

WP 1:

Task 1.1:

Task 1.1.1:

Task 1.1.1.1:

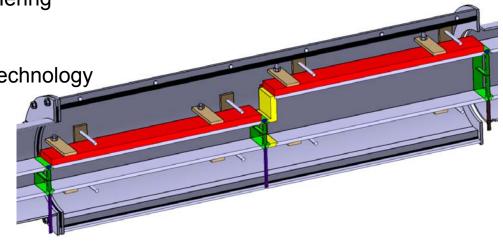
Fluctuations & Vibrations

Thermal Fluctuations

Reference Data

Flow Separation

Experimental Investigation


Institute for Neutron Physics and Reactor Technology

Thomas Schaub, Wadim Jäger, Wolfgang Hering

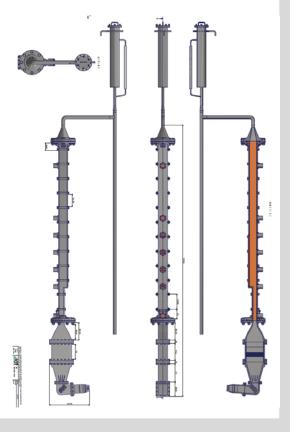
Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology

SESAME 8th Progress Meeting

TUD, Delft, The Netherlands October 2-4, 2018

Outline

- Recapitulation
- Work done in the last 6 months
- Outlook and further work


- Delay of KASOLA (not in operation)
- Intrumentation and its calibration procedure in KASOLA very unpractical (safety constrains, TÜV)
- → Look for alternatives

- Delay of KASOLA (not in operation)
- Intrumentation and its calibration procedure in KASOLA very unpractical (safety constrains, TÜV)
- → Look for alternatives
- Integration of a BFS into the DITEFA (GaInSn) facility and development of a calibration procedure in a user friendlier environment
- → Wind tunnel concept

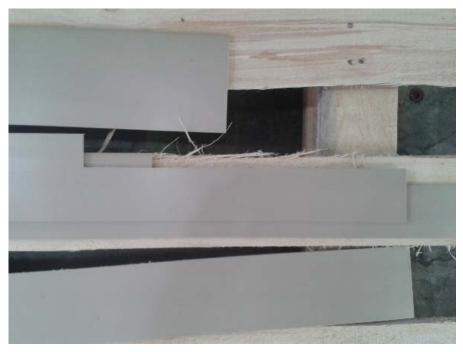
- Project stages current status
 - Concept ✓
 - Basic engineering
 - Detail engineering
 - Manufacturing: both facility & probe
 - Commissioning
 - Measurement campaign
 - Data analysis
 - Report of results

- Developments of the drawings
- Identification of the manufacturing techniques
- Development of statistical analysis procedures
- Beginning of the manufacturing of the double-wall test section + flow conditioning section
- Development of a calibration strategy for the measurement probe
- Development of the measurement chain (measurement probe + signal amplifier) for velocity- and temperature measurments

- Developments of the drawings (skip)
- Identification of the manufacturing techniques (skip)
- Development of statistical analysis procedures (skip)
- Beginning of the manufacturing of the double-wall test section + flow conditioning section
- Development of a calibration strategy for the measurement probe
- Development of the measurement chain (measurement probe + signal amplifier) for velocity- and temperature measurments

- Developments of the drawings (skip)
- Identification of the manufacturing techniques (skip)
- Development of statistical analysis procedures (skip)
- Beginning of the manufacturing of the double-wall test section + flow conditioning section
- Development of a calibration strategy for the measurement probe
- Development of the measurement chain (measurement probe + signal amplifier) for velocity- and temperature measurements

02.10.2018



Beginning of the manufacturing of the double-walled test section + flow conditioning section

Outer metal wall

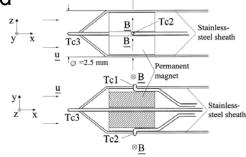
Inner plastic wall

02.10.2018

Beginning of the manufacturing of the double-walled test section + flow conditioning section

Inlet section (rectangular)

Outlet section (quadratic)


