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Preface

The state of the art in optical characterization of materials is advancing
rapidly. New insights into the theoretical foundations of this research
field have been gained and exciting practical developments have taken
place, both driven by novel applications and innovative sensor tech-
nologies that are constantly emerging. The big success of the inter-
national conferences on Optical Characterization of Materials in 2013,
2015 and 2017 proves the necessity of a platform to present, discuss
and evaluate the latest research results in this interdisciplinary domain.
Due to that fact, the international conference on Optical Characteriza-
tion of Materials (OCM) took place the fourth time in March 2019.

The OCM 2019 was organized by the Karlsruhe Center for Spectral
Signatures of Materials (KCM) in cooperation with the German
Chapter of the Instrumentation & Measurement Society of IEEE. The
Karlsruhe Center for Spectral Signatures of Materials is an association
of institutes of Karlsruhe Institute of Technology (KIT) and the busi-
ness unit Automated Visual Inspection of the Fraunhofer Institute of
Optronics, System Technologies and Image Exploitation IOSB.

Despite the conference’s young age, the organizing committee has
had the pleasure to evaluate a large amount of abstracts. Based on
the submissions, we selected 22 papers as talks, a keynote lecture and
several practical demonstrations.

The present book is based on the conference held in Karlsruhe,
Germany from March 13-14, 2019. The aim of this conference was to
bring together leading researchers in the domain of Characterization of
Materials by spectral characteristics from UV (240 nm) to IR (14 pm),
multispectral image analysis, X-ray methods, polarimetry, and mi-
croscopy. Typical application areas for these techniques cover the fields
of, e.g., food industry, recycling of waste materials, detection of con-
taminated materials, mining, process industry, and raw materials.

The editors would like to thank all of the authors that have con-
tributed to these proceedings as well as the reviewers, who have
invested a generous amount of their time to suggest possible improve-
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ments of the papers. The help of Henning Schulte, Jiirgen Hock and
Anja Shevchyk in the preparation of this book is greatly appreciated.
Last but not least, we thank the organizing committee of the conference,
led by Britta Ost, for their effort in organizing this event. The excellent
technical facilities and the friendly staff of the Fraunhofer IOSB greatly
contributed to the success of the meeting.

March 2019 Jurgen Beyerer
Fernando Puente Le6n
Thomas Langle
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Determination of tomato quality attributes
using portable NIR-sensors

Simon Goisser!, Julius Krause??, Michael Fernandes?,
and Heike Mempel!

! University of Applied Sciences Weihenstephan Triesdorf,
Greenhouse Technology and Quality Management,
Am Staudengarten 10, 85354 Freising
2 Karlsruhe Institute of Technology,

Vision and Fusion Laboratory IES,
Haid-und-Neu-Str. 7, 76131 Karlsruhe
3 Fraunhofer Institute of Optronics, System Technologies
and Image Exploitation IOSB,

Visual Inspection Systems,

Fraunhoferstr. 1, 76131 Karlsruhe
4 Deggendorf Institute of Technology,
Technology Campus Grafenau,

Department of Applied Artificial Intelligence,
Hauptstrafle 3, 94481 Grafenau

Abstract As part of a research project a multidisciplinary ap-
proach of different research institutes is followed to investigate
the possibility of using a commercially available miniaturized
NIR-sensor for the determination of tomato fruit quality param-
eters in postharvest. Correlation of spectra and tomato reference
values of firmness, dry matter and total soluble solids showed
good prediction accuracy. Additionally the decline of firmness
over storage time with respect to storage temperature of toma-
toes could be modelled. Therefore, the decline of firmness as
an indicator for shelf-life can be predicted using this portable
NIR-Sensor.

Keywords: NIR, portable, tomato, brix, firmness, dry matter.
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1 Introduction

At the moment, grading and sorting of fresh produce is highly domi-
nated by external and internal quality attributes like colour, fruit tex-
ture and sugar content. Some of these requirements are statutory and
written down in marketing standards for fresh fruit and vegetables [1].
In order to guarantee internal quality like sweetness and taste of pro-
duce, additional testing of internal quality parameters like sugar con-
tent or sugar-acid ratio is necessary for certain products alongside these
statutory criteria standards. The determination of internal parameters
is often time consuming and requires destructive measurement meth-
ods. Immediately after harvest the quality of fruits and vegetables
changes due to ongoing metabolic processes. Depending on various
parameters like fruit maturity, packaging and storage conditions, qual-
ity of post harvest produce decays in different time periods. Sensitive
fruits like strawberries have a shelf life of only a few days, whereas
more robust fruits like apples can be stored for up to nearly one year
under appropriate storage conditions. Climacteric fruits like tomatoes
underlie post-ripening, which on one hand can lead to longer shelf life,
but on the other hand cause alteration of sensorial parameters like taste
or haptic. Furthermore, firmness is an important indicator of tomato
quality which determines shelf life and influences consumer’s accep-
tance [2]. Tomato is one of the most important fruits cultivated in
Germany, with a total percentage of nearly 30 % of Germany’s green-
house production area for vegetables [3] and number one vegetable
with respect to per capita consumption [4]. Sugar content, acidity and
the acid-brix ratio are internal quality parameters that can help to de-
termine the ripening stage and affect the taste of tomatoes. In the
past, various studies were conducted to prove that some of these pa-
rameters can be predicted using near-infrared spectroscopy (NIRS) on
different tomato varieties [5,6]. NIRS is well suited for quality con-
trol of fresh produce because it is non-destructive and requires little to
no sample preparation. Additionally, NIRS techniques can be used as
multidimensional predictors to determine various parameters in one
work-step. Due to an ongoing technical development and miniaturiza-
tion in the field of NIR spectrometers, companies are offering small and
portable sensors. These devices can be used in numerous applications
throughout the agro-food and horticultural industry, as illustrated by
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dos Santos et al. [7]. The technique of NIR is already applied in sorting
and grading machines, especially for high quality produce which are
ripened in post-harvest processes (e. g., mango, avocado). In contrast
to bulky benchtop devices, these hand-held sensors allow a transfer of
NIR techniques from the laboratory to in-field and other applications
along the whole horticultural supply chain of fresh produce. In ad-
dition to the determination of specific fruit quality parameters, these
devices could unlock potential in measuring the maturity or ripening
stage of fresh produce with respect to remaining shelf life. A measure-
ment tool which allows the quantification of shelf life could help to
reduce the amount of annual food loss of around 11 million tons [8] in
Germany. First studies indicate that there is high potential for predict-
ing the quality of fresh fruits and vegetables with portable and minia-
turized NIR devices. According to Kusumiyati et al. [9], the use of a
portable NIR-device and PLSR analysis proved feasibility of predicting
the on-tree firmness of tomatoes with r2 = 0,88 and a standard error of
prediction of 0,09 MPa as well as lightness value L* (12 = 0.96, SEP =
3.19) and color value a* (12 = 0,98, SEP = 3,13). Some startup companies
focus on this development and launch various miniaturized NIR-hand-
held devices called food-scanners, promising end-consumers a fast and
nondestructive measurement of various food traits like protein, sugar
or total energy content [10]. A first study by Kaur et al. [11], which ex-
amined the performance of different portable and commercially avail-
able spectrometers with respect to the prediction of dry matter, showed
promising results for a combined data set of apples, kiwifruit and sum-
merfruit (rp? of 0,93-0,95). Subsequent research investigated the on-tree
prediction of "Hass’ avocado harvest maturity using the F-750 spec-
trometer (Felix Instruments) and found suitable prediction models for
dry matter (rp? = 0.98; RMSEP = 0.25 %) and oil content (rp? = 0.96;
RMSEP = 1.14 %) [12]. A current study, focusing on the performance
of a consumer scale SCiO (Consumer Physics) molecular sensor by Li
et al. (2018), found good results for the prediction of total soluble solids
in kiwifruit (RVal? = 0.77; RMSEp = 0.76 %) and potential in classifying
feijoa according to maturity and "Hass’ avocado according to ripen-
ing stage, whereas the prediction of apple quality was not feasible. In
summary, miniaturized NIR devices seem to hold potential in predict-
ing the quality of fresh produce, making it a good method of choice in
investigating the feasibility for quality predictions of tomato fruit. At
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the moment, a key challenge for a successful implementation in supply
chain processes is the provision of suitable prediction models of fresh
produce. Since different types of produce require specific calibrations,
further work is required to investigate predictable fruit quality param-
eters and to build up data collections, which allow a robust calibration
of portable devices. As part of the alliance "Wir retten Lebensmittel”,
initiated by the Bavarian Ministry of Food, Agriculture and Forestry,
a multidisciplinary approach of different research institutes was con-
ducted during a two-year research project. The aim of this work was to
investigate the possibility of using a self-built and miniaturized NIR-
sensor for the determination of tomato fruit maturity parameters such
as sugar content, firmness and dry matter. A similar approach with
focus on a commercially available pocket-sized NIR-sensor has already
been performed (publication in review process). Based on these results,
storage experiments were carried out in order to evaluate the feasibil-
ity of predicting shelf life of tomatoes with NIR-sensors. Tomato was
chosen as model fruit because of its economic importance. An early
determination of maturity as well as shelf life of tomatoes could help
to control the supply chain and take alternative paths for produce not
suitable for the fresh market (e. g., processing into soups, juices or
smoothies). Furthermore, appropriate measures like sales promotions
of ripe fruits can be launched in order to reduce food waste.

