between the
exponential integrator and our uniformly accurate methods is measured in a discrete H1 norm.
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Figure 2.8: Order plot of the first- and second-order uniformly accurate method (double logarithmic scale).
First-order method on the left, second-order method on the right. The slope of the dashed line is one and
two, respectively. Reference solution computed via the classical exponential integrator with a finer time step
size τ ≈ 10−7.

Figure 2.9 confirms the asymptotic convergence to the corresponding numerical method for the limit
system. Therefore, we plot the error of the UA method and the limit method versus different values of
c. This yields the O(c−2) convergence, which is shown in Section 2.3 (Remark 2.19 and 2.34). The error
in z is measured in a discrete H1 norm.
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Figure 2.9: Asymptotic consistency plot (double logarithmic scale). The slope of the dashed line is −2.
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Next, we compare the error of the different methods versus the computation time. Such an efficency
plot is also called a work-precision plot and is given in Figure 2.10 and 2.11. The work-precision plots
show the efficiency of the numerical methods for different values of c. We plot the corresponding error
against the computation time (in seconds) of the corresponding numerical method. We desire values in
the lower left corner, i.e. a small error at a short computation time. For the reference solution we use the
exponential integrator with time step size τ ≈ 10−6. We compare the error of the exponential integrator
with the error of the Gautschi-type method, our uniformly accurate methods and the limit scheme. The
errors are measured in a discrete H1 norm.
We observe that the Gautschi-type method performs good for small c and fails for large c. For the limit
scheme we observe this behavior vice versa, i.e. the limit scheme fails for small c and performs good
for large c. Our uniformly accurate schemes show a good behavior for all values of c. We note that
our uniformly accurate schemes reach smaller errors than both, the Gautschi-type method and the limit
scheme.
We simulate the solution of the Klein–Gordon equation for two different initial values. Firstly, in
Figure 2.10 we show a work-precision plot with the standard initial values (see (2.101)) and then in
Figure 2.11 with the following initial values

z(0) = cos(x) sin(x)
2− cos(x) , ∂tz(0) = c2

sin(x)2

2− cos(x) .
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Figure 2.10: Work-precision plot (double logarithmic scale). The yellow lines mark the error of the limit scheme.
The purple lines mark the error of the Gautschi-type method. The blue lines mark the error of our first-order
uniformly accurate method and the red line mark the error of our second-order uniformly accurate method. The
CPU time is measured in seconds. Reference solution computed via the classical exponential integrator with a
finer time step size τ ≈ 10−7.
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Figure 2.11: Work-precision plot (double logarithmic scale). The yellow lines mark the error of the limit scheme.
The purple lines mark the error of the Gautschi-type method. The blue lines mark the error of our first-order
uniformly accurate method and the red line mark the error of our second-order uniformly accurate method. The
CPU time is measured in seconds. Reference solution computed via the classical exponential integrator with a
finer time step size τ ≈ 10−7.

Figure 2.11 shows a similar behavior as the plot in Figure 2.10. But we observe a better behavior of the
limit scheme for large c in Figure 2.11. More precisely, we see in Figure 2.11 that for c ≥ 50 the limit
scheme is faster and more accurate than all the other schemes.

Now, we underline the different error constant behaviors of our UA methods. As a reference solution
we use the classical exponential integrator with time step size τ ≈ 10−6. We plot the numerical error of
the corresponding numerical method against different values of c for different time step sizes τ . For our
uniformly accurate methods we observe uniform bounds, whereas for the Gautschi-type method we obtain
the expected O(c4) error behavior (see Figure 2.12). In the plots of the uniformly accurate methods the
error of the exponential integrator of order O(c2) is obtained.

In the next chapter we consider the Klein–Gordon–Schrödinger system, which is a Klein–Gordon equation
coupled with a Schrödinger equation. For this system we also derive a limit system and a uniformly
accurate method analogously to the derivation for the KG equation.
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Figure 2.12: Error constant comparison plot (double logarithmic scale). On the left for the first-order uniformly
accurate method, in the middle for the second-order uniformly accurate method and on the right for the Gautschi-
type method. The slope of the dashed and dash-dotted line is two and four, respectively. Reference solution
computed via the classical exponential integrator with a finer time step size τ ≈ 10−6.
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CHAPTER 3

The Klein–Gordon–Schrödinger System

In this chapter we focus on the construction of uniformly accurate methods for the Klein–Gordon–
Schrödinger system. Thereby, we proceed analogously to Chapter 2 for the Klein–Gordon equation. In
Section 3.1 we give a short overview of the limit regime and different standard methods for the Klein–
Gordon–Schrödinger system. Then we focus in Section 3.2 on the formal derivation of the corresponding
limit system. We close this chapter with a detailed derivation of a first- and second-order uniformly
accurate method for the Klein–Gordon–Schrödinger system (see Section 3.3). The main references for
this chapter are [26] for the derivation of the limit system and [14] for the overview and the uniformly
accurate methods. The results of this chapter, in particular Section 3.3, have been published together
with Georgia Kokkala and Katharina Schratz in [14]. The first-order uniformly accurate method, which
will be derived within this chapter, was also introduced in the master thesis of Georgia Kokkala. In
addition, we construct and analyze a second-order method in this thesis.

3.1 Introduction to Klein–Gordon–Schrödinger Systems

The Klein–Gordon–Schrödinger (KGS) system

c−2∂ttz(t, x)−∆z(t, x) + c2z(t, x) = |n(t, x)|2,
i∂tn(t, x) + ∆n(t, x) + n(t, x)z(t, x) = 0

(3.1)

with initial conditions

z(0, x) = z0(x), ∂tz(0, x) = c2z1(x),

n(0, x) = n0(x),

describes physically the dynamics of a complex-valued nucleon field n interacting with a neutral real-
valued scalar meson field z. In addition to the numerical challenge of the highly oscillatory Klein–Gordon
equation from the previous chapter, we have to cope with the nonlinear coupling of the Klein–Gordon
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equation to a classical Schrödinger equation. For existence and uniqueness of global smooth solutions
we refer to [28–30] and the references therein. Numerically, the Klein–Gordon–Schrödinger system is
extensively studied in the relativistic regime c = 1, see for instance [7, 41, 44]. In contrast, the non-
relativistic regime, where the speed of light c formally tends to infinity, is due to the highly oscillatory
behavior of the solution much more demanding numerically. Similar to the Klein–Gordon equation in
Chapter 2 classical numerical methods break down, also for the Klein–Gordon–Schrödinger system, as
they fail to resolve the oscillations of the solution. In particular, severe step size restrictions need to
be imposed which lead to huge computational efforts and which do not permit reasonably accurate
simulations. Even more suitable Gautschi-type methods which are especially designed for numerically
solving oscillatory second-order differential equations (see, e.g., [4, 36, 38]) do not allow a reasonable
approximation as they fail to capture the highly oscillatory parts. This phenomenon is illustrated in
Figure 3.1. In the slowly varying relativistic regime (c = 1) the Gautschi-type method allows a precise
approximation of the solution, whereas it fails in the highly oscillatory non-relativistic regime (c � 1).
For classical splitting-type methods we observe a similar error behavior as for the Gautschi-type methods.
We refer to [25, 50] for their analysis in the context of Schrödinger equations.
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Figure 3.1: Numerical solution of the Klein–Gordon–Schrödinger system for z. Exponential Gautschi-type scheme
(red solid line) for different c with time step size τ ≈ 10−2 at time t = 0.6. The blue dashed line represents the
reference solution at time t = 0.6, computed via the same exponential Gautschi-type scheme with a small time step
size τ ≈ 10−6. The spatial discretization is done via a Fourier pseudospectral method with mesh-size h = 0.0245.

Based on the modulated Fourier expansion of the exact solution (see [19, 36]) numerical schemes for the
Klein–Gordon–Schrödinger system in the strongly non-relativistic limit regime c � 1 are introduced in
Section 3.2. This ansatz allows us to reduce the highly oscillatory problem (3.1) to the integration of
the corresponding non-oscillatory free decoupled Schrödinger limit equation. The limit system can be
solved numerically very efficiently without imposing any c−dependent step size restriction, since we can
solve it exactly in Fourier space (see Section 3.2). However, as this approach is based on the asymptotic
expansion of the solution with respect to c−2 (see also Chapter 2), it only allows error bounds of order

O(c−2).

Henceforth, the limit integration method only yields an accurate approximation of the exact solution for
sufficiently large values of c (see Figure 3.2). For more details on the formal derivation of the limit system
we refer to Section 3.2.



3.1. Introduction to Klein–Gordon–Schrödinger Systems 65

0 2 4 6
−0.1

0

0.7

x

c = 1

0 2 4 6
−0.2

0

0.5

x

c = 10

0 2 4 6
−0.5

0

0.2

x

c = 50

Figure 3.2: Numerical solution of the Klein–Gordon–Schrödinger system for z for different c. Limit integration
scheme (red solid line) for different c with time step size τ ≈ 10−2 at time t = 1. The blue dashed line represents
the reference solution at time t = 1, computed via an exponential Gautschi-type scheme with a small time step
size τ ≈ 10−6. The spatial discretization is done via a Fourier pseudospectral method with mesh-size h = 0.0245.

Based on a multiscale expansion technique, an unconditionally stable accurate method for the Klein–
Gordon–Schrödinger system with (and without) damping was recently presented in [8] (see also [10, 18]
for results on classical Klein–Gordon equations). The corresponding method converges, for sufficiently
smooth solutions, uniformly in time with linear convergence rate O(τ) for c ∈ [1,∞). However, optimal
quadratic convergence rate O(τ2) is only reached in the regime when either c = O(1) or cτ ≥ 1.
In comparison, we establish a novel class of exponential-type integrators which allow convergence with
second-order accuracy in time uniformly for all c > 0. As we have seen in the previous Chapter 2 the
key idea thereby lies again in exploiting the so-called twisted variables (see, e.g., [16, 17, 33, 73]). For
more details on twisted variables in numerical analysis, for instance in the context of the modulated
Fourier expansion we refer to [20, 36], for adiabatic integrators (see [36, 49]) and for Lawson-type Runge-
Kutta methods (see [48]). Recently, this technique was also established in the numerical analysis of
low-regularity problems (see [40, 58]). Compared to the previous chapter, the analysis of the numerical
scheme in the Klein–Gordon–Schrödinger setting is much more involved due to the coupled structure of
the underlying system. In particular, because their nonlinear resonance interaction strongly differs, we
thus need to develop new, adapted techniques.
Let us explain the underlying strategy again in a nutshell. It follows the ideas of Section 2.3, but differs
a litte bit due to the fact that in this chaper we consider a coupled system of PDEs.
In a first step we reformulate the Klein–Gordon part (in z) as a first-order system in time via the
transformation

u = z − ic−1〈∇〉−1
c ∂tz

which allows us to reformulate the KGS system (3.1) as a coupled first-order system in the new vari-
ables (u, n) (see Section 3.3 for details). Then, by applying the key idea of twisted variables, we filter out
the highly oscillatory phases

e±i`c
2t with ` ∈ Z

explicitly (see also Section 3.3). Again the major numerical advantage of looking at the system in (u∗, n∗)
instead of (u, n) lies in the fact that (∂tu∗, ∂tn∗) is bounded uniformly in c, whereas (∂tu, ∂tn) is of order c2.
This allows us to develop a novel class of uniformly accurate exponential-type integrators by iterating
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Duhamel’s formula in (u∗, n∗). The essential point thereby lies in integrating the interactions of the
highly oscillatory phases exactly and only approximating the slowly varying parts (see Section 3.3.2 and
Section 3.3.3 for more details).
Analogously to the previous chapter, this strategy allows us to develop high-order uniformly accurate
numerical methods which approximate Klein–Gordon–Schrödinger solutions from relativistic (c = 1)
up to non-relativistic (c � 1) regimes. In addition to this uniform approximation property, another
advantage of the novel class of integrators compared to classical methods is the following: the method
converges asymptotically (i.e., for c → ∞) to the numerical scheme of the corresponding decoupled free
Schrödinger limit system (c→∞ in (3.1)). For details see Section 3.3.4.
Our theoretical convergence results are underlined with numerical experiments in Section 2.4.
For practical implementation issues, we impose in the following periodic boundary conditions,
i.e., x ∈ Td := [0, 2π]d.

3.2 Formal Derivation of the Limit System

In this section we start off with a formal derivation of the decoupled free Schrödinger limit system of
the KGS system (3.1) by applying a multiscale analysis and a formal asymptotic expansion to the KGS
system. In order to do this, we follow the ideas and techniques shown in [26]. Furthermore, we derive
a numerical limit scheme that solves the decoupled free Schrödinger limit system. Essentially, the limit
system is of great interest, because compared to the original system, which is highly oscillatory, the limit
system is non-oscillatory. Furthermore, the limit system is linear so it can be solved numerically very
easily compared to the original KGS system.
Analogously to the KG equation (see Section 2.2), we rewrite the KGS system with the
transformation u = z − ic−1〈∇〉−1

c ∂tz as a first-order system in time which reads

i∂tu = −c〈∇〉cu+ c〈∇〉−1
c |n|2, u(0) = z0 − ic〈∇〉−1

c z1,

i∂tn = −∆n− 1
2(u+ v)n, n(0) = n0.

(3.2)

Now, we use this first-order system to apply the formal asymptotic expansion. In order to derive the
limit system and the first-order correction term z∞ formally, we follow the steps from Section 2.2.

1. Multiscale analysis

Our aim is to separate the high oscillations from the slow time dependency of the solution. Hence, we
introduce a new variable θ := c2t which defines the so-called long time scale. The multiscale ansatz
treats t and θ as independent variables where in fact, in the actual solution, t and θ are correlated. The
relation appears through the new time derivative operator, i.e., ∂t → ∂t + c2∂θ.
We introduce the new time variable θ and obtain

u(t, x) = U(t, θ, x), U(0, 0, x) = u0(x),

n(t, x) = H(t, θ, x), H(0, 0, x) = n0(x).
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The functions U(t, θ, x), H(t, θ, x) are defined on T× T× Td. We plug the function U , H into (3.2) and
take the derivative with respect to t. This yields

i∂tU + ic2∂θU = −c〈∇〉cU + c〈∇〉−1
c |H|2,

i∂tH + ic2∂θH = −∆H − 1
2(U + U)H.

(3.3)

2. Formal asymptotic expansion

We make an ansatz which corresponds to the modulated Fourier expansion form (see [36]) of u and n. For
more insight in MFE see also [19, 20, 34] and the references therein. In particular, we expand u and n in
the following way

U(t, θ, x) = U∞ +
∑
m≥1

c−2mUm(t, θ, x),

H(t, θ, x) = H∞ +
∑
m≥1

c−2mHm(t, θ, x),

where here we cut off the terms of order O(c−2).

3. Collecting terms with same powers of c

Analogously to the previous chapter, we devide this part into three subparts. First, we expand the leading
operator c〈∇〉c and its inverse. Then, we plug the expansions into (2.10) and finally, we collect the terms
of the same powers of c.

a) Expanding the operators
We expand the operators c〈∇〉c and c〈∇〉−1

c with the formal Taylor series expansion analogously to
Section 2.2 and obtain

c〈∇〉c = c2 − 1
2∆ +

∑
m≥1

µm+1c
−2m(−∆)m+1,

c〈∇〉−1
c = 1 + 1

2c2 ∆ +
∑
m≥2

βmc
−2m(−∆)m

with coefficients µm, βm ∈ R.
The expansion of the operators c〈∇〉c and c〈∇〉−1

c has to be considered again as an asymptotic expansion
(for more details see Section 2.2 equation (2.13), (2.14)). We also expand the initial condition U(0, 0, x)
and obtain

U(0, 0, x) =
∑
m≥0

c−2mΘm(x),

where

Θ0 = z0 − iz1, Θ1 = − i2∆z1, Θm = βm(−∆)mz1.

b) Plug the expansions into the PDE
Now, we plug the expansions of the operators into (3.3). This yields

i∂tU + ic2∂θU = −c2U + 1
2∆U + |H|2 +R0,
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where the remainder R0 is formally of order O(c−2∆2). We rewrite the equation as follows

i∂tU + c2(i∂θ + 1)U = 1
2∆U + |H|2 +R0.

Together with (3.3), we obtain formally the following system

i∂tU + c2(i∂θ + 1)U = 1
2∆U + |H|2 +R0,

i∂tH + ic2∂θH = −∆H − 1
2(U + U)H.

(3.4)

Now, we treat the equation for U and H separately. Next, we plug the expansion of U and H into (3.4).
For U we have

i∂tU∞ + c2(i∂θ + 1)(U∞ + c−2U1) = 1
2∆U∞ + |H∞ + c−2H1|2 +R0,

which we rewrite, via a short calculation, formally as

i∂tU∞ + c2(i∂θ + 1)U∞ + (i∂θ + 1)U1 = 1
2∆U∞ + |H∞|2 +R0.

We plug the expansion of H into (3.4) and obtain

i∂tH∞ + ic2∂θ(H∞ + c−2H1) = −∆H∞ −
1
2(U∞ + U∞)H∞ +R1,

where R1 is of order O(c−2∆). By a short calculation we have

i∂tH∞ + ic2∂θH∞ + i∂θH1 = −∆H∞ −
1
2(U∞ + U∞)H∞ +R1.

After plugging the ansatz for U and H into (3.4), we formally obtain the following system

i∂tU∞ + c2(i∂θ + 1)U∞ + (i∂θ + 1)U1 = 1
2∆U∞ + |H∞|2 +R0,

i∂tH∞ + ic2∂θH∞ + i∂θH1 = −∆H∞ −
1
2(U∞ + U∞)H∞ +R1.

(3.5)

c) Collecting the same powers of U and H

We collect the same powers in c and start with the terms of order O(c2). This yields

(i∂θ + 1)U∞ = 0,

i∂θH∞ = 0,

which implies that ∂θU∞ = iU∞ and ∂θH∞ = 0, i.e., H∞ is independent of θ, such that we have

H∞(t, θ, x) = n∞(t, x). (3.6)

Analogously to the previous chapter, U∞ has the following solution

U∞(t, θ, x) = eiθu∞(t, x). (3.7)

We proceed by collecting the terms of order O(1) in the equation for U∞ and find

(
i∂t − 1

2∆
)
U∞ + (i∂θ + 1)U1 = |H∞|2. (3.8)
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Plugging (3.6) and (3.7) into (3.8), we have

(
i∂t − 1

2∆
)
eiθu∞ + (i∂θ + 1)U1 = |n∞|2.

By orthogonalization with respect to the kernel of (i∂θ + 1) (see [26]), i.e., with respect to eiθ, we obtain

(
i∂t − 1

2∆
)
u∞ = 0,

which implies that
i∂tu∞ = 1

2∆u∞.

We collect the terms of order O(1) in (3.5) for H∞ and plug in (3.6) and (3.7) this yields that

i∂θH1 = −(i∂t + ∆)n∞ − 1
2
(
eiθu∞ + e−iθu∞

)
n∞.

By orthogonalization with respect to the kernel of i∂θ, the following holds

(i∂t + ∆)n∞ = 0,

and we obtain
i∂tn∞ = −∆n∞.

Remark 3.1. Similar to Lemma (2.2) we can state the first-order correction term and the convergence to
the limit system. We fix r > d

2 and assume that z0, z1 ∈ Hr+4. Then, for the Klein–Gordon–Schrödinger
system (3.1) the first-order correction term z∞ reads

z∞(t, x) = 1
2

(
eic

2tu∞(t, x) + e−ic
2tu∞(t, x)

)
,

where u∞ and n∞ are the solutions of the following decoupled free Schrödinger limit system

i∂tu∞(t, x) = 1
2∆u∞(t, x), u∞(0) = z0 − iz1,

i∂tn∞(t, x) = −∆n∞(t, x), n∞(0) = n0.
(3.9)

Then z∞ approximates the exact solution (z, n) of (3.1) up to terms of order O(c−2).

The limit Schrödinger system (3.9) is linear and additionally the highly oscillatory part in the first-order
correction term

z∞(t, x) = 1
2

(
eic

2tu∞(t, x) + e−ic
2tu∞(t, x)

)
is only contained in the phases eic2t and e−ic2t, but does not appear in the Schrödinger limit system. A big
advantage is that the limit system (3.9) can be solved exactly in time in Fourier space. By multiplying the
limit solution with the highly oscillatory phases we obtain an approximation to the solution of the original
system up to an error of order O(c−2). Therefore, the numerical integration of the system (3.9) can be
carried out without any c-dependent time step restriction. Hence, we only solve the limit system (3.9)
and multiply the numerical approximation of u∞ with the highly oscillatory phases eic2t and e−ic2t,
respectively, to obtain a suitable numerical approximation to the exact solution z in the non-relativistic
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limit regime c � 1.
We can solve the Schrödinger limit system exactly in Fourier space

u∞(t, x) = e−
i
2 t∆u∞(t, x),

n∞(t, x) = eit∆n∞(t, x).

In the next section we also show that our uniformly accurate method converges in the limit to the
numerical method for the limit system, therefore we define the numerical solution of u∞, n∞

un+1
∞ = e−

i
2 τ∆un∞, u0

∞ = z0 − iz1,

nn+1
∞ = eiτ∆nn∞, n0

∞ = n0.
(3.10)

However, this method only allows error bounds of order O(c−2). Therefore, the aim of the next section
is to derive a uniformly accurate method for the KGS system.
We proceed as in Chapter 2 and reformulate the KGS system as a coupled first-order system in time.
Then we rescale the system by considering the so-called twisted variables. After this essential step we
iterate Duhamel’s formual in the new variables and integrate the interactions of the highly oscillatory
phases exactly by approximating only the slowly varying parts. Analogously to the previous chapter we
show that our uniformly accurate scheme converges in the limit to our derived numerical scheme for the
limit system.

3.3 Uniformly Accurate Methods for the Klein–Gordon–Schröd-
inger System

This section is a detailed version of [14, chapter 2-5]. In a first step, we rewrite the Klein–Gordon part
(in z) of the Klein–Gordon–Schrödinger system (3.1) as a first-order system in time. This allows us to
resolve the limit-behavior c → ∞ of the solution. Therefore, we use the operator 〈∇〉c defined in (2.4).
Rewriting (3.1) with real solution z(t, x) ∈ R as a first-order system in time via the transformation (see,
e.g., [53])

u = z − ic−1〈∇〉−1
c ∂tz. (3.11)

As z is real-valued we have

z = 1
2(u+ u). (3.12)

Taking the derivative of the ansatz of u in (3.11) with respect to t we obtain

∂tu = ∂tz − ic−1〈∇〉−1
c ∂ttz.

Inserting ∂tz = ic〈∇〉c(u− z) and ∂ttz = c2|n|2 − c2〈∇〉2cz we find

∂tu = ic〈∇〉c(u− z)− ic−1〈∇〉−1
c

(
c2|n|2 − c2〈∇〉2cz

)
= ic〈∇〉cu− ic〈∇〉cz − ic−1〈∇〉−1

c c2|n|2 + ic−1〈∇〉−1
c c2〈∇〉2cz

= ic〈∇〉cu− ic〈∇〉cz − ic〈∇〉−1
c |n|2 + ic〈∇〉cz

= ic〈∇〉cu− ic〈∇〉−1
c |n|2.
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The corresponding KGS system in (u, n) reads

i∂tu = −c〈∇〉cu+ c〈∇〉−1
c |n|2, u(0) = z(0)− ic−1〈∇〉−1

c ∂tz(0),

i∂tn = −∆n− n
1
2
(
u+ u

)
, n(0) = n0.

(3.13)

We note again (see (2.23)) the definition of the operator 〈∇〉c formally implies that we have

c〈∇〉c = c2 + “lower order terms in c”, for c→∞. (3.14)

Next, following the approach in [13], we consider the corresponding twisted variables by multiplying u
with the phases e−ic2t. More precisely, we set

u∗(t) = e−ic
2tu(t).

Note that for the Schrödinger part n of the KGS system (3.13) we do not need to apply this twisting
since no highly oscillatory action is linked to this variable. However, for notational reasons, we write n∗

instead of n.
A simple calculation shows that

i∂tu∗ = i∂t
(
e−ic

2tu
)

= −i2c2e−ic
2tu+ e−ic

2ti∂tu = c2e−ic
2tu+ e−ic

2t
(
− c〈∇〉cu+ c〈∇〉−1

c |n|2
)

= c2u∗ − c〈∇〉cu∗ + c〈∇〉−1
c e−ic

2t|n|2

= −Acu∗ + c〈∇〉−1
c e−ic

2t|n|2
(3.15)

with leading operator Ac = c〈∇〉c − c2. As we saw in Remark 2.4 for the Klein–Gordon equation, the
advantage of considering the twisted system in u∗ (instead of u) lies in the fact that the leading operator
formally satisfies Ac = O(1) in c (cf. (2.27)), whereas c〈∇〉c = O(c2) see (3.14).
Replacing the first line in (3.13) by (3.15) yields the twisted KGS system

i∂tu∗ = −Acu∗ + c〈∇〉−1
c e−ic

2t|n∗|2, u∗(0) = z(0)− ic−1〈∇〉−1
c ∂tz(0),

i∂tn∗ = −∆n∗ − 1
2

(
eic

2tu∗ + e−ic
2tu∗

)
n∗, n∗(0) = n(0)

(3.16)

with mild solutions

u∗(tn + τ) = eiτAcu∗(tn)− ic〈∇〉−1
c

∫ τ

0
ei(τ−s)Ace−ic

2(tn+s)|n∗(tn + s)|2ds,

n∗(tn + τ) = eiτ∆n∗(tn) + i

2

∫ τ

0
ei(τ−s)∆

[
eic

2(tn+s)u∗(tn + s) + e−ic
2(tn+s)u∗(tn + s)

]
n∗(tn + s)ds.

(3.17)

In the following remark we recall some essential operator bounds.

Remark 3.2. As we have seen in Lemma 2.5 and Lemma 2.6 the benefit in the above formulation is the
uniform bound with respect to c of the leading operator Ac

‖Acu‖r ≤
1
2 ‖u‖r+2 , (3.18)

as well as of the operator in front of the nonlinear coupling which satisfies

∥∥c〈∇〉−1
c u

∥∥
r
≤ ‖u‖r , (3.19)
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see also [13, Lemma 3]. This in particular implies that for all t ∈ R (see [13, Lemma 4])∥∥eitAc
∥∥
r

= 1 and
∥∥(e−itAc − 1)u

∥∥
r
≤ 1

2 |t| ‖u‖r+2 . (3.20)

Thanks to the essential bound (3.18) the derivatives
(
u′∗(t), n′∗(t)

)
can also be bounded uniformly. More

precisely, the solutions of (3.16) satisfy

‖u∗(tn + s)− u∗(tn)‖r ≤
1
2 |s| ‖u∗(tn)‖r+2 + |s| sup

0≤ξ≤s
‖n∗(tn + ξ)‖2r ,

‖n∗(tn + s)− n∗(tn)‖r ≤ |s| ‖n∗(tn)‖r+2 + |s| sup
0≤ξ≤s

(
‖u∗(tn + ξ)‖r ‖n∗(tn + ξ)‖r

)
.

