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This work aims at classifying the road condition with data mining methods using simple acceleration sensors and gyroscopes
installed in vehicles. Two classifiers are developed with a support vector machine (SVM) to distinguish between different types of
road surfaces, such as asphalt and concrete, and obstacles, such as potholes or railway crossings. From the sensor signals, frequency-
based features are extracted, evaluated automatically with MANOVA.The selected features and their meaning to predict the classes
are discussed. The best features are used for designing the classifiers. Finally, the methods, which are developed and applied in this
work, are implemented in a Matlab toolbox with a graphical user interface. The toolbox visualizes the classification results on
maps, thus enabling manual verification of the results. The accuracy of the cross-validation of classifying obstacles yields 81.0% on
average and of classifying road material 96.1% on average.The results are discussed on a comprehensive exemplary data set.

1. Motivation

In 2006, bad conditions of road infrastructure were one of
the causes of 50% of fatal accidents in France [1]. In 2016, four
accidents inGermanywere caused exclusively by road surface
damage [2]. Road traffic authorities are aimed to improve and
automate monitoring the road state to detect and repair road
damages to enhance the safety of road traffic. Based on the
detection results, specific and cost-optimized maintenance of
roads can be ensured. Furthermore, suppliers of navigation
systems can profit from the available information of the road
state, because roads in bad condition may be neglected in
route planning [3]. Automotive manufacturers can use the
collected data to control adaptive vehicle suspensions and to
display warnings in real time [4].

Contrary to physical modeling, data-based estimation
of the road state does not require any comprehensive
system characterization, such as vehicle, road, sensor, and
environment. Moreover, modeling of a full vehicle requires
five acceleration sensors or gyroscopes to measure vertical

accelerations of unsprung masses and accelerations and
rotations of the vehicle body [5]. To monitor road sections,
a vehicle can be used as a mobile sensor platform that records
both vehicle dynamics and the environment, such as the
road state. The road state can be estimated using cameras
or inertial measurement units to record rotation speeds
and accelerations of the vehicle. Such sensors are already
integrated into modern vehicles having an active or adaptive
body control or new lighting systems. Inertial sensors are
even part of the standard equipment of new vehicles and data
can be fused with GPS data for more accurate positioning,
an example being the new Audi A7. Previous studies revealed
that measurements made by these sensors allow for the
derivation of road features, such as potholes or mends of
asphalt roads [6–8].

The inertial sensor is inexpensive and part of the standard
equipment of many vehicles. Its data include information of
minor unevenness of road surfaces that causes the vehicle
to vibrate. Inertial sensors, however, only provide data on
the road section just crossed. Cameras, by contrast, record
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the complete road section in front of the vehicle, including
the neighboring lane. However, they are integrated into high-
class vehicles only. Cameras currently used in vehicles are of
limited accuracy and can detect potholes with a minimum
depth of about 3 cm only.

Presently, the state of motorways is measured automat-
ically using expensive and complex measurement vehicles,
while that of roads in urban and rural areas is determined
manually [9]. These methods are associated with a high
expenditure. Due to manual evaluation, it takes a long time
until the road network quality is updated. Safety-relevant
damage may be detected too late. This may have severe
consequences, such as traffic accidents or cost-intensive and
complete renewal of the road.

For road maintenance, some countries determine the
stochastic road profile depth or international roughness
index (IRI), as outlined in [10]. However, the latter is often
calculated for 100m intervals only. As a result, certain
obstacles, such as potholes, are not detected. In countries
pursuing a systematic roadmaintenance scheme, not only the
IRI but also individual obstacles aremeasured.This also is the
objective of the present study.

Approaches to automatic road state monitoring using
inertial sensors exist, e.g., [6, 11–13]. They only concentrate
on single road features (such as potholes), do not have any
representative dataset, or are based on data measured under
restricted conditions, e.g., in speed limit areas or on certain
sections only. Moreover, the validation phase only covers
checks as to whether the road damage detected actually is
damage or not (true or false positives), but not whether road
damage was overseen (false negatives).

Road construction offices also need to know the material
(road surface), as repairs on different surfaces produce
different results andmay cause different types of damage [14].
It is also important to distinguish between safety-relevant
damage that has to be repaired within 24 hours and damage
that is not relevant to safety and the repair of which can be
planned and postponed.

