KIT | KIT-Bibliothek | Impressum | Datenschutz

High-Level Interpretation of Urban Road Maps Fusing Deep Learning-Based Pixelwise Scene Segmentation and Digital Navigation Maps

Fernandez Lopez, Carlos ORCID iD icon 1; Muñoz-Bulnes, Jesús; Fernández-Llorca, David; Parra, Ignacio; García-Daza, Iván; Izquierdo, Rubén; Sotelo, Miguel Á.
1 Karlsruher Institut für Technologie (KIT)

Abstract:

This paper addresses the problem of high-level road modeling for urban environments. Current approaches are based on geometric models that fit well to the road shape for narrow roads. However, urban environments are more complex and those models are not suitable for inner city intersections or other urban situations. The approach presented in this paper generates a model based on the information provided by a digital navigation map and a vision-based sensing module. On the one hand, the digital map includes data about the road type (residential, highway, intersection, etc.), road shape, number of lanes, and other context information such as vegetation areas, parking slots, and railways. On the other hand, the sensing module provides a pixelwise segmentation of the road using a ResNet-101 CNN with random data augmentation, as well as other hand-crafted features such as curbs, road markings, and vegetation. The high-level interpretation module is designed to learn the best set of parameters of a function that maps all the available features to the actual parametric model of the urban road, using a weighted F-score as a cost function to be optimized. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000087255
Veröffentlicht am 06.11.2018
Originalveröffentlichung
DOI: 10.1155/2018/2096970
Scopus
Zitationen: 8
Web of Science
Zitationen: 6
Dimensions
Zitationen: 8
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Mess- und Regelungstechnik (MRT)
Institut für Mess- und Regelungstechnik mit Maschinenlaboratorium (MRT)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 10.2018
Sprache Englisch
Identifikator ISSN: 0197-6729, 2042-3195
urn:nbn:de:swb:90-872552
KITopen-ID: 1000087255
Erschienen in Journal of advanced transportation
Verlag Hindawi
Band 2018
Heft 1
Seiten Art.-Nr. 2096970
Nachgewiesen in Dimensions
Web of Science
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 11 – Nachhaltige Städte und Gemeinden
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page