2 Material and methods

2.1 Sample material

Cherry- and salad-tomatoes (Solanum lycopersicum 'EZ 1359’ and
'EZ 1256") from a greenhouse of the University of Applied Sci-
ences Weihenstephan-Triesdorf (latitude 48°24’6”N and longitude
11°43’53”E) were used as sample material. Tomato plants were cul-
tivated in a run-to-waste system on rock wool. Determination of sugar
content, firmness, dry matter and color values of tomato fruits was
done during the summer of 2017 at the Institute of Horticulture, Freis-
ing, Germany.
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2.2 Methods and storage conditions

In a first experiments, 40 salad- and 40 cherry-tomatoes were har-
vested and the spectra recorded. Afterwards, sugar content in terms
of TSS-concentration of each individual fruit was measured. In a sec-
ond experiment, 120 tomatoes (60 cherry and 60 salad) were harvested
and stored at room temperature (20 - 22 °C) for two weeks to evalu-
ate post-ripening-processes with respect to changes in fruit skin color
and dry matter. Every two days, spectra of ten fruits of each variety
were taken and fresh weight, dry weight and color values of each fruit
was recorded. In order to model shelf life and the decay of tomato
fruit firmness over time, a third experiment was conducted using dif-
ferent storage conditions. 320 salad- and 360 cherry- tomatoes were
harvested from the greenhouse. Spectra was recorded and firmness
measured of 16 salad- and 20 cherry-tomatoes to determine initial fruit
firmness. The remaining tomatoes were stored in batches of equal size
under three different storage conditions at 8, 15 and 20 °C and rela-
tive humidity of 96 - 98 % respectively using laboratory refrigerators
(Liebherr Mediline model LKPv 6522, Liebherr-International GmbH,
Biberach, Germany). The resulting vapor pressure deficits were 2,1 -
4,3 hPa (8 °C), 3,4 - 6,8 hPa (15 °C) and 4,6 - 9,4 hPa (20°C). Every
two to three days, the spectra of ten fruits of each variety and storage
condition were recorded and firmness was measured. Due to moldi-
ness and other physiological disorders during storage, 6 salad- and 11
cherry-tomatoes had to be excluded from the experiment, resulting in
a valid data set of 314 salad- and 349 cherry-tomatoes.

2.3 Recording of NIR spectra

Spectroscopic measurements were performed using a self-built hand-
held NIR spectrometer consisting of a DLP® NIRscan™ Nano Eval-
uation Module (Texas Instruments, Dallas, Texas), supporting wave-
lengths from 900 - 1700 nm, embedded in a custom-built aluminum
case (see Fig. 1A.). The method of measurement is diffuse reflection.
Spectra of tomatoes were recorded by taking eight separate measure-
ments orthogonally around the equator of each fruit (see 1.1) using
a reprogrammed graphical user interface (GUI). The eight spectra for
each fruit were averaged afterwards.
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Figure 1.1: Custom-built hand held NIR spectrometer (A) and recording of
tomato spectra around the fruit equator (B)

2.4 Acquisition of reference data

Reference measurements were performed immediately after recording
spectra. Total soluble solids (TSS) were measured according to the
OECD fruit and vegetable scheme by squeezing two longitudinal slices
from opposite sides of the fruit with a garlic press and measuring the
mixed juice with a digital refractometer HI 96801 (Hanna Instruments,
Woonsocket, USA). The results, in degrees Brix, were recorded to one
decimal place. The concentration of dry matter (DM) was measured
gravimetrically for whole tomatoes. Weight of fresh fruits was de-
termined to the nearest 0,001 g. Subsequently fruits were dried in
an oven at 105 °C for 48 h. The final dry weight was determined
to the nearest 0,001 g and DM calculated as the percentage of dry
weight to initial fresh weight of each fruit. Firmness was measured
using a non-invasive hand-held penetrometer AGROSTA 100X (Agro
Technologie, Serqueux, France) specifically designed to measure toma-
toes and berries. The penetrometer expresses firmness of fruits in a
unit of percent in a range from 0 - 100, whereas 100 percent equals
8,09 Newton. Results were converted to Newton by taking account of
penetrometer-pin-diameter and the maximum force used to push in the
metal pin. Measurements were taken at two spots on opposite sides of
the equator of each tomato. Both readings for each tomato were aver-
aged. Additionally a subjective firmness bonitur was performed by the
first author, grading tomatoes into the bonitur classes A (very firm), B
(firm) and C (soft).