The main contribution of this paper is to evaluate the
principle feasibility of automatic road surface and road
damage measurement with an inertial sensor in the vehicle
body. Therefore, this work is aimed at

(i) designing a processing chain to evaluate road data
based on measurements of inertial sensors,

(ii) automatically recording an adequate dataset,

(iii) developing and evaluating a method to estimate road
surfaces and damage, and at

(iv) integrating the algorithms developed into a graphic
user interface for evaluation of datasets with alterna-
tive parameterizations by nonexperts as well.

Themethodology will be presented in Section 2. Section 3
will outline the implementation derived, while Section 4
will explain the results based on a first dataset. The result,
its applicability, and open problems will be discussed in
Section 5.
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Figure 1: Overview of method.

2. Methods

2.1. Design. Figure 1 presents an overview of the method to
evaluate the road state [15]. In a first step, the road state is to
be measured by suitable sensors. For measurement, acoustic
sensors, such as the sensors described in [16], acceleration
sensors and gyroscopes, cameras, and similar devices, can
be used. As a result, several synchronized time series will be
obtained. To obtain a representative reference data set, sensor
data have to cover a maximum of framework conditions, e.g.,
variations of external temperature, driver, and speed. Every
point of time/road section has to be assigned a label, e.g. type
of road surface, simultaneously or afterwards. In this way, a
data set with correct allocations of sensor data to labels is
obtained (ground truth). By means of data mining, models
can be designed (offline) for retrospective evaluation (offline)
or classification during driving operation (online).The results
of the classification models then have to be visualized and
evaluated on the basis of map material. To estimate the
information on the road surface and event or damage that
is of relevance to road construction offices, two separate
classification routines have to be developed.

2.2. Data Acquisition. The data measured by the sensors
installed in the vehicle, e.g., GPS and inertial sensors, are
encoded on the CAN bus and cannot be read without
the communication matrix that is available to the control
system developer and automotive manufacturer only. Hence,
an inexpensive measurement system similar to the inertial
sensor incorporated in the vehicle is proposed for the easy
measurement and readout of data. Measurements cover the
position and dynamics of the vehicle, in particular vertical
dynamics caused by unevenness [17]. In addition, the data
may be assigned labels during measurement already. The
measurement system (Figure 2) mainly consists of a GPS
receiver (Adafruit ultimate GPS Hat) and a MEMS inertial
sensor (LSM9DS1)measuring accelerations and rotation rates
of the vehicle along all three axes. The sensor data are
acquired using a Raspberry Pi and stored as a csv-table in
fused form. As soon as the engine of the vehicle is turned off,
the UPS is activated and data can be transmitted viaWiFi to a
central data base, if the Raspberry Pi is connected to a known
WiFi network.

The GPS receiver has a sample rate of 10Hz, a position
resolution of 3m, and a speed resolution of 0.1m/s. As the
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Figure 2: Measurement unit, consisting of Raspberry Pi, inertial
sensor, Adafruit ultimate GPS Hat, UPS Hat, and two buttons for
labeling the data. In service, the inertial sensor is fixed under the
Raspberry Pi on the bottom of the case. The case is cut open for
visualization purposes.

Table 1: Code and corresponding name of the classes for material
and event.

𝑚-Material 𝑒-Event
0- Unknown 0- Unknown
1- Smooth surface 1- Good
2- Damaged asphalt 2- Light damages
3- Damaged concrete 3- Pothole
4- Cobblestone 4- Manhole cover

5- Railway crossing
6- Speed bump

inertial sensor is a low-cost MEMS sensor, the sample rate is
not uniform. This has to be compensated by a filter in data
processing. The sample rate is about 220Hz. The accuracy
of the acceleration sensor is 0.05m/s2 and of the gyroscope
0.003 degree/s. Without data transfer, a 32GB memory card
can record data for up to 1000 h.

For allocating labels to data, different approaches are
presented in literature. For example, a microphone records
the (road) damage report of the passenger [13]. This method,
however, is subject to several deficiencies. Among others, the
labels are recorded much later than the actual road damage
and the soundtrack is not synchronized with the sensor data.
Reference [6] uses “loosely labeled” training data. Here, only
the number of classes but not the exact position is recorded
for large road segments.

The measurement system developed for this study is
based on two buttons. A pressed button annotates the damage
class (event) or the change of road surface (material). For
every measurement drive, data with a certain material (e.g.,
if asphalt 1, otherwise 0) and an event (e.g., if pothole 1,
otherwise 0) are recorded. After the measurement drives,
binary coding of the data of the respective files is transformed
into the coding given in Table 1.