(3.21)

The above estimates on the derivatives can be proven by using Duhamel’s formula for u∗ and n∗, respec-
tively, and then employing the estimates (3.19) and (3.20) (see [13, Lemma 5]).
Next, we state the necessary local well-posedness assumptions.

Assumption 3.3. Fix r > d/2 and assume that there exists a T > 0 such that the solution u∗(t), n∗(t)
of (3.16) satisfies

sup
0≤t≤T

(
‖u∗(t)‖r + ‖n∗(t)‖r

)
≤M,

uniformly in c.

Remark 3.4. Note that Assumption 3.3 holds under the following conditions on the initial data

‖n(0)‖r ≤M1,

‖z(0)‖r +
∥∥c−1〈∇〉−1

c ∂tz(0)
∥∥
r
≤M2,

where M1, M2 do not depend on c. This can be easily seen by using a classical fixed point argument in
Duhamel’s formula (3.17) together with the essential uniform bound (3.19) and (3.20).

For further details on the local well-posedness of highly oscillatory Klein–Gordon type equations we
refer to [53, 73] and the references therein. Analogously to the previous chapter, in our analysis we will
employ the concept of the so-called ϕ-functions (see [39]) which are defined in Section 2.3. Recall that
by Definition 2.8 the ϕ-functions read

ϕ0(ξ) = eξ, ϕ1(ξ) = eξ − 1
ξ

, ϕ2(ξ) = ϕ1(ξ)− 1
ξ

and
Ψ2(ξ) = ϕ0(ξ)− ϕ1(ξ)

ξ
,

for ξ ∈ C.

3.3.1 A Classical Exponential Integrator for the Twisted Klein–Gordon–
Schrödinger System

In this subsection we formally show that applying a classical exponential integrator on the twisted system
is not an appropriate ansatz in order to obtain a uniformly accurate method. This behavior is under-
lined in numerical experiments (see Figure 3.3). In the following, we formally construct an exponential
integrator for the twisted system.
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In order to obtain an exponential integrator for (3.16), we use Duhamel’s formulas given in (3.17)

u∗(tn + τ) = eiτAcu∗(tn)− ic〈∇〉−1
c

∫ τ

0
ei(τ−s)Ace−ic

2(tn+s)|n∗(tn + s)|2ds,

n∗(tn + τ) = eiτ∆n∗(tn) + i

2

∫ τ

0
ei(τ−s)∆

[
eic

2(tn+s)u∗(tn + s) + e−ic
2(tn+s)u∗(tn + s)

]
n∗(tn + s)ds.

We use the ansatz of exponential integrators (see [39]) and freeze the following terms in Duhamel’s
formulas at s = 0

e−ic
2(tn+s)|n∗(tn + s)|2,[

eic
2(tn+s)u∗(tn + s) + e−ic

2(tn+s)u∗(tn + s)
]
n∗(tn + s),

such that we obtain

u∗(tn+1) ≈ eiτAcu∗(tn)− ic〈∇〉−1
c

∫ τ

0
ei(τ−s)Ace−ic

2tn |n∗(tn)|2ds,

n∗(tn+1) ≈ eiτ∆n∗(tn) + i

2

∫ τ

0
ei(τ−s)∆

[
eic

2tnu∗(tn) + e−ic
2tnu∗(tn)

]
n∗(tn)ds.

Then, we integrate the remaining terms ei(τ−s)Ac and ei(τ−s)∆ exactly. Thus, with the Definition 2.8 of
the ϕ1-function we have

u∗(tn+1) ≈ eiτAcu∗(tn)− ic〈∇〉−1
c τϕ1(iτAc)e−ic

2tn |n∗(tn)|2,

n∗(tn+1) ≈ eiτ∆n∗(tn) + i
2τϕ1(iτ∆)

[
eic

2tnu∗(tn) + e−ic
2tnu∗(tn)

]
n∗(tn).

Therefore, we obtain the following exponential integration scheme

un+1
∗ = eiτAcun∗ − iτc〈∇〉−1

c ϕ1 (iτAc) e−ic
2tn |nn∗ |2,

nn+1
∗ = eiτ∆nn∗ + i

2τϕ1 (iτ∆)
[
eic

2tnun∗ + e−ic
2tnun∗

]
nn∗

with initial values

u0
∗ = z0 − ic〈∇〉−1

c z1,

n0
∗ = n0.

Figure 3.3 underlines that the exponential integrator scheme is not uniformly accurate with respect to c.
For large values of c the exponential integrator scheme fails to numerically approximate the solution of
the Klein–Gordon–Schrödinger system. Thus, classical exponential integrators also suffer from severe
time step restrictions similarly to the Gautschi-type methods shown in Figure 3.1.

In the next section we construct our uniformly accurate exponential-type integrator, similar to Section 2.3.
Therefore, we also integrate the highly oscillatory phase terms e±`ic2(tn+s), for ` ∈ N of the Duhamel’s
formulas exactly. This simple trick yields our new uniformly accurate methods.
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Figure 3.3: Numerical solution of the Klein–Gordon–Schrödinger system for z. Exponential integrator scheme
(red solid line) for different c with time step size τ ≈ 10−2 at time t = 0.6. The blue dashed line represents
the reference solution at time t = 0.6, computed via the same exponential integrator scheme with a small time
step size τ ≈ 10−6. The spatial discretization is done via a Fourier pseudospectral method with with mesh-
size h = 0.0245.

3.3.2 Construction of a First-Order Uniformly Accurate Integrator

In this section we derive a first-order exponential-type integrator for the solution (u∗, n∗) based on
Duhamel’s formula (3.17). For the analysis in the classical Klein–Gordon setting we refer to Section
2.3. In order to construct a scheme of first-order, we need to impose some additional regularity assump-
tions on the exact solutions.

Assumption 3.5. Fix r > d/2 and assume that u∗, n∗ ∈ C
(
[0, T ];Hr+2(Td)

)
with in particular

sup
0≤t≤T

(
‖u∗(t)‖r+2 + ‖n∗(t)‖r+2

)
≤M3,

where M3 can be bounded uniformly in c.

Note that the above assumption can be easily played back to the initial values thanks to Remark 3.4.

Now, we give a detailed derivation of the numerical scheme for un+1
∗ approximating u∗(tn+1),

with tn+1 = tn + τ , followed by a more compact derivation of the schemes for nn+1
∗ . Recall Duhamel’s

formula for u∗ (see (3.17))

u∗(tn + τ) = eiτAcu∗(tn)− ic〈∇〉−1
c

∫ τ

0
ei(τ−s)Ace−ic

2(tn+s)|n∗(tn + s)|2ds.

The exponential term eiτAc is uniformly bounded in c thanks to (3.20). Therefore, the remaining task
lies in resolving the highly oscillatory phases in the integral. Using the formal Taylor series expansions

n∗(tn + s) = n∗(tn) +O(s∂tn∗) and e−isAc = 1 +O(sAc) (3.22)

in the above integral allows us to integrate the highly oscillatory phases∫ τ

0
e−ic

2sds = τϕ1
(
−ic2τ

)
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exactly. The formal expansion of eisAc given in (3.22) is thereby understood as the application of the
operator eisAc to some sufficiently smooth function f in the sense that

e−isAcf = f + sR(Acf), (3.23)

where the remainder R(Acf) satisfies the bound

‖R(Acf)‖r ≤ 1
2‖f‖r+2.

The above bound on the remainder is a direct consequence of (3.20). It is important to note that addi-
tional smoothness on f is needed in the expansion (3.23).

Combined with the definition of ϕ1 (Definition 2.8), we thus obtain that

u∗(tn + τ) = eiτAcu∗(tn)− ic〈∇〉−1
c eiτAce−ic

2tnτϕ1(−ic2τ)|n∗(tn)|2 +R1(τ, tn, u∗, n∗), (3.24)

where the remainder R1(τ, tn, u∗, n∗) satisfies thanks to the bounds (3.18), (3.19) and (3.21) (which hold
uniformly in c)

‖R1(τ, tn, u∗, n∗)‖r ≤ τ2kr,M3 , (3.25)

for a constant kr,M3 which can be chosen independently of c.
This motivates us to define the following numerical scheme in u∗

un+1
∗ = eiτAcun∗ − iτc〈∇〉−1

c eiτAce−ic
2tnϕ1(−ic2τ)|nn∗ |2.

Given the numerical scheme in un+1
∗ we compute zn+1 as (see (3.12))

zn+1 = 1
2

(
eic

2tn+1un+1
∗ + e−ic

2tn+1un+1
∗
)
.

For n∗ we proceed as follows. Recall Duhamel’s formula (see (3.17))

n∗(tn + τ) = eiτ∆n∗(tn) + i

2

∫ τ

0
ei(τ−s)∆

[
eic

2(tn+s)u∗(tn + s) + e−ic
2(tn+s)u∗(tn + s)

]
n∗(tn + s)ds.

Carrying out the formal Taylor series expansions

u∗(tn + s) = u∗(tn) +O(su′∗), n∗(tn + s) = n∗(tn) +O(sn′∗) and e−is∆ = 1 +O(s∆) (3.26)

in the above integral allows us to freeze the functions u∗, n∗ and integrate the highly oscillatory phases
e±ic2s exactly. Together with the definition of ϕ1 (Definition 2.8) we therefore obtain that

n∗(tn + τ) = eiτ∆n∗(tn) + i

2eiτ∆τ
[
eic

2tnϕ1(ic2τ)u∗(tn)n∗(tn) + e−ic
2tnϕ1(−ic2τ)u∗(tn)n∗(tn)

]
+R1(τ, t, u∗, n∗),

(3.27)

where the remainder R1(τ, t, u∗, n∗) satisfies a similar (in particular uniform) bound to (3.25) thanks
to (3.21).
This motivates us to define the following numerical scheme in n∗

nn+1
∗ = eiτ∆nn∗ + i

2τeiτ∆
[
eic

2tnϕ1(ic2τ)un∗nn∗ + e−ic
2tnϕ1(−ic2τ)un∗nn∗

]
.
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Collecting the results yields the following full numerical scheme in u∗ and n∗

un+1
∗ = eiτAcun∗ − iτe−ic

2tnϕ1(−ic2τ)c〈∇〉−1
c eiτAc |nn∗ |2, u0

∗ = z0 − ic〈∇〉−1
c z1,

nn+1
∗ = eiτ∆nn∗ + i

2τeiτ∆
[
eic

2tnϕ1(ic2τ)un∗nn∗ + e−ic
2tnϕ1(−ic2τ)un∗nn∗

]
, n0

∗ = n0,
(3.28)

where we used the transformation (3.11) for the initial value.

3.3.2.1 Convergence Analysis of the First-Order Uniformly Accurate Scheme

The exponential-type integration scheme (3.28) converges (by construction) with first-order in time uni-
formly with respect to c, see Theorem 3.6 below.

Theorem 3.6 (Convergence bound for the first-order scheme, cf. Theorem 5 in [14]). Fix r > d/2, and
assume that Assumption 3.5 holds. For un∗ defined in (3.28), we set

zn := 1
2

(
eic

2tnun∗ + e−ic
2tnun∗

)
.

Then, there exists a T > 0 and τ0 > 0 such that for τ ≤ τ0 and tn ≤ T we have for all c > 0 that

‖z(tn)− zn‖r + ‖n(tn)− nn‖r ≤ τKr,T,M,M3 ,

where the constant Kr,T,M,M3 can be chosen independently of c.

Proof. Fix r > d/2. For notational reasons we write again n∗ instead of n. In the following, let (φτu∗ , φ
τ
n∗)

denote the exact flow of (3.16) and let (Φτu∗ ,Φ
τ
n∗) denote the numerical flow defined in (3.28), i.e.,

u∗(tn+1) = φτu∗(u∗(tn), n∗(tn)), un+1
∗ = Φτu∗(u

n
∗ , n

n
∗ ),

n∗(tn+1) = φτn∗(u∗(tn), n∗(tn)), nn+1
∗ = Φτn∗(u

n
∗ , n

n
∗ ).

Again we denote the numerical flow by φ instead of the standard notation ϕ. For more details on flows
we refer to [25, 36]. This allows us to decompose the global error as follows

u∗(tn+1)− un+1
∗ = φτu∗(u∗(tn), n∗(tn))− Φτu∗(u

n
∗ , n

n
∗ )

= φτu∗(u∗(tn), n∗(tn))− Φτu∗(u∗(tn), n∗(tn)) + Φτu∗(u∗(tn), n∗(tn))− Φτu∗(u
n
∗ , n

n
∗ ),

(3.29)

where a similar equation holds for n∗. By splitting the global error as shown above, we can treat the
terms that appear separately. In particular, the first term describes the local error and the second term
the stability. Therefore, we look at them one by one and derive a local error bound and a stability bound.
In the following we define by kr, Kr, Kr,M constants depending only on r and r,M respectively, but
which can be chosen independently of c.

Local error: With the aid of ‖R1(τ, tn, u∗, n∗)‖r ≤ τ2kr,M3 we have by the expansion of the exact solution
for u∗(tn + τ) together with z = 1

2 (u+ u) and by the numerical schemes (3.28) that

∥∥φτu∗(u∗(tn), n∗(tn))− Φτu∗(u∗(tn), n∗(tn))
∥∥
r
≤ ‖R1(τ, tn, u∗, n∗)‖r ≤ τ2kr,M3 , (3.30)

where the constant kr,M3 can be chosen independently of c. The same estimate holds for n∗.
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Stability: Now, we have to establish bounds on∥∥Φτu∗(u∗(tn), n∗(tn))− Φτu∗(u
n
∗ , n

n
∗ )
∥∥
r

and
∥∥Φτn∗(u∗(tn), n∗(tn))− Φτn∗(u

n
∗ , n

n
∗ )
∥∥
r
.

For this purpose, we set in the following for f, g ∈ Hr

Γτ (f, g) := eiτAcf − iτe−ic
2tnϕ1(−iτc2)c〈∇〉−1

c eiτAc |g|2,

Θτ (f, g) := eiτ∆g + i

2τeiτ∆
[
eic

2tnϕ1(ic2τ)fg + e−ic
2tnϕ1(−ic2τ)fg

]
,

such that in particular we have

‖Φτu∗
(
u∗(tn), n∗(tn)

)
− Φτu∗(u

n
∗ , n

n
∗ )‖r = ‖Γτ

(
u∗(tn), n∗(tn)

)
− Γτ (un∗ , nn∗ )‖r,

‖Φτn∗
(
u∗(tn), n∗(tn)

)
− Φτn∗(u

n
∗ , n

n
∗ )‖r = ‖Θτ

(
u∗(tn), n∗(tn)

)
−Θτ (un∗ , nn∗ )‖r.

Note for all t ∈ R we have that ‖eitAc‖r = 1 and ‖c〈∇〉−1
c ‖r ≤ 1 (see (3.19) and (3.20), respectively).

Furthermore, the following stability bound holds for the ϕ1-function (see also (2.44) or [39])∥∥ϕ1(iτc2ξ)
∥∥
r
≤ 1 for all ξ ∈ R. (3.31)

This implies (together with the bilinear estimate (1.2)) that

‖Γτ (f1, g1)− Γτ (f2, g2)‖r ≤ ‖eiτAc‖r ‖f1 − f2‖r
+ τ‖ i2c〈∇〉

−1
c ‖r

∥∥eiτAc
∥∥
r
‖e−ic2tnϕ1(−ic2τ)‖r‖|g1|2 − |g2|2‖r

≤ ‖f1 − f2‖r + τK‖|g1|2 − |g2|2‖r
≤ ‖f1 − f2‖r + τK‖g1g1 − g1g2 + g1g2 − g2g2‖r
≤ ‖f1 − f2‖r + τK

[
‖g1‖r‖g1 − g2‖r + ‖g2‖r‖g1 − g2‖r

]
≤ ‖f1 − f2‖r + τK (‖g1‖r, ‖g2‖r) ‖g1 − g2‖r,

(3.32)

where the constant K depends on ‖g1‖r and ‖g2‖r, but can be chosen independently of c. In the following
we assume that ‖u∗(tn)‖r ≤ M , ‖n∗(tn)‖r ≤ 2M , ‖un∗‖r ≤ 3M , and ‖nn∗‖r ≤ 4M . We furthermore
abbreviate K (‖v1‖r, ‖v2‖r) = Kr,M , where ‖vi‖r ≤ kM for i = 1, 2 and some constant k independent of
c. A similar bound holds for Θτ

‖Θτ (f1, g1)−Θτ (f2, g2)‖r ≤ ‖g1 − g2‖r + τKr,M (‖f1 − f2‖r + ‖g1 − g2‖r)
+ τKr,M

(
‖f1 − f2‖r + ‖g1 − g2‖r

)
≤ ‖g1 − g2‖r + τKr,M (‖g1 − g2‖r + ‖f1 − f2‖r).

(3.33)

Global error: Plugging the local error bounds (3.30) as well as the stability bounds (3.32) and (3.33)
into (3.29), we have that∥∥u∗(tn+1)− un+1

∗
∥∥
r

= ‖u∗(tn)− un∗‖r + τKr,M‖n∗(tn)− nn∗‖r + τ2kr,M3 ,∥∥n∗(tn+1)− nn+1
∗
∥∥
r

= ‖n∗(tn)− nn∗‖r + τKr,M (‖n∗(tn)− nn∗‖r + ‖u∗(tn)− un∗‖r) + τ2kr,M3 .

We consider each equation individually. For the equation of u∗ we obtain∥∥u∗(tn+1)− un+1
∗
∥∥
r

= ‖u∗(tn)− un∗‖r + τKr,M‖n∗(tn)− nn∗‖r + τ2kr,M3

≤ ‖u∗(tn)− un∗‖r + ‖n∗(tn)− nn∗‖r
+ τKr,M (‖n∗(tn)− nn∗‖r + ‖u∗(tn)− un∗‖r) + τ2kr,M3

≤ (1 + τKr,M )(‖u∗(tn)− un∗‖r + ‖n∗(tn)− nn∗‖r) + τ2kr,M3 .

(3.34)
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For the equation of n∗ we have∥∥n∗(tn+1)− nn+1
∗
∥∥
r

= ‖n∗(tn)− nn∗‖r + τKr,M (‖n∗(tn)− nn∗‖r + ‖u∗(tn)− un∗‖r) + τ2kr,M3

≤ ‖n∗(tn)− nn∗‖r + ‖u∗(tn)− un∗‖r
+ τKr,M (‖n∗(tn)− nn∗‖r + ‖u∗(tn)− un∗‖r) + τ2kr,M3

≤ (1 + τKr,M )(‖n∗(tn)− nn∗‖r + ‖u∗(tn)− un∗‖r) + τ2kr,M3 .

(3.35)

Combining the above bounds (3.34) and (3.35), we thus find∥∥∥∥∥
(
u∗(tn+1)− un+1

∗
n∗(tn+1)− nn+1

∗

)∥∥∥∥∥
r

≤ (1 + τKr,M )
∥∥∥∥∥
(
u∗(tn)− un∗
n∗(tn)− nn∗

)∥∥∥∥∥
r

+ τ2kr,M3 . (3.36)

Exploiting
1 + τKr,M ≤ eτKr,M ,

and iterating (3.36) we obtain∥∥∥∥∥
(
u∗(tn+1)− un+1

∗
n∗(tn+1)− nn+1

∗

)∥∥∥∥∥
r

≤ eτKr,M
∥∥∥∥∥
(
u∗(tn)− un∗
n∗(tn)− nn∗

)∥∥∥∥∥
r

+ τ2kr,M3

≤ eτKr,M
(

eτK
1
r,M

∥∥∥∥∥
(
u∗(tn−1)− un−1

∗
n∗(tn−1)− nn−1

∗

)∥∥∥∥∥
r

+ τ2kr,M3

)
+ τ2kr,M3

≤ enτ supnKn
r,M

(∥∥∥∥∥
(
u∗(0)− u0

∗
n∗(0)− n0

∗

)∥∥∥∥∥
r

)
+ enτ supnKn

r,Mnτ2kr,M3

= eT supnKn
r,M

(∥∥∥∥∥
(
u∗(0)− u0

∗
n∗(0)− n0

∗

)∥∥∥∥∥
r

)
+ eT supnKn

r,MTτkr,M3 .

Hence, a Lady Windermere’s fan argument (see, e.g., [35, 50]) yields

‖u∗(tn)− un∗‖r + ‖n∗(tn)− nn∗‖r ≤ τKr,T,M3eTKr,M ≤ τKr,T,M,M3 , (3.37)

where the constants Kr,T,M3 and Kr,T,M,M3 are uniformly bounded in c.
The identity with z = 1

2 (u+ u) and the definition of the twisted variable u∗(t) = e−ic2tu(t) imply

‖z(tn)− zn‖r =
∥∥∥ 1

2 (u(tn)− u(tn))− 1
2 (eic

2tnun∗ + e−ic
2tnun∗ )

∥∥∥
r

≤ 1
2

∥∥∥eic
2tn(u∗(tn)− un∗ )

∥∥∥
r

+ 1
2

∥∥∥eic
2tn(u∗(tn)− un∗ )

∥∥∥
r

= 1
2 ‖u∗(tn)− un∗‖r + 1

2 ‖u∗(tn)− un∗‖r
= ‖u∗(tn)− un∗‖r .

Employing the essential bound (3.37) we finally conclude

‖z(tn)− zn‖r + ‖n(tn)− nn‖r ≤ τKr,T,M,M3 ,

where the constant Kr,T,M,M3 is uniform in c. This finishes the proof.

In the next subsection we derive the second-order uniformly accurate method for the KGS system and
state the corresponding convergence result.
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3.3.3 Construction of a Second-Order Uniformly Accurate Integrator

In this section we derive a second-order integrator for the KGS system (3.1) based on Duhamel’s for-
mula (3.17) in the twisted variables (u∗, n∗).

Naively, we would think that the second-order integrator can be derived by simply including the next
terms (of order s) in the Taylor series expansions (3.22) and (3.26). However, as we have seen for the
KG equation in Section 2.3.3, this would not allow a uniform approximation in c due to the observation
that formally

∂tu∗ = O(1) in c however ∂ttu∗(t) = O(c2).

A similar observation holds for n∗. The construction of a numerical scheme based on a second-order
Taylor series expansion of u∗(t) would thus introduce an error of order O(τ2c2), but would not yield the
desired uniform second-order error bound O(τ2).
Therefore, we need to carry out a much more careful analysis by iterating Duhamel’s formula twice
which allows us to integrate the highly oscillatory terms e±ic2`t (with ` ∈ Z) exactly. In addition,
in order to obtain second-order approximations we need to impose additional regularity on the exact
solutions u∗(t) and n∗(t).

Assumption 3.7. Fix r > d/2 and assume that u∗, n∗ ∈ C
(
[0, T ];Hr+4(Td)

)
with in particular

sup
0≤t≤T

(
‖u∗(t)‖r+4 + ‖n∗(t)‖r+4

)
≤M4,

where M4 can be bounded uniformly in c.

3.3.3.1 Second-Order Approximation of u∗

In a first step we iterate Duhamel’s formula (3.17) in u∗(tn + τ) by plugging Duhamel’s formula
for n∗(tn + s) into the corresponding integral in u∗(tn + τ). This yields that

u∗(tn + τ) = eiAcτu∗(tn)− ic〈∇〉−1
c

∫ τ

0
ei(τ−s)Ace−ic

2(tn+s)
∣∣∣∣ei∆sn∗(tn)

+ i

2

∫ s

0
ei(s−θ)∆n∗(tn + θ)

(
eic

2(tn+θ)u∗(tn + θ) + e−ic
2(tn+θ)u∗(tn + θ)

)
dθ
∣∣∣∣2ds

= eiAcτu∗(tn)− ic〈∇〉−1
c

∫ τ

0
ei(τ−s)Ace−ic

2(tn+s)U (n∗, u∗, s) ds,

(3.38)

where U (n∗, u∗, s) is defined as follows

U (n∗, u∗, s) :=
∣∣∣∣ei∆sn∗(tn) + i

2

∫ s

0
ei(s−θ)∆n∗(tn + θ)

(
eic

2(tn+θ)u∗(tn + θ) + e−ic
2(tn+θ)u∗(tn + θ)

)
dθ
∣∣∣∣2.
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We rewrite U and obtain

U (n∗, u∗, s) =
∣∣∣∣∣ei∆sn∗(tn) + i

2

∫ s

0
ei(s−θ)∆eic

2(tn+θ)
(
n∗(tn + θ)u∗(tn + θ)

)
dθ

+ i

2

∫ s

0
ei(s−θ)∆e−ic

2(tn+θ)
(
n∗(tn + θ)u∗(tn + θ)dθ

)∣∣∣∣∣
2

=
∣∣∣∣∣ei∆sn∗(tn) + i

2eis∆eic
2tn

∫ s

0
e−iθ∆eic

2θ
(
n∗(tn + θ)u∗(tn + θ)

)
dθ

+ i

2eis∆e−ic
2tn

∫ s

0
e−iθ∆e−ic

2θ
(
n∗(tn + θ)u∗(tn + θ)dθ

)∣∣∣∣∣
2

Now, we apply Taylor series expansion (see (3.26)), this implies that

U (n∗, u∗, s) =
∣∣∣∣∣ei∆sn∗(tn) + i

2eis∆eic
2tn

∫ s

0
eic

2θdθ
(
n∗(tn)u∗(tn)

)

+ i

2eis∆e−ic
2tn

∫ s

0
e−ic

2θdθ
(
n∗(tn)u∗(tn)

)∣∣∣∣∣
2

+R3(τ, tn, u∗, n∗)

=
∣∣∣∣∣ei∆sn∗(tn) + i

2se
is∆eic

2tnϕ1
(
ic2s

) (
n∗(tn)u∗(tn)

)

+ i

2se
is∆e−ic

2tnϕ1
(
−ic2s

) (
n∗(tn)u∗(tn)

)∣∣∣∣∣
2

+R3(τ, tn, u∗, n∗),

where the remainder satisfies the estimate

‖R3(s, tn, u∗, n∗)‖r ≤ s2kr,M3

uniformly in c.

And with eis∆ = 1 + is∆ +O(s2∆2) we have that

U (n∗, u∗, s) =
∣∣∣∣eis∆n∗(tn) + i

2sn∗(tn)
(

eic
2tnϕ1(ic2s)u∗(tn) + e−ic

2tnϕ1(−ic2s)u∗(tn)
)∣∣∣∣2

+R3(s, tn, u∗, n∗).