Determination of tomato quality attributes 7

3 Results and discussion

The data analysis was performed with Python using the scikit-learn
framework [13]. After a normalization in the first step, the regression
models were developed to establish a relationship between the normal-
ized spectra and the properties of salad and cherry tomatoes. To verify
the models a leave-one-out-cross-validation (LOOCV) was performed.

3.1 Spectral preprocessing

To reduce scattering effects and noise, spectral preprocessing was ap-
plied. Because of the signal-to-noise ratio, the spectral range for the
analysis was reduced to 198 bands between 901 nm and 1608 nm. For
noise suppression, the mean value of all spectra of a sample was cal-
culated and in addition, the mean value spectra were smoothed with
a Savitzky-Golay filter (15,3). In a further step, the first derivative was
formed to correct the baseline due to different scattering properties.
Finally, different intensities were compensated by normalization using
Standard Normal Variate (SNV).

prediction of firmness "Agrosta" distribution of the bonitur classification

- ideal
o slad
o drery

Bonitur

a
12 b
c

prediction
normalized number of samples

354% .-’_5".-
DR Y

30 7’

25
25 30 35 40 45 50 55 60 &5 70 1 2 k] 4 5 3 7
true firmness "Agrosta®

Figure 1.2: PLSR prediction of the dry matter using the normalized spectra.
The multi-product model works well for both varieties. (RMESP "salad” = 0.45,
RMESP ’cocktail” =0.45). The bonitur classification is related to the firmness.
Therefore, a clear dependence of the quality score on the measured firmness
can be seen.
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3.2 Prediction of quality attributes

The normalized spectra can be used to predict the firmness of the
tomato by a partial least squares regression modell (PLSR) modell. A
multi-product PLSR model was developed, which was trained with
the spectra of both varieties. The root-mean-square-error-of-prediction
(RMSEP) of the model determined in a cross validation is 0.52 for salad
tomatoes and 0.5 for cherry tomatoes (see fig. 1.2).

There is also a relationship between the optically and mechanically
measurable firmness and the quality evaluation of the bonitur (see fig.
1.2). This allows classification into three quality levels on the basis of
the measurable firmness.

In addition to the firmness, which can be used as the main criterion
for freshness and shelf life, further parameters were determined. First,
the dry matter was evaluated. It should be noted that the correlation
coefficient between strength and dry matter has a value of 0.77. In a
multi-product calibration of 40 salad and 40 cherry tomatoes a PLSR
model for the prediction of dry matter could be created. The RMSEP of
the dry matter was 0.50 and 0.52, respectively, with the values of both
varieties ranging between 5 % and 9 % dry matter.

To predict the brix value, a multi-product calibration for salad and
cocktail tomatoes using PLSR was also made. The brix value of the
tomatoes could be determined with an RMSEP of 0.56 and 0.68 °brix
for salad and cocktail tomatoes in the range between 4 and 9 °brix .

3.3 Prediction of shelf life

In this regard, firmness can be used as one of the parameters to esti-
mating shelf life of tomatoes. To this end, the time dependency over
storage can be modeled by using the Arrhenius equations [14,15].
Data analysis is performed through the packet R software. The loss
of firmness for all three-temperature levels as well as the final models
for the three temperature levels are plotted in Figure 1.3. The kinetic
parameters as well as the activation energy can then be extracted from
the model. In Figure 1.3 the quality classes A, B and C are presented
based on bonitur classifications. It shows that along the storage of
tomatoes, the subjectively perceived firmness declines due to vapor
pressure deficit and storage time. Since in this experiment, the vapore
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Figure 1.3: Firmness measured at 3 different temperature levels [8°,15°,20°C]
and the fitted curves of the Arrhenius models (left). Firmness — storage time
model for temperature 20°C indicating 3 different quality classes for salad
tomatoes (right)

pressure deficit was relatively small, the influence of storage period is
rated higher than the influence due to temperature. By considering
the storage conditions at the point of sale with notably higher vapor
pressure deficits (e. g. 50,2 hPa at 20°C and 50 % relative humidity) a
faster decline in firmness can be expected.

4 Summary

Firmness is a strong parameter for quality of tomatoes. However, the
measurement of firmness using classical measuring methods like pen-
etrometers leads to fruit damage, manifesting itself in bruises and sub-
sequently in a fast decay of the fruits. A similar practice can bee seen
in supermarkets when consumers try to assess quality by touching the
fruits. In both cases a non-destructive and non-contact optical measure-
ment offers an advantage [16]. The results of this study show that firm-
ness can be predicted with good accuracy using a miniaturized NIR-
sensor. Furthermore, a relation between bonitur classifications and ob-
jective firmness measurements was established, indicating the possibil-
ity of distinguishing bonitur grades by means of NIR-spectroscopy. It is
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also shown that the decline of firmness over storage time with respect
to vapor pressure deficit of tomatoes can be modelled. In combination,
the decline of firmness as an indicator for shelf-life can be predicted
using this portable NIR-Sensor.

Future work should address the validity of the PLSR correlation by
adding new tomato varietes to the data set. Regarding the utilization
of portable NIR-sensors by end-consumers these data sets should focus
on varieties available in supermarkets.

Acknowledgement

This work was supported by the Bavarian Ministry of Food, Agricul-
ture and Forestry as part of the alliance "Wir retten Lebensmittel”.

References

1. UNECE, “Fresh fruit and vegetables - standards,” 2017. [Online]. Available:
https:/ /www.unece.org/trade/agr/standard /fresh/ffv-standardse.html

2. A. Batu, “Determination of acceptable firmness and colour values of toma-
toes,” Journal of Food Engineering, vol. 61, no. 3, pp. 471-475, 2004.