The unix time 𝑡, ID for the sensor, speed V, position
and time stamp of the GPS 𝑙𝑎𝑡, 𝑙𝑜𝑛, and 𝑡𝐺𝑃𝑆, accelerations
𝑎 and rotation rates 𝜔 along all three axes, and the two
labels for the event 𝑒 and material 𝑚 are recorded and stored
in a csv-table on the measurement system (Figure 2). The

measurement system is installed near the static center ofmass
of a BMW 116d in the console between the driver’s seat and
passenger’s seat. Orientation of the sensor axes corresponds
to the vehicle axes according to ISO8855:2011. For themethod
to be generally applicable, measurement data are recorded on
randomly selected roads in the region of Karlsruhe, Germany.
The speed, road condition, and environmental conditions
(e.g., measurement drives in good and rainy weather) are
varied strongly. In total, reference data are recorded for a
period of three months on a distance of more than 200 km.
The data are recorded on eight days (three times a whole
day) by three different drivers. Acquisition of reference data
is a time-consuming process, as the materials and events
have to be crossed under variable environmental conditions
and at variable speeds. In particular, individual events, such
as potholes, of various types have to be found in the road
network and crossed several times with variable approach
angles and vehicle tracks.

Lacking GPS data due to variable scanning rates are
reconstructed by linear interpolation. As the measurement
series are not recorded at a constant sample rate, resampling
is required. By resampling, the data are converted from the
time domain (s−1) to the space domain (m−1). In [18, 19], it
was shown that the response of the vehicle to the excitation of
the road depends on speed and that presentation in the space
domain reduces this effect. All-time series are resampled
with a (spatial) frequency of 100m−1. The section driven is
calculated from the time stamp and speed with the help of
the implicit Euler method. Calculation via GPS would also
be possible but lacks precision.

The classes of materials 𝑚 and events 𝑒 are encoded by
natural numbers (Table 1). Light damages are general types of
unevenness, which are not safety-relevant and include minor
faults and repairs.Manhole cover, railway crossing, and speed
bump are construction obstacles. A speed bump is defined as
an elevated construction transverse to the driving direction.
The pothole represents a fault of at least 2 cm in depth. The
latter event is safety-relevant and should be repaired within a
maximum of 24 h. For every sample point 𝑘 of the reference
data set, two labels are annotated for the material 𝑚[𝑘] and
event 𝑒[𝑘].

2.3. Signal Processing

2.3.1. Overview. To derive information on the road surface
or material and event/damage from the sensor data recorded,
the data streams first have to be transferred to a feature
space. Feature extraction calculates representative and useful
individual features from complete or partial measurement
series. Without knowing the physical model of effects of
asphalt changes or road damage on the sensor, it is recom-
mended to calculate a large set of features and to check their
suitability for the classification problem based on data with
the corresponding labels (ground truth). Efficient feature
calculation is needed for calculation on mobile devices (e.g.,
microcontrollers).

2.3.2. Generation of New Time Series. To describe the road
state, acceleration in vertical direction (𝑎𝑧) and rotation
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speeds in longitudinal and transverse direction (𝜔𝑥 and 𝜔𝑦)
are very important [6]. Furthermore, the roll and pitch
acceleration (𝜔̇𝑥 and 𝜔̇𝑦) as well as the jerk ( ̇𝑎𝑧) of the vehicle
are done using the derivation of the vertical acceleration
in time domain. The space series data of the vertical roll
and pitch acceleration is transformed into frequency domain
with the short-time Fourier transform, which contains the
short-termdistance-localized frequency content of the signal.
Hereby, features based on specific frequency bands can
be investigated. Hence, the three distance series data are
extended by the following data streams, which lead us to 7
data streams in total:

(i) vertical acceleration,
(ii) roll acceleration,
(iii) pitch acceleration,
(iv) deviation of vertical acceleration,
(v) short-time Fourier transformed vertical acceleration,
(vi) short-time Fourier transformed pitch acceleration

and
(vii) short-time Fourier transformed roll acceleration.