Simplifying the absolute value square in U1 yields

U =
∣∣∣∣ei∆sn∗(tn) + i

2se
ic2tnϕ1

(
ic2s

)
n∗(tn)u∗(tn) + i

2se
−ic2tnϕ1

(
−ic2s

)
n∗(tn)u∗(tn)

∣∣∣∣2
=
(

ei∆sn∗(tn) + i

2se
ic2tnϕ1

(
ic2s

)
n∗(tn)u∗(tn) + i

2se
−ic2tnϕ1

(
−ic2s

)
n∗(tn)u∗(tn)

)
(

e−i∆sn∗(tn)− i

2se
−ic2tnϕ1

(
−ic2s

)
n∗(tn)u∗(tn)− i

2se
ic2tnϕ1

(
ic2s

)
n∗(tn)u∗(tn)

)
.
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Employing again the Taylor series expansion eis∆ = 1+O(s∆) in the terms of order s furthermore implies
that

U = n∗(tn)
(
n∗(tn)− is (∆n∗(tn))− i

2se
−ic2tnϕ1

(
−ic2s

)
n∗(tn)u∗(tn)− i

2se
ic2tnϕ1

(
ic2s

)
n∗(tn)u∗(tn)

)
+ is (∆n∗(tn)) n∗(tn) + i

2se
ic2tnϕ1

(
ic2s

)
|n∗(tn)|2u∗(tn) + i

2se
−ic2tnϕ1

(
−ic2s

)
|n∗(tn)|2u∗(tn)

+R3(τ, tn, u∗, n∗)

= |n∗(tn)|2 − is (∆n∗(tn)) n∗(tn) + is (∆n∗(tn)) n∗(tn)

− i

2se
−ic2tnϕ1

(
−ic2s

)
|n∗(tn)|2u∗(tn)− i

2se
ic2tnϕ1

(
ic2s

)
|n∗(tn)|2u∗(tn)

+ i

2se
ic2tnϕ1

(
ic2s

)
|n∗(tn)|2u∗(tn) + i

2se
−ic2tnϕ1

(
−ic2s

)
|n∗(tn)|2u∗(tn) +R3(τ, tn, u∗, n∗).

Finally, we have

U (n∗, u∗, s) = |n∗(tn)|2 − is (∆n∗(tn)) n∗(tn) + is (∆n∗(tn)) n∗(tn) +R3(s, tn, u∗, n∗).

Plugging U into (3.38) we thus obtain together with the identity Ac + c2 = c〈∇〉c the following second-
order expansion in u∗

u∗(tn + τ) = eiAcτu∗(tn)− ic〈∇〉−1
c eiτAce−ic

2tn∫ τ

0
e−isc〈∇〉c

(
|n∗(tn)|2 − is (∆n∗(tn)) n∗(tn) + is (∆n∗(tn)) n∗(tn)

)
ds+R4(τ, tn, u∗, n∗),

where the remainder satisfies

‖R4(τ, tn, u∗, n∗)‖r ≤ τ3kr,M4 (3.39)

uniformly in c.
In order to derive a stable numerical scheme we carry out the following manipulation in the exponential
based on the observation (2.27), i.e.,

se−isc〈∇〉c = se−is(c〈∇〉c− 1
2 ∆) +O(s2∆).

The above relation allows the following expansion of u∗(tn + τ)

u∗(tn + τ) = eiAcτu∗(tn)− ic〈∇〉−1
c eiτAce−ic

2tn∫ τ

0
e−isc〈∇〉c |n∗(tn)|2 + ise−is(c〈∇〉c− 1

2 ∆)
(
− (∆n∗(tn)) n∗(tn) + (∆n∗(tn)) n∗(tn)

)
ds

+R4(τ, tn, u∗, n∗)

= eiAcτu∗(tn)− ic〈∇〉−1
c eiτAce−ic

2tn

∫ τ

0
e−isc〈∇〉c |n∗(tn)|2ds

− ic〈∇〉−1
c eiτAce−ic

2tn

∫ τ

0
ise−is(c〈∇〉c− 1

2 ∆)
(

(∆n∗(tn)) n∗(tn)− (∆n∗(tn)) n∗(tn)
)

ds

+R4(τ, tn, u∗, n∗),

where the remainder R4 satisfies the bound (3.39). By Definition 2.8 and application of integration by
part yields ∫ τ

0
e−isc〈∇〉cds = τϕ1

(
− iτc〈∇〉c

)
,∫ τ

0
se−is(c〈∇〉c− 1

2 ∆)ds = τ2Ψ2
(
−iτ

(
c〈∇〉c − 1

2∆
))
.
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Therefore, we have

u∗(tn + τ) = eiAcτu∗(tn)− ic〈∇〉−1
c eiτAce−ic

2tn

(
τϕ1

(
− iτc〈∇〉c

)
|n∗(tn)|2

+ iτ2Ψ2
(
−iτ

(
c〈∇〉c − 1

2∆
)) (

n∗(tn) (∆n∗(tn))− n∗(tn) (∆n∗(tn))
))

+R4(τ, tn, u∗, n∗).

This motivates us to define the following scheme in u∗

un+1
∗ = eiAcτun∗ − ic〈∇〉−1

c eiτAce−ic
2tnInu∗ (nn∗ ) (3.40)

with

Inu∗ (nn∗ ) := τϕ1
(
− iτc〈∇〉c

)
|nn∗ |2 + iτ2Ψ2

(
−iτ

(
c〈∇〉c − 1

2∆
)) (

nn∗ (∆nn∗ )− nn∗ (∆nn∗ )
)
,

and initial value

u0
∗ = z0 − ic〈∇〉−1

c z1.

3.3.3.2 Second-Order Approximation of n∗

In order to approximate n∗ up to second-order uniformly in c we proceed similarly to the last subsection
for u∗. Recall Duhamel’s formula (3.17) in the twisted variable n∗

n∗(tn + τ) = eiτ∆n∗(tn) + i

2

∫ τ

0
ei(τ−s)∆

[
eic

2(tn+s)u∗(tn + s) + e−ic
2(tn+s)u∗(tn + s)

]
n∗(tn + s)ds. (3.41)

In a first step we derive uniform approximations in n∗(tn + s) and u∗(tn + s) up to order O(s2).

1) Approximation of n∗(tn + s):
Thanks to the first-order approximation in n∗ given in (3.27) we know that

n∗(tn + s) = ei∆sn∗(tn) + i

2eic
2tnsϕ1

(
ic2s

)
n∗(tn)u∗(tn) + i

2e−ic
2tnsϕ1

(
− ic2s

)
n∗(tn)u∗(tn)

+R3(s, tn, u∗, n∗),
(3.42)

where the remainder satisfies

‖R3(s, tn, u∗, n∗)‖r ≤ s2kr,M3 (3.43)

uniformly in c.
2) Approximation of u∗(tn + s):
Thanks to the first-order approximation (3.24) we obtain together with (3.22) that

u∗(tn + s) = eisAcu∗(tn)− ie−ic2tnc〈∇〉−1
c sϕ1

(
−ic2s

)
|n∗(tn)|2 +R3(s, tn, u∗, n∗), (3.44)

where the remainder satisfies (3.43) for some constant kr,M3 independent of c.
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Plugging the first-order approximations (3.42) and (3.44) into (3.41) yields that

n∗(tn + τ) = ei∆τn∗(tn) + i

2eiτ∆
∫ τ

0
e−is∆[

ei∆sn∗(tn) + i

2eic
2tnsϕ1

(
ic2s

)
n∗(tn)u∗(tn) + i

2e−ic
2tnsϕ1

(
− ic2s

)
n∗(tn)u∗(tn)

]
[

eic
2(tn+s)eiAcsu∗(tn)− ieic2sc〈∇〉−1

c sϕ1
(
−ic2s

)
|n∗(tn)|2

+ e−ic
2(tn+s)e−iAcsu∗(tn) + ie−ic

2sc〈∇〉−1
c sϕ1

(
ic2s

)
|n∗(tn)|2

]
ds+R4(τ, tn, u∗, n∗),

(3.45)

where the remainder satisfies

‖R4(τ, tn, u∗, n∗)‖r ≤ τ3kr,M4 .

uniformly in c.
3) Approximation of the integral:
It remains to approximate the integral in (3.45), called In∗ , which reads

In∗(u∗(tn), n∗(tn)) :=∫ τ

0
e−is∆

[
ei∆sn∗(tn) + i

2eic
2tnsϕ1

(
ic2s

)
n∗(tn)u∗(tn) + i

2e−ic
2tnsϕ1

(
− ic2s

)
n∗(tn)u∗(tn)

]
[

eic
2(tn+s)eiAcsu∗(tn)− ieic2sc〈∇〉−1

c sϕ1
(
−ic2s

)
|n∗(tn)|2

+ e−ic
2(tn+s)e−iAcsu∗(tn) + ie−ic

2sc〈∇〉−1
c sϕ1

(
ic2s

)
|n∗(tn)|2

]
ds.

Multiplying the brackets yields

In∗ = In∗,a + In∗,b

where we set

In∗,a :=
∫ τ

0
e−is∆

(
ei∆sn∗(tn)eic

2(tn+s)eiAcsu∗(tn)
)

ds

+
∫ τ

0
e−is∆

(
ei∆sn∗(tn)e−ic

2(tn+s)e−iAcsu∗(tn)
)

ds

−
∫ τ

0
e−is∆

(
ei∆sn∗(tn)ieic

2sc〈∇〉−1
c sϕ1

(
−ic2s

)
|n∗(tn)|2

)
ds

+
∫ τ

0
e−is∆

(
ei∆sn∗(tn)ie−ic

2sc〈∇〉−1
c sϕ1

(
ic2s

)
|n∗(tn)|2

)
ds

+
∫ τ

0
e−is∆

( i
2eic

2tnsϕ1
(
ic2s

)
n∗(tn)u∗(tn)eic

2(tn+s)eiAcsu∗(tn)
)

ds

+
∫ τ

0
e−is∆

( i
2eic

2tnsϕ1
(
ic2s

)
n∗(tn)u∗(tn)e−ic

2(tn+s)e−iAcsu∗(tn)
)

ds

+
∫ τ

0
e−is∆

( i
2e−ic

2tnsϕ1
(
− ic2s

)
n∗(tn)u∗(tn)

)
eic

2(tn+s)eiAcsu∗(tn)ds

+
∫ τ

0
e−is∆

( i
2e−ic

2tnsϕ1
(
− ic2s

)
n∗(tn)u∗(tn)e−ic

2(tn+s)e−iAcsu∗(tn)
)

ds
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and

In∗,b := −
∫ τ

0
e−is∆

( i
2eic

2tnsϕ1
(
ic2s

)
n∗(tn)u∗(tn)ieic

2sc〈∇〉−1
c sϕ1

(
−ic2s

)
|n∗(tn)|2

)
ds

+
∫ τ

0
e−is∆

( i
2eic

2tnsϕ1
(
ic2s

)
n∗(tn)u∗(tn)ie−ic

2sc〈∇〉−1
c sϕ1

(
ic2s

)
|n∗(tn)|2

)
ds

−
∫ τ

0
e−is∆

( i
2e−ic

2tnsϕ1
(
− ic2s

)
n∗(tn)u∗(tn)ieic

2sc〈∇〉−1
c sϕ1

(
−ic2s

)
|n∗(tn)|2

)
ds

+
∫ τ

0
e−is∆

( i
2e−ic

2tnsϕ1
(
− ic2s

)
n∗(tn)u∗(tn)ie−ic

2sc〈∇〉−1
c sϕ1

(
ic2s

)
|n∗(tn)|2

)
ds.

Using the approximation se−is∆ = s+O(s2∆), the estimate for c〈∇〉−1
c (see (3.19)) and for ϕ1 (see (3.31))

we obtain that all terms in In∗,b are of order O(τ3), such that we have

In∗ = In∗,a +R4(τ, tn, u∗, n∗)

=
∫ τ

0
e−is∆

[ (
ei∆sn∗(tn)

) (
eic

2(tn+s)eisAcu∗(tn)
)]

ds

+
∫ τ

0
e−is∆

[ (
ei∆sn∗(tn)

) (
e−ic

2(tn+s)e−isAcu∗(tn)
)]

ds

+ i

∫ τ

0
sn∗(tn)

[
c〈∇〉−1

c |n∗(tn)|2
](
− eic

2sϕ1
(
−ic2s

)
+ e−ic

2sϕ1
(
ic2s

) )
ds

+ i

2

∫ τ

0
s

[
eic

2tnϕ1
(
ic2s

)
n∗(tn)u∗(tn) + e−ic

2tnϕ1
(
− ic2s

)
n∗(tn)u∗(tn)

]
[

eic
2(tn+s)u∗(tn) + e−ic

2(tn+s)u∗(tn)
]

ds+R4(τ, tn, u∗, n∗),

(3.46)

where the remainder R4 satisfies

‖R4(τ, tn, u∗, n∗)‖r ≤ τ3kr,M4

uniformly in c. Note that the latter two integrals in (3.46) can be easily solved by exploiting the relations
for σ ∈ R, such that∫ τ

0
s e−σic

2sϕ1(σic2s)ds =
∫ τ

0
sϕ1(−σic2s)ds = τ2ϕ2

(
−σic2τ

)
,∫ τ

0
s eσic

2sϕ1(σic2s)ds = σ
1
ic2

∫ τ

0

(
ϕ0(σ2ic2s)− ϕ0(σic2s)

)
ds

= σ
τ

ic2

(
ϕ1(σ2ic2τ)− ϕ1(σic2τ)

)
which follows from integration by parts together with the observation

eσic
2τϕ1

(
−σic2τ

)
= ϕ1

(
σic2τ

)
which is an immediate consequence of Definition 2.8.

The first two integrals of In∗ (see (3.46)) need to be analyzed with care. For the first integral, henceforth
called In∗,1, we obtain by Taylor series expansion of eis∆ and eisAc together with the relation (see also
Definition 2.8) ∫ τ

0
seσis(c

2−∆)ds = τ2Ψ2
(
σiτ(c2 −∆)

)
, σ = ±1 (3.47)
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that

In∗,1 :=
∫ τ

0
e−is∆

[ (
ei∆sn∗(tn)

) (
eic

2(tn+s)eisAcu∗(tn)
)]

ds

= eic
2tn

∫ τ

0
eis(c

2−∆)

[
n∗(tn)u∗(tn) + (is∆n∗(tn))u∗(tn) + n∗(tn) (isAcu∗(tn))

]
ds

+R4(τ, tn, u∗, n∗)

= eic
2tnτϕ1

(
iτ(c2 −∆)

)
n∗(tn)u∗(tn)

+ τ2eic
2tnΨ2

(
iτ(c2 −∆)

) [
(i∆n∗(tn))u∗(tn) + n∗(tn) (iAcu∗(tn))

]
+R4(τ, tn, u∗, n∗).

(3.48)

For the second integral in (3.46), henceforth called In∗,2, we analogously have

In∗,2 :=
∫ τ

0
e−is∆

[ (
ei∆sn∗(tn)

) (
e−ic

2(tn+s)e−isAcu∗(tn)
)]

ds

= e−ic
2tn

∫ τ

0
e−is(c

2−∆)e−2is∆

[ (
ei∆sn∗(tn)

) (
e−isAcu∗(tn)

)]
ds

= e−ic
2tn

∫ τ

0
e−is(c

2−∆)

[
n∗(tn)u∗(tn)

]
ds

+ e−ic
2tn

∫ τ

0
e−is(c

2−∆) (−2is∆)
[
n∗(tn)u∗(tn)

]
ds

+ e−ic
2tn

∫ τ

0
e−is(c

2−∆)

[
(is∆n∗(tn))u∗(tn) + n∗(tn)

(
− isAcu∗(tn)

)]
ds+R4(τ, tn, u∗, n∗).

By the definition of the ϕ-functions (Definition 2.8) and relation (3.47), we thus obtain that

In∗,2 = e−ic
2tnτϕ1

(
−iτ(c2 −∆)

) [
n∗(tn)u∗(tn)

]

+ e−ic
2tnτ2Ψ2

(
−iτ(c2 −∆)

)
(−2i∆)

[
n∗(tn)u∗(tn)

]

+ e−ic
2tnτ2Ψ2

(
−iτ(c2 −∆)

) [
(i∆n∗(tn))u∗(tn) + n∗(tn)

(
− iAcu∗(tn)

)]
+R4(τ, tn, u∗, n∗).

(3.49)

Recall that by (3.45) combining with (3.46) we have

n∗(tn + τ) = eiτ∆ n∗(tn) + i

2eiτ∆ In∗
(
u∗(tn), n∗(tn)

)
.

Thus, plugging (3.48) and (3.49) into (3.46) motivates us (together with (3.40)) to define the following
numerical scheme

un+1
∗ = eiAcτun∗ − ic〈∇〉−1

c eiτAce−ic
2tnInu∗(n

n
∗ ), u0

∗ = z0 − ic〈∇〉−1
c z1,

nn+1
∗ = ei∆τnn∗ + i

2eiτ∆Inn∗(u
n
∗ , n

n
∗ ), n0

∗ = n0
(3.50)

with

Inu∗ (nn∗ ) := τϕ1
(
− iτc〈∇〉c

)
|nn∗ |2 + iτ2Ψ2

(
−iτ

(
c〈∇〉c − 1

2∆
)) (

nn∗ (∆nn∗ )− nn∗ (∆nn∗ )
)
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and

Inn∗ := eic
2tnτϕ1

(
iτ(c2 −∆)

)
nn∗u

n
∗ + τ2eic

2tnΨ2
(
iτ(c2 −∆)

) [
(i∆nn∗ )un∗ + nn∗ (iAcun∗ )

]
+ e−ic

2tnτϕ1
(
−iτ(c2 −∆)

) [
nn∗un∗

]
+ e−ic

2tnτ2Ψ2
(
−iτ(c2 −∆)

) [
(−2i∆) (nn∗un∗ ) + (i∆nn∗ )un∗ + nn∗

(
− iAcun∗

)]
+ τ

2c2 e2ic2tn
(
ϕ1
(
2ic2τ

)
− ϕ1

(
ic2τ

) )
nn∗ (un∗ )2 − τ

2c2 e−2ic2tn
(
ϕ1
(
−2ic2τ

)
− ϕ1

(
−ic2τ

) )
nn∗ (un∗ )2

+ iτ2
(
− ϕ2

(
ic2τ

)
+ ϕ2

(
−ic2τ

) )
nn∗
(
c〈∇〉−1

c |nn∗ |2
)

+ iτ2

2

(
ϕ2
(
ic2τ

)
+ ϕ2

(
−ic2τ

) )
nn∗ |un∗ |2,

where ϕ1, ϕ2, and Ψ2 are given in Definition 2.8.

3.3.3.3 Convergence Analysis of the Second-Order Scheme

The exponential-type integration scheme (3.50) converges (by construction) with second-order in time
uniformly with respect to c, see Theorem 3.8 below.

Theorem 3.8 (Convergence bound for the second-order scheme, cf. Theorem 7 in [14]). Fix r > d/2
and assume that Assumption 3.7 holds. For u∗ defined in (3.50) we set

zn := 1
2

(
eic

2tnun∗ + e−ic
2tnun∗

)
.

Then, there exists a T > 0 and τ0 > 0 such that for τ ≤ τ0 and tn ≤ T we have for all c > 0 that

‖z(tn)− zn‖r + ‖n(tn)− nn‖r ≤ τ2Kr,T,M,M4 ,

where the constant Kr,T,M4 can be chosen independently of c.

Proof. Fix r > d/2. In the following we denote by kr, Kr and Kr,M constants depending only on r

and r,M respectively, but which can be chosen independently of c.
The regularity assumptions on the initial values implies Assumption 3.7 on u∗(t). In addition we assume
that

‖u∗(tn)‖r ≤M, ‖un∗‖r ≤ 2M, ‖n∗(tn)‖r ≤ 3M, ‖nn∗‖r ≤ 4M.

Again let (φτu∗ , φ
τ
n∗) denote the exact flow and let (Φτu∗ ,Φ

τ
n∗) denote the numerical flow, i.e.,

u∗(tn+1) = φτu∗ (u∗(tn), n∗(tn)) , un+1
∗ = Φτu∗ (un∗ , nn∗ ) ,

n∗(tn+1) = φτn∗ (u∗(tn), n∗(tn)) , nn+1
∗ = Φτn∗ (un∗ , nn∗ ) .

Again we split the global error as follows

u∗(tn+1)− un+1
∗ = φτu∗(u∗(tn), n∗(tn))− Φτu∗(u∗(tn), n∗(tn)) + Φτu∗(u∗(tn), n∗(tn))− Φτu∗(u

n
∗ , n

n
∗ ).

Local error bound: With the aid of the estimate ‖R1(τ, tn, u∗, n∗)‖r ≤ τ2kr,M3 we have

∥∥φτu∗(u∗(tn), n∗(tn))− Φτu∗(u∗(tn), n∗(tn))
∥∥
r
≤ ‖R4(τ, tn, u∗, n∗)‖r ≤ τ3kr,M4 .
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The same estimate holds for n∗.

Stability bound: We have to estimate

∥∥Φτu∗(u∗(tn), n∗(tn))− Φτu∗(u
n
∗ , n

n
∗ )
∥∥
r
,

∥∥Φτn∗(u∗(tn), n∗(tn))− Φτn∗(u
n
∗ , n

n
∗ )
∥∥
r
.

Note that for all t ∈ R we have that ‖eitAc‖r = 1, ‖eit∆‖r = 1, and ‖c〈∇〉−1
c ‖r ≤ 1 (see (3.19) and (3.20),

respectively), thus we have

∥∥Φτu∗(f1, g1)− Φτu∗(f2, g2)
∥∥
r

=
∥∥∥eiAcτf1 − ic〈∇〉−1

c eiτAce−ic
2tnInu∗(g1)

− eiAcτf2 + ic〈∇〉−1
c eiτAce−ic

2tnInu∗(g2)
∥∥∥
r

≤
∥∥eiAcτf1 − eiAcτf2

∥∥
r

+
∥∥∥ic〈∇〉−1

c eiτAce−ic
2tnInu∗(g2)− ic〈∇〉−1

c eiτAce−ic
2tnInu∗(g1)

∥∥∥
r

≤ ‖f1 − f2‖r +
∥∥Inu∗(g1)− Inu∗(g2)

∥∥
r

(3.51)

and analogously

‖Φτn∗
(
f1, g1

)
− Φτn∗(f2, g2)‖r ≤ ‖g1 − g2‖r + ‖Inn∗(f1, g1)− Inn∗(f2, g2)‖r. (3.52)

In order to estimate the remaining terms

‖Inu∗(g1)− Inu∗(g2)‖r =
∥∥∥τϕ1

(
− iτc〈∇〉c

)
|g1|2 + iτ2Ψ2

(
−iτ

(
c〈∇〉c − 1

2∆
)) (

g1 (∆g1)− g1 (∆g1)
)

− τϕ1
(
− iτc〈∇〉c

)
|g2|2 + iτ2Ψ2

(
−iτ

(
c〈∇〉c − 1

2∆
)) (

g2 (∆g2)− g2 (∆g2)
)∥∥∥

r

(3.53)

and ‖Inn∗(f1, g1) − Inn∗(f2, g2)‖r we need the following definitions and estimates: recall that by
Definition 2.8 we have that

Ψ2(ξ) = ϕ0(ξ)− ϕ1(ξ)
ξ

.

This implies (by looking at the corresponding operators in Fourier space) that the k-th Fourier coefficient
satisfies

τΨ2

(
iτ
(
c〈∇〉c −

1
2∆
))

k

=
ϕ0

(
iτ
(
c
√
c2 + |k|2 + 1

2 |k|2
))
− ϕ1

(
iτ
(
c
√
c2 + |k|2 + 1

2 |k|2
))

i
(
c
√
c2 + |k|2 + 1

2 |k|2
) .

Note that for all k ∈ Zd we have

|k|2
c
√
c2 + |k|2 + 1

2 |k|2
≤ 2.

As |ϕ0(iξ)| ≤ 1 for all ξ ∈ R and ϕ1 satisfies (3.31) this allows us to derive the essential stability bound∥∥∥∥τ2Ψ2

(
iτ
(
c〈∇〉c −

1
2∆
))

∆f
∥∥∥∥
r

≤ 4τ‖f‖r. (3.54)
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Similarly, we obtain due to the observations for the k-th Fourier coefficients

( −∆
c2 −∆

)
k

∼ |k|2
c2 + |k |2 ≤ 1 and

( Ac
c2 −∆

)
k

∼ c
√
c2 + |k|2 − c2
c2 + |k |2 ≤ 1

that

τ2 ∥∥Ψ2
(
± iτ(c2 −∆)

)
Opf

∥∥
r
≤ τK‖f‖r for Op = ∆ or Op = Ac,

for some constant K > 0 independent of c.

Furthermore, by the definition of ϕ2 together with the relation ϕ2(ξ) = ϕ1(ξ)−1
ξ (see Definition 2.8) we

readily obtain that

τ2 ∣∣ϕ2(i`c2τ)
∣∣ ≤ τ min

{
2
|`|c2 , τ

}
for all ` ∈ Z, ` 6= 0

such that

τ2 ∥∥ϕ2(i`c2τ)f
∥∥
r
≤ τ min

{
2
|`|c2 , τ

}
‖f‖r for all ` ∈ Z, ` 6= 0.

Now, we split (3.53) into two terms

‖Inu∗(g1)− Inu∗(g2)‖r ≤
∥∥∥τϕ1

(
− iτc〈∇〉c

)
|g1|2 − τϕ1

(
− iτc〈∇〉c

)
|g2|2‖r

+
∥∥∥iτ2Ψ2

(
−iτ

(
c〈∇〉c − 1

2∆
)) (

g1 (∆g1)− g1 (∆g1)
)

− iτ2Ψ2
(
−iτ

(
c〈∇〉c − 1

2∆
)) (

g2 (∆g2)− g2 (∆g2)
)∥∥∥

r

= T1 + T2,

where we set

T1 :=
∥∥∥τϕ1

(
− iτc〈∇〉c

)
|g1|2 − τϕ1

(
− iτc〈∇〉c

)
|g2|2

∥∥∥
r
,

T2 :=
∥∥∥iτ2Ψ2

(
−iτ

(
c〈∇〉c − 1

2∆
)) (

g1 (∆g1)− g1 (∆g1)
)

− iτ2Ψ2
(
−iτ

(
c〈∇〉c − 1

2∆
)) (

g2 (∆g2)− g2 (∆g2)
)∥∥∥

r
.

We consider only T1, this yields with (3.31) and with the bilinear estimate (1.2) that

T1 ≤
∥∥τϕ1

(
− iτc〈∇〉c

)∥∥
r

∥∥∥|g1|2 − |g2|2
∥∥∥
r

≤ τKr‖g1g1 − g2g2‖r
≤ τKr‖g1g1 − g2g1‖r + τKr‖g2g1 − g2g2‖r
≤ τKr‖g1‖r‖g1 − g2‖r + τKr‖g2‖r‖g1 − g2‖r
≤ τKr,M‖g1 − g2‖r.
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Now, we consider T2 and again add and substract some terms in order to obtain the following estimate

T2 =
∥∥∥τ2Ψ2

(
−iτ

(
c〈∇〉c − 1

2∆
)) (

g1 (∆g1)− g1 (∆g1)− g2 (∆g2) + g2 (∆g2)
)∥∥∥

r

≤
∥∥∥τ2Ψ2

(
−iτ

(
c〈∇〉c − 1

2∆
)) (

g1 (∆g1)− g2 (∆g1)
)∥∥∥

r

+
∥∥∥τ2Ψ2

(
−iτ

(
c〈∇〉c − 1

2∆
)) (

g2 (∆g1)− g2 (∆g2)
)∥∥∥

r

+
∥∥∥τ2Ψ2

(
−iτ

(
c〈∇〉c − 1

2∆
)) (

g2 (∆g2)− g2 (∆g1)
)∥∥∥

r

+
∥∥∥τ2Ψ2

(
−iτ

(
c〈∇〉c − 1

2∆
)) (

g2 (∆g1)− g1 (∆g1)
)∥∥∥

r

=
∥∥∥τ2Ψ2

(
−iτ

(
c〈∇〉c − 1

2∆
))

(∆g1)
(
g1 − g2

)∥∥∥
r

+
∥∥∥τ2Ψ2

(
−iτ

(
c〈∇〉c − 1

2∆
))

(g2) ∆
(
g1 − g2

)∥∥∥
r

+
∥∥∥τ2Ψ2

(
−iτ

(
c〈∇〉c − 1

2∆
))
g2∆

(
g2 − g1

)∥∥∥
r

+
∥∥∥τ2Ψ2

(
−iτ

(
c〈∇〉c − 1

2∆
))

(∆g1)
(
g2 − g1

)∥∥∥
r
.