3. M. Koch, “Fliche im unterglasanbau steigt weiter,” 2018. [Online].
Available: https:/ /www.ami-informiert.de/ami-maerkte /maerkte/
ami-gartenbau/ami-meldungen-gartenbau/single-ansicht/singleview /
news/artikel /flaeche-im-unterglasanbau-steigt-weiter.html

4. B. Rogge, “Blumenkohl mit kréftigem mengenplus
in den top-10,” 2018. [Online]. Available: https:
/ /www.ami-informiert.de/ami-maerkte /maerkte/ami-gartenbau/
ami-meldungen-gartenbau/single-ansicht/singleview /news/artikel /
blumenkohl-mit-kraeftigem-mengenplus-in-den-top-10.html

5. K. Flores, M.-T. Séanchez, D. Pérez-Marin, J.-E. Guerrero, and A. Garrido-
Varo, “Feasibility in nirs instruments for predicting internal quality in in-
tact tomato,” Journal of Food Engineering, vol. 91, no. 2, pp. 311-318, 2009.

6. G. Kim, D.-Y. Kim, G. H. Kim, and B.-K. Cho, “Applications of discrete
wavelet analysis for predicting internal quality of cherry tomatoes using
vis/nir spectroscopy,” Journal of Biosystems Engineering, vol. 38, no. 1, pp.
48-54, 2013.



10.

11.

12.

13.

14.

15.

16.

Determination of tomato quality attributes 11

C. A. T. dos Santos, M. Lopo, R. N. M. J. Pascoa, and J. A. Lopes, “A
review on the applications of portable near-infrared spectrometers in the
agro-food industry,” Applied spectroscopy, vol. 67, no. 11, pp. 1215-1233,
2013.

M. Kranert, G. Hafner, J. Barabosz, H. Schuller, D. Leverenz, A. Kolbig,
F. Schneider, S. Lebersorger, and S. Scherhaufer, “Ermittlung der wegge-
worfenen lebensmittelmengen und vorschldge zur verminderung der weg-
werfrate bei lebensmitteln in deutschland,” 2012.

Kusumiyati, T. Akinaga, M. Tanaka, and S. Kawasaki, “On-tree and after-
harvesting evaluation of firmness, color and lycopene content of tomato
fruit using portable nir spectroscopy,” Journal of Food, Agriculture & Envi-
ronment, vol. 6, no. 2, 2008.

G. Rateni, P. Dario, and F. Cavallo, “Smartphone-based food diagnostic
technologies: A review,” Sensors (Basel, Switzerland), vol. 17, no. 6, 2017.

H. Kaur, R. Kiinnemeyer, and A. McGlone, “Comparison of hand-held near
infrared spectrophotometers for fruit dry matter assessment,” Journal of
Near Infrared Spectroscopy, vol. 25, no. 4, pp. 267-277, 2017.

K. Ncama, L. S. Magwaza, C. A. Poblete-Echeverria, H. H. Nieuwoudt,
S. Z. Tesfay, and A. Mditshwa, “On-tree indexing of “hass’ avocado fruit by
non-destructive assessment of pulp dry matter and oil content,” Biosystems
Engineering, vol. 174, pp. 41-49, 2018.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:
Machine learning in Python,” Journal of Machine Learning Research, vol. 12,
pp. 2825-2830, 2011.

J. Pinheiro, C. Alegria, M. Abreu, E. M. Gongalves, and C. L. Silva,
“Kinetics of changes in the physical quality parameters of fresh tomato
fruits (Solanum lycopersicum, cv. “Zinac’) during storage,” Journal of Food
Engineering, vol. 114, no. 3, pp. 338-345, feb 2013. [Online]. Available: https:
/ /www.sciencedirect.com/science/article /abs/pii/S0260877412004074

C. Van Dijk, C. Boeriu, F. Peter, T. Stolle-Smits, and L. Tijskens,
“The firmness of stored tomatoes (cv. Tradiro). 1. Kinetic and near
infrared models to describe firmness and moisture loss,” Journal of Food
Engineering, vol. 77, no. 3, pp. 575-584, dec 2006. [Online]. Available: https:
/ /www.sciencedirect.com/science/article /abs/pii/S0260877405005224

M. Geyer, M. Linke, I. Gerbert, O. Schliiter, and H.-P. Kldring,
“Beurteilen der Haltbarkeit klimakterischer Friichte am Beispiel der



12 S. Goisser, J. Krause, M. Fernandes, and H. Mempel

Tomate,” LANDTECHNIK — Agricultural Engineering, vol. 63, no. 3, pp.
158-159, jun 2008. [Online]. Available: https://www.landtechnik-online.
eu/o0js-2.4.5/index.php /landtechnik/article /view /2008-3-158-159



NIR spectroscopy for cacao bean
quality measurements

Claudia Beleites!?, Michael Glitschkal,
Christoph Bottcher!, and Andrea Krahmer!

1 Julius Kithn-Institut
Konigin-Luise-Str. 19, Berlin, Germany
2 Chemometric Consulting and Chemometrix GmbH
both Sodeler Weg 19, Wolfersheim, Germany

Abstract We present experimental design strategies for devel-
oping predictive chemometric models based on NIR spectra of
plant materials (here: Cacao beans) with a particular focus on two
issues: Identifying important confounding factors and choosing
a relevant subset of samples for reference analysis.

Keywords: NIR spectroscopy, design of experiments, nested de-
sign, hierarchical/clustered data, calibration, regression.

1 Introduction

Project CocoaChain studies cacao/cocoa quality along the processing
chain. Setting up an analytical method based on NIR spectroscopy
and chemometric data analysis for measuring various aspects of Cacao
bean quality and using these NIR spectra to actually derive conclu-
sions about the cacao beans on the first glance have similar sample
regirements: Both need a suitable set of samples (specimen) of which
NIR spectra are then measured. For the NIRS modeling, however ad-
ditional reference information is needed, while for quality assessment
the obtained NIRS method predicts these characteristics.
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Figure 2.1: Designs of Experiments (DoE) for nested data structures.

Analytical procedures as well as biological systems and production
processes often have deeply nested structures of influencing or con-
founding factors. Experimental effort is most efficiently spent if con-
centrated on the large and important confounders. At the same time,
reference analyses are often expensive and/or time-consuming and in
fact a bottleneck for the NIR calibration, emphasizing the need to spend
the available experimental effort well.

In his seminal paper [1], Bainbridge presented three different de-
signs of experiments (see fig. 2.1) that allow estimating contributions
of nested sources of random error. The fully nested design is eas-
iest to analyze, but it comes at the cost of the number of measure-
ments/samples at the lowest level of the data structure exponentially
growing with the number of factors (hierarchy levels) considered. In
addition, the degrees of freedom are concentrated in this lowermost
level of the data hierarchy, which is also the variance component that
is easiest to estimate. In other words, this design is inefficient in its
use of measurements for the higher variance components. In contrast,
the staggered nested design leads to almost equally distributed degrees
of freedom across the data hierarchy. Still, variance componence fur-
ther up are more difficult to estimate, so a design such as the inverted
nested design that concentrates degrees of freedom rather on the top
levels would be even better. However, at the time Bainbridge wrote his
paper (1965) inverted nested design data could not be analyzed. With
the nowadays readily available statistical software tools such as mixed
models, it is now easily possible to employ such even further thinned
out designs.