2.3.3. Feature Extraction. The features are calculated for
windows with a specific length in distance domain and a
specific overlap. Awindow𝑈𝑖 denotes all indexes [𝑛𝑖−𝐿/2, 𝑛𝑖+
𝐿/2 − 1] with the running index 𝑛, window index 𝑖, and
window length 𝐿.Thewindow overlap 𝑟 corresponds to those
values from the window𝑈𝑖 that are contained in the previous
window 𝑈𝑖−1, i.e., 𝑛𝑖+1 = 𝑛𝑖 + 𝐿(1 − 𝑟). If a longer distance is
chosen, short amplitudes, for example, due to potholes, have
a weaker impact on the value of features, which incorporate
the overall signal, such as the standard deviation. These short
amplitudes can be captured by shortening the window size or
using features, which calculate extrema.

For the feature extraction for material and events we use
window sized of 50m or 5m, respectively, and an overlap of
20%.

From the distance series data, we calculate the standard
deviation as well as peak-to-peak. The root mean square
value or effective value for specific frequencies and the
spectral centroid is extracted from the short-time Fourier
transformed data streams for the following spatial frequency
bands (1m−1):

[0.1, 0.5] [0.5, 15] [15, 20] [0.1, 25] [0.1, 50] (1)

The vehicle velocity has a strong sensitivity on the vehicle
vibration. Previous research suggests performing a linear
regression with each feature as the dependent variable and
the velocity as the independent variable [12]. The velocity
dependency is then removed by subtracting the estimated
linear equation from the corresponding feature. However, the
vehicle vibration and the extracted features are not linear
dependent on the velocity. The dependent parameters are
incorporated and the mean velocity is calculated for each
window as additional feature. To allow nonlinear relation-
ships a kernel function of higher order can be applied for the
classification.

Of the GPS latitude 𝑙𝑎𝑡 and longitude 𝑙𝑜𝑛 time series, the
medians in every window are used for later visualization.

2.3.4. Classification. Based on the extracted individual fea-
tures and the corresponding labels, two classifiers are
designed for material and event. For the design and appli-
cation of classification, a combination of feature selection,
feature aggregation, and classifier is chosen.

For the surface classification, the five best individual
features each are determined using the multivariate analysis
of variances (MANOVA) method, for event classification the
ten best features are selected. For visualization purposes,
the selected individual features are then aggregated to two
features using linear discriminant analysis (DA), which can
also minimize the calculation expenditure. A support vector
machine (SVM) classifier with polynomial kernel function
with order 2 is used. Validation is carried out with the help
of cross-validation with 5-folds.

2.3.5. Performance Measures. From the correct and false
predicted instances, we can calculate a confusion matrix𝑀 =
(𝑚𝑖𝑗) ∈ N𝑘×𝑘 for classes 𝐾𝑖, 𝑖 = 1, . . . , 𝑘. In the confusion
matrix, 𝑚𝑖𝑖 presents the true positives for class 𝑖. The other
elements in column 𝑗 are called false negatives, in row 𝑖 false
positives and in the diagonal true negatives.

From the confusion matrix, one can calculate multiple
performance measures to evaluate the model, such as recall
with 𝑚𝑖𝑖/∑

𝑛
𝑗=1𝑚𝑗𝑖 for class 𝐾𝑖, the overall accuracy of

the classifier with ∑𝑛𝑖=1𝑚𝑖𝑖/∑
𝑛
𝑖=1∑
𝑛
𝑗=1𝑚𝑖𝑗, or the precision

𝑚𝑖𝑗/∑
𝑛
𝑗=1𝑚𝑖𝑗 = 𝜋𝑖𝑗. The precision presents the fraction of

retrieved instances that are relevant and can be seen as the
probability 𝜋𝑖𝑗 of the classifier to predict class 𝑖 as class 𝑗 for
𝑖, 𝑗 = 1, . . . , 𝑙. An overview for performance measures for
different calculation problems can be found in [20].

3. Implementation

To facilitate operation by non-experts, the methods are
implemented in a graphical user interface called Vehicle
Learner Toolbox, which is available in [21]. It is based on
Matlab and implements several machine learning opera-
tions of the freely available toolbox SciXMiner [22] (formerly,
Gait-CAD [23]). The Vehicle Learner Toolbox provides the
possibility to

(i) import vehicle sensor data in different file formats,
(ii) compress the imported data and automatically extract

various features,
(iii) train a classifier model with a wide-ranging set of

options,
(iv) test the trained classifier with a test set,
(v) visualize the results with the help of plots and maps.