With estimate (3.54) and with the bilinear estimate (1.2) we have

T2 ≤ τKr,M‖g1 − g2‖r.

Thus, with the above estimates of T1 and T2 we obtain for (3.51) that

‖Φτu∗(f1, g1)− Φτu∗(f2, g2)‖r ≤ ‖f1 − f2‖r + τKr,M‖g1 − g2‖r. (3.55)

For the remaining equation on Φτn∗ (3.52) we use similar techniques as before and the estimates on ϕ1, ϕ2,
and Ψ2. Thus, a similar bound holds for Φτn∗ , i.e.,

‖Φτn∗(f1, g1)− Φτn∗(f2, g2)‖r ≤ ‖g1 − g2‖r + τKr,M (‖f1 − f2‖r + ‖g1 − g2‖r) . (3.56)

Replacing f1 = u∗(tn), f2 = un∗ , g1 = n∗(tn), and g2 = nn∗ yields to the stability estimate for our first-
order uniformly accurate method.

Global error: Thanks to the local error bound given in (3.30), as well as the stability bounds (3.55)
and (3.56) we have by induction (for more details see the proof of Theorem 3.6), respectively, a Lady
Windermere’s fan argument (see, for example [35, 50]) that

‖u∗(tn)− un∗‖r + ‖n∗(tn)− nn∗‖r ≤ τ2kr,T,M4eTKr,M ≤ τ2Kr,T,M,M4 ,

where the constants are uniformly in c. Note again we have by z = 1
2 (u + u) and the definition of the

twisted variable u∗(t) = e−ic2tu(t) that

‖z(tn)− zn‖r ≤ ‖u∗(tn)− un∗‖r ≤ τ2Kr,T,M,M4 .

This completes the proof.

The next subsection shows the convergence of the exponential-type integration scheme to the numerical
method of the corresponding limit system.
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3.3.4 Asymptotic Consistency

In this section we show that our novel class of exponential-type integrators of first- and second-order is
indeed asymptotically consistent: In the non-relativistic limit (c → ∞) the schemes converge to the nu-
merical solution of the corresponding non-relativistic limit system (i.e., c→∞ in (3.1)). The latter can be
derived with for instance Modulated Fourier Expansion techniques, see Section 3.2
or [20, 26, 34, 36] and the references therein. In particular, the leading order term z∞ in the asymptotic
expansion of z reads

z∞(t, x) = 1
2

(
eic

2tu∞(t, x) + e−ic
2tu∞(t, x)

)
,

where (u∞, n∞) solve the decoupled free Schrödinger limit system (cf. (3.9))

i∂tu∞(t, x) = 1
2∆u∞(t, x), u∞(0) = z0 − iz1,

i∂tn∞(t, x) = −∆n∞(t, x), n∞(0) = n0.

For sufficiently smooth solutions (and well prepared initial data) asymptotic convergence of order two
holds, i.e.,

z(t, x)− z∞(t, x) = O(c−2) and n(t, x)− n∞(t, x) = O(c−2).

The crucial difference between the limit Schrödinger system (3.9) and the full nonlinear Klein–Gordon–
Schrödinger system (3.1) lies in the fact that the limit system is linear. Therefore, it can be solved exactly
in Fourier space. Nevertheless, in order to compare its solution with our uniformly accurate schemes we
formulate it as a numerical integration scheme as follows

un+1
∞ = e−

i
2 ∆τun∞, u0

∞ = z0 − iz1,

nn+1
∞ = ei∆τnn∞, n0

∞ = n0

with solutions
zn+1
∞ = 1

2

(
eic

2tn+1un+1
∞ + e−ic

2tn+1un+1∞
)

and nn+1
∞ .

3.3.4.1 Asymptotic Convergence of the First-Order Method

We motivate the asymptotic convergence of our first-order uniformly accurate exponential-type integrator

un+1
∗ = eiτAcun∗ − iτc〈∇〉−1

c eiτAce−ic
2tnϕ1(−iτc2)|nn∗ |2, u0

∗ = z(0)− ic−1〈∇〉−1
c ∂tz(0),

nn+1
∗ = eiτ∆nn∗ + i

2τ
[
eiτ∆eic

2tnϕ1(ic2τ)un∗ + eiτ∆e−ic
2tnϕ1(−ic2τ)vn∗

]
nn∗ , n0

∗ = n0
(3.57)

(see (3.28)) towards the limit solution (3.10). Thereby, we use (2.27) and (3.19) which yields that∥∥∥ (Ac − 1
2∆
)
u∗(t)

∥∥∥
r

+
∥∥∥ (c〈∇〉−1

c − 1
)
u∗(t)

∥∥∥
r
≤ c−2kr‖u∗(t)‖r+4,∥∥∥τϕ1(±iτc2)

∥∥∥
r

=
∥∥∥∥e±iτc2 − 1
±ic2

∥∥∥∥
r

≤ 2
c2
,

(3.58)

for some constant kr > 0 independent of c. Applying (3.58) on (3.57) formally yields that

un+1
∗ = e−

i
2 τ∆un∗ +O(c−2),

nn+1
∗ = eiτ∆nn∗ +O(c−2).

Hence, for sufficiently smooth solutions the exponential-type integration scheme (3.57) converges asymp-
totically to the solution of the corresponding free Schrödinger limit system (3.10).
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3.3.4.2 Asymptotic Convergence of the Second-Order Method

Techniques similar to (3.58) allow us to show that formally

Inu∗ = O(c−2) and Inn∗ = O(c−2).

Applying the observation (3.58) in (3.50) formally yields that

un+1
∗ = e− i

2 τ∆un∗ +O(c−2), nn+1
∗ = eiτ∆nn∗ +O(c−2)

which implies that also our second-order exponential-type integration scheme (3.50) converges asymptot-
ically to the solution of the corresponding free Schrödinger limit system (3.10).
The uniformly accurate behavior of our novel class of integrators is also underlined with numerical
experiments in the next Section 3.4. Also we compare our first-order uniformly accurate scheme with
standard time integration schemes in Section 3.4.4.

3.4 Numerical Experiments for the Klein–Gordon–Schrödinger
System

In this section we numerically underline first-, respectively, second-order convergence uniformly in c of
the exponential-type integration schemes (3.28) and (3.50). We also confirm the convergence of the first-
and second-order uniformly accurate scheme to the corresponding limit integrator in the limit c→∞.
We consider the Klein–Gordon–Schrödinger system on the one dimensional torus, i.e., x ∈ T = [0, 2π]
and on a finite time interval, i.e., t ∈ [0, T ]. In all numerical experiments we use a standard Fourier
pseudospectral method for the spatial discretization. For more details on pseudospectral methods we
refer to [27, 69, 70]. The mesh-size is denoted by h = 2π

M , M ∈ N with grid points xj = jh and time step
size τ = T

N with grid points tn = nτ , for j = 0, ...,M and n = 0, ..., N respectively. In order to use the
Fourier transform efficiently we choose M = 2k, with k ∈ N. For practical implementation of the Fourier
transform in Matlab, we introduce the Fourier grid K =

[
−M2 : −1, 0, 1 : M2 − 1

]
.

In the following we choose M = 210, i.e. we have the spatial mesh-size h = 0.0061 and integrate up to
time T = 1 in all numerical simulations.
In all numerical experiments for the Klein–Gordon–Schrödinger system we use the following initial values

z(0, x) = 1
2

cos(3x)2sin(2x)
2− cos(x) , ∂tz(0, x) = c2

1
2

sin(x)cos(2x)
2− cos(x) ,

n(0, x) = 1 + i
sin(x)

2− cos(x) .

In Section 3.4.1 we derive a Gautschi-type method following the ansatz of [9] in order to obtain a numerical
method to compute the reference solution. Then we recall the numerical method for the limit system
in Section 3.4.2 and the uniformly accurate methods in Section 3.4.3. Finally, we compare the different
numerical methods in Section 3.4.4.
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3.4.1 Numerical Methods for the Reference Solution

In this subsection, based on [4, 39], we state two types of numerical reference methods, namely a second-
order Gautschi-type method in Section 3.4.1.1 and a classical first-order exponential integrator in Sec-
tion 3.4.1.2 for the Klein–Gordon–Schrödinger system.

3.4.1.1 A Gautschi-type Method for the Klein–Gordon Equation

We use the techniques of [9] and construct a two step Gautschi-type method. Therefore, we recall our
Klein–Gordon–Schrödinger system

c−2∂ttz −∆z + c2z = |n|2, z(0) = z0, ∂tz(0) = c2z1,

i∂tn + ∆n + nz = 0, n(0) = n0.

In a first step we use the variation of constants formula for second-order equations for z and obtain

z(tn + τ) = cos(τc〈∇〉c)z(tn) + τ
sin(τc〈∇〉c)
τ〈∇〉0

ż(tn) + c2
∫ τ

0

sin ((τ − s)c〈∇〉c)
c〈∇〉c

|n(tn + s)|2ds,

ż(tn + τ) = −c〈∇〉c sin(τc〈∇〉c)z(tn) + cos(τc〈∇〉c)ż(tn) + c2
∫ τ

0
cos ((τ − s)c〈∇〉c) |n(tn + s)|2ds.

(3.59)

For n = 0 we have

z(t1) = cos(τc〈∇〉c)z(0) + τ
sin(τc〈∇〉c)
τc〈∇〉c

ż(0) + c2
∫ τ

0

sin ((τ − s)c〈∇〉c)
c〈∇〉c

|n(s)|2ds,

ż(t1) = −c〈∇〉c sin(τc〈∇〉c)z(0) + cos(τc〈∇〉c)ż(0) + c2
∫ τ

0
cos ((τ − s)c〈∇〉c) |n(s)|2ds.

(3.60)

For n ≥ 1 we consider tn+1 and tn−1 in (3.59) and add the equations, such that we have with

cos(−x) = cos(x) and sin(−x) = − sin(x)

that

z(tn+1) + z(tn−1) = 2 cos(τc〈∇〉c)z(tn)

+ c2
∫ τ

0

sin ((τ − s)c〈∇〉c)
c〈∇〉c

(
|n(tn + s)|2 + |n(tn − s)|2

)
ds,

ż(tn+1) + ż(tn−1) = 2 cos(τc〈∇〉c)ż(0)

+ c2
∫ τ

0
cos ((τ − s)c〈∇〉c)

(
|n(tn + s)|2 + |n(tn − s)|2

)
ds.

We solve the equations for z(tn+1), ż(tn+1) and obtain

z(tn+1) = 2 cos(τc〈∇〉c)z(tn)− z(tn−1)

+ c2
∫ τ

0

sin ((τ − s)c〈∇〉c)
c〈∇〉c

(
|n(tn + s)|2 + |n(tn − s)|2

)
ds,

ż(tn+1) = 2 cos(τc〈∇〉c)ż(tn)− ż(tn−1)

+ c2
∫ τ

0
cos ((τ − s)c〈∇〉c)

(
|n(tn + s)|2 + |n(tn − s)|2

)
ds.

(3.61)



3.4. Numerical Experiments for the Klein–Gordon–Schrödinger System 93

We approximate the integrals in (3.61) as follows∫ τ

0

sin ((τ − s)c〈∇〉c)
c〈∇〉c

(
|n(tn + s)|2 + |n(tn − s)|2

)
ds ≈ 2

∫ τ

0

sin ((τ − s)c〈∇〉c)
c〈∇〉c

ds |n(tn)|2

= 21− cos(τc〈∇〉c)
c2〈∇〉2c

|n(tn)|2,∫ τ

0
cos ((τ − s)c〈∇〉c)

(
|n(tn + s)|2 + |n(tn − s)|2

)
ds ≈ 2

∫ τ

0
cos ((τ − s)c〈∇〉c) ds |n(tn)|2

= 2sin(τc〈∇〉c)
c〈∇〉c

|n(tn)|2.

(3.62)

Now, we compute the integrals in (3.60) with the same approximations as in (3.62) and insert the
approximations (3.62) into (3.61). Therefore, we obtain the following two step iteration scheme for n = 0

z1 = cos(τc〈∇〉c)z0 + τ
sin(τc〈∇〉c)
τc〈∇〉c

ż0 + c2
1− cos(τc〈∇〉c)

c2〈∇〉2c
|n0|2,

ż1 = −c〈∇〉c sin(τc〈∇〉c)z0 + cos(τc〈∇〉c)ż0 + c2
sin(τc〈∇〉c)
c〈∇〉c

|n0|2,

and for n ≥ 1

zn+1 = 2 cos(τc〈∇〉c)zn − zn−1 + 2c2 1− cos(τc〈∇〉c)
c2〈∇〉2c

|nn|2,

żn+1 = 2 cos(τc〈∇〉c)żn − żn−1 + 2c2 sin(τc〈∇〉c)
c〈∇〉c

|nn|2

with initial data
z0 = z(0), ż0 = ∂tz(0).

It remains to derive a numerical scheme for n. Therefore we use the splitting method we introduced in
Section 2.4.2. We split the equation for n and obtain the following two subproblems

∂tn = i∆n,

∂tn = izn.

The exact solutions of the subproblems read

n(tn + τ) = eiτ∆n(tn),

n(tn + τ) = ei
∫ τ

0
z(tn+s)ds

n(tn).
(3.63)

We use the trapezoidal rule to approximate the integral in the second subproblem of (3.63) and obtain

n(tn + τ) = eiτ∆n(tn),

n(tn + τ) = ei τ2 (z(tn+1)+z(tn))n(tn).

We apply the Strang splitting scheme, this yields

nn+1 = ei τ2 ∆ei τ2 (zn+1+zn)ei τ2 ∆nn, n0 = n(0).

We implement the Gautschi-type method in order to obtain a reference solution for our Klein–Gordon–
Schrödinger system. In Figure 3.4 we plot (double logarithmic) the time step size versus the error in z
which is measured in a discrete H1 norm and the error in n is measured in a discrete L2 norm for
different values of c = 1, 5, 10, 50, 100. As a reference solution we use the scheme itself with a finer time
step size τ ≈ 10−6. Figure 3.4 confirms what is shown in Figure 3.1, that Gautschi-type methods suffer
from severe time step restriction.
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Figure 3.4: Order plot of the Gautschi-type method (double logarithmic scale). Time step size versus error. The
slope of the dashed line is two. Left side error in z, right side error in n. Reference solution computed via the
scheme itself with a finer time step size τ ≈ 10−6.

3.4.1.2 A Classical Exponential Integrator for the Klein–Gordon–Schrödinger System

Now, we derive a classical exponential integrator for the Klein–Gordon–Schrödinger system. For the
details on classical exponential integrators we refer to [39]. For the derivation we recall the first-order
system formulation in time (see (3.13))

i∂tu = −c〈∇〉cu+ c〈∇〉−1
c |n|2, u(0) = z0 − ic〈∇〉−1

c z1,

i∂tn = −∆n− n
1
2
(
u+ u

)
, n(0) = n0.

We apply Duhamel’s formula

u(tn + τ) = eiτc〈∇〉cu(tn)− ic〈∇〉−1
c

∫ τ

0
ei(τ−s)c〈∇〉c |n(tn + s)|2ds,

n(tn + τ) = eiτ∆n(tn) + i

2

∫ τ

0
ei(τ−s)∆n(tn + s) (u(tn + s) + u(tn + s)) ds,

and approximate the integrals in the simplest way, i.e., by freezing the nonlinearity at s = 0. This yields
the following first-order iteration scheme

un+1 = eiτc〈∇〉cun − τic〈∇〉−1
c eiτc〈∇〉cϕ1 (−iτc〈∇〉c) |nn|2,

nn+1 = eiτ∆nn + τ
i

2c〈∇〉
−1
c eiτ∆ϕ1 (−iτ∆) nn (un + un) .

We implement the first-order exponential integrator in order to obtain a reference solution for the Klein–
Gordon–Schrödinger system. In Figure 3.5 we plot (double logarithmic) the time step size versus the
error in z and n which is measured in a discrete H1 and L2 norm, respectively, for different values
of c = 1, 5, 10, 50, 100, 500, 1000, 5000, 10000. As a reference solution we use the scheme itself with a finer
time step size τ ≈ 10−7. Figure 3.5 also underlines the time step restrictions for large values of c.
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Figure 3.5: Order plot of the first-order exponential integrator (double logarithmic scale). The slope of the dashed
line is one. Left side error in z, right side error in n. Reference solution computed via the scheme itself with a
finer time step size τ ≈ 10−7.

3.4.2 Numerical Methods for the Limit System

In Section 3.2 we derived a limit system for c→∞ for the Klein–Gordon–Schrödinger system. The free
Schrödinger limit system reads as follows

∂tu∞(t, x) = − i
2∆u∞(t, x), u∞(0) = z0 − iz1,

∂tn∞(t, x) = i∆n∞(t, x), n∞(0) = n0.

The benefit is that the free Schrödinger limit system is non-oscillatory and can be solved exactly in
Fourier space. Written iteratively we have

un+1
∞ = e−i τ2 ∆un∞, u0

∞ = z0 − iz1,

nn+1
∞ = eiτ∆nn∞, n0

∞ = n0.

Here, we do not provide any order plots, since the limit system can be solved exactly.

3.4.3 Uniformly Accurate Methods for the Klein–Gordon–Schrödinger Sys-
tem

We recall the uniformly accurate schemes: the first-order method

un+1
∗ = eiτAcun∗ − iτe−ic

2tnϕ1(−iτc2)c〈∇〉−1
c eiτAc |nn∗ |2, u0

∗ = z0 − ic〈∇〉−1
c z1,

nn+1
∗ = eiτ∆nn∗ + i

2τeiτ∆
[
eic

2tnϕ1(ic2τ)un∗nn∗ + e−ic
2tnϕ1(−ic2τ)un∗nn∗

]
, n0

∗ = n0,
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and the second-order method

un+1
∗ = eiτAcun∗ − ic〈∇〉−1

c eiτAce−ic
2tnInu∗(n

n
∗ ), u0

∗ = z0 − ic〈∇〉−1
c z1,

nn+1
∗ = eiτ∆nn∗ + i

2eiτ∆Inn∗(u
n
∗ , n

n
∗ ), n0

∗ = n0

with

Inu∗ (nn∗ ) = τϕ1
(
− iτc〈∇〉c

)
|nn∗ |2 + iτ2Ψ2

(
−iτ

(
c〈∇〉c − 1

2∆
)) (

nn∗ (∆nn∗ )− nn∗ (∆nn∗ )
)

and

Inn∗ = eic
2tnτϕ1

(
iτ(c2 −∆)

)
nn∗u

n
∗ + τ2eic

2tnΨ2
(
iτ(c2 −∆)

) [
(i∆nn∗ )un∗ + nn∗ (iAcun∗ )

]
+ e−ic

2tnτϕ1
(
−iτ(c2 −∆)

) [
nn∗un∗

]
+ e−ic

2tnτ2Ψ2
(
−iτ(c2 −∆)

) [
(−2i∆) (nn∗un∗ ) + (i∆nn∗ )un∗ + nn∗

(
− iAcun∗

)]
+ τ

2c2 e2ic2tn
(
ϕ1
(
2ic2τ

)
− ϕ1

(
ic2τ

) )
nn∗ (un∗ )2 − τ

2c2 e−2ic2tn
(
ϕ1
(
−2ic2τ

)
− ϕ1

(
−ic2τ

) )
nn∗ (un∗ )2

+ iτ2
(
− ϕ2

(
ic2τ

)
+ ϕ2

(
−ic2τ

) )
nn∗
(
c〈∇〉−1

c |nn∗ |2
)

+ iτ2

2

(
ϕ2
(
ic2τ

)
+ ϕ2

(
−ic2τ

) )
nn∗ |un∗ |2.

In Figure 3.6 and 3.7 we numerically confirm the convergence order in time of our first- and second-order
uniformly accurate method, respectively. In the figures we plot time step size versus the error of our
uniformly accurate schemes for different values of c = 1, 5, 10, 50, 100, 500, 1000, 5000, 10000. The error
in z is measured in a discrete H1 norm, the error in n is measured in a discrete L2 norm. As a reference
solution we use the scheme itself with a finer time step size τ ≈ 10−7.
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Figure 3.6: Order plot of the first-order uniformly accurate method (double logarithmic scale). The slope of the
dashed line is one. Left side error in z, right side error in n. Reference solution computed via the scheme itself
with a finer time step size τ ≈ 10−7.
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Figure 3.7: Order plot of the second-order uniformly accurate method (double logarithmic scale). The slope of
the dashed line is two. Left side error in z, right side error in n. Reference solution computed via the scheme
itself with a finer time step size τ ≈ 10−7.

In the numerical experiments (Figure 3.6 and 3.7) we observe that the error does not increase for increasing
values of c which is the aim of our novel developed methods. In particular, it is indicated that the
error introduced by our schemes reduces with increasing c. This might be due to the fact that our
numerical schemes asymptotically converge with order O(c−2) (see also Figure 3.10) to the decoupled
free Schrödinger limit system (3.9) which is indeed solved exactly in time.

3.4.4 Comparison of the Numerical Methods

In this subsection we compare our uniformly accurate methods with the established Gautschi-type
method, exponential integrator and limit scheme. We confirm that our newly derived uniformly ac-
curate methods are uniformly accurate with respect to c and that they converge asymptotically to the
corresponding limit scheme. Finally, we consider work-precision plots and compare the error constants.

We start by comparing our newly derived uniformly accurate first- and second-order method with the first-
order exponential integrator. This comparison (see Figure 3.8 and 3.9) confirms that our UA methods are
uniformly accurate with respect to c. We use the first-order exponential integrator in order to compute
the reference solution with time step size τ ≈ 10−6 for different values of c = 1, 5, 10, 50, 100. The error
between the exponential integrator and our uniformly accurate methods is measured in z in a discrete
H1 norm and in n in a discrete L2 norm.
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Figure 3.8: Order plot of the first-order uniformly accurate method (double logarithmic scale). Error in z on the
left, error in n on the right. The slope of the dashed line is one. Reference solution computed via the classical
exponential integrator with a finer time step size τ ≈ 10−6.
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Figure 3.9: Order plot of the second-order uniformly accurate method (double logarithmic scale). The slope of
the dashed line is two. Left side error in z, right side error in n. Reference solution computed via the classical
exponential integrator with a finer time step size τ ≈ 10−6.
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In the next Figure 3.10 we underline the asymptotic convegence to the corresponding numerical methods
for the limit system. Therefore, we plot the error of the UA methods and the limit method versus
different values of c. This yields the O(c−2) convergence, which is shown in Section 3.3.4. The error
in z is measured in a discrete H1 norm and in n in a discrete L2 norm. Our numerical observations in
particular suggest a global error behavior of the type min{τ, c−2} and min{τ2, c−2} for the first-order
(3.28) and second-order (3.50) uniformly accurate exponential-type integrator, respectively.
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Figure 3.10: Asymptotic consistency plot (double logarithmic scale). Left side error of the first-order UA method,
right side error of the second-order UA method. The slope of the dashed line is −2.

Now, we underline the different error constant behaviors of our UA methods. Therefore, we plot the
numerical error of the corresponding numerical method against different values of c for different time
step sizes τ . In comparison, we also plot the error of the Gautschi-type method against different values
of c. For the reference solution we use the exponential integrator with time step size τ ≈ 10−6. For
our uniformly accurate methods we observe uniform bounds, whereas for the Gautschi-type method we
obtain the typical O(c4) error (see Figure 3.11).
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Figure 3.11: Error constant comparison plot (double logarithmic scale). On the left for the first-order uniformly
accurate method, in the middle for the second-order uniformly accurate method and on the right for the Gautschi-
type method. The slope of the dashed line is four. Reference solution computed via the classical exponential
integrator with a finer time step size τ ≈ 10−6.
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Next, we compare the error of the different methods versus the computation time (see Figure 3.12). The
work-precision plots show the efficiency of the numerical methods for different values of c. We plot the
corresponding error against the computation time (in seconds) of the corresponding numerical method.
We desire values in the lower left corner, i.e., a small error and a short computation time. For the reference
solution we use the exponential integrator with time step size τ ≈ 10−6. We compare the error of the
exponential integrator with the error of the Gautschi-type method, our uniformly accurate methods and
the limit scheme. We only show here the plots of z, where the error in z is measured in a discrete H1

norm. For n we obtain similar plots.
We observe that the Gautschi-type method performs well for small c and fails for large c. For the limit
scheme we observe this behavior vice versa, i.e., the limit scheme fails for small c but is performing better
for increasing values of c. Our uniformly accurate schemes show a good behavior for all values of c.
Our uniformly accurate schemes reach smaller errors than both, the Gautschi-type method and the limit
scheme for all values of c.
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Figure 3.12: Work-precision plot (double logarithmic scale) in z. The yellow line mark the error of the limit
scheme. The purple line mark the error of the Gautschi-type method. The blue line mark the error of our first-
order uniformly accurate method and the red line mark the error of our second-order uniformly accurate method.
The CPU time is measured in seconds. Reference solution computed via the classical exponential integrator with
a finer time step size τ ≈ 10−6.

In the next chapter we consider the Klein–Gordon–Zakharov system, which is a Klein–Gordon equation
coupled with a wave equation. For this system we also derive a limit system and try to derive a uniformly
accurate method analogously to the derivation for the KG equation and the KGS system.
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CHAPTER 4

The Klein–Gordon–Zakharov System

In this chapter we focus on numerical methods for the Klein–Gordon–Zakharov system. We proceed
similarly to the previous chapters. In Section 4.1 we give an overview of the Klein–Gordon–Zakharov
system, its high-plasma frequency limit regime and standard numerical methods for solving the Klein–
Gordon–Zakharov system. Then we focus in Section 4.2 on the formal derivation of the limit system. We
finish this chapter with the derivation of a uniformly accurate method for the Klein–Gordon–Zakharov
system (see Section 4.3) in the high-plasma frequency limit regime. The main references for this chapter
are [53, 54] for Section 4.1 and Section 4.2. The results of this chapter, in particular Section 4.4, have
been published with Katharina Schratz in preprint [12].