In this presentation, we explore the application of these designs for
analytical method development, namely NIRS calibration and the cor-
responding reference analyses.
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Table 2.1: Overview of the fermentations sampled in Peru 2018. Samples P1
— P4 are commercially imported cacao from the same cooperative where sam-
pling took place in Quillabamba.

Fermentation ID  Region Variety Days sampled
KZug Tingo Maria CCN51 7

1 Quillabamba  Chuncho 7

2 Quillabamba  Chuncho 6

7 Quillabamba  Chuncho 1 (end)
8 Quillabamba  Chuncho 1 (end)
3 Tarapoto Forastero CCN51 8

4 Tarapoto Forastero CCN51 8

9 Tarapoto Criollo ICS 95 + other 1 (end)
10 Tarapoto Criollo ICS 95 + other 1 (end)
13 Piura Cacao blanco + Cacao violeta 7

P1 Quillabamba  Chuncho n

P2 Quillabamba  Chuncho n

P3 Quillabamba  Chuncho n

P4 Quillabamba  Chuncho n

2 Methods and Material

2.1 Sampling

Samples of Cacao beans (seeds of Theobroma Cacao) were taken dur-
ing fermentation: In 2017, a preliminary experiment was run in Ivo-
chote/Peru where specimen were obtained before start of the fermen-
tation (day 0) and then daily until the fermentation was stopped at
day 4. In 2018, 10 fermentations in four different regions were sam-
pled. These samples were augmented by an additional 4 samples from
commercially imported cacao from four different bags (by Peru Puro,
Frankfurt, Germany; two roasted and two unroasted). For an overview,
see table 2.1.In order to study sampling error, 2 — 4 increments from
prescribed positions in the fermentation box (reactor) were obtained
according to a sampling plan. Increments kept apart for the following
analyses in order to allow a rough guesstimate of the sampling uncer-
tainty.

In the laboratory, the field sample increments were further di-
vided into 6 portions a 20 beans each for chemical reference analy-
sis plus 100 beans for a cut test per fermentation-day (i.e., 25 — 50
beans per increment, depending on the number of increments avail-
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able for the fermentation-day in question). Approximately 25 beans
per fermentation-day were kept for possible further experiments. The
large remainder of the material undergoes further roasting experiments
and sensory analysis.

Laboratory sample splitting was done in a 2-stage process.First, an
in-house constructed sample divider was used to obtain a pre-set frac-
tion of the sample containing at least the number of beans required
for chemical analysis and cut test. From these, the required number of
beans for each portion was randomly selected.

2.2 Spectroscopic Measurements and Reference Analyses

Portions for chemical reference analyses were peeled and ground. NIR
spectra between 3600 and 12500 cm ™! of 2x approximately 1 ml of the
ground material were measured with a Bruker MPA (Bruker, Ettlin-
gen/Germany) NIR spectrometer at 8 cm ™! spectral resolution.

Afterwards, the 2017 material material was de-greased and extracted
with methanol. In order to keep track of analytical error, this was done
in duplicate as was the actual chromatography run.

2.3 Design of Experiments and Statistical Analysis

Simulation In order to see the effects of the different experimental
designs proposed by Bainbridge [1], we set up a simulation compar-
ing these designs and their analysis by mixed models for two common
scenarios comprising 3 levels of data (e. g. primary/field samples, por-
tions/aliquots, and measurements):

1. the number of possible measurements at the lowest level is lim-
ited — a situation frequently encountered with time-consuming
wet-chemical reference analyses
Here, we simuate 48 measurements in total, and in consequence
according to the chosen design 12, 16, and 24 primary samples
with 1 or 2 aliquots/portions each.

2. the number of available samples at the topmost level is limited —
a situation rather typical for studies of biological systems.
The simulation has 12 primary samples and in consequence 48,
36 and 24 measurements in total (again 1 or 2 aliquots).
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Figure 2.2: Thinned out design of experiments for reference analyses (2018
material): (a) The Relationship among the various factors. Blue: Fixed fac-
tor fermentation Day, red: Random factors (confounders: The field sampling
variance in Increment, biological bean-to-bean variance covered in Portion as
well as the analytical random error in the lab procedure Meas.error), violet:
Factor Fermentation comprises a mix of fixed and random factors such as ran-
dom batch-to-batch variation as well as possible variation due to region and
variety (fixed factors) which cannot be separated due to lack of samples. (b)
Thinned-out experimental plan showing the partially crossed design for fac-
tors Fermentation and Day chosen for reference analysis. Large dots mark
Fermentation x Days where two increments and for one of them two portions
were selected. For the other increment as well as for the Fermentation x Days
marked with small dots, a single portion was randomly chosen (depicted ex-
emplarily for the two leftmost Day n samples). Blue circles mark the samples
taken from commercially imported cacao.

The data is univariate random with mean zero and variance 1 for
each of the data hierarchy levels (nested random factors). We obtain
point estimates as well as bootstrapped 95 % confidence intervals for
the 3 variance components via mixed models [2]. The simulation com-
prises 1000 runs per scenario.

Reference Analysis DoE The 2017 material was analysed with a fully
nested design employing 3 portions (“Aliquot”) x double extraction X
double chromatography.

As the capacity for wet chemical processing and reference analy-
sis is limited, we employ a thinned-out design for selecting samples
for a first round of reference analyses of the 2018 material: Of the 44
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available Fermentation x Days 30 are selected so that all fermentation
are covered always with samples of the fermented cacao beans. Where
samples were taken throughout the fermentation, a sample from before
the start as well as an additional sample from one randomly selected
day in between was chosen in addition. This reduces the number of
portions to be analyzed from 264 to 45, i.e. about 17 % while still re-
taining the ability to check the approximate contribution of variance of
the various confounders. This procedure takes into account the rela-
tions of the various factors, namely that Fermentation and Day are par-
tially crossed while Increments are nested within Fermentation x Days,
Portions within Increments and further random errors characterizing
the analytical method are nested within Portions, see the so-called
Hasse-Diagram (see [3] for a discussion).

Based on these reference analyses, a preliminary calibration will be
performed which then allows to select a further portions for reference
analysis in order to achieve a good and roughly uniform coverage of
calibration samples in concentration space.

All statistical analyses were performed in R [4], in particular using
packages hyperSpec [5] for handling of the spectra and [2] for mixed
models.