A project folder can be selected and sensor data can
be imported in the corresponding frame Data (Figure 3).
There is the option to assign the sensor data to specific
vehicles, since they vary in suspensions, damping, and other
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Figure 3: The import data frame of the Vehicle Learner Toolbox.
Different vehicles can be chosen and the data type can be set.

parameters, which have an impact on the vibration behaviour.
Therefore, in the following data processing, feature selection
and classification can be performed for data from specific
vehicles.The import allows .csv and .xlsx file format with the
following column headers:

(i) timestamp (unix timestamp)
(ii) x-, y-, z-accel (the acceleration values in each direc-

tion)
(iii) x-, y-, z-gyro (the gyroscope values in each direction)
(iv) gps-timestamp (format: YYYY-MM-DDThh:mm:ss,

000Z)
(v) lat, lon (position in latitude and longitude)
(vi) speed (in m/s)
(vii) m, e (material𝑚 and event 𝑒 labeling, if the data is not

labeled, these columns should only contain zeros).

Since the GPS data is acquired with a lower sample rate
compared to the inertial sensor, these data are automatic
interpolated. Furthermore, the sensor signals are subject to
noise [24] and are automatic smoothed during the import
process with the following filters. Despite the noise of a
MEMS gyroscope visible as spikes in the signal, it is well
known for its good accuracy in short term [25]. A suitable
filter for this purpose is the median filter, which is robust
against outliers and removes noise while preserving high fre-
quency content. Since the data from theMEMSaccelerometer
do not show such spikes but contains more noise in the short
term [25], a Savitzky-Golay FIR smoothing filter is applied.
It fits a polynomial of a specified degree to frames of noisy
data and minimizes the least-squares error [26]. Therefore,
the filter outperforms standard averaging FIR filters, which
might remove high frequency content with the noise.

There is also the possibility to import tire cavity sound
data along the inertial sensor data for road roughness esti-
mation, as presented in [16, 27], but is not substance in this
paper. Moreover, the imported data set can be categorized as
training, testing or unlabeled data.

Figure 4: The train classifier frame of the Vehicle Learner Toolbox.
Multiple classifiers can be trained with a wide range of options.

Furthermore, the parameters for the window profile,
such as length of road segments and overlapping factor of
these windows, can be determined, as well as the resampling
frequency. The standard window profiles are material with a
window length of 50m and event with a window length of
5m.

After the import and preprocess of the data, new time
series data are calculated and features are automatically
extracted, as proposed in Sections 2.3.2 and 2.3.3. The code
to calculate new data series or features can be easily added in
the corresponding Matlab function.

The proposed data mining methods (Section 2.3.4) can
be applied in the toolbox under the menu Supervised Learn-
ing (Figure 4). In the first step, a training data set must
be generated. There are two different ways to accomplish
this. Either an external data set containing features can be
imported or the imported data within the toolbox can be
used and modified by choosing the time interval of the data
acquisitions or the area. Furthermore, data annotated with
specific labels can be excluded from the classification. For
our example, all data with labels 0-unknown were deleted
(Table 1). Another option is to thin out classes with significant
more data points than other classes to allow an approximately
uniform distribution of data points among the classes to pre-
vent over-fitting of specific classes. Furthermore, systematic
errors during labeling the data can be removed; e.g., if the
trigger to annotate the data was activated too early or too
late the annotation can be moved or data points with the
wrong annotation can be excluded. After the generation of
the data set to be processed, the settings for the classifier can
be determined under the tab Train Classifier (Figure 4).

In the first step the vehicle and the training data set
must be set. Afterwards a new classifier model can be created
or an existing model can be selected. The next section
contains the settings of feature selection (e.g,. MANOVA)
and aggregation (e.g., discriminant analysis), as proposed
in Section 2.3.4. Reducing the amount of features highly
influences the classification result by reducing the chances for
overfitting. It is possible to cross-validate the training process
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Figure 5: Classification results with two aggregated features and borders of the classifier in black.

by setting the k-folded-cross-validation value to higher than
1. The last section offers a variety of settings for the classifier,
e.g. for a SVM, including the kernel function and penalty
term. Afterwards, the classifier can be trained and data can
be plotted on open street maps. Furthermore, the confusion
matrix and the total loss is shown in the Matlab console.

For testing new data, a data set with modifications in time
range and area to be analyzed can be generated as described
for training, and a trained classifier must be selected. If the
test data set is labeled, the output of the prediction is again
a confusion matrix and the classification error. Moreover, the
results can be visualized and plotted on open street maps, as it
will be presented in Section 4.The trajectories will be cut into
segments of different color referring to the corresponding
classes, which are predicted.