4.1 Introduction to Klein–Gordon–Zakharov Systems

The Klein–Gordon–Zakharov (KGZ) system

c−2∂ttz(t, x)−∆z(t, x) + c2z(t, x) = −n(t, x)z(t, x),

∂ttn(t, x)−∆n(t, x) = ∆|z(t, x)|2,
(4.1)

with initial conditions

z(0, x) = z0(x), ∂tz(0, x) = c2z1(x),

n(0, x) = n0(x), ∂tn(0, x) = n1(x),

describes the interaction between Langmuir waves, which characterize oscillations of the electron density
and ion sound waves in a plasma. Here, z denotes the electric field and n denotes the ion density
fluctuation. It arises from coupling a Klein–Gordon equation nonlinearly to a wave equation. For existence
and uniqueness of global smooth solutions we refer to [53, 54, 60] and the references therein. Numerically
the Klein–Gordon–Zakharov system is extensively studied in the relativistic regime c = 1, see [9, 75]. In
contrast, the non-relativistic regime, where c tends to infinity, is due to the highly oscillatory behavior of
the solution much more challenging numerically.
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For a formal overview of the limit system in the high-plasma frequency regime we refer to Section 4.2.
Similarly to the previous two chapters, classical numerical methods break down in the high-plasma
frequency regime. They fail to resolve the oscillations within the solution. Severe time step size restrictions
have to be imposed which leads to huge computational effort and does not permit reasonably accurate
simulations.
Analogously to the previous chapters Gautschi-type methods which are especially designed for solving
oscillatory second-order differential equations numerically (see [36, 38]), also do not allow a reasonable
approximation result as they fail to approximate the highly oscillatory parts properly. We underline
this phenomenon in Figure 4.1 for the high-plasma frequency regime, i.e., c � 1. In contrast to the
slowly varying relativistic regime c = 1 the Gautschi-type method allows a precise approximation of
the solution of the Klein–Gordon–Zakharov system. But it fails in the highly oscillatory non-relativistic
regime c � 1. For the classical splitting-type methods we observe a similar error behavior as for the
Gautschi-type methods.
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Figure 4.1: Numerical solution of the Klein–Gordon–Zakharov system for z. Exponential Gautschi-type scheme
(red solid line) for different c with time step size τ ≈ 10−2 at time t = 0.6. The blue dashed line represents the
reference solution at time t = 0.6, computed via the same exponential Gautschi-type scheme with a small time step
size τ ≈ 10−6. The spatial discretization is done via a Fourier pseudospectral method with mesh-size h = 0.0245.

Analogously to the previous chapters numerical limit schemes for the Klein–Gordon–Zakharov system in
the strongly non-relativistic limit regime c� 1 are introduced in Section 4.2. This limit ansatz allows us
to reduce the highly oscillatory problem (4.1) to the integration of the corresponding non-oscillatory limit
equation. Due to the non-oscillatory behavior of the limit system it can be carried out very efficiently
without imposing any c-dependent step size restriction.
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However, this approach only allows error bounds of order

O(c−2).

Henceforth, the limit integration method only yields an accurate approximation of the exact solution for
sufficiently large values of c (see Figure 4.2). For more details on the formal derivation of the limit system
we refer to Section 4.2.
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Figure 4.2: Numerical solution of the Klein–Gordon–Zakharov for z for different c, i.e., in the high-plasma
frequency case. Limit integration scheme (red solid line) for different c with time step size τ ≈ 10−2 at time t = 1.
The blue dashed line represents the reference solution at time t = 1, computed via an exponential Gautschi-type
scheme with a small time step size τ ≈ 10−5. The spatial discretization is done via a Fourier pseudospectral
method with mesh-size h = 0.0245.

Here, we want to establish the same novel type of exponential-type integrators as for the Klein–Gordon
and Klein–Gordon–Schrödinger which allow convergence with first- and second-order accuracy in time
uniformly for all c ≥ 1. Our first ansatz lies in considering the so-called twisted variables. For more
details on twisted variables and their appearance in physics and numerical analysis we refer to Section 2.1
and Section 3.1. But we see in Section 4.3 that the ansatz of twisted variables causes a loss of derivative.
Therefore, in Section 4.4 we introduce a novel concept of uniformly accurate oscillatory integrators for
the Klein–Gordon–Zakharov system which converge uniformly with respect to c. This ansatz allows us
to overcome the loss of derivative and to establish rigorous error estimates in the low-plasma as well as
in the high-plasma frequency regime. The idea is inspired by the recent work of Herr and Schratz (see
[37]). Our novel oscillatory integrator is in particular asymptotic consistent and converges in the limit
c→∞ to the solution of the corresponding Zakharov limit system.
In the next section we formally derive and introduce the limit system of the KGZ system.

4.2 Formal Derivation of the High-Plasma Frequency Limit Sys-
tem

We consider formally the high-plasma frequency limit regime. For a rigorous analysis, see [15, 21, 54, 55].

In a first step, analogously to the previous chapters, we rewrite the Klein–Gordon–Zakharov system as a
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first-order system in time. Therefore, we recall the definition of the 〈∇〉c operator

〈∇〉c =
√
−∆ + c2.

Similar to the previous chapters we rewrite (4.1) as a first-order system in time via the following ansatz

u = z − ic−1〈∇〉−1
c ∂tz,

v = z − ic−1〈∇〉−1
c ∂tz,

h = n− i〈∇〉−1
0 ∂tn,

(4.2)

such that we have

z = 1
2 (u+ v) ,

n = <(h).

In order to obtain a first-order system we differentiate u with respect to t and obtain

∂tu = ∂tz − ic−1〈∇〉−1
c ∂ttz. (4.3)

We solve the original equation (4.1) with respect to ∂ttz and equation (4.2) with respect to ∂tz and plug
the two equations into (4.3) which yields

∂tu = ic〈∇〉c(u− z)− ic−1〈∇〉−1
c ∂ttz

= ic〈∇〉cu− ic〈∇〉cz − ic−1〈∇〉−1
c (−c2nz)− ic−1〈∇〉−1

c (−c2〈∇〉2cz)
= ic〈∇〉cu− ic〈∇〉cz + ic〈∇〉−1

c nz + ic〈∇〉cz
= ic〈∇〉cu+ ic〈∇〉−1

c nz.

(4.4)

Now, we multiply the equation (4.4) by i and obtain

i∂tu = −c〈∇〉cu− c〈∇〉−1
c nz.

After completing this procedure analogously for v and h, we obtain the first-order formulation of the
KGZ system

i∂tu = −c〈∇〉cu− c〈∇〉−1
c nz,

i∂tv = −c〈∇〉cv − c〈∇〉−1
c nz,

i∂th = −〈∇〉0h− 〈∇〉0|z|2,

equipped with the initial conditions

u(0, x) = z(0, x)− ic−1〈∇〉−1
c ∂tz(0, x) = z0 − ic〈∇〉−1

c z1,

v(0, x) = z(0, x)− ic−1〈∇〉−1
c ∂tz(0, x) = z0 − ic〈∇〉−1

c z1,

h(0, x) = n(0, x)− i〈∇〉−1
0 ∂tn(0, x) = n0 − i〈∇〉−1

0 n1.

(4.5)

This yields the following first-order system with initial conditions

i∂tu = −c〈∇〉cu− c〈∇〉−1
c nz, u(0) = z0 − ic〈∇〉−1

c z1,

i∂tv = −c〈∇〉cv − c〈∇〉−1
c nz, v(0) = z0 − ic〈∇〉−1

c z1,

i∂th = −〈∇〉0h− 〈∇〉0|z|2, h(0) = n0 − i〈∇〉−1
0 n1.

(4.6)
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We have to be careful with the initial value of h (see (4.5) or (4.6)), due to the fact that in Fourier
space for the zeroth Fourier mode the term 〈∇〉−1

0 is not well-posed. Therefore, we have to make the
assumption that the zeroth Fourier mode of ∂tn(0) has to be equal to zero.

Assumption 4.1. We assume that the zeroth Fourier mode of ∂tn(0) denoted by ̂(∂tn(0))0 is zero, i.e.,
we have

̂(∂tn(0))0 = 0.

For notational simplicity we assume z(t, x) ∈ R, such that we have z = 1
2 (u+ u). Now, we firstly apply

the twisted variable ansatz u∗ := e−ic2tu. Therefore, we have

i∂tu∗ = c2u∗ + e−ic
2ti∂tu

= −
(
c〈∇〉c − c2

)
u∗ −

1
2c〈∇〉

−1
c n

(
u∗ + e−2ic2tu∗

)
.

Together with the following approximations (see also (3.18) and (3.19))

c〈∇〉c − c2 → − 1
2∆ +O

(
c−2∆2) ,

c〈∇〉−1
c → 1 +O

(
c−2∆

)
we formally obtain

2i∂tu∗ = ∆u∗ − nu∗ − e−2ic2t nu∗ +O(c−2).

The equation in n in terms of u∗ is given by

∂ttn = ∆n + 1
4∆

(
2|u∗|2 + e2ic2t(u∗)2 + e−2ic2t(u∗)2

)
+O(c−2).

For a smooth function f we furthermore have (by integration by parts) that∫ t

0
e±2ic2ξ f (u∗(ξ), n(ξ)) dξ = 1

±2ic2
(

e±2ic2t f (u∗(t), n(t))− f (u∗(0), n(0))
)

+ 1
∓2ic2

∫ t

0
e±2ic2ξ∂ξ f (u∗(ξ), n(ξ)) dξ.

Thus, as c−2 c→∞−−−−→ 0 the KGZ system formally turns to the classical Zakharov system

2i∂tu∞ −∆u∞ = −n∞u∞,

∂ttn∞ −∆n∞ = 1
2∆|u∞|2.

(4.7)

4.3 Uniformly Accurate Methods for the Klein–Gordon–
Zakharov System: Standard Approach

The aim of this section is to show that we cannot construct uniformly accurate methods with our stan-
dard twisted variable ansatz we used in the previous chapters. In this section we show that in the error
analysis, the estimate amounts a loss of derivative.
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We introduce analogously to the previous chapters a twisted variable ansatz and iterate Duhamel’s formula
in the new variables. Thereby, we integrate the highly oscillatory phases exactly. We recall the first-order
system of the KGZ system (4.6)

i∂tu = −c〈∇〉cu− 1
2c〈∇〉−1

c <(h)
(
u+ v

)
,

i∂tv = −c〈∇〉cv − 1
2c〈∇〉−1

c <(h)
(
v + u

)
,

i∂th = −〈∇〉0h− 1
4 〈∇〉0|u+ v|2

with initial values

u(0) = z0 − ic〈∇〉−1
c z1,

v(0) = z0 − ic〈∇〉−1
c z1,

h(0) = n0 − i〈∇〉−1
0 n1.

Analogously to the previous chapters we use the twisted variable ansatz and set

u∗(t) = e−ic
2tu(t), v∗(t) = e−ic

2tv(t).

Note that for the wave equation part h of the KGZ system (4.1) we do not need to apply the twisting,
since there are no highly oscillatory actions in the variable. However, for notational reason we write h∗

instead of h. After a simple calculation we obtain

i∂tu∗ = i∂t

(
e−ic

2tu
)

= −i2c2e−ic
2tu+ e−ic

2ti∂tu

= c2e−ic
2tu+ e−ic

2t
(
− c〈∇〉cu−

1
2c〈∇〉

−1
c <(h∗)

(
u+ v

))
= c2u∗ − c〈∇〉cu∗ −

1
2c〈∇〉

−1
c <(h∗)

(
u∗ + e−2ic2tv∗

)
= −Acu∗ −

1
2c〈∇〉

−1
c <(h∗)

(
u∗ + e−2ic2tv∗

)
with leading operator Ac = c〈∇〉c − c2. A similar equation holds for v∗

i∂tv∗ = −Acv∗ −
1
2c〈∇〉

−1
c <(h∗)

(
v∗ + e−2ic2tu∗

)
.

As it is mentioned in the previous chapters the advantage of looking at the twisted system in (u∗, v∗),
instead of (u, v), lies in the fact that the leading operator formally satisfies Ac = O(1) in c. The twisted
KGZ system now reads

i∂tu∗ = −Acu∗ −
1
2c〈∇〉

−1
c <(h∗)

(
u∗ + e−2ic2tv∗

)
,

i∂tv∗ = −Acv∗ −
1
2c〈∇〉

−1
c <(h∗)

(
v∗ + e−2ic2tu∗

)
,

i∂th∗ = −〈∇〉0h∗ −
1
4 〈∇〉0

∣∣∣eic2tu∗ + e−ic
2tv∗

∣∣∣2
with Duhamel’s formula we have

u∗(tn + τ) = eiτAcu∗(tn) + i

2c〈∇〉
−1
c

∫ τ

0
ei(τ−s)Ac<

(
h∗(tn + s)

)(
u∗(tn + s) + e−2ic2(tn+s)v∗(tn + s)

)
ds,

v∗(tn + τ) = eiτAcv∗(tn) + i

2c〈∇〉
−1
c

∫ τ

0
ei(τ−s)Ac<

(
h∗(tn + s)

)(
v∗(tn + s) + e−2ic2(tn+s)u∗(tn + s)

)
ds,

h∗(tn + τ) = eiτ〈∇〉0h∗(tn) + i

4 〈∇〉0
∫ τ

0
ei(τ−s)〈∇〉0

∣∣∣eic2(tn+s)u∗(tn + s) + e−ic
2(tn+s)v∗(tn + s)

∣∣∣2ds.

(4.8)
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For details on the local well-posedness of highly oscillatory Klein–Gordon equations we refer to [53, 73] and
for the full Klein–Gordon–Zakharov system to [61] and the references therein. Analogously to the previous
chapters we again employ the concept of the ϕ- and Ψ-functions which are defined as in Section 2.3. We
recall the definitions of the ϕ- and Ψ-functions in the following remark.

Remark 4.2. For a ξ ∈ C we set

ϕ0(ξ) = eξ, ϕ1(ξ) = ϕ0(ξ)− 1
ξ

, ϕ2(ξ) = ϕ1(ξ)− 1
ξ

, Ψ2(ξ) = ϕ0(ξ)− ϕ1(ξ)
ξ

.

In the next section we formally show that an exponential integrator applied on the twisted system is not
an appropriate method to obtain a uniformly accurate method for the KGZ system in the high-plasma
frequency regime.

4.3.1 A Classical Exponential Integrator for the Twisted Klein–Gordon–
Zakharov System

In this section we derive a classical exponential integrator for the twisted KGZ system based on [39].
Therefore, we go on analogously to the previous chapters and use Duhamel’s formulas given in (4.8). We
recall Duhamel’s formulas

u∗(tn + τ) = eiτAcu∗(tn) + i

2c〈∇〉
−1
c

∫ τ

0
ei(τ−s)Ac<

(
h∗(tn + s)

)(
u∗(tn + s) + e−2ic2(tn+s)v∗(tn + s)

)
ds,

v∗(tn + τ) = eiτAcv∗(tn) + i

2c〈∇〉
−1
c

∫ τ

0
ei(τ−s)Ac<

(
h∗(tn + s)

)(
v∗(tn + s) + e−2ic2(tn+s)u∗(tn + s)

)
ds,

h∗(tn + τ) = eiτ〈∇〉0h∗(tn) + i

4 〈∇〉0
∫ τ

0
ei(τ−s)〈∇〉0

∣∣∣eic2(tn+s)u∗(tn + s) + e−ic
2(tn+s)v∗(tn + s)

∣∣∣2ds

and freeze the following terms at s = 0

<
(
h(tn + s)

)(
u∗(tn + s) + e−2ic2(tn+s)v∗(tn + s)

)
≈ <

(
h∗(tn)

)(
u∗(tn) + e−2ic2tnv∗(tn)

)
,

<
(
h(tn + s)

)(
v∗(tn + s) + e−2ic2(tn+s)u∗(tn + s)

)
≈ <

(
h∗(tn)

)(
v∗(tn) + e−2ic2tnu∗(tn)

)
,∣∣∣eic2(tn+s)u∗(tn + s) + e−ic

2(tn+s)v∗(tn + s)
∣∣∣2 ≈ ∣∣∣eic2tnu∗(tn) + e−ic

2tnv∗(tn)
∣∣∣2.

So we obtain

u∗(tn + τ) ≈ eiτAcu∗(tn) + i

2c〈∇〉
−1
c

∫ τ

0
ei(τ−s)Ac<

(
h∗(tn)

)(
u∗(tn) + e−2ic2tnv∗(tn)

)
ds,

v∗(tn + τ) ≈ eiτAcv∗(tn) + i

2c〈∇〉
−1
c

∫ τ

0
ei(τ−s)Ac<

(
h∗(tn)

)(
v∗(tn) + e−2ic2tnu∗(tn)

)
ds,

h∗(tn + τ) ≈ eiτ〈∇〉0h∗(tn) + i

4 〈∇〉0
∫ τ

0
ei(τ−s)〈∇〉0

∣∣∣eic2tnu∗(tn) + e−ic
2tnv∗(tn)

∣∣∣2ds.

We integrate the remaining terms ei(τ−s)Ac and ei(τ−s)〈∇〉0 exactly. Thus, with the definition of
the ϕ1-functions we have

u∗(tn + τ) ≈ eiτAcu∗(tn) + i

2c〈∇〉
−1
c τϕ1 (iτAc)<

(
h∗(tn)

)(
u∗(tn) + e−2ic2tnv∗(tn)

)
,

v∗(tn + τ) ≈ eiτAcv∗(tn) + i

2c〈∇〉
−1
c τϕ1 (iτAc)<

(
h∗(tn)

)(
v∗(tn) + e−2ic2tnu∗(tn)

)
,

h∗(tn + τ) ≈ eiτ〈∇〉0h∗(tn) + i

4 〈∇〉0τϕ1 (iτ〈∇〉0)
∣∣∣eic2tnu∗(tn) + e−ic

2tnv∗(tn)
∣∣∣2.
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With

i〈∇〉0τϕ1(iτ〈∇〉0) = eiτ〈∇〉0 − 1

we obtain the following exponential integration scheme

un+1
∗ = eiτAcun∗ + i

2c〈∇〉
−1
c τϕ1 (iτAc)<

(
hn∗
)(
un∗ + e−2ic2tnvn∗

)
,

vn+1
∗ = eiτAcvn∗ + i

2c〈∇〉
−1
c τϕ1 (iτAc)<

(
hn∗
)(
vn∗ + e−2ic2tnun∗

)
,

hn+1
∗ = eiτ〈∇〉0hn∗ + 1

4

(
eiτ〈∇〉0 − 1

) ∣∣∣eic2tnun∗ + e−ic
2tnv∗

n
∣∣∣2

with initial values
u0
∗ = z0 − ic〈∇〉−1

c z1,

v0
∗ = z0 − ic〈∇〉−1

c z1,

n0
∗ = n0 − i〈∇〉−1

0 n1,

where we have to take in account Assumption 4.1.
Figure 4.3 underlines that the exponential integrator schemes is not uniformly accurate with respect
to c. More precisely for large values of c the exponential integrator fails to approximate numerically the
solution of the Klein–Gordon–Zakharov system, which can be explained by the following approximation
of the highly oscillatory terms

eic
2(tn+s) = eic

2tn +O(sc2).

Thus, the exponential integrator also suffers from severe time step restrictions, similarly to the Gautschi-
type methods shown in Figure 4.1.
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Figure 4.3: Numerical solution of the Klein–Gordon–Zakharov system for z. Exponential integrator (red solid
line) for different c with time step size τ ≈ 10−2 at time t = 0.6. The blue dashed line represents the reference
solution at time t = 0.6, computed via an exponential Gautschi-type scheme with a small time step size τ ≈ 10−6.
The spatial discretization is done via a Fourier pseudospectral method with mesh-size h = 0.0245.
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In the next section we construct our exponential-type integrator. Therefore, we also integrate the highly
oscillatory phases terms e±`ic2(tn+s), for ` ∈ N in the Duhamel’s formulas exactly.

4.3.2 Construction of a First-Order Exponential-type Integrator

In this section, we formally derive a fist-order exponential-type integrator for the solution (u∗, v∗, h∗)
based on Duhamel’s formula (4.8). In order to construct a scheme of first-order, we proceed analogously
to the previous chapters. However, integrating the oscillatory phases as before does not yield to a
uniformly accurate method.
Below we derive the numerical scheme for un+1

∗ approximating u∗(tn+1), with tn+1 = tn + τ . We recall
Duhamel’s formula for u∗ (see (4.8))

u∗(tn + τ) = eiτAcu∗(tn) + i

2c〈∇〉
−1
c

∫ τ

0
ei(τ−s)Ac<

(
h∗(tn + s)

)(
u∗(tn + s) + e−2ic2(tn+s)v∗(tn + s)

)
ds.

Analogously to the previous chapters we use Taylor series expansions of

h∗(tn + s) = h∗(tn) +O(sh′∗), u∗(tn + s) = u∗(tn) +O(su′∗),

v∗(tn + s) = v∗(tn) +O(sv∗′), e−isAc = 1 +O(sAc).

We plug the Taylor series expansions into Duhamel’s formula of u∗, integrate the highly oscillatory
phase e−ic2s exactly, and obtain

u∗(tn + τ) = eiτAcu∗(tn) + i

2c〈∇〉
−1
c eiτAc

∫ τ

0
<
(
h∗(tn)

)(
u∗(tn) + e−2ic2(tn+s)v∗(tn)

)
ds

+R1(τ, tn, u∗, v∗, h∗)

= eiτAcu∗(tn) + i

2τc〈∇〉
−1
c eiτAc

[
<
(
h∗(tn)

)
u∗(tn) + e−2ic2tnϕ1(−2ic2τ)<

(
h∗(tn)

)
v∗(tn)

]
+R1(τ, tn, u∗, v∗, h∗),

where the remainder R1 satisfies

‖R1(τ, tn, u∗, v∗, h∗)‖r ≤ τ2kr,M3 ,

for a constant kr,M3 independent of c.
Thus, we obtain the following exponential-type integration scheme

un+1
∗ = eiτAcun∗ + i

2τc〈∇〉
−1
c eiτAc

[
<
(
hn∗
)
un∗ + e−2ic2tnϕ1(−2ic2τ)<

(
hn∗
)
vn∗
]
.

For v∗ we can derive analogously to u∗ the following scheme

vn+1
∗ = eiτAcvn∗ + i

2τc〈∇〉
−1
c eiτAc

[
<
(
hn∗
)
vn∗ + e−2ic2tnϕ1(−2ic2τ)<

(
hn∗
)
un∗
]
.

Given the numerical schemes for un+1
∗ and vn+1

∗ we can easily compute zn+1 as follows

zn+1 = 1
2

(
eic

2tn+1un+1
∗ + e−ic

2tn+1vn+1
∗

)
.

For h∗ we use also Duhamel’s formula (see (4.8))

h∗(tn + τ) = eiτ〈∇〉0h∗(tn) + i

4 〈∇〉0
∫ τ

0
ei(τ−s)〈∇〉0

∣∣∣eic2(tn+s)u∗(tn + s) + e−ic
2(tn+s)v∗(tn + s)

∣∣∣2ds
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and plug in the following Taylor series expansions

u∗(tn + s) = u∗(tn) +O(su′∗), v∗(tn + s) = v∗(tn) +O(sv∗′),

such that we obtain

h∗(tn + τ) = eiτ〈∇〉0h∗(tn) + i

4 〈∇〉0eiτ〈∇〉0
∫ τ

0
e−is〈∇〉0

[
|u∗(tn)|2 + e2ic2(tn+s)u∗(tn)v∗(tn)

+ |v∗(tn)|2 + e−2ic2(tn+s)u∗(tn)v∗(tn)
]
ds

+R1(τ, tn, u∗, v∗, h∗),

where the remainder R1 satisfies

‖R1(τ, tn, u∗, v∗, h∗)‖r ≤ τ2kr(M3)

for a constant kr independent of c. Now we integrate the highly oscillatory phases exactly and obtain

h∗(tn + τ) = eiτ〈∇〉0h∗(tn) + i

4τ〈∇〉0eiτ〈∇〉0
[
ϕ1(−iτ〈∇〉0)|u∗(tn)|2 + ϕ1(−iτ〈∇〉0)|v∗(tn)|2

+ e2ic2tnϕ1
(
i(2c2 − 〈∇〉0)τ

)
u∗(tn)v∗(tn)

+ e−2ic2tnϕ1
(
− i(2c2 + 〈∇〉0)τ

)
u∗(tn)v∗(tn)

]
+R1(τ, tn, u∗, v∗, h∗).

This motivates the following numerical scheme for h∗

hn+1
∗ = eiτ〈∇〉0hn∗ + i

4τ〈∇〉0eiτ〈∇〉0
[
ϕ1(−iτ〈∇〉0)

(
|un∗ |2 + |vn∗ |2

)
+ e2ic2tnϕ1

(
i(2c2 − 〈∇〉0)τ

)
un∗v

n
∗

+ e−2ic2tnϕ1
(
− i(2c2 + 〈∇〉0)τ

)
un∗vn∗

]
.

Collecting the results, yields the following full numerical scheme in u∗, v∗, and h∗

un+1
∗ = eiτAcun∗ + i

2τc〈∇〉
−1
c eiτAc

[
<
(
hn∗
)
un∗ + e−2ic2tnϕ1(−2ic2τ)<

(
hn∗
)
vn∗
]
,

vn+1
∗ = eiτAcvn∗ + i

2τc〈∇〉
−1
c eiτAc

[
<
(
hn∗
)
vn∗ + e−2ic2tnϕ1(−2ic2τ)<

(
hn∗
)
un∗
]
,

hn+1
∗ = eiτ〈∇〉0hn∗ + i

4τ〈∇〉0eiτ〈∇〉0
[
ϕ1(−iτ〈∇〉0)

(
|un∗ |2 + |vn∗ |2

)
+ e2ic2tnϕ1

(
i(2c2 − 〈∇〉0)τ

)
un∗v

n
∗

+ e−2ic2tnϕ1
(
− i(2c2 + 〈∇〉0)τ

)
un∗vn∗

]
with initial values

u0
∗ = z0 − ic〈∇〉−1

c z1,

v0
∗ = z0 − ic〈∇〉−1

c z1,

h0
∗ = n0 − i〈∇〉−1

0 n1,

where we have to take into account Assumption 4.1.
However, if we want to do a rigorous convergence analysis of the derived first-order exponential-type
uniformly accurate integration scheme we have to estimate the nonlinearity of h∗. Since ϕ1 is bounded
and eit〈∇〉0 is a linear isometry, formally we have for h∗

‖h∗(tn+1)− hn+1
∗ ‖r ≤ ‖h∗(tn)− hn∗‖r + τKr,M

(
‖u∗(tn)− un∗‖r+1 + ‖v∗(tn)− vn∗ ‖r+1

)
,
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where Kr,M is independent of c, but the estimate amounts to a loss of derivative. In order to avoid this
we follow in the next section the strategy given in [37, 59]. Thus, in a first step we have to reformulate
the KGZ system as it is shown in [37] in a suitable way and then derive a uniformly accurate oscillatory
integrator.