3 Results

Simulation In a preliminary simulation experiment, we compared the
three experimental designs described by Bainbridge [1]. We observe
(fig. 2.3) across all designs and for both scenarios that the variance at
the uppermost level is somewhat overestimated while the lower two
variance components (factors) are on average well estimated (though
the lowermost is slightly underestimated with the inverted nested de-
sign). As expected, the fully nested design allows precise estimation of
the variance of the lowermost factor, but the uppermost variance esti-
mation is highly imprecise: The median confidence interval width for
the estimated standard deviation of the topmost factor is about twice
the actual standard deviation. In comparison, the staggered nested de-
sign achieves a slight improvement on the confidence interval width
for the uppermost factor which comes at the cost of slightly worse pre-
cision in the variance estimates of the middle and lowermost factors.
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Figure 2.3: Results of the mixed-model variance component estimation for fully
nested, staggered nested and inverted nested designs on simulated data. Filled
boxes: Distribution of point estimates and empty boxed distribution of the
estimated confidence interval widths for the 1000 simulation runs.

The inverted design goes further in this direction and achieves similar
precision for the middle and uppermost factors. The lowermost fac-
tor is still estimated with higher precision. These trends are similar
for both scenarios. However, in the measurement-limited scenario the
confidence interval width for the topmost factor improves from fully
nested over staggered nested to inverted nested design, whereas for the
sample-limited scenario all variance estimates get increasingly impre-
cise in the same order. This is plausible considering that here for few
samples, the already limited number of measurements is progressively
decreased, while for the measurement limited scenario the number of
measurements stays constant and is distributed across a larger number
of primary samples.

We conclude that the inverted nested design can be recommended in
situations where the total number of measurements, i. e. the number of
samples at the lowermost factor, is limited. If, instead the number of
primary samples (of the topmost factor) is the limitation, a fully nested
design yields the maximum amount of information that can be gotten
from the limited number of samples.
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Figure 2.4: Changes in epicatechin content (left) during fermentation (blue,
fixed factor) and comparison with the order of magnitude of 3 levels of con-
founding variance (red, random factors) in the laboratory processing chain
for the reference analyses: Variance due to the laboratory sample division in-
cluding the biological bean-to-bean variance, random error of the extraction
procedure and random error of the actual chromatographic reference analysis.
Theobromin content (right) is not expected to vary significantly during the fer-
mentation, so only one fixed factor (blue) for the content is modeled and the
day-to-day variation is considered mostly random field sampling error.

Epicatechin content mixed model. Fig. 2.4 shows preliminary results
for analyte epicatechin of the 2017 material. Epicatechin is a secondary
plant metabolite and antioxidant. Epicatechin content decreases during
fermentation with a marked drop after day 2, i.e. when fermentation
conditions are changed from anaerobic to aerobic. In addition to the
fixed factor describing the temporal development, we extracted vari-
ance estimates for three confounding factors nested within our sam-
ples. The uppermost factor, Portion contains variance due to each por-
tion consisting only of a limited number of cacao beans and is thus re-
lated to the biological bean-to-bean variance. We also observe that the
random errors contributed by further steps in the laboratory processing
(Extraction) and actual measurement (Residual) are each considerably
smaller than the next. This corresponds well with the rule of thumb
that the measurement noise contributed by modern analytical equip-
ment is typically much smaller than the random errors introduced in
the processing of samples and that sampling is often the step introduc-
ing most uncertainty. We conclude that the most efficient use of further
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experimental resources here is to examine more and/or larger portions
of cacao beans. In other words, upcoming work (2018 material) will
benefit from examining more primary samples and in turn switching
to an inverted nested design.

In contrast, for theobromine, we found that the extraction procedure
was the main contributor of uncertainty, and in consequence focus our
attention to that part of the analytical procedure. Note that here we
also see the difficulty in estimating variance components further up in
the data hierarchy: Portion (bean-to-bean variance) and Day (field sam-
pling error) cannot reliably be estimated. This is a direct consequence
of the large variance at Extraction level.
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5 Summary

Inverted nested designs of experiments allows us to construct a highly
thinned-out set of samples for reference analys while for NIR spec-
troscopy where sample preparation and measurement are less time-
consuming and more suitable for automation we employ a fully nested
design. Both designs allow estimation of nested variance components,
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but the inverted nested design in our case runs time-consuming wet-
lab preparation and reference analysis for only ~ 17 % of the available
samples in the first round of a two round calibration strategy. In a
second round, more samples will be added and their selection will be
guided by the preliminary calibration obtained in the first round.

We use mixed models to estimate contributions of several sources
of uncertainty, i.e. confounding factors, along the analytical-chemical
processing chain of the samples. This in turn allows us to focus further
work where it is most efficient: On the respectively largest source of
uncertainty in the processing chain.
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Abstract In this study, we present a new optical non-contact
measurement method, which is based on general characteris-
tics of a flying-spot scanner. The focus is on the mapping of
lipid-based substances, especially the scanning of fingerprints.
The assessing of human fingerprints is conducted by using two
lasers emitting in different selected wavelengths. Images gen-
erated by using these wavelengths comprise absorption infor-
mation of the examined sample. By using image-processing and
conversion algorithms, the lipid-based substances in the detected
image section could not only be captured, but also displayed
three-dimensionally. The setup of the optical scanning method
presented here utilizes the mid infrared region, especially the
wavelength range between 3 pm up to 4 pm. It was optimized in
order to scan an area up to 50 cm?, with a spatial resolution of 20
pm and a data rate of 300 kS/s. Our data shows that mapping
of human fingerprints can be performed by using the described
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method. Furthermore, a processing of the data set results in to-
pographical information.

Keywords: Mid-infrared, scanning, absorption, lipids, non-
invasive, human fingerprint, papillary ridge.

1 Introduction

Dactyloscopy is a person identification method recognised by science
and jurisprudence. It deals with the recording and evaluation of hu-
man fingerprints [1]. Dactyloscopic marks are unique, unchangeable
and classifiable. Due to these properties, they are particularly suitable
for use in forensic technology. Dactyloscopic marks at crime scenes
are created in the form of imprints, both latently by the excretion of
skin’s own substances, e.g. finger fat, and by the transfer of exogenous
substances. Fingerprints are created by the papillary ridges on the fin-
gertip. Each finger has a unique pattern. These patterns remain the
same for a lifetime. Fingerprints can be classified into different pattern
types. For this purpose, part of the total imprint is determined as the
pattern area [2]. Forensically, general papillary line progressions and
conspicuous structures are investigated [2,3]. These structures form the
basis for the dactyloscopic proof of identity. The shape and position of
the features in relation to each other represent primary importance [3].
Conspicuous structures on fingertips such as scars, wrinkles and fur-
rows are also examined.

