

ANALYSIS AND TOXICOLOGICAL EVALUATION OF DUSTS FROM RECYCLING AND THERMAL **DECOMPOSITION OF NANOCOMPOSITES AND** STRATEGIES FOR RISK MINIMIZATION - PROCYCLE

PM 2.5 Inlet

Behavior of Nanoparticles and Polymer Nanocomposites during Lab-scale Combustion within the Project 'ProCycle'

Further ProCycle Posters Nadine Teuscher*, Werner Baumann, Manuela Hauser, Sonja Mülhopt, Hanns-Rudolf Paur, Dieter Stapf Institute for Technical Chemistry / Karlsruhe Institute of Technology / Eggenstein-Leopoldshafen / Germany 09.06, 15.03, 15.33 *Corresponding author: nadine.teuscher@kit.edu

Background

Nano-enabled thermoplastics are widely used and their end of life potentially constitutes a risk for human health and the environment by release of engineered nanomaterials (ENMs) The possible end of life scenarios, recycling and thermal treatment, are investigated

Measurement of Combustion Aerosols

TiO, nanoparticles are used as a negative control for the experiments with A549 cells ✤ Ultrafine particles < 10 nm are formed due to the influence of the flame</p>

Comparison of the combustion products of nano-enabled thermoplastics, ENMs and pure thermoplastic matrices

Vitrocell[®] Automated Exposure Station

Specification		
Cell exposure	3 x VITROCELL® 6/4 CF stainless steel modules of 6 well format, 1 x 6/3 CF stainless steel modules of 6 well format (Clean Air Control)	
Aerosol	 Direct aerosol sampling via size selective inlet: PM_{2,5} inlet with 1 m³/h Aerosol conditioning to 37 °C and 85 % relative humidity. 	
Negative control	Humidified synthetic air	
Dose enhancement	Electrostatic deposition by applying a potential of up to 1500 Volts is optional for each cell culture separately	Remote Maintenar
Dose monitoring	 Online surface dose monitoring by a Quartz Crystal Microbalance (QCM) in µg/cm². Integrated sampling probes in the reactor for aerosol measurements a for example SMPS, FTIR, filter 	2a 2b (m) (m) 2c 2d (m) (m)
Automation / Quality insurance	Integrated standard routines for leak tests, exposure experiments and more with comprehensive data acquisition	
Dimensions	1923 x 1855 x 649 (H x W x D in mm) / 480 kg	

Setup and Measurement Techniques

CuO nanoparticles are used as a **positive control** for the experiments with A549 cells Ultrafine particles of 15 nm downstream of the tube burner

experiments. Right: averaged ELPI measurement of an 4 hour experiment. Insert: TEM image.

The **Polyethylene + 10 % TiO**, nanocomposite is tested in comparison to the pure

Experimental setup with installed measurement techniques.

- **1.** Polymer nanocomposite powders (< 315 µm) or suspensions of pure nanoparticles are aerosolized and added to an Ethylene / Air mixture ($\lambda = 1,075$)
- 2. Tube burner: Combustion of the gas/particle mixture
- 3. Dilution of combustion products and comprehensive characterization via physical, chemical and biological measurement techniques

- nanoparticles and pure matrix
- ✤ Ultrafine particles < 30 nm downstream of the tube burner</p>

Size distribution of particles from the combustion of Polyethylene + 10 % TiO₂. Left: SMPS measurements of different days. Right: averaged ELPI measurement of an 4 hour experiment.

After 4 h exposure to the combustion aerosol and 20 h post-incubation the A549 human lung cells were analysed regarding DNA strand breaks

- 4. ELPI: number size distribution between 10 nm and 10 µm
- 5. Vitrocell[®] Automated Exposure Station: exposure of human lung cells at the Air/Liquid-Interface
- 6. PAH: Analysis of the polycyclic aromatic hydrocarbons by HPLC and fluorescence detection
- **7. VOC**: Analysis of the volatile organic compounds via TD-GC-MS
- **8. Impinger**: subsequent ecotoxicological studies
- **10.SMPS**: number size distribution between 10 nm and 1000 nm; measurement inside the reactor
 - of the exposure station
- **11.TEM**: image analysis of grids in an exposure chamber
- 12. Photometer: inline measurement of number concentration upstream of each exposure chamber **13.QCM**: Online dose monitoring

DNA strand breaks in A549 cells induced by released aerosols from incinerated thermoplastics and related ENMs (Control: Humidified synthetic air, filter: precipitation of particles, denuder: precipitation of volatile organic compounds).

Conclusions

- Succesful application of the illustrated measurement chain
- Comprehensive characterization of the combustion aerosol of nano-enabled thermoplastic
- Pure nano metal oxides and nano-enabled thermoplastics form ultrafine nanoparticles with high number concentrations in an Ethylene / Air flame
- Combustion aerosols of nano-enabled thermoplastics induce DNA strand breaks in A549 cells • For PE + 10 % TiO₂ the toxicity is due to gaseous species

