KIT | KIT-Bibliothek | Impressum | Datenschutz
Open Access Logo
§
Verlagsausgabe
DOI: 10.5445/IR/1000087401
Veröffentlicht am 13.11.2018
Originalveröffentlichung
DOI: 10.3390/drones2010007

UAS Navigation with SqueezePoseNet—Accuracy Boosting for Pose Regression by Data Augmentation

Mueller, Markus S.; Jutzi, Boris

Abstract:
The navigation of Unmanned Aerial Vehicles (UAVs) nowadays is mostly based on Global Navigation Satellite Systems (GNSSs). Drawbacks of satellite-based navigation are failures caused by occlusions or multi-path interferences. Therefore, alternative methods have been developed in recent years. Visual navigation methods such as Visual Odometry (VO) or visual Simultaneous Localization and Mapping (SLAM) aid global navigation solutions by closing trajectory gaps or performing loop closures. However, if the trajectory estimation is interrupted or not available, a re-localization is mandatory. Furthermore, the latest research has shown promising results on pose regression in 6 Degrees of Freedom (DoF) based on Convolutional Neural Networks (CNNs). Additionally, existing navigation methods can benefit from these networks. In this article, a method for GNSS-free and fast image-based pose regression by utilizing a small Convolutional Neural Network is presented. Therefore, a small CNN SqueezePoseNet) is utilized, transfer learning is applied and the network is tuned for pose regression. Furthermore, recent drawbacks are overcome by applying ... mehr


Zugehörige Institution(en) am KIT Institut für Photogrammetrie und Fernerkundung (IPF)
Publikationstyp Zeitschriftenaufsatz
Jahr 2018
Sprache Englisch
Identifikator ISSN: 2504-446X
URN: urn:nbn:de:swb:90-874018
KITopen-ID: 1000087401
Erschienen in Drones
Band 2
Heft 1
Seiten 7
Vorab online veröffentlicht am 13.02.2018
Schlagworte convolutional neural networks; data augmentation; image-based navigation; pose estimation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft KITopen Landing Page