- Developments of the drawings (skip)
- Identification of the manufacturing techniques (skip)
- Development of statistical analysis procedures (skip)
- Beginning of the manufacturing of the double-wall test section + flow conditioning section
- Development of a calibration strategy for the measurement probe
- Development of the measurement chain (measurement probe + signal amplifier) for velocity- and temperature measurments

Development of a calibration strategy for the measurement probe

- **Problems**
 - The velocity signal has to be temperature-compensated: temperature gradient between the electrodes/thermocouples and across the probe
 - ii. All available experience and correction procedures have been developed for sodium and years ago... retired technicians an poor know-how documentation (super scientific one, though...)
 - iii. The existing experience with these probes with GalnSn is restricted to isothermal cases
 - iv. Material properties of GalnSn are rare and scattered

Development of a calibration strategy for the measurement probe

- **Problems**
 - The velocity signal has to be temperature-compensated: temperature gradient between the electrodes/thermocouples and across the probe
 - ii. All available experience and correction procedures have been developed for sodium and years ago... retired technicians an poor know-how documentation (super scientific one, though...)
 - iii. The existing experience with these probes with GalnSn is restricted to isothermal cases
 - Material properties of GalnSn are rare and scattered
- What to do? To adapt/modify the existing correction and calibration procedures...

02.10.2018

Development of a calibration strategy for the measurement probe

- What to do? To adapt/modify the existing correction and calibration procedures ...
 - to our experimental boundary conditions and needs
 - making use of the advantages of the "user friendly" environment ii.
 - ↓ T + ↓ safety
 - material choice
 - proper electrical insulation of certain probe's components
 - proper positioning of the electrodes
 - taking a look to the math and the underlying physics! e.

$$\Phi(\underline{r}_{1}) - \Phi(\underline{r}_{2}) = -\underbrace{\int_{V} dV \, \sigma \nabla G \cdot (\underline{u} \times \underline{B})}_{(1)} - \underbrace{(\Psi(\underline{r}_{1}) - \Psi(\underline{r}_{2}))}_{(2)} + \underbrace{\sum_{i} \int_{F_{i}} dF_{i} \, \sigma \underline{n}_{i} \cdot \nabla G \Psi}_{(3)} + \underbrace{\int_{F_{o}} dF_{o} \, G \underline{n}_{o} \cdot \underline{j}_{o}}_{(4)},$$

- Confection of the drawings + manufacturing techniques to be used: skip
- Development of statistical analysis procedures: skip
- Beginning of the manufacturing of the double-walled test section + flow conditioning section
- Development of a calibration strategy for the measurement probe
- Development of the measurement chain (measurement probe + signal amplifier) for velocity- and temperature measurments

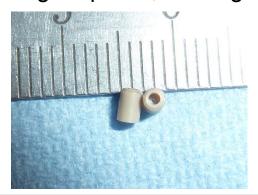
- Developments of the drawings (skip)
- Identification of the manufacturing techniques (skip)
- Development of statistical analysis procedures (skip)
- Beginning of the manufacturing of the double-wall test section + flow conditioning section
- Development of a calibration strategy for the measurement probe
- Development of the measurement chain (measurement probe + signal amplifier) for velocity- and temperature measurments

Development of the measurement chain (measurement probe + signal amplifier) for velocity- and temperature measurments

- **Problems**
 - The velocity signal is in the nanovolt range
 - ii. Extreme sensible signal to external noise: even the lab's light plays a role
 - Manufacturing of the probe has to be "doable", reproducible (7 probes), fast and cheap
 - High temporal and spatial resolution requirements: turbulent heat fluxes! İV.
- What to do? Less science, more "art"

Development of the measurement chain (measurement probe + signal amplifier) for velocity- and temperature measurments

- What to do? Less science, more "art"
 - Avoid reinventing the wheel: cooperating and refinding "lost" know how



ii. Improving the wheel: Mr. Joachim Konrad (KIT-workshop) managed to manufacture a 2 [mm] permanent magnet probe, beating the state of art

Outlook and future work

- Delay of ~ 6 months to the original DITEFA-schedule because of limited man-power at KIT workshops + modified calibration/correction procedure needed (unexpected to that extent)
- Manufacturing is running according to schedule ~ 10.18
- Commissioning ~ 11-12.18
- Preliminary results ~ 12.18-01.19
- Final results ~ 04-05.19