In practice, optical [4,5], physical [4] and chemical methods [6,7] are
used to make a fingerprint visible. In certain specific cases, it is pos-
sible to search and to visualize finger marks in one step, however the
original mark is destroyed in this approach [4-8]. In other cases, the
finger mark securing can be performed at the same time [6]. The (sub-
strate) material, its surface condition and its substance are important
components in the selection of a suitable process [5].

The detection of finger marks by means of optical methods is con-
tactless and non-destructive [4,5]. However, this method demands long
measurement periods [9]. Therefore, we present a non-contact scan-
ning measurement method providing fingerprints for rapid visualiza-
tion and measurement data for further digital processing.
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2 Materials and methods

The middle infrared (MIR) scanning setup used here is based on a
flying-spot scanner [10]. The measurement setup basically consists of
two lasers, a focusing unit, an agile mirror system and a detector (Fig-
ure 3.1). The laser beams are deflected one-dimensionally by the agile
mirror unit. The sample is displaced orthogonally to the deflected laser
beam by means of a translation stage. This method and confocal signal
acquisition reduce image distortion. The maximum measuring area is
50 cm? with a spatial resolution of 20 ym. The sample is scanned at
a sampling rate of 300 kS/s. At this scanning speed, the maximum
measuring area is scanned within 50s. This is the measurement time
for each individual laser.

DFB Laser 2

Focussing Unit

Agile Mirror Unit

DFB Laser 1 ]

I L |

IR-Detector

— Illumination
= = Detection Translation Stage

Figure 3.1: Schematic representation of the MIR scanner. The laser beam is
focused on the sample by the agile lens unit (Focussing Unit). The laser light is
deflected by the agile mirror unit orthogonally to the deflection direction of the
laser beam, the translation stage operates. The detector is confocally mounted
at the optical path of the laser light.

The acquired measurement data are sorted by complex algorithms
and assembled as a measurement image. The resulting and calculated
measurement images represent the absorption properties at the mea-
suring target. The following sequence of measurements demonstrates
the absorption properties of human body fat. On these, 3-dimensional
finger fat marks are created. Each individual has a different concentra-
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tion of body fat [11], so a standard reference is used. Wool wax (adeps
lanae anhydricus; antioxidant = max. 200 ppm BHT), in its properties
approximately similar to human body fat, is used for reference.

3 Theory/Calculation

The Lambert-Beer law in MIR spectroscopy is applied to the MIR scan-
ner presented here. The measured absorption A is composed of the
negative decadic logarithm of the transmission T (Equation 3.1). In this
case, the absorption is proportional to specific sample concentration c,
thickness of sample material 4 and material-dependent extinction coef-
ficient € [12].

I 2
A= —loglo(Tz) = —log1o <Laserl) = e€cdsypstance (3.1)

ILaserZ

The transmission T is determined by the ratio of the two lasers. Here,
the exponential dependence of the transmission represents the twofold
sample passage of the laser light. This is comparable to DRIFTS (diffuse
reflectance infrared fourier transform spectroscopy). The absorption
A can be calculated by transforming the transmission. Based on this
assumption, conclusions can be drawn as to the measured material
thickness ds,psance at @ constant concentration ¢ of a substance.

In theory, the aim is to set one of the two lasers (Laser 1) to the wave-
length of a transmission minimum and to set the second laser (Laser
2) to a transmission maximum. Since the extremes are accompanied
by rapid increases or decreases of the flanks, it is not always possible
to adjust the laser exactly to theoretical values. Therefore, it is of deci-
sive importance to locate a laser (Laser 1) within a band exhibiting an
increased absorption coefficient. In contrast, the second laser (Laser 2)
has to be located in a range that has a lower absorption level than Laser
1. In Figure 3.2, the lasers used in this work are highlighted in the spec-
tral transmission range of fat and oil. Laser 1 is set to the wavelength
A =3417 nm (2926 cm ') and laser 2 to the wavelength A = 3584 nm
(2797 cm~1!). The samples presented in Figure 3.2 show the C-H vi-
bration the lasers are adjusted to. The adjusted wavelengths therefore
absorb substances from triglicerides in combination with long-chain
fatty acids.
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Figure 3.2: Relative transmission of fat (Adeps Lanae) and rapeseed oil. Both

exhibit differences in transmission at wavenumbers from 2500 cm™~! to 3300
cm~!. The wavenumbers of the lasers are located in the band between 2980
cm~ 1 and 2700 cm~!. Laser 1 assumes the wavenumber 2926 cm ! and Laser

2 the wavenumber 2797 cm™1.

4 Results and Discussion

The scan results presented in Figure 3.3 depict the measurement results
with the MIR scanner in raw data format. Figure 3.3a) represents the
scan result for Laser 1 with wavelength 3417 nm. In contrast, Figure
3.3b) shows the scan result of Laser 2 with wavelength 3584 nm. Figure
3.3c) shows the calculated transmission T2 as an enlarged section of the
measurement results. Based on this calculated and magnified section,
the profile thickness is evaluated and demonstrated in the following.

These measurement data are linked to a calibration subsequently
(Figure 3.4). Hence, the absorption of different layer thicknesses is
determined for both wavelengths. After scanning the layer thicknesses,
a linear calibration curve of wool wax fat is generated. The related
relative transmission of both laser wavelengths as a function of the
penetration depth is shown in Figure 3.4a).
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Figure 3.3: Scan result of a human fingerprint. a) Scan of the fingerprint with
wavelength 3417 nm. b) Scan of the fingerprint with wavelength 3584 nm. c)
Section of calculated transmission T2(zoomed).
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Figure 3.4: Depiction of the penetration depth for fat. a) The intensity of the
two wavelengths decreases for both lasers with increasing penetration depth.
b) Determination of the penetration depth using a calibration model for fatty
substances (especially finger fat).

By determining the penetration depth, a calibration is performed en-
abling the penetration depth to be assigned to an absorption value.
The absorption is obtained by applying Equation 3.1 to the determined
penetration depth values as shown in Figure 3.4a). As a result, a lin-
ear calibration curve can be generated for layer thicknesses between
25 pym and 400 pm (Equation 3.2). The calibration curve is illustrated
in Figure 3.4b). For a penetration depth less than 25 nm, the coeffi-
cient of determination decreases, this is equivalent to a nonlinearity in
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a calibration curve associated with it. This is due to insufficient ab-
sorption at this layer thickness. In contrast, the maximum penetration
depth to be determined is limited to 200 ym. The signal-to-noise ratio
(SNR) is not sufficient for data processing at higher penetration depths.
Theoretically, a penetration depth of up to 400 pm could be achieved.
By linking the calibration curve with Lambert-Beer, an unknown layer
thickness d can be calculated from the measured absorption A (Equa-
tion 3.3).