4.4 Uniformly Accurate Methods for the Klein–Gordon–
Zakharov System: Refined Approach

As we have seen before, due to the loss of derivative, the twisted variable ansatz is not appropriate for
the Klein–Gordon–Zakharov system. In this section we derive a uniformly accurate oscillatory integrator
by following the strategy given in [37, 59]. This section is a detailed version of [12, chapter 2-4].
For practical implementation issues, we consider z and n, as functions defined on (t, x) ∈ R × Td with
values in R and smooth initial values. All the results in this section can be extended to complex valued
solution z ∈ C, but, for clarity of presentation we restrict ourselves to the real setting.
We recall the KGZ system rewritten as a first-order system in time in z (see also (4.6))

i∂tu = −c〈∇〉cu−
1
2c〈∇〉

−1
c n(u+ u), u(0) = z0 − ic〈∇〉−1

c z1,

∂ttn = ∆n + 1
4∆|u+ u|2, n(0) = n0, ∂tn(0) = n1,

(4.9)

where we have z = 1
2 (u+ u).

Remark 4.3 (Nonlinear coupling). Note that the coupling in the Klein–Gordon and wave part is driven
by the operator c〈∇〉−1

c and 〈∇〉0, respectively. With the aid of the Fourier expansion we easily see that
the coupling operator c〈∇〉−1

c × 〈∇〉0 satisfies

∥∥c〈∇〉−1
c 〈∇〉0f

∥∥2
r

=
∑
k∈Z

∣∣∣∣ ck√
c2 + k2

∣∣∣∣2 |f̂k|2
which implies ∥∥c〈∇〉−1

c 〈∇〉0f
∥∥2
r
≤ c‖f‖r as well as

∥∥c〈∇〉−1
c 〈∇〉0f

∥∥2
r
≤ ‖f‖r+1.

From the first bound we can easily deduce that no loss of derivative occurs if c = O(1), and hence the KGZ
system (4.1) can be solved much more easily in the low-plasma frequency regime c = 1. However, standard
techniques fail in the high-plasma frequency regime c� 1 due to the loss of derivative highlighted through
the second bound.

To overcome this loss of derivative in the high-plasma frequency regime we pursue the following strategy:
Inspired by the numerical analysis of the Zakharov system given in [37], see also [59] for the original idea
in context of the local wellposedness analysis of the Zakharov system, we introduce the new variable

F = ∂tu

and will further look at (4.9) as a system in (u, ∂tu, n, ∂tn) = (u, F, n, ṅ). With this notation the equation
in u given in (4.9) can be expressed as follows

c〈∇〉cu = −iF − 1
2c〈∇〉

−1
c n(u+ u). (4.10)
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Furthermore, taking the time derivative in the first line of (4.9) yields by the product formula

i∂tF = −c〈∇〉cF −
1
2c〈∇〉

−1
c

[
∂tn(u+ u) + n∂t(u+ u)

]
. (4.11)

As n is real valued we have

∂tu = ic〈∇〉cu+ i

2c〈∇〉
−1
c n(u+ u),

∂tu = −ic〈∇〉cu−
i

2c〈∇〉
−1
c n(u+ u)

which implies
∂t(u+ u) = ic〈∇〉c(u− u). (4.12)

Plugging (4.12) into (4.11) yields

i∂tF = −c〈∇〉cF −
1
2c〈∇〉

−1
c

[
ṅ(u+ u) + inc〈∇〉c(u− u)

]
. (4.13)

System (4.9) together with equation (4.10) and (4.13) thus takes the form

i∂tF = −c〈∇〉cF −
1
2c〈∇〉

−1
c

[
ṅ(u+ u) + inc〈∇〉c(u− u)

]
,

∂ttn = ∆n + 1
4∆|u+ u|2,

u = (c〈∇〉c)−1

{
−iF − 1

2c〈∇〉
−1
c n

(
u(0) +

∫ t

0
F (s)ds+ u(0) +

∫ t

0
F (s)ds

)}
.

(4.14)

Thereby, we use that c〈∇〉c is invertible for all c 6= 0 as well as the representation

u(t) = u(0) +
∫ t

0
F (s)ds.

4.4.1 Construction of the Uniformly Accurate Oscillatory Integrator

In this section we develop a uniformly accurate numerical scheme which allows us to approximate so-
lutions of the system (4.9) uniformly in the parameter c. Our approach is thereby based on looking
at the reformulated system (4.14) and approximating the corresponding Duhamel’s formula in (F, n, ṅ).
However, and in great difference to classical exponential and trigonometric integration techniques (see,
e.g., [31, 36, 37, 39]), we will carefully treat the highly oscillatory phases triggered by the plasma fre-
quency c in an exact way.
Duhamel’s formula in (F, n, ṅ) reads (see (4.14))

F (tn + τ) = eiτc〈∇〉cF (tn) + i

2c〈∇〉
−1
c

∫ τ

0
ei(τ−s)c〈∇〉c

{
ṅ(tn + s)

(
u(tn + s) + u(tn + s)

)
+ in(tn + s)c〈∇〉c

(
u(tn + s)− u(tn + s)

)}
ds,

n(tn + τ) = cos (τ〈∇〉0) n(tn) + 〈∇〉−1
0 sin (τ〈∇〉0) ṅ(tn)

+ 1
4 〈∇〉

−1
0

∫ τ

0
sin((τ − s)〈∇〉0)∆

∣∣u(tn + s) + u(tn + s)
∣∣2ds,

ṅ(tn + τ) = −〈∇〉0sin (τ〈∇〉0) n(tn) + cos (τ〈∇〉0) ṅ(tn)

+ 1
4

∫ τ

0
cos((τ − s)〈∇〉0)∆

∣∣u(tn + s) + u(tn + s)
∣∣2ds.

(4.15)



4.4. Uniformly Accurate Methods for the Klein–Gordon–Zakharov System: Refined Approach 113

Furthermore, observe that for u we have (see (4.9))

u(tn + τ) = eiτc〈∇〉cu(tn) + i

2c〈∇〉
−1
c

∫ τ

0
ei(τ−s)c〈∇〉cn(tn + s)

(
u(tn + s) + u(tn + s)

)
ds. (4.16)

Remark 4.4. Note that ∂tu = F = O(c〈∇〉c). Thus, if we would approximate the integrals in (4.15) by
employing the classical Taylor series expansion

u(tn + s) = u(tn) +O(s∂tu) = u(tn) +O(sc〈∇〉c)

(or a classical quadrature formula) this yields a local error of order O(τ2c2) and, in particular, not the
aimed uniform approximation property. Henceforth, standard exponential integrator techniques (cf. [39])
fail, and a more careful approximation technique has to be applied.

4.4.1.1 Collection of Essential Lemma and Notation

We start off by collecting some useful lemma which will be essential in the derivation of uniform approx-
imations with respect to c. Thereby, we will in particular exploit the following refined bilinear estimates:
For σ1 + σ2 ≥ 0 (and as we assume that 1 ≤ d ≤ 3) it holds that

‖fg‖σ ≤ Kr,d‖f‖σ1‖g‖σ2 for all σ ≤ σ1 + σ2 − d
2 with σ1, σ2 and − σ 6= d

2 ,

‖fg‖σ ≤ Kr,d‖f‖σ1‖g‖σ2 for all σ < σ1 + σ2 − d
2 with σ1, σ2 or − σ = d

2 .

In particular, by setting σ = σ1 = r − 1 and σ2 = r we can thus conclude

‖fg‖r−1 ≤ Kr,d‖f‖r−1‖g‖r, (4.17)

where we use that σ2 = r > d/2 as well as σ1 + σ2 = 2r − 1 > 0.

Lemma 4.5 (cf. Lemma 3 in [12]). For all t ∈ R and c 6= 0 we have

∥∥c〈∇〉−1
c f

∥∥
r
≤ ‖f‖r , ‖eitc〈∇〉cf‖r = ‖f‖r,

∥∥(c〈∇〉c − c2)f
∥∥
r
≤ 1

2‖f‖r+2,

‖(e−iξc〈∇〉c − e−iξc
2
)f‖r ≤

1
2ξ‖f‖r+2,

‖〈∇〉−2
c f‖r ≤ min

(
1
c
‖f‖r−1, ‖f‖r−2,

1
c2
‖f‖r

)
, ‖〈∇〉−2

c (fc〈∇〉cg) ‖r−1 ≤ K‖f‖r−1‖g‖r+1.

(4.18)

Proof. The estimates in the first and second row follow from (2.27), (2.28) and (2.30) (see also [13]).
Furthermore, observe that 〈∇〉−2

c and c−1〈∇〉c in Fourier space can be estimated as follows

1
c2 + k2 ≤ min

(
1
c|k| ,

1
k2 ,

1
c2

)
and

√
c2 + k2

c
≤ c+ |k|

c
≤ 1 + c−1|k|.

The second inequality together with the bilinear estimate (4.17) and the definition of 〈∇〉c in Fourier
space (see (2.12)) in particular implies

∥∥〈∇〉−2
c (fc〈∇〉cg)

∥∥
r−1 ≤

∥∥∥∥f c〈∇〉cc2
g

∥∥∥∥
r−1
≤ K‖f ‖r−1

∥∥∥∥ 〈∇〉cc g

∥∥∥∥
r

≤ K‖f‖r−1‖g‖r+1,

for some constant K > 0 independent of c. This concludes the estimates in the last row of (4.18).
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In the following we set

MT,r = max
(

sup
0≤t≤T

{
‖u(t)‖r+1 +

∥∥(c〈∇〉−1
c )F (t)

∥∥
r+1 + ‖n(t)‖r + ‖ṅ(t)‖r−1

}
, 1
)

(4.19)

and introduce a suitable definition for the occuring remainders.

Definition 4.6 (Remainder). We will denote all constants which can be chosen independently of c by K.
Furthermore, we write

f = g +Rr+s if ‖f − g‖r ≤ KMp
T,r+s (4.20)

for some p ∈ N and K > 0 independent of c.

We will also make use of the ϕ functions defined in (2.8).
The following lemma will allow us to carry out a classical Taylor series expansions in n(tn + s)
and ṅ(tn + s) in the construction of our numerical scheme without producing remainders which depend
on c.

Lemma 4.7 (cf. Lemma 6 in [12]). For all s ∈ R it holds that

‖n(tn + s)− n(tn)‖r + ‖ṅ(tn + s)− ṅ(tn)‖r−1 ≤ |s|KM2
r+1,

for some constant K > 0 which can be chosen independently of c such that in particular

n(tn + s) = n(tn) + sRr+1, ṅ(tn + s) = ṅ(tn) + sRr+2. (4.21)

Proof. Duhamel’s formula (4.15) in (n, ṅ) yields

n(tn + s)− n(tn) =
(
cos(s〈∇〉0)− 1

)
n(tn) + s sinc(s〈∇〉0)ṅ(tn) + sRr+1,

ṅ(tn + s)− ṅ(tn) =
(
cos(s〈∇〉0)− 1

)
ṅ(tn)− s sinc(s〈∇〉0)〈∇〉20n(tn) + sRr+2.

The assertion thus follows by the estimate

‖(cos(s〈∇〉0)− 1)f‖r + ‖(sinc(s〈∇〉0)− 1)f‖r ≤ 3s2‖f‖r+2

together with the bilinear estimate (1.2).

In the approximation of u, however, we need to be much more careful as a classical Taylor series expansion
would lead to

u(tn + s) = u(tn) + sc〈∇〉cRr

and trigger an error at order O(sc2) (see also Remark 4.4).

Lemma 4.8 (cf. Lemma 7 in [12]). For all s ∈ R it holds

‖u(tn + s)− eic
2s u(tn)‖r + ‖u(tn + s)− eisc〈∇〉c u(tn)‖r ≤ |s|K

(
Mr+2 +M2

r

)
,

for some constant K > 0 which can be chosen independently of c such that in particular

u(tn + s) = eisc〈∇〉cu(tn) + sRr and u(tn + s) = eic
2su(tn) + sRr+2. (4.22)



4.4. Uniformly Accurate Methods for the Klein–Gordon–Zakharov System: Refined Approach 115

Proof. Duhamel’s formula in u (see (4.16)) implies

u(tn + s) = eisc〈∇〉cu(tn) + sRr

which yields the first assertion. Furthermore, we can write

u(tn + s)− eic
2su(tn) =

(
eisc〈∇〉c − eic

2s
)
u(tn) + sRr.

Together with Lemma 4.5 this concludes the second assertion.

Now, we derive our uniformly accurate oscillatory integrator. Therefore, we approximate the different
terms F , u and (n, ṅ) separately.

a) Approximation in F :
Recall Duhamel’s formula in F (see (4.15))

F (tn + τ) = eiτc〈∇〉cF (tn) + i

2c〈∇〉
−1
c

∫ τ

0
ei(τ−s)c〈∇〉c

{
ṅ(tn + s)

(
u(tn + s) + u(tn + s)

)
+ in(tn + s)c〈∇〉c

(
u(tn + s)− u(tn + s)

)}
ds.

Multiplying the above formula with the operator (c〈∇〉c)−1 and employing the expansions for (n, ṅ)(tn+s)
given in (4.21) and for u(tn+s) given in (4.22) we obtain by Lemma 4.5 together with the approximation

‖eis(c2−c〈∇〉c)f − eis 1
2 ∆f‖r ≤ Ksc−2‖f‖r+4

that

(c〈∇〉c)−1F (tn + τ) = eiτc〈∇〉c(c〈∇〉c)−1F (tn) + i

2 〈∇〉
−2
c

∫ τ

0
ei(τ−s)c〈∇〉c

{
ṅ(tn)

(
eic

2su(tn) + e−ic
2su(tn)

)
+ in(tn)c〈∇〉c

(
eic

2s u(tn)− e−ic
2su(tn)

)}
ds

+ τ2Rr+2

= eiτc〈∇〉c(c〈∇〉c)−1F (tn)

+ i

2 〈∇〉
−2
c eiτc〈∇〉c

∫ τ

0

{
eis 1

2 ∆(ṅ(tn)u(tn)
)

+ e−is(c〈∇〉c+c
2)(ṅ(tn)u(tn)

)
+ ieis 1

2 ∆(n(tn)c〈∇〉cu(tn)
)
− ie−is(c〈∇〉c+c2)(n(tn)c〈∇〉cu(tn)

)}
ds

+ τ2Rr+2.

Now, we integrate the remaining exponential terms exactly. With the definition of the ϕ1-function in (2.8)
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we furthermore obtain

(c〈∇〉c)−1F (tn + τ) = eiτc〈∇〉c(c〈∇〉c)−1F (tn) + i
τ

2 〈∇〉
−2
c eiτc〈∇〉cϕ1

(
i
2τ∆

) (
ṅ(tn)u(tn)

)
+ i

τ

2 〈∇〉
−2
c eiτc〈∇〉cϕ1

(
−iτ(c〈∇〉c + c2)

) (
ṅ(tn)u(tn)

)
− τ

2 〈∇〉
−2
c eiτc〈∇〉cϕ1

(
i
2τ∆

) (
n(tn)c〈∇〉cu(tn)

)
+ τ

2 〈∇〉
−2
c eiτc〈∇〉cϕ1

(
−iτ(c〈∇〉c + c2)

) (
n(tn)c〈∇〉cu(tn)

)
+ τ2Rr+2

= eiτc〈∇〉c(c〈∇〉c)−1F (tn)

+ i
τ

2 〈∇〉
−2
c eiτc〈∇〉cϕ1

(
i
2τ∆

) (
ṅ(tn)u(tn) + in(tn)c〈∇〉cu(tn)

)
+ i

τ

2 〈∇〉
−2
c eiτc〈∇〉cϕ1

(
−iτ(c〈∇〉c + c2)

) (
ṅ(tn)u(tn)− in(tn)c〈∇〉cu(tn)

)
+ τ2Rr+2.

(4.23)

b) Approximation in u:
Recall that at time t = tn we have (see (4.14))

u(tn) = (c〈∇〉c)−1
{
−iF (tn)− 1

2c〈∇〉
−1
c n(tn)

(
IF (tn) + IF (tn)

)}
, (4.24)

where we have set

IF (tn) := u(0) +
∫ tn

0
F (s)ds = u(0) +

n−1∑
k=0

∫ τ

0
F (tk + s)ds.

To obtain an approximation of IF (tn) we will use the approximation (4.23) which yields

IF (tn) = u(0) +
n−1∑
k=0

∫ τ

0

(
eisc〈∇〉c F (tk) + c2s (Rr+2)k

)
ds

= u(0) +
(
τ

n−1∑
k=0

ϕ1(iτc〈∇〉c)F (tk)
)

+ τc2tnRr+2.

(4.25)

In the following we approximate IF (tn) by SF (tn), therefore we set

SF (tn) = u(0) + τ

n−1∑
k=0

ϕ1(iτc〈∇〉c)F (tk). (4.26)

Then, plugging the approximation (4.25) into (4.24) yields thanks to the estimate ‖〈∇〉−2
c c2‖r ≤ 1 (see

Lemma 4.5) that

u(tn) = (c〈∇〉c)−1
{
−iF (tn)− 1

2c〈∇〉
−1
c n(tn)

(
SF (tn) + SF (tn)

)}
+ 1

2 〈∇〉
−2
c

{
n(tn)τc2Rr+2

}
= (c〈∇〉c)−1

{
−iF (tn)− 1

2c〈∇〉
−1
c n(tn)

(
SF (tn) + SF (tn)

)}
+ τRr+2.

(4.27)
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c) Approximation in (n, ṅ):
Recall Duhamel’s formula in (n, ṅ) (cf. (4.15))

n(tn + τ) = cos (τ〈∇〉0) n(tn) + 〈∇〉−1
0 sin (τ〈∇〉0) ṅ(tn)

+ 1
4 〈∇〉

−1
0

∫ τ

0
sin((τ − s)〈∇〉0)∆

∣∣u(tn + s) + u(tn + s)
∣∣2ds,

ṅ(tn + τ) = −〈∇〉0sin (τ〈∇〉0) n(tn) + cos (τ〈∇〉0) ṅ(tn)

+ 1
4

∫ τ

0
cos((τ − s)〈∇〉0)∆

∣∣u(tn + s) + u(tn + s)
∣∣2ds.

Employing the approximation of u(tn+s) given in (4.22) together with the trigonometric approximations

‖(sin(s〈∇〉0)− s〈∇〉0)f‖r + ‖(cos(s〈∇〉0)− 1)f‖r + ‖(sinc(s〈∇〉0)− 1)f‖r ≤ 3s2‖f‖r+2

we obtain

n(tn + τ) = cos (τ〈∇〉0) n(tn) + 〈∇〉−1
0 sin (τ〈∇〉0) ṅ(tn)

+ 1
4 〈∇〉

−1
0 sinc (τ〈∇〉0)

∫ τ

0

(
(τ − s)〈∇〉0

)
∆
{

2|u(tn)|2 + e2ic2su(tn)2 + e−2ic2s (u(tn))2
}

ds

+ τ3Rr+4,

ṅ(tn + τ) = −〈∇〉0sin (τ〈∇〉0) n(tn) + cos (τ〈∇〉0) ṅ(tn)

+ 1
4cos (τ〈∇〉0)

∫ τ

0
∆
{

2|u(tn)|2 + e2ic2su(tn)2 + e−2ic2s (u(tn))2
}

ds+ τ2Rr+4.

Again integrating the remaining exponential terms exactly, together with the definition of the ϕ1- and
ϕ2-function (see Definition (2.8)) we thus derive

n(tn + τ) = cos (τ〈∇〉0) n(tn) + 〈∇〉−1
0 sin (τ〈∇〉0) ṅ(tn)

+ τ2

4 sinc (τ〈∇〉0) ∆
{
|u(tn)|2 + ϕ2(2ic2τ)u(tn)2 + ϕ2(−2ic2τ) (u(tn))2

}
+ τ3Rr+4,

ṅ(tn + τ) = −〈∇〉0sin (τ〈∇〉0) n(tn) + cos (τ〈∇〉0) ṅ(tn)

+ τ

4 cos (τ〈∇〉0) ∆
{

2|u(tn)|2 + ϕ1(2ic2τ)u(tn)2 + ϕ1(−2ic2τ) (u(tn))2
}

+ τ2Rr+4.

(4.28)

4.4.1.2 A Uniformly Accurate Oscillatory Integrator

Collecting the approximations in (4.23), (4.27) (together with (4.26)) and (4.28) motivate us to define
our numerical scheme as follows.
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For n ≥ 1 we set

(c〈∇〉c)−1Fn+1 = eiτc〈∇〉c(c〈∇〉c)−1Fn + i
τ

2 〈∇〉
−2
c eiτc〈∇〉cϕ1

(
i
2τ∆

) (
ṅnun + innc〈∇〉cun

)
+ i

τ

2 〈∇〉
−2
c eiτc〈∇〉cϕ1

(
−iτ(c〈∇〉c + c2)

) (
ṅnun − innc〈∇〉cun

)
,

nn+1 = cos (τ〈∇〉0) nn + 〈∇〉−1
0 sin (τ〈∇〉0) ṅn

+ τ2

4 sinc (τ〈∇〉0) ∆
{
|un|2 + ϕ2(2ic2τ)(un)2 + ϕ2(−2ic2τ)un2

}
,

ṅn+1 = −〈∇〉0sin (τ〈∇〉0) nn + cos (τ〈∇〉0) ṅn

+ τ

4 cos (τ〈∇〉0) ∆
{

2|un|2 + ϕ1(2ic2τ)(un)2 + ϕ1(−2ic2τ)un2
}
,

Sn+1
F = SnF + τϕ1(iτc〈∇〉c)Fn+1,

un+1 = c−1〈∇〉−1
c

{
−iFn+1 − 1

2c〈∇〉
−1
c nn+1

(
Sn+1
F + Sn+1

F

)}

(4.29)

and choose the following initial values (cf. (4.10))

u0 := u(0), n0 := n(0), ṅ0 := ∂tn(0),

F 0 := ic〈∇〉cu0 + i

2c〈∇〉
−1
c n0(u0 + u0),

S0
F := u0 + τϕ1(iτc〈∇〉c)F 0.

(4.30)

Remark 4.9. Note that for practical implementation issues we write

Sn+1
F = SnF + τϕ1(iτc〈∇〉c)Fn+1

= SnF − i
(

eiτc〈∇〉c − 1
)

(c〈∇〉c)−1 Fn+1

thanks to the definition of the ϕ1-function given in (2.8).

In the next section we carry out the convergence analysis of the scheme (4.29).

4.4.2 Convergence Analysis

Before we state our convergence result, we derive the different error bounds for F , u and (n, ṅ) to shorten
the proof. In the following we set (see (4.19))

Btn,r = max
(

sup
0≤k≤n

{
‖uk‖r+1 + ‖(c〈∇〉c)−1F k‖r+1 + ‖nk‖r + ‖ṅk‖r−1

}
, 1
)
. (4.31)

a) Error in F

Taking the difference of F (tn + τ) given in (4.23) and Fn+1 defined in (4.29) we readily obtain thanks
to the error bounds on the remainders (4.20) (see Definition 4.6), the bilinear estimate (1.2) and the
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isometric property ‖eiτc〈∇〉cf‖r = ‖f‖r (see Lemma 4.5) that∥∥(c〈∇〉c)−1 (F (tn + τ)− Fn+1) ∥∥
r+1

≤
∥∥(c〈∇〉c)−1 (F (tn)− Fn)

∥∥
r+1

+ τ
∥∥〈∇〉−2

c (ṅ(tn)u(tn)− ṅnun)
∥∥
r+1

+ τ
∥∥∥〈∇〉−2

c ϕ1
(
i
2τ∆

) (
n(tn)c〈∇〉cu(tn)− nnc〈∇〉cun

)∥∥∥
r+1

+ τ
∥∥∥〈∇〉−2

c ϕ1
(
−iτ(c〈∇〉c + c2)

) (
n(tn)c〈∇〉cu(tn)− nnc〈∇〉cun

)∥∥∥
r+1

+ τ2KMp
tn+1,r+3

=:
∥∥(c〈∇〉c)−1 (F (tn)− Fn)

∥∥
r+1 + TF1 + TF2 + TF3 + τ2KMp

tn+1,r+3.

(4.32)

We have used that the definition of the ϕ1 function (see (2.8)) implies

∥∥ϕ1
(
i
2τ∆

)∥∥
r
≤ 1 and ‖ϕ1

(
−iτ(c〈∇〉c + c2)

)
‖r ≤ 1.

We will estimate the terms on the right hand side TFj separately.

Bound on the first term TF1 : Note that

ṅ(tn)u(tn)− ṅnun = ṅ(tn)u(tn)− (ṅn − ṅ(tn) + ṅ(tn))un

= ṅ(tn)u(tn)− ṅnun + ṅ(tn)un − ṅ(tn)un

= (ṅ(tn)− ṅn)un + ṅ(tn) (u(tn)− un) .

Thanks to Lemma 4.5 and the bilinear estimate (4.17) we have

‖〈∇〉−2
c (fg)‖r+1 ≤ ‖fg‖r−1 ≤ K‖f‖r−1‖g‖r+1

which thus implies that

TF1 := τ
∥∥〈∇〉−2

c (ṅ(tn)u(tn)− ṅnun)
∥∥
r+1

≤ τK (‖ṅ(tn)− ṅn‖r−1‖un‖r+1 + ‖ṅ(tn)‖r−1‖u(tn)− un‖r+1)

≤ τKMtn,rBtn,r (‖ṅ(tn)− ṅn‖r−1 + ‖u(tn)− un‖r+1) ,

(4.33)

where Mtn,r and Btn,r are defined in (4.19) and (4.31), respectively.
The second and third term have to be bounded more carefully.

Bound on the second term TF2 : Note that for ζ ∈ R with ζ 6= 0 we have

‖τϕ1 (iτζ) f‖r+1 =
∥∥∥∥τ eiτζ − 1

iτζ
f

∥∥∥∥
r+1

≤ ‖(ζ)−1f‖r+1. (4.34)

Thanks to the relation

n(tn)c〈∇〉cu(tn)− nnc〈∇〉cun = n(tn)c〈∇〉cu(tn)− (nn − n(tn) + n(tn))c〈∇〉cun

= (n(tn)− nn)c〈∇〉cun + n(tn)c〈∇〉c(u(tn)− un)
(4.35)
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we thus obtain that

TF2 := τ ‖ 〈∇〉−2
c ϕ1

(
i
2τ∆

) (
n(tn)c〈∇〉cu(tn)− nnc〈∇〉cun

)
‖r+1

≤
∥∥∥〈∇〉−2

c

(
τϕ1

(
i
2τ∆

)) (
(n(tn)− nn)c〈∇〉cun

)∥∥∥
r+1

+ τ
∥∥∥〈∇〉−2

c ϕ1
(
i
2τ∆

) (
n(tn)c〈∇〉c(u(tn)− un)

)∥∥∥
r+1

≤
∥∥∥〈∇〉−2

c

(
(n(tn)− nn)c〈∇〉cun

)∥∥∥
r−1

+ τ
∥∥∥〈∇〉−2

c

(
n(tn)c〈∇〉c(u(tn)− un)

)∥∥∥
r+1

=: TF2,a + TF2,b.