4. Results

4.1. Event Classification. The accuracy of the cross-validation
of classifying events yields 81% on average without feature
aggregation. The aggregated feature space and the lines of the
function to classify the events is shown in Figure 5(b).

The illustration of the classification shows that road
segments in good condition, with light damages, speed bumps,
and potholes, can be separated well.This indication is proofed
by the quantitative results, listed in Table 2.

Theprecision and recall for thementioned classes is above
70%, whereas the performance measures for manhole cover
and railway crossing is below 62% on average.

The most important features, determined with
MANOVA, are

(i) peak-to-peak of pitch acceleration
(ii) peak-to-peak of roll acceleration
(iii) maximum of jerk in vertical direction
(iv) root mean square (RMS) of the vertical acceleration
(v) speed

By comparing each class with each other, it emerges that
the peak-to-peak value of pitch and roll acceleration are
mainly responsible to separate events, which occur on

(i) both vehicle lanes (railway crossing, speed bump),
(ii) on only one side of the vehicle (manhole cover,

pothole),
(iii) or have only little impact on the vehicle vibration

(light damages, road segments in good condition).

In addition, the average RMS of the vertical acceleration
is important to separate light damages and road segments in
good condition. Furthermore, potholes and manhole covers
are dividable through the maximum RMS of the roll accel-
eration for the frequency range 15 to 25m−1. However, latter
events are often misclassified as segments in good condition
or light damages. Speed bumps and railways crossings are
separable by the value of the peek-to-peek of the pitch rate,
whereas railways crossings are also often misclassified as light
damages.

To test the classifier, a data set of more than 200 km of
street data is classified and plotted on open street maps. The
results are promising and represent the actual street condition
in many occasions. A few examples of classified areas are
shown below.
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Table 2: Results of single features classification.

Material Precision Recall Events Precision Recall
(% ± SD) (% ± SD) (% ± SD) (% ± SD)

smooth surf. 95.8 ± 0.7 97.6 ± 0.7 good 83.9 ± 1.5 92.4 ± 2.7
damaged asph. 97.3 ± 2.0 94.9 ± 1.4 light dam. 78.5 ± 3.8 70.8 ± 3.3
damaged con. 95.6 ± 0.8 92.9 ± 1.1 pothole 85.3 ± 6.6 77.4 ± 7.2
cobblestones 99.1 ± 1.8 100.0 ± 0.0 manhole 40.9 ± 13.6 29.1 ± 15.7

railway cro. 61.6 ± 4.9 57.0 ± 7.9
speed bump 94.9 ± 7.1 91.0 ± 12.2

Average 96.4 ± 0.8 96.4 ± 0.8 74.2 ± 6.3 69.6 ± 8.1
Accuracy 96.1 ± 0.4 81.0 ± 1.7

2
1

good
light damages

potholes
railway crossing

Figure 6: Event classification results of two high speed roads in the
south west of Karlsruhe, Germany.

The first example shows the event classification results
on two different high speed roads (Figure 6). The upper
one with Label 1 is a freshly renovated asphalt highway with
close to no damages and the lower one with Label 2 is a
poorly patched asphalt road with a lot of medium and severe
damages. The classification successfully predicted the upper
roadway as good street. Most parts of the lower street were
predicted as light damage and some points even as potholes.
The results represent the road condition very accurate. The
only noticeable misclassification is railway crossing that was
predicted once (Label 3).

The second example presents data acquired in an urban
area in Karlsruhe, the predictions are shown in Figure 7. The
roads in this area are poorly preserved and there is a speed
bump at a pedestrian crossing (Label 1). The classification
model correctly predicts the speed bump (Label 1) for all
overdrives and a pothole (Label 2) on both driving directions.

The third interesting sector is shown in Figure 8. Potholes
(Labels 2 and 3), which were at the edge of the driving line,
were overdriven multiple times and the classifier predicts the
severe damage accordingly. Sometimes the output at the road
segments is not pothole but light damages or even good road
condition. The reason might be that the pothole was avoided
by the driver.

1

2

good
light damages

potholes
speed bump

Figure 7: Event classification results for road segments in the city of
Karlsruhe, Germany.

1

2 3

good
light damages
potholes

speed bump
railway crossing

Figure 8: Event classification results of road segments outside of
Karlsruhe, Germany, for the events potholes and railways crossing.
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Figure 9: Material classification of an aged concrete highway.

