

Taylor flow entering a porous medium: experiment and simulation

M. Serres^{1,2}, F. Jamshidi^{3,4}, X. Cai³, H. Marschall⁵, O. Deutschmann³, R. Philippe¹, V. Vidal², <u>M. Wörner³</u> ¹Université de Lyon, LGPC (UMR 5285) CNRS-CPE Lyon-UCBL, ²Université de Lyon, LPENSL (UMR 5672) CNRS-ENS Lyon, ³Karlsruhe Institute of Technology (KIT), ⁴Hochschule Karlsruhe, ⁵Technische Universität Darmstadt

Motivation

- Millichannels filled with a porous medium are an innovative concept for heterogeneously catalyzed gas-liquid reactions
- Potential benefits include large contact area and enhanced mass/heat transfer at low pressure drop

Recent experiments studied the stability and coalescence of Taylor bubbles in confined highly porous media [1,2]

- Here, we focus on the hydrodynamics of Taylor flow as it enters the porous medium which has not been studied so far

Experiment

- Square millichannel (2 mm × 2 mm)
- Vitreous carbon foam, 80 PPI, 96% porosity
- Atmospheric pressure and room temperature
- Gas-liquid Taylor flow ($Q_G = 2$, $Q_L = 8$ cm³/min)

Fig. 2: Visualizations of the penetration of individual Taylor bubbles into the porous medium at six instants in time. The top row shows the same bubble.

• Periodic bubble capture in front of the foam (t = 0.58 s, t = 2.0 s) by gas pinch-off from Taylor bubble tail (t = 0.26 s)

Numerical simulation

- Phase-field method with solution of Cahn-Hilliard-Navier-Stokes equations in OpenFOAM [3]
- Axially reduced geometry with foam obtained via X-ray tomography and 3D image reconstruction

	Experiment	Simulation
L ₁ [mm]	40	14
L ₂ [mm]	160	8
L ₃ [mm]	10	9.5

- Steady state simulation with liquid entering at both inlets to determine initial velocity field for G/L run
- Transient simulation where phase at bottom inlet

Fig. 4: Pinch-off of first Taylor bubble (left) and approach of the 2nd Taylor bubble (right). Similar to the experiment, gas is captured in front of the foam. A similar simulation with

Conclusions

- Taylor bubbles may not penetrate completely into a porous medium due to gas pinch-off at the bubble tail
- Gas capture in front of the porous medium occurs when viscous forces are too small to enforce bubble fragmentation
- Simulations with quite coarse grid reproduce the experiments, demonstrating the potential for more detailed studies

M. Serres et al., Int. J. Multiphase Flow 85 (2016) 157-163
M. Serres et al., Int. J. Multiphase Flow 87 (2018) 134-141
X. Cai et al., Chem. Eng. Technol. 38 (2015) 1985-1992

This work was supported by the LABEX iMUST (ANR-10-LABX-0064) of Université de Lyon, within the program "Investissements d'Avenir" (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).

www.kit.edu

KIT – The Research University in the Helmholtz Association

Contact: Dr. Martin Wörner (martin.woerner@kit.edu) Institute of Catalysis Research and Technology, Engesserstraße 20, 76131 Karlsruhe, Germany