(4.36)

We consider TF2,a and TF2,b separately. Thanks to the last estimate in Lemma 4.5 we have

TF2,a =
∥∥∥〈∇〉−2

c

(
(n(tn)− nn)c〈∇〉cun

)∥∥∥
r−1
≤ K‖n(tn)− nn‖r−1 ‖un‖r+1. (4.37)

Furthermore, the estimate c|k|
c(c+|k|) ≤ 1 together with the definition of the operator 〈∇〉c in Fourier space

(see equation (2.12)) yields that ∥∥∥∥ c〈∇〉c
c(c+ 〈∇〉0)f

∥∥∥∥
r

≤ ‖f‖r. (4.38)

With the aid of Lemma 4.5 we can estimate TF2,b as follows

TF2,b = τ
∥∥∥〈∇〉−2

c

(
n(tn)c〈∇〉c(u(tn)− un)

)∥∥∥
r+1

= τ

∥∥∥∥〈∇〉−2
c

(
n(tn) c〈∇〉c

c(c+ 〈∇〉0)c(c+ 〈∇〉0)(u(tn)− un)
)∥∥∥∥

r+1

≤ τ
∥∥∥∥〈∇〉−2

c

(
n(tn) c〈∇〉c

c(c+ 〈∇〉0)c
2(u(tn)− un)

)∥∥∥∥
r+1

+ τ

∥∥∥∥〈∇〉−2
c

(
n(tn) c〈∇〉c

c(c+ 〈∇〉0)c〈∇〉0(u(tn)− un)
)∥∥∥∥

r+1

≤ τ 1
c2

∥∥∥∥n(tn) c〈∇〉c
c(c+ 〈∇〉0)c

2(u(tn)− un)
∥∥∥∥
r+1

+ τ
1
c

∥∥∥∥n(tn) c〈∇〉c
c(c+ 〈∇〉0)c〈∇〉0(u(tn)− un)

∥∥∥∥
r

.

Now, we use the above bound (4.38), which implies

TF2,b ≤ τK‖n(tn)‖r+1‖u(tn)− un‖r+1. (4.39)

Plugging (4.37) and (4.39) into (4.36) we can thus conclude

TF2 ≤ K
(
‖n(tn)− nn‖r−1‖un‖r+1 + τ‖n(tn)‖r+1 ‖u(tn)− un‖r+1

)
≤ τKMtn,r+1Btn,r

(1
τ
‖n(tn)− nn‖r−1 + ‖u(tn)− un‖r+1

)
.

(4.40)

Bound on the third term TF3 : Similarly to the bound on TF2 we obtain by the relation (4.35)
using (4.34) together with the estimate∥∥∥∥ 1

c〈∇〉c + c2
f

∥∥∥∥
r

≤ 1
c2
‖f‖r

that

TF3 :=
∥∥∥〈∇〉−2

c ϕ1
(
−iτ(c〈∇〉c + c2)

) (
n(tn)c〈∇〉cu(tn)− nnc〈∇〉cun

)∥∥∥
r+1

≤
∥∥∥∥〈∇〉−2

c

1
c〈∇〉c + c2

(
(n(tn)− nn)c〈∇〉cun

)∥∥∥∥
r+1

+ τ
∥∥∥〈∇〉−2

c

(
n(tn)c〈∇〉c(u(tn)− un)

)∥∥∥
r+1

≤
∥∥∥∥(n(tn)− nn)c〈∇〉c

c2
un
∥∥∥∥
r−1

+ τ
∥∥∥〈∇〉−2

c

(
n(tn)c〈∇〉c(u(tn)− un)

)∥∥∥
r+1

.
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With similar arguments (see (1.2), (4.18), (4.39)) as above we can thus conclude

TF3 ≤ K
(
‖n(tn)− nn‖r−1‖un‖r+1 + τ‖n(tn)‖r+1 ‖u(tn)− un‖r+1

)
≤ τKMtn,r+1Btn,r

(1
τ
‖n(tn)− nn‖r−1 + ‖u(tn)− un‖r+1

)
.

(4.41)

Bound on error in F : Plugging the bounds (4.33), (4.40) and (4.41) into (4.32) yields that∥∥(c〈∇〉c)−1 (F (tn + τ)− Fn+1) ∥∥
r+1

≤
∥∥(c〈∇〉c)−1 (F (tn)− Fn)

∥∥
r+1

+ τKMtn,r+1Btn,r

(
‖u(tn)− un‖r+1 + 1

τ ‖n(tn)− nn‖r−1 + ‖ṅ(tn)− ṅn‖r−1

)
+ τ2KMp

tn+1,r+3.

(4.42)

b) Error in u

Taking the difference of the approximation of u(tn) given in (4.27) and the numerical solution un defined
in (4.29) we readily obtain by the definition of the remainder Rr+3 (see Definition 4.6) together with the
relation

n(tn)SF (tn)− nnSnF = n(tn)SF (tn)− (nn − n(tn) + n(tn))SnF
= (n(tn)− nn)SnF + n(tn)(SF (tn)− SnF )

that

‖u(tn)− un‖r+1 ≤
∥∥c−1〈∇〉−1

c (Fn − F (tn))
∥∥
r+1 +

∥∥〈∇〉−2
c ((n(tn)− nn)SnF )

∥∥
r+1

+
∥∥∥〈∇〉−2

c

(
n(tn)

(
SF (tn)− SnF

))∥∥∥
r+1

+ τRr+3.
(4.43)

Thanks to Lemma 4.5 we have∥∥〈∇〉−2
c ((n(tn)− nn)SnF )

∥∥
r+1 ≤ K‖(n(tn)− nn)SnF ‖r−1 ≤ K

(
1
τ
‖n(tn)− nn‖r−1

)
(τ‖SnF ‖r+1) . (4.44)

Furthermore, the bound (4.39) with u(tn)− un replaced by (c〈∇〉−1
c )(SF (tn)− SnF ) implies with the aid

of (4.39) that∥∥∥〈∇〉−2
c

(
n(tn)

(
SF (tn)− SnF

))∥∥∥
r+1
≤
∥∥∥〈∇〉−2

c

(
n(tn)(c〈∇〉c)

[
(c〈∇〉c)−1

(
SF (tn)− SnF

)])∥∥∥
r+1

≤ K‖n(tn)‖r+1

∥∥∥(c〈∇〉c)−1
(
SF (tn)− SnF

)∥∥∥
r+1

.
(4.45)

Plugging (4.44) and (4.45) into (4.43) yields

‖u(tn)− un‖r+1 ≤
∥∥c−1〈∇〉−1

c (Fn − F (tn))
∥∥
r+1

+K

(
1
τ
‖n(tn)− nn‖r−1

)
(τ‖SnF ‖r+1)

+K‖n(tn)‖r+1

∥∥∥(c〈∇〉c)−1
(
SF (tn)− SnF

)∥∥∥
r+1

+ τRr+3.

(4.46)

Taking the difference of SF (tn) defined in (4.26) and SnF given through (4.29) we obtain∥∥∥(c〈∇〉c)−1
(
SF (tn)− SnF

)∥∥∥
r+1

= τ

n∑
k=0

∥∥∥(c〈∇〉c)−1ϕ1(iτc〈∇〉c)
(
F (tk)− F k

)∥∥∥
r+1

≤ τ
n∑
k=0

∥∥∥(c〈∇〉c)−1
(
F (tk)− F k

)∥∥∥
r+1

,

(4.47)
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where we have used that ‖ϕ1(iτc〈∇〉c)‖r ≤ 1.
The definition of SnF (see (4.29) with initial value (4.30)) also yields

‖SnF ‖r+1 ≤ ‖u(0)‖r+1 + τ

n∑
k=0

∥∥ϕ1(iτc〈∇〉c)F k
∥∥
r+1 .

From the estimate (4.34) we can furthermore conclude that

τ ‖SnF ‖r+1 ≤ τ‖u(0)‖r+1 + τ

n∑
k=0

∥∥τϕ1(iτc〈∇〉c)F k
∥∥
r+1

≤ τ‖u(0)‖r+1 + τ

n∑
k=0

∥∥(c〈∇〉c)−1F k
∥∥
r+1

≤ τ‖u(0)‖r+1 + tn+1 sup
0≤k≤n

∥∥(c〈∇〉c)−1F k
∥∥
r+1 .

(4.48)

Plugging (4.47) and (4.48) into (4.46) we thus obtain by the definition of Btn,r in (4.31) that

‖u(tn)− un‖r+1 ≤
∥∥c−1〈∇〉−1

c (Fn − F (tn))
∥∥
r+1 +KBtn,rtn

(
1
τ
‖n(tn)− nn‖r−1

)
+KMtn,r+1

(
τ

n∑
k=0

∥∥c−1〈∇〉−1
c

(
F (tk)− F k

)∥∥
r+1

)
.

(4.49)

c) Error in (n, ṅ)
In the following we define the rotation matrix

D(τ〈∇〉0) =
(

cos (τ〈∇〉0) sin (τ〈∇〉0)
−sin (τ〈∇〉0) cos (τ〈∇〉0)

)
. (4.50)

Taking the difference of the approximation to the exact solution (n(tn+1), ṅ(tn+1)) given in (4.28) and the
numerical solution (nn+1, ṅn+1) defined in (4.29) we readily obtain by the definition of the
remainder Rr+2 (see Definition 4.6), the rotation matrix (4.50) and the relation

|u(tn)| − |(un)2| = (u(tn)− un)u(tn) + un(u(tn)− un),

u(tn)2 − (un)2 = (u(tn)− un)(u(tn) + un)
(4.51)

(with the corresponding complex conjugate version) that(
n(tn+1)− nn+1

〈∇〉−1
0 ( ṅ(tn)− ṅn)

)
= D(τ〈∇〉0)

(
n(tn)− nn

〈∇〉−1
0 ( ṅ(tn)− ṅn)

)

+ τ

4

 τ sin(τ〈∇〉0)
τ〈∇〉0 〈∇〉20

(
p1(u(tn), un)(u(tn)− un)

)
cos (τ〈∇〉0) 〈∇〉0

(
p2(u(tn), un)(u(tn)− un)

)+
(
τ3sinc(τ〈∇〉0)Rr+4

τ2Rr+3

)
.

Thereby, p1 and p2 simply denote polynomials in u(tn), un (according to (4.51)) due to the bounds
(see (2.8)) ∣∣ϕ1(±2ic2)

∣∣ ≤ 1,
∣∣ϕ2(±2ic2)

∣∣ ≤ 1.
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Solving the above recursion we obtain(
n(tn+1)− nn+1

〈∇〉−1
0 ( ṅ(tn)− ṅn)

)
= τ

4

n∑
k=0
D(τ〈∇〉0)k

 τ sin(τ〈∇〉0)
τ〈∇〉0 〈∇〉20

(
p1
(
u(tn−k), un−k

) (
u(tn−k)− un−k

) )
cos (τ〈∇〉0) 〈∇〉0

(
p2
(
u(tn−k), un−k

) (
u(tn−k)− un−k

) )


+ nτ

(
τ2sinc(τ〈∇〉0)Rr+4

τRr+3

)

= τ

4

n∑
k=1
D(τ〈∇〉0)k−1 {N (u(tn−k), un−k)

}
+ τ

4

 τ sin(τ〈∇〉0)
τ〈∇〉0 〈∇〉20

(
p1 (u(tn), un) (u(tn)− un)

)
cos (τ〈∇〉0) 〈∇〉0

(
p2 (u(tn), un) (u(tn)− un)

)
+ tn

(
τ2sinc(τ〈∇〉0)Rr+4

τRr+3

)
,

where we have set

N (u(tn−k), un−k) =
(
N1(u(tn−k), un−k)
N2(u(tn−k), un−k)

)

:= D(τ〈∇〉0)

 τ sin(τ〈∇〉0)
τ〈∇〉0 〈∇〉20

(
p1
(
u(tn−k), un−k

) (
u(tn−k)− un−k

) )
cos (τ〈∇〉0) 〈∇〉0

(
p2
(
u(tn−k), un−k

) (
u(tn−k)− un−k

) )
 .

Note that for all k ≥ 1 it holds ∥∥D(τ〈∇〉0)k−1∥∥
r
≤ 1.

Together with the observation

N1(u(tn−k), un−k) = cos (τ〈∇〉0) τ sin (τ〈∇〉0)
τ〈∇〉0

〈∇〉20
(
p1
(
u(tn−k), un−k

) (
u(tn−k)− un−k

) )
+ sin (τ〈∇〉0) cos (τ〈∇〉0) 〈∇〉0

(
p2
(
u(tn−k), un−k

) (
u(tn−k)− un−k

) )
= τcos (τ〈∇〉0) sin (τ〈∇〉0)

τ〈∇〉0
〈∇〉20

{(
p1
(
u(tn−k), un−k

) (
u(tn−k)− un−k

) )
+
(
p2
(
u(tn−k), un−k

) (
u(tn−k)− un−k

) )}

we thus obtain

‖n(tn+1)− nn+1‖r−1 ≤ τKMtn,rBtn,r

(
τ

n∑
k=0
‖u(tk)− uk‖r+1

)
+ τ2Mp

tn+1,r+3

as well as the (classical) bound

‖n(tn+1)− nn+1‖r + ‖〈∇〉−1
0 ( ṅ(tn)− ṅn)‖r ≤ KMtn,rBtn,r

(
τ

n∑
k=0
‖u(tk)− uk‖r+1

)
+ τMp

tn+1,r+3.

Hence, we can conclude
1
τ
‖n(tn+1)− nn+1‖r−1 + ‖n(tn+1)− nn+1‖r + ‖ṅ(tn)− ṅn‖r−1

≤ KMtn,rBtn,r

(
τ

n∑
k=0
‖u(tk)− uk‖r+1

)
+ τMp

tn+1,r+3.
(4.52)
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4.4.2.1 The Convergence Theorem

The numerical solutions (un, Fn, nn, ṅn) defined by the oscillatory integration scheme (4.29) allows a
first-order approximation to the exact solution (u(tn), F (tn), n(tn), ṅ(tn)) of the Klein–Gordon–Zakharov
system (4.14) uniformly in c. More precisely, with

zn := 1
2 (un + un)

the following convergence result holds.

Theorem 4.10 (Convergence bound for the first-order scheme, cf. Theorem 9 in [12]). Fix r > d/2.
Assume that (u(0), n(0), ṅ(0)) ∈ Hr+4 ×Hr+3 ×Hr+2. Then there exists constants T > 0, τ0 > 0,K > 0
such that for all tn ≤ T, τ ≤ τ0 and all c ≥ 1 we have

‖z(tn)− zn‖r+1 + ‖n(tn)− nn‖r + ‖ṅ(tn)− ṅn‖r−1 ≤ Kτ,

where the constant K depends on T, on MT,r+3 defined in (4.19), and on r, but can be chosen indepen-
dently of c.

Proof. Due to the local wellposedness of the Klein–Gordon–Zakharov system (4.14) (see, e.g., [54, 55, 61])
we know that there exists a T > 0 such that MT,r+3 defined in (4.19) is finite. Thereby, observe that by
the definition of F = ∂tu we have (see (4.9))

iF = −c〈∇〉cu−
1
2c〈∇〉

−1
c n(u+ u)

such that by Lemma 4.5 and the bilinear estimate (4.17) we obtain

‖(c〈∇〉c)−1F‖r+1 ≤ ‖u‖r+1 + ‖nu‖r−1 ≤ ‖u‖r+1 +K‖n‖r−1‖u‖r+1.

Collecting the error bounds (4.42), (4.49) and (4.52) yields∥∥(c〈∇〉c)−1 (F (tn + τ)− Fn+1) ∥∥
r+1

≤
∥∥(c〈∇〉c)−1 (F (tn)− Fn)

∥∥
r+1

+ τKMtn,r+1Btn,r

(
‖u(tn)− un‖r+1 + 1

τ ‖n(tn)− nn‖r−1 + ‖ṅ(tn)− ṅn‖r−1

)
+ τ2KMp

tn+1,r+3,

‖u(tn+1)− un+1‖r+1

≤
∥∥c−1〈∇〉−1

c

(
F (tn+1)− Fn+1)∥∥

r+1 +KBtn,rtn

(
1
τ
‖n(tn+1)− nn+1‖r−1

)
+KMtn,r+1

(
τ

n+1∑
k=0

∥∥c−1〈∇〉−1
c

(
F (tk)− F k

)∥∥
r+1

)
,

1
τ
‖n(tn+1)− nn+1‖r−1 + ‖n(tn+1)− nn+1‖r + ‖ṅ(tn+1)− ṅn+1‖r−1

≤ KMtn,rBtn,r

(
τ

n∑
k=0
‖u(tk)− uk‖r+1

)
+ τMp

tn+1,r+3.

(4.53)

In the following we assume

for all k ≤ n : Btn,r ≤M1, Mtn+1,r+1 ≤M2, Mtn+1,r+3 ≤M3.
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Plugging the estimates on the error in n and ṅ into the error recursions in u and F yields together with

τ

n∑
k=0
‖fk‖r ≤ tn+1 sup

0≤k≤n
‖fk‖r

by (4.53) that

∥∥(c〈∇〉c)−1 (F (tn + τ)− Fn+1) ∥∥
r+1 ≤

∥∥(c〈∇〉c)−1 (F (tn)− Fn)
∥∥
r+1

+ τtnK1(M1,M2,M3) sup
0≤k≤n

‖u(tn)− un‖r+1

+ τ2KMp
tn+1,r+3

(4.54)

as well as

‖u(tn+1)− un+1‖r+1 ≤ tnK2(M1,M2,M3) sup
0≤k≤n

∥∥c−1〈∇〉−1
c

(
F (tk+1)− F k+1)∥∥

r+1

+ τKBtn,rtnM
p
tn+1,r+3,

(4.55)

where the constants K1 and K2 depend on tn,M1,M2 and M3, but can be chosen independently of c.

Plugging (4.55) into (4.54) finally yields with the inductive assumption that the error in F is growing as

∥∥(c〈∇〉c)−1 (F (tn + τ)− Fn+1) ∥∥
r+1 ≤

(
1 + K̃1(tn,M1,M2,M3)τ

)∥∥(c〈∇〉c)−1 (F (tn)− Fn)
∥∥
r+1

+ τ2K̃2(tn,M1,M2,M3),
(4.56)

where K̃1 and K̃2 depend on tn,M1,M2 and M3, but can be chosen independently of c.

Collecting the estimates in (4.56), (4.55) and (4.52) the assertion then follows by z = 1
2 (u+ u) together

with an inductive, respectively, Lady Windermere’s fan argument (see, for example [35, 50]).

The uniform convergence rate in c stated in Theorem 4.10 is numerically confirmed in Figure 4.7.

Remark 4.11 (Higher-order methods). Our novel technique allows us to develop (in a similar way)
higher-order uniformly accurate schemes (with order p ∈ N) for the Klein–Gordon–Zakharov system (4.1)
with convergence rate O(τp) uniformly in c. This can be achived by iterating the Duhamel’s formulas.

For instance, a second-order uniformly accurate integrator can be obtained by plugging the locally second-
order uniform approximations of u(tn + s), n(tn + s) and ṅ(tn + s) given in Lemma 4.12 below into
Duhamel’s formula (4.15) and integrating the remaining highly oscillatory phases of type

eikc
2t with k ∈ Z

exactly.
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Lemma 4.12 (cf. Lemma 11 in [12]). Locally second-order uniform approximations to (u, n, ṅ)(tn + s)
are given by

u(tn + s) = eisc〈∇〉cu(tn)

+ is
1
2c〈∇〉

−1
c eisc〈∇〉c

(
ϕ1
(
is 1

2∆
) (

n(tn)u(tn)
)

+ ϕ1
(
−is(c〈∇〉c + c2)

) (
n(tn)u(tn)

))
+ s2Rr+4,

n(tn + s) = cos(s〈∇〉0)n(tn) + 〈∇〉−1
0 sin(s〈∇〉0)ṅ(tn)

+ s2

4 sinc(s〈∇〉0)∆
{
|u(tn)|2 + ϕ2(2ic2s)u(tn)2 + ϕ2(−2ic2s) (u(tn))2

}
+ s3Rr+4,

ṅ(tn + s) = −〈∇〉0sin(s〈∇〉0)n(tn) + cos(s〈∇〉0)ṅ(tn)

+ s

4cos(s〈∇〉0)n∆
{

2|u(tn)|2 + ϕ1(2ic2s)u(tn)2 + ϕ1(−2ic2s) (u(tn))2
}

+ s2Rr+4.

Proof. Duhamel’s formula in u (see (4.16)) together with the approximations (see Lemma 4.5)

u(tn + ξ) = eic
2ξ u(tn) + ξRr+2, eiξ(c

2−c〈∇〉c) = eiξ 1
2 ∆ + ξRr+4

(cf. (4.22)) implies by the definition of the ϕ1 function (see (2.8)) the following

u(tn + s) = eisc〈∇〉cu(tn) + i

2c〈∇〉
−1
c

∫ s

0
ei(s−ξ)c〈∇〉cn(tn + ξ)

(
u(tn + ξ) + u(tn + ξ)

)
dξ

= eisc〈∇〉cu(tn) + i

2c〈∇〉
−1
c

∫ s

0
ei(s−ξ)c〈∇〉cn(tn)

(
eiξc

2
u(tn) + e−iξc

2
u(tn)

)
dξ + sRr+2

= eisc〈∇〉cu(tn) + i

2c〈∇〉
−1
c eisc〈∇〉c

∫ s

0

(
eiξ 1

2 ∆(n(tn)u(tn)
)

+ e−iξ(c〈∇〉c+c
2)(n(tn)u(tn)

))
dξ

+ sRr+4

= eisc〈∇〉cu(tn) + i

2sc〈∇〉
−1
c eisc〈∇〉c

(
ϕ1
(
is 1

2∆
) (

n(tn)u(tn)
)

+ ϕ1
(
−is(c〈∇〉c + c2)

) (
n(tn)u(tn)

))
+ s2Rr+4.

The assertion for (n, ṅ) directly follows from (4.28) by replacing τ with s.

4.4.3 Asymptotic Consistency

The oscillatory integrator (4.29) is asymptotic consistent in the sense that it converges asymptotically
(i.e., for c→∞) to the solution of the corresponding Zakharov limit system (4.7) (for sufficiently smooth
solutions).

Remark 4.13 (The Zakharov limit). Note that exact solutions (z, n) of the Klein–Gordon–Zakharov
system (4.1) converge asymptotically to the Zakharov system (4.7) in the following sense: For sufficiently
smooth solutions we have (see, e.g., [15, 54, 55, 74])

z(t, x) = 1
2

(
eic

2t u∞(t, x) + e−ic
2t u∞(t, x)

)
+ c−2Rr+4,

n(t, x) = n∞(t, x) + c−2Rr+5,

(4.57)

where (u∞, n∞) solve the Zakharov system (cf. (4.7))

2i∂tu∞ −∆u∞ = −n∞u∞,
∂ttn∞ −∆n∞ = 1

2∆ |u∞|2
(4.58)
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equipped with the initial values

u∞(0) = z(0)− ic−2∂tz(0), n∞(0) = n(0) and ṅ∞(0) = ṅ(0).

Theorem 4.10 together with the approximation in (4.57) implies that the oscillatory integrator (4.29)
converges at order τ + c−2 towards the limit solutions of the Zakharov system. More precisely, for
sufficiently smooth solutions the scheme (4.29) allows an approximation towards the solutions (u∞, n∞)
of the Zakharov limit system (4.58) with the convergence rate

‖u∞(tn)− e−ic
2tnun‖r+1 + ‖n∞(tn)− nn‖r + ‖ṅ∞(tn)− ṅn‖r−1 ≤ K

(
τ + c−2) ,

for some constant K > 0 which is independent of τ and c. With z = 1
2 (u+u) we can in particular deduce

for
z∞ := 1

2

(
eic

2t u∞(t, x) + e−ic
2t u∞(t, x)

)
and zn := 1

2(un + un)

that
‖z∞(tn)− zn‖r+1 + ‖n∞(tn)− nn‖r + ‖ṅ∞(tn)− ṅn‖r−1 ≤ K

(
τ + c−2) . (4.59)

The asymptotic convergence (4.59) of our scheme (4.29) towards the solutions of the Zakharov limit
system (4.58) is numerically confirmed in Figure 4.9.

4.5 Numerical Experiments for the Klein–Gordon–Zakharov Sys-
tem

In this section we numerically underline the first-order convergence uniformly in c of the uniformly
accurate oscillatory integration scheme (4.29). We also confirm that the first-order uniformly accurate
scheme converge in the limit to the corresponding limit integrator for c→∞.
We consider the Klein–Gordon–Zakharov system on the one dimensional torus, i.e., x ∈ T = [0, 2π]
and on a finite time interval, i.e., t ∈ [0, T ]. In all numerical experiments we use a standard Fourier
pseudospectral method for the spatial discretization. For more details on pseudospectral methods we
refer to [27, 69, 70]. The mesh-size is denoted by h = 2π

M with grid points xj = jh and time step
size τ = T

N with grid points tn = nτ , for j = 0, ...,M and n = 0, ..., N respectively. In order to use the
Fourier transform efficiently we choose M = 2k, with k ∈ N. For practical implementation of the Fourier
transform in Matlab, we introduce the Fourier grid K =

[
−M2 : −1, 0, 1 : M2 − 1

]
.

In the following we choose M = 210, i.e., we have the spatial mesh-size h = 0.0061 and integrate up
to T = 1 in all numerical simulations.
In all numerical methods for the Klein–Gordon–Zakharov system we use the following initial values

z(0, x) = 1
2

cos(3x)2sin(2x)
2− cos(x) , ∂tz(0, x) = c2

1
2

sin(x)cos(2x)
2− cos(x) ,

n(0, x) = sin(x) cos(2x)
2− sin(2x)2 , ∂tn(0, x) = sin(x)

2− cos(2x)2 .

In Section 4.5.1 we derive a Gautschi-type method following the ansatz of [9] and a classical exponential
integrator (see [39]) in order to obtain a numerical method to compute the reference solution. Then we
recall the numerical method for the limit system in Section 4.5.2 and the uniformly accurate methods in
Section 4.5.3. Finally, we compare the different numerical methods in Section 4.5.4.



128 Chapter 4. The Klein–Gordon–Zakharov System

4.5.1 Numerical Methods for the Reference Solution

In this subsection we derive a second-order Gautschi-type method and a first-order exponential integrator
for the Klein–Gordon–Zakharov system.

4.5.1.1 A Gautschi-type Method for the Klein–Gordon–Zakharov System

We use the techniques of [9] and construct a two step Gautschi-type method. Therefore, we recall our
Klein–Gordon–Zakharov system

∂ttz + c2〈∇〉2cz = −c2nz, z(0) = z0, ∂tz(0) = c2z1,

∂ttn + 〈∇〉20n = ∆|z|2, n(0) = n0, ∂tn(0) = n1.

In a first step we use the variation of constants formula for second-order equations for z and n and obtain

z(tn + τ) = cos(τc〈∇〉c)z(tn) + τ
sin(τc〈∇〉c)
τ〈∇〉c

ż(tn)− c2
∫ τ

0

sin ((τ − s)c〈∇〉c)
c〈∇〉c

n(tn + s)z(tn + s)ds,

ż(tn + τ) = −c〈∇〉c sin(τc〈∇〉c)z(tn) + cos(τc〈∇〉c)ż(tn)− c2
∫ τ

0
cos ((τ − s)c〈∇〉c) n(tn + s)z(tn + s)ds,

n(tn + τ) = cos(τ〈∇〉0)n(tn) + τ
sin(τc〈∇〉0)
τ〈∇〉0

ṅ(tn)− 〈∇〉0
∫ τ

0
sin ((τ − s)〈∇〉0) |z(tn + s)|2ds,

ṅ(tn + τ) = −〈∇〉0 sin(τ〈∇〉0)n(tn) + cos(τ〈∇〉0)ṅ(tn)− 〈∇〉20
∫ τ

0
cos ((τ − s)〈∇〉0) |z(tn + s)|2ds.