The railway crossing (Label 1) is more elevated than other
crossings and miss-classified as speed bump in few cases.

4.2. Road Surface Classification. When classifying road sur-
faces, cross-validation yields 96.1% accuracy on average
without aggregation of features. The aggregated feature space
is shown in Figure 5(a). The figure indicates, that the
misclassifications are asphalt classified as damaged asphalt
or damaged concrete and vice versa. The illustrated results
are underlined by Table 2, where the precision and recall
for cobblestone is above 99.0%, whereas the performance
measures for asphalt, damaged asphalt, and damaged concrete
are between 92.0 and 97.6% percent.

The three best individual features for the classification of
road surface according to MANOVA are

(i) RMS of the roll acceleration for frequency range from
5 to 15m−1 on average

(ii) standard deviation of the pitch rate

(iii) stand deviation of the RMSof the vertical acceleration
for frequency range 15 to 25m−1

The values of RMS of the roll acceleration and vertical
acceleration separate the classes smooth surfaces, damaged
asphalt and cobbled stone. The values are greatest for cobbled
stone and low for smooth surface.

Standard deviation of pitch rate separates the classes
damaged concrete from all other classes. The reason are
probably poor and aged concrete joints.

1

2

3

smooth asphalt
damaged asphalt

damaged concrete
cobblestones

Figure 10: Material classification of cobblestone and road segments
in urban area.

The material classifier was applied to the same data set
described for event classification. The classifier was able to
reflect the road surface very precisely. The following figures
display the performance on different surfaces. Analog to the
event classification shown in Figure 6, the material classifier
could distinguish between both roads and correctly classified
them as smooth surface and damaged asphalt, respectively.

In contrast, Figure 9 shows a long highway segment with
aged concrete and distinctive concrete joints, which have to
be maintained shortly. Except for one short segment, which
was classified as smooth surface, the road state was correctly
predicted.

The classification results of data acquired in the urban
area of Karlsruhe (Figure 10) show two correctly predicted
areas of cobblestone (Label 1 and 2). The remaining road
segments are correctly classified as segments with light
damages or in good condition. Especially latter class was
correctly predicted for a road segment, which was recently
renewed (Label 3). One miss-classification of cobblestone can
be found close to Label 1. However, this road segment is
highly damaged with multiple potholes, which have a high
impact on the vehicle vibration similar to cobblestones.

5. Conclusions and Outlook

The results show that the system presented in this paper can
classify both road materials and events. The features selected
by MANOVA are in agreement with the theory of vehicle
excitation. Material classification performs well according to
the results of the cross-validation and the test data.

There are multiple miss-classifications of the prediction
of events, especially for structural obstacles, such asmanhole
covers and railway crossing. However, these events might
be marked on a map and excluded from classification and
investigation, as the main objective is to detect road damage.

One reason for misclassifications of the events good
condition, light damages, and pothole might be false manual
annotating, since there is sometimes only a fine line between
the degree of damages, or the events were not fully over-
driven, especially for potholes.

As the system is of modular design, the number and
type of sensors and sensor modality can be varied. When
adapting feature extraction, also camera recordings might be
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useful. Transferability to other vehicles with different chassis
and dimensions has not been examined so far. Presumably,
the algorithms of parameters are adapted to the vehicle with
which the learning data set was recorded. Here, fusion of
learning data sets from several vehicles and an accordingly
adapted classification routine might help. It can be assumed
that the results will be slightly worse.

Generally, the inertial sensor represents a very good
option to collect information on the tire/road contact at low
costs and over wide areas. Use of information of several vehi-
cles can compensate the drawback of some drivers passing
by safety-relevant damage that, hence, is not measured by the
sensor. Moreover, obstacles at the roadside are not crossed
and, hence, cannot be detected.

Fusion of camera and inertial sensor data probably would
be the optimum solution for a mobile determination of the
state of road traffic infrastructure. For road construction
offices, use of a low-cost and computationally efficient system,
consisting of an inertial sensor, Raspberry Pi, and simple
signal processing, is sufficient and can be recommended.

Data Availability

The raw data used to support the findings of this study
have been deposited in http://doi.org/10.5281/zenodo.1461243
[28]. The data can be processed with the presented toolbox
available in http://doi.org/10.5281/zenodo.1216187 [21].
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