(4.60)

For n = 0 we have

z(t1) = cos(τc〈∇〉c)z(0) + τ
sin(τc〈∇〉c)
τ〈∇〉c

ż(0)− c2
∫ τ

0

sin ((τ − s)c〈∇〉c)
c〈∇〉c

n(s)z(s)ds,

ż(t1) = −c〈∇〉c sin(τc〈∇〉c)z(0) + cos(τc〈∇〉c)ż(0)− c2
∫ τ

0
cos ((τ − s)c〈∇〉c) n(s)z(s)ds,

n(t1) = cos(τ〈∇〉0)n(0) + τ
sin(τc〈∇〉0)
τ〈∇〉0

ṅ(0)− 〈∇〉0
∫ τ

0
sin ((τ − s)〈∇〉0) |z(s)|2ds,

ṅ(t1) = −〈∇〉0 sin(τ〈∇〉0)n(0) + cos(τ〈∇〉0)ṅ(0)− 〈∇〉20
∫ τ

0
cos ((τ − s)〈∇〉0) |z(s)|2ds.

(4.61)

For n ≥ 1 we consider tn+1 and tn−1 in (4.60) and add the equations, such that we have
with cos(−x) = cos(x) and sin(−x) = − sin(x) that

z(tn+1) = −z(tn−1) + 2 cos(τc〈∇〉c)z(tn)

− c2
∫ τ

0

sin ((τ − s)c〈∇〉c)
c〈∇〉c

(n(tn + s)z(tn + s) + n(tn − s)z(tn − s)) ds,

ż(tn+1) = ż(tn−1)− 2c〈∇〉c sin(τc〈∇〉c)z(tn)

− c2
∫ τ

0
cos ((τ − s)c〈∇〉c) (n(tn + s)z(tn + s) + n(tn − s)z(tn − s)) ds,

n(tn+1) = −n(tn−1) + 2 cos(τ〈∇〉0)n(tn)− 〈∇〉0
∫ τ

0
sin ((τ − s)〈∇〉0)

(
|z(tn + s)|2 + |z(tn − s)|2

)
ds,

ṅ(tn+1) = ṅ(tn−1)− 2〈∇〉0 sin(τ〈∇〉0)n(tn)− 〈∇〉20
∫ τ

0
cos ((τ − s)〈∇〉0)

(
|z(tn + s)|2 + |z(tn − s)|2

)
ds.

(4.62)
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We approximate the integrals in (4.62) and (4.61) as in the previous chapter, so it follows∫ τ

0

sin ((τ − s)c〈∇〉c)
c〈∇〉c

(
n(tn + s)z(tn + s) + n(tn − s)z(tn − s)

)
ds ≈ 21− cos(τc〈∇〉c)

c2〈∇〉2c
n(tn)z(tn),∫ τ

0
cos ((τ − s)c〈∇〉c)

(
n(tn + s)z(tn + s) + n(tn − s)z(tn − s)

)
ds ≈ 2sin(τc〈∇〉c)

c〈∇〉c
n(tn)z(tn),∫ τ

0
sin ((τ − s)〈∇〉0)

(
|z(tn + s)|2 + |z(tn − s)|2

)
ds ≈ 21− cos (τ〈∇〉0)

〈∇〉0
|z(tn)|2,∫ τ

0
cos ((τ − s)〈∇〉0)

(
|z(tn + s)|2 + |z(tn − s)|2

)
ds ≈ 2sin(τ〈∇〉0)

〈∇〉0
|z(tn)|2.

(4.63)

With the aid of (4.63) we also approximate the integral terms in (4.61). Therefore, as shown in the
previous chapters we obtain the following two step iteration scheme for n = 0

z1 = cos(τc〈∇〉c)z0 + τ
sin(τc〈∇〉c)
τ〈∇〉c

ż0 + c2
cos (τc〈∇〉c)− 1

c2〈∇〉2c
n0z0,

ż1 = −c〈∇〉c sin(τc〈∇〉c)z0 + cos(τc〈∇〉c)ż0 − c2 sin(τc〈∇〉c)
c〈∇〉c

n0z0,

n1 = cos(τ〈∇〉0)n0 + τ
sin(τc〈∇〉0)
τ〈∇〉0

ṅ0 + [cos(τ〈∇〉0)− 1] |z0|2,

ṅ1 = −〈∇〉0 sin(τ〈∇〉0)n0 + cos(τ〈∇〉0)ṅ0 − 〈∇〉0 sin(τ〈∇〉0)|z0|2,

and for n ≥ 1

zn+1 = −zn−1 + 2 cos(τc〈∇〉c)zn + 2c2 cos(τc〈∇〉c)− 1
c2〈∇〉2c

nnzn,

żn+1 = żn−1 − 2c〈∇〉c sin(τc〈∇〉c)zn − 2c2 sin(τc〈∇〉c)
c〈∇〉c

nnzn,

nn+1 = −nn−1 + 2 cos(τ〈∇〉0)nn − 2 [cos(τ〈∇〉0)− 1] |zn|2,
ṅn+1 = ṅn−1 − 2〈∇〉0 sin(τ〈∇〉0)nn − 2〈∇〉0 sin(τ〈∇〉0)|zn|2

with initial data
z0 = z(0), ż0 = ∂tz(0), n0 = n(0), ṅ0 = ∂tn(0).

We implement the Gautschi-type method in order to obtain a reference solution for our Klein–Gordon–
Zakharov system. In Figure 4.4 we plot (double logarithmic) the time step size versus the error in z is
measured in a discrete H1 norm and the error in n is measured in a discrete L2 norm for different values
of c = 1, 5, 10, 50, 100. As a reference solution we use the scheme itself with a finer time step size τ ≈ 10−6.
Figure 4.4 confirms what is shown in Figure 4.1, that Gautschi-type methods suffer from severe time step
restriction.

4.5.1.2 A Classical Exponential Integrator for the Klein–Gordon-Zakharov System

Now, we derive a classical exponential integrator for the Klein–Gordon–Zakharov system. For more
details on classical exponential integrators we refer to [39]. We recall the first-order system in time in z
(cf. (4.6))

i∂tu = −c〈∇〉cu−
1
2c〈∇〉

−1
c n (u+ u) , u(0) = z0 − ic〈∇〉−1

c z1

with z = 1
2 (u+ u). We apply Duhamel’s formula

u(tn + τ) = eiτc〈∇〉cu(tn) + i

2c〈∇〉
−1
c

∫ τ

0
ei(τ−s)c〈∇〉cn(tn + s) (u(tn + s) + u(tn + s)) ds,
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Figure 4.4: Order plot of the Gautschi-type method (double logarithmic scale). Time step size versus the error.
The slope of the dashed line is two. Left side error in z, right side error in n. Reference solution computed via
the scheme itself with a finer time step size τ ≈ 10−6.

and approximate the integrals in the simplest way, by freezing the values of n and u at s = 0

u(tn + τ) ≈ eiτc〈∇〉cu(tn) + i

2c〈∇〉
−1
c eiτc〈∇〉c

∫ τ

0
e−isc〈∇〉cds n(tn) (u(tn) + u(tn)) .

Now, we integrate the remaining exponential function exactly. This yields the following first-order itera-
tion scheme

un+1 = eiτc〈∇〉cun + τ
i

2c〈∇〉
−1
c eiτc〈∇〉cϕ1 (−iτc〈∇〉c) nn (un + un) .

For n we use the variation of constants formula for second-order differential equations (see also (4.60)),
this yields the following iteration scheme

nn+1 = cos(τ〈∇〉0)nn + τ
sin(τc〈∇〉0)
τ〈∇〉0

ṅn + 1
4 [cos(τ〈∇〉0)− 1] |un + un|2,

ṅn+1 = −〈∇〉0 sin(τ〈∇〉0)nn + cos(τ〈∇〉0)ṅn − 1
4 〈∇〉0 sin(τ〈∇〉0)|un + un|2.

The full integration scheme reads

un+1 = eiτc〈∇〉cun + τ
i

2c〈∇〉
−1
c eiτc〈∇〉cϕ1 (−iτc〈∇〉c) nn (un + un) ,

nn+1 = cos(τ〈∇〉0)nn + τ
sin(τc〈∇〉0)
τ〈∇〉0

ṅn + 1
4 [cos(τ〈∇〉0)− 1] |un + un|2,

ṅn+1 = −〈∇〉0 sin(τ〈∇〉0)nn + cos(τ〈∇〉0)ṅn − 1
4 〈∇〉0 sin(τ〈∇〉0)|un + un|2

with z = 1
2 (u+ u) and initial values

u0 = z0 − ic〈∇〉−1
c , n0 = n0, ṅ0 = n1.
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We implement the first-order exponential integrator in order to obtain a reference solution for our
Klein–Gordon–Zakharov system. In Figure 4.5 we plot (double logarithmic) the time step size ver-
sus the error in z and n is measured in a discrete H1 and L2 norm, respectively, for different values
of c = 1, 5, 10, 50, 100, 500. As a reference solution we use the scheme itself with a finer time step
size τ ≈ 10−7. In Figure 4.5 we also see the time step restrictions for large values of c.
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Figure 4.5: Order plot of the first-order exponential integrator (double logarithmic scale). The slope of the dashed
line is one. Left side error in z, right side error in n. Reference solution computed via the scheme itself with a
finer time step size τ ≈ 10−7.

4.5.2 Numerical Methods for the Limit System

As it is formally shown in Section 4.2 the limit system in the high-plasma frequency case is the classical
Zakharov system which reads as follows

i∂tu∞(t, x) = 1
2∆u∞(t, x)− 1

2n∞(t, x)u∞(t, x),

∂ttn∞(t, x) = ∆n∞(t, x) + 1
2∆|u∞(t, x)|2,

(4.64)

where

z(t, x) = 1
2
(
eic

2tu∞(t, x) + e−ic
2tu∞(t, x)

)
+O(c−2)

and the initial values are given by

u∞(0) = z0 − iz1, n∞ = n0, ṅ∞ = n1.

We solve this equation numerically with the ansatz in [37]. Therefore, we rewrite (4.64) with F∞ = ∂tu∞
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as follows

iF∞ = 1
2∆u∞ −

1
2n∞u∞,

∂ttn∞ = ∆n∞ + 1
2∆|u∞|2,

(1− 1
2∆)u∞ = −iF∞ − ( 1

2n∞ − 1)IF∞ ,

(4.65)

where
IF∞(t) = u∞(0) +

∫ t

0
F∞(s)ds.

We differentiate the first equation of (4.65) with respect to t and obtain

∂tF∞ = − i2∆F∞ + i

2 (u∞∂tn∞ + n∞F∞) .

With Duhamel’s formula we have for F∞

F∞(tn + τ) = e− i
2 τ∆F∞(tn) + i

2

∫ τ

0
e− i

2 (τ−s)∆ (u∞(tn + s)ṅ∞(tn + s) + n∞(tn + s)F∞(tn + s)) ds

= e− i
2 τ∆F∞(tn) + τ

i

2e− i
2 τ∆ϕ1

(
i

2τ∆
)

(u∞(tn)ṅ∞(tn) + n∞(tn)F∞(tn)) +R(τ, tn),

where the remainder is of order O(τ2). For n∞ we have

n∞(tn + τ) = cos(τ〈∇〉0)n∞(tn) + τsinc(τ〈∇〉0)ṅ∞(tn) + τ

2
1− cos(τ〈∇〉0)

τ〈∇〉0
∆|u∞(tn)|2 +R(τ, tn)

= cos(τ〈∇〉0)n∞(tn) + τsinc(τ〈∇〉0)ṅ∞(tn) + 1
2(cos(τ〈∇〉0)− 1)|u∞(tn)|2 +R(τ, tn),

ṅ∞(tn + τ) = −〈∇〉0 sin(τ〈∇〉0)n∞(tn) + cos(τ〈∇〉0)ṅ∞(tn) + τ

2 sinc(τ〈∇〉0)∆|u∞(tn)|2 +R(τ, tn).

We approximate IF∞ as follows

IF∞(tn + τ) ≈ SF∞(tn + τ) = u∞(0) + τ

n∑
k=0

F∞(tk).

With SF∞ we have for u∞

u∞(tn + τ) =
(
1− 1

2∆
)−1 [−iF∞(tn + τ)−

( 1
2n∞(tn + τ)− 1

)
SF∞(tn + τ)

]
.

Thus, we obtain the following iteration scheme

Fn+1
∞ = e− i

2 τ∆Fn∞ + τ
i

2e− i
2 τ∆ϕ1

(
i

2τ∆
)

(un∞ṅn∞ + nn∞F
n
∞) ,

nn+1
∞ = cos(τ〈∇〉0)nn∞ + τsinc(τ〈∇〉0)ṅn∞ + 1

2(cos(τ〈∇〉0)− 1)|un∞|2,

ṅn+1
∞ = −〈∇〉0 sin(τ〈∇〉0)nn∞ + cos(τ〈∇〉0)ṅn∞ + τ

2 sinc(τ〈∇〉0)∆|un∞|2,

Sn+1
F∞

= SnF∞ + τFn+1
∞ ,

un+1
∞ =

(
1− 1

2∆
)−1 [−iFn+1

∞ −
( 1

2n
n+1
∞ − 1

)
Sn+1
F∞

]
,

zn+1 = 1
2

(
eic

2tn+1un+1 + e−ic
2tn+1un+1

)
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with initial values

u∞(0) = z0 − iz1, n∞(0) = n0, ṅ∞(0) = n1,

F∞(0) = − i2∆u∞(0) + i

2n∞(0)u∞(0),

SF∞(0) = u∞(0) + τF∞(0).

In Figure 4.6 we numerically confirm the convergence order in time of our first-order integration method
for our Zakharov limit system. In the figure we plot time step size versus the error of the limit method.
The error in z∞ is measured in a discrete H1 norm and in n∞ in a discrete L2 norm. As a reference
solution we use the scheme itself with a finer time step size τ ≈ 10−7.
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Figure 4.6: Order plot of the first-order limit method (double logarithmic scale). The slope of the yellow dashed
line is one. Reference solution computed via the scheme itself with a finer time step size τ ≈ 10−7.

4.5.3 Uniformly Accurate Method for the Klein–Gordon–Zakharov System

We recall the uniformly accurate oscialltory integrator (4.29)

(c〈∇〉c)−1Fn+1 = eiτc〈∇〉c(c〈∇〉c)−1Fn + i
τ

2 〈∇〉
−2
c eiτc〈∇〉cϕ1

(
i
2τ∆

) (
ṅnun + innc〈∇〉cun

)
+ i

τ

2 〈∇〉
−2
c eiτc〈∇〉cϕ1

(
−iτ(c〈∇〉c + c2)

) (
ṅnun − innc〈∇〉cun

)
,

nn+1 = cos (τ〈∇〉0) nn + 〈∇〉−1
0 sin (τ〈∇〉0) ṅn

+ τ2

4 sinc (τ〈∇〉0) ∆
{
|un|2 + ϕ2(2ic2τ)(un)2 + ϕ2(−2ic2τ)un2

}
,

ṅn+1 = −〈∇〉0sin (τ〈∇〉0) nn + cos (τ〈∇〉0) ṅn

+ τ

4 cos (τ〈∇〉0) ∆
{

2|un|2 + ϕ1(2ic2τ)(un)2 + ϕ1(−2ic2τ)un2
}
,

Sn+1
F = SnF + τϕ1(iτc〈∇〉c)Fn+1,

un+1 = c−1〈∇〉−1
c

{
−iFn+1 − 1

2c〈∇〉
−1
c nn+1

(
Sn+1
F + Sn+1

F

)}



134 Chapter 4. The Klein–Gordon–Zakharov System

with zn+1 = 1
2 (un+1 + un+1) and initial values

u0 = z0 − ic〈∇〉−1
c z1, n0 = n0, ṅ0 = n1,

F 0 = ic〈∇〉cu0 + i

2c〈∇〉
−1
c n0(u0 + u0),

S0
F = u0 + τϕ1(iτc〈∇〉c)F 0.

In Figure 4.7 we numerically confirm the convergence order in time of our first-order uniformly accurate
method. In the figure we plot time step size versus the error of our uniformly accurate schemes for
different values of c = 1, 5, 10, 50, 100, 500, 1000, 5000, 10000. The error in z is measured in a discrete H1

norm, the error in n is measured in a discrete L2 norm. As a reference solution we use the scheme itself
with a finer time step size τ ≈ 10−7.
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Figure 4.7: Order plot of the first-order uniformly accurate method (double logarithmic scale). The slope of the
dashed line is one. Left side error in z, right side error in n. Reference solution computed via the scheme itself
with a finer time step size τ ≈ 10−7.

4.5.4 Comparison of the Numerical Methods

In this subsection we compare our uniformly accurate methods with the established Gautschi-type
method, exponential integrator and limit scheme. We confirm that our newly derived uniformly ac-
curate methods are uniformly accurate with respect to c and that they converge asymptotically to the
corresponding limit scheme. Finally, we consider work-precision plots and compare the error constants.

We start by comparing our newly derived uniformly accurate first-order method with the first-order
exponential integrator. This comparison (see Figure 4.8) confirms that our UA methods are uniformly
accurate with respect to c. We use the first-order exponential integrator in order to compute the reference
solution with time step size τ ≈ 10−7 for different values of c = 1, 5, 10, 50, 100. The error between the
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Figure 4.8: Order plot of the first-order uniformly accurate method (double logarithmic scale). Error in z on
the left, error in n on the right. The slope of the dashed line is one. The reference solution is computed via
the classical exponential integrator with a finer time step size. Reference solution computed via the classical
exponential integrator with a finer time step size τ ≈ 10−7.

exponential integrator and our uniformly accurate methods is measured in z in a discrete H1 norm and
in n in a discrete L2 norm.

In the next Figure 4.9 we confirm the asymptotic convergence to the corresponding numerical methods
for the limit system. We plot the error of the UA method and the limit method versus different values
of c. This yields the O(c−2) convergence, which is shown in Section 4.4.3. The error in z is measured in
a discrete H1 norm and in n in a discrete L2 norm.
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Figure 4.9: Asymptotic consistency plot (double logarithmic scale). Left side error of the first-order UA method,
right side error of the second-order UA method. The slope of the dashed line is −2.
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Now, we use the following initial values

z(0) = cos(x) sin(x)
2− cos(x) , ∂tz(0) = c2

sin(x)2

2− cos(x) ,

n(0) = sin(x) cos(2x)
2− sin(2x)2 , ∂tn(0) = sin(x)

2− cos(2x)2 .

Next, we compare the error of the different methods versus the computation time (see Figure 4.10). The
work-precision plots show the efficiency of the numerical methods for different values of c. We plot the
corresponding error against the computation time (in seconds) of the corresponding numerical method.
We desire values in the lower left corner, i.e., a small error and a short computation time. For the reference
solution we use the exponential integrator with time step size τ ≈ 10−7. We compare the solution of
the exponential integrator with the Gautschi-type method, our uniformly accurate methods and with the
limit scheme. We only show here the plots of z, where the error in z is measured in a discrete H1 norm.
For n we obtain similar plots.
We observe that the Gautschi-type method performs well for small c and fails for large c. For the limit
scheme we observe this behavior vice versa, i.e., the limit scheme fails for small c and performs good for
large c. Our uniformly accurate schemes show a good behavior for all values of c. For c = 1 the Gautschi-
type method performs better than the UA methods and for the largest value of c the limit scheme
performs best. But our uniformly accurate schemes obtain smaller errors than both, the Gautschi-type
method and the limit scheme.
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Figure 4.10: Work-precision plot (double logarithmic scale). The purple lines mark the error of the Gautschi-type
method. The yellow lines mark the error of the limit method. The blue lines mark the error of our first-order
uniformly accurate method. The CPU time is measured in seconds. Reference solution computed via the classical
exponential integrator with a finer time step size τ ≈ 10−7.
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We underline the different error constant behaviors of our UA methods in z. Therefore, we plot the
numerical error of the corresponding numerical method against different values of c for different time
step sizes τ . In comparison, we also plot the error of the Gautschi-type method against different values
of c. For the reference solution we use the exponential integrator with time step size τ ≈ 10−6.
For our uniformly accurate methods we observe uniformly bounds, whereas for the Gautschi-type method
we obtain the typical O(c4) error (see Figure 4.11). In the plots of the uniformly accurate methods the
error of the exponential integrator of order O(c2) is obtained for large values of c.
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Figure 4.11: Error constant comparison plot (double logarithmic scale). On the left for the first-order uniformly
accurate method and on the right for the Gautschi-type method. The slope of the dashed line is two on the left
and four on the right. Reference solution computed via the classical exponential integrator with a finer time step
size τ ≈ 10−6.
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CHAPTER 5

Conclusion and Outlook

This thesis presents a new class of uniformly accurate time integration schemes for Klein–Gordon type
equations, which are efficient and unconditionally stable in the slowly varying relativistic as well as in the
highly oscillatory non-relativistic limit regime. The theory of this work covers the construction of these
schemes for the Klein–Gordon equation, the Klein–Gordon–Schrödinger system and the Klein–Gordon–
Zakharov system and can be extended to related Klein–Gordon type equations (see [45]).

The non-relativistic limit regime of Klein–Gordon type equations is numerically challenging due to the
highly oscillatory behavior of the solution. In order to resolve the oscillations numerically standard
methods suffer from severe time step restrictions and so they only work well for small values of c and
fail for large values of c. In order to underline the failure of classical schemes we derived a Gautschi-type
method for several Klein–Gordon type equations (based on [9]) and numerically observed its failure to
resolve the highly oscillatory behavior of the solution for c� 1. Furthermore, we constructed a classical
exponential integrator based on [39] for which we also observed its failure for large c� 1.
Recently, a new approach was invented based on an asymptotic expansion ansatz (see [26]). Following this
approach we formally derived the limit systems of different Klein–Gordon type equations and determined
efficient and stable numerical methods to approximate the limit solution. This ansatz allows us to reduce
the highly oscillatory equation to a non-oscillatory limit system. Unfortunately, this ansatz only works
for large values of c, but fails for small c. We also observed this behavior in our numerical experiments.
The main contribution of this thesis is the development of a novel class of uniformly accurate methods
for Klein–Gordon type equations. For the derivation and analysis of the different uniformly accurate
schemes we followed the ansatz and procedure of [13] for the Klein–Gordon equation and Klein–Gordon–
Schrödinger system. For the derivation of a uniformly accurate method for the Klein–Gordon–Zakharov
system in the high-plasma frequency case we followed the ansatz of [37]. For all uniformly accurate
methods we obtained error bounds of order O(τ) and O(τ2) independent of c, for the first- and second-
order schemes, respectively. We received good numerical results for the solution of Klein–Gordon type
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equations for all c ≥ 1.
In this thesis we focused on the time discretization of the numerical schemes. In combination with
Fourier pseudospectral methods for the space discretization we observed that due to the very accurate
approximation behavior of the Fourier pseudospectral method, the numerical space approximation error
is negligible compared to the error of the time integration (see Figure 5.1 for the Klein–Gordon equation).
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Figure 5.1: Error constant comparison plot for different values of the spatial discretization mesh-size h (double
logarithmic scale). Klein–Gordon equation solved via the first- and second-order UA method. Left side first-
order, right side second-order method. Reference solution computed via the scheme itself with a finer time step
size τ ≈ 10−6.

In the previous chapters we focus on Klein–Gordon type equations where the oscillatory behavior arises
from the Klein–Gordon part of the differential equation. In the following we underline the challenge for
the Klein–Gordon–Zakharov system in the case when the wave part becomes oscillatory.
Uniformly accurate methods for the Klein–Gordon–Zakharov system in the subsonic limit regime and also
in the simultaneous limit regimes remain an open problem. For more details on the subsonic limit regime
see [5, 6, 56] and on the simultaneous limit regimes we refer to [9, 54, 56]. The Klein–Gordon–Zakharov
system with a parameter α ≥ 1 in the wave part reads

c−2∂ttz(t, x)−∆z(t, x) + c2z(t, x) = −n(t, x)z(t, x),

α−2∂ttn(t, x)−∆n(t, x) = ∆|z(t, x)|2

with initial values

z(0, x) = z0(x), ∂tz(0, x) = c2z1(x),

n(0, x) = n0(x), ∂tn(0, x) = αn1(x).

Similarly to the previous chapters classical numerical methods break down in the subsonic (α� 1) and
simultaneous limit regimes (c� 1 and α� 1) as they fail to resolve the oscillations within the solution.
We underline this phenomenon in Figure 5.2 for the subsonic regime. We obtain similar plots for the
simultaneous limit regimes.
In the following we explain why our presented technique in this thesis does not apply to the Klein–
Gordon–Zakharov system in the subsonic limit regime.
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Figure 5.2: Numerical solution of the Klein–Gordon–Zakharov system for n. Exponential Gautschi-type scheme
(red solid line) for different α with time step size τ ≈ 10−2 at time t = 0.2 and with fixed c = 1. The blue dashed
line represents the reference solution at time t = 0.2, computed via the same exponential Gautschi-type scheme
with a smaller time step size τ ≈ 10−6. The spatial discretization is done via a Fourier pseudospectral method
with mesh-size h = 0.0245.

Setting c = 1, the first-order system in time of the corresponding Klein–Gordon–Zakharov system (4.6)
reads

i∂tu = −〈∇〉1u− 1
2 〈∇〉−1

1 < (h) (u+ v) ,

i∂tv = −〈∇〉1v − 1
2 〈∇〉−1

1 < (h) (v + u) ,

i∂th = −α〈∇〉0h− 1
4α〈∇〉0|u+ v|2

with z = 1
2 (u+ v) and n = <(h). The twisted variable ansatz in h reads

h∗(t) = e−iα〈∇〉0th(t).

We differentiate h∗ with respect to t and obtain

i∂th∗ = i∂t

(
e−iα〈∇〉0th

)
= −i2α〈∇〉0e−iα〈∇〉0th + e−iα〈∇〉0ti∂th

= α〈∇〉0e−iα〈∇〉0th + e−iα〈∇〉0t
(
− α〈∇〉0h− 1

4α〈∇〉0|u∗ + v∗|2
)

= −1
4α〈∇〉0

∣∣u∗ + v∗
∣∣2.

In the previous chapters the advantage of considering the twisted system in (u∗, v∗) in the case of the
Klein–Gordon equation and Klein–Gordon–Schrödinger system was the fact that the leading operator
formally is of order O(1) in c. But here the leading operator reads α〈∇〉0, which is not independent
of α nor of order O(1) in α. The same problem occurs if we consider the simultaneous limit regimes,
i.e., c � 1 and α � 1. Uniformly accurate methods for all highly oscillatory regimes hence remain an
interesting future research problem.
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