A=md+b (3.2)

_[(A-b o 8d dy—dy

This mathematical method is applied to the following scan results
of Figure 3.3c). A layer thickness is assigned to each image pixel and
related to the absorption information. This results in a topographic
image of the fingerprint. Image processing procedures are used to
assign a visual colour to each layer thickness. The calculated scan result
is presented in Figure 3.5.

Figure 3.5 demonstrates an average profile height between 150 pm
and 200 pm for this fingerprint. In addition, it is shown that the
background of the fingerprint is eliminated by calculating the absorp-
tion differences (Equation 3.1). For improved visualization, Figure 3.6
shows the height profile on the plot line (PL) marked in Figure 3.5. The
widths, the heights and distances between the papillary ridges can be
determined directly from such a plot.

Figure 3.6 indicates that the papillary ridge and the associated
heights of the finger fat are not contiguous. In addition, peaks are rec-
ognizable by increasing and decreasing profile heights. This is due to
direct reflections from structural changes. To reduce the associated in-
crease in intensity and the resulting falsified profile height, a smoothing
filter (Savitzky-Golay filter) can be superimposed on the structure [13].
This generates a more homogeneous continuous height of the finger-
print. The disadvantage is the elimination of interrupted structures
within the papillary ridge and the associated loss of information.
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Figure 3.5: Absorption image of the fingerprint depending on the depth infor-
mation of the fat layer. The plot line (PL) indicates a single line represented in
Figure 3.6.

5 Conclusions

In this work we proved the possibility to visualize fingerprints with
the MIR scanner and assign topographic information to the generated
image. A scan rate of 300 kS/s in combination with the spatial scan
resolution of 20 pm provides fast, high spatial resolution scan results.
Here we rely on the absorption measurement with two different wave-
lengths, exhibiting absorption differences of long-chain C-H bonds.
In addition, we demonstrated a calibration method based on known
mathematical correlations that enables conclusions about the thickness
of finger mark. The results are generated immediately from the mea-
sured data. Thus, the fingerprint is displayed as an image with height
information of the analyzed sample. The resulting image, containing
the 3-dimensional structures of the fingerprint, can thus be passed on
to the forensic analysis [3] for further processing. Further test series
for thin layers (< 25 um) will be performed with nonlinear regressions.
In addition, an adjustment of smoothing algorithms is necessary, de-
pending on the examined structure and associated interruptions. Fin-
gerprints on various surfaces have to be checked as well.
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Figure 3.6: Representation of the profile depth of the scanned fingerprint as an
original and smoothed detection signal with colour assignment of the profile
height.

Furthermore, this measuring principle is applicable to oil and as-
sociated oil residues. For this purpose, a new calibration has to be
performed for the respective oil, as this absorbs differently in liquid
form as shown in Figure 3.2.
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Spatially resolved ingredient detection in spice
mixes using 3D convolutional neural networks
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Abstract A method using spectral information to detect sub-
stances in mixtures is given. The presented convolutional neural
network is using three-dimensional convolutions to process hy-
perspectral images. Reflectance values can be fed directly into
the network and are not preprocessed. Due to the architec-
ture, the neural network performs a spatially invariant opera-
tion. Detection performance is demonstrated by a dataset con-
taining spice mixtures.

Keywords: Hyperspectral image, optical measurement, convo-
lutional neural network, three dimensional.

1 Introduction

Optical measuring methods play a major role in food investigation as
non-contact and non-destructive methods. They can be used for quality
assessment, e.g., by detection of undesired substances. Hyperspectral
images (HSIs) are often used if normal colour images do not provide
enough information. While the latter only comprise three colour chan-
nels (red, green, and blue), the former contain up to several hundred
wavelength channels [1]. By this additional information, conclusions
about material properties can be drawn [2-4].

Artificial neural networks have been very successful in recent years.
Convolutional neural networks (CNNs) are particularly successful in
image processing [5]. They are also used to process HSIs, but many
approaches only perform a convolution along either the spectral di-
mension [6] or the spatial dimensions [7,8]. To merge information of
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the two domains, several approaches exist in literature. The mayor
amount uses fully connected layers [9,10]. In [11] three-dimensional
(38D) convolutions are used, however, fully connected layers are needed
in later process steps to get an output value for each pixel.

In our approach, 3D convolutions are used in the first layers to pro-
cess information of spatial and spectral domain simultaneously. The
following layers use 1 x 1 two-dimensional (2D) convolutions along the
spatial dimensions, which can be regarded as a full connection along
the spectral dimension. Because of this, the approach is spatially in-
variant. Furthermore, we do not require any preprocessing such as
principle component analysis, used in [7], for instance. Therefore, the
CNN uses the complete information provided by HSIs. In this work,
the approach is applied to detect substances in mixtures. The aim is to
decide whether a substance is comprised in a pixel.

The rest of the paper is organized as follows: Basics of neural net-
works and CNNs are given in Section 2. In Section 3, the structure of
the proposed CNN is described. The results attained by this CNN are
shown in Section 4. A brief summary is given in Section 5.

2 Convolutional neural networks

Neural networks are black box modelling approaches in which data
is used to learn non-linear functions. The basic modules of neural
networks are called neurons, which are inspired by biological neurons.
Each neuron consists of several inputs and one output. The neurons
are connected with each other, and those connections can end up in
loops. Feedforward neural networks, as used in this work, have no
loops, and neurons are arranged in layers. Every neuron of each layer
is connected to every neuron of the previous layer and to every neuron
of the following layer. There are no connections within a layer. Such
layers are called fully connected layers. A single layer is described
mathematically as

h=g(Wx+b), (4.1)

where h € RK is the output and x € R/ the input of the layer. The
matrix W € RK*J contains the weights the input is multiplied by, and
b € RX is the bias vector. There is one scalar bias value for every
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neuron. The non-linear activation function ¢ is applied elementwise. It
is necessary to enable approximations of functions different from linear
functions. The neural network is trained by adjusting weights and
biases for every layer. This is done by optimizing an objective function.
In most cases, a gradient-based method is used. The gradient can be
backpropagated through the neural network to update all parameters
[12].

In CNNs, layers are not fully connected. Instead, the input is con-
volved with a filter kernel which is much smaller than the input. Af-
terwards, a scalar bias value is added. This leads to some advantages
in image processing. First of all, the same kernels are used for every
region of the image, and therefore, the operation is spatially invari-
ant. The spatially resolved approach proposed in this work exploits
this fact. Furthermore, spatial relations of data are taken into account.
Last but not least, significantly less parameters are required compared
to fully connected layers. Only the parameters describing the kernels
and the biases have to be trained.

An important aspect to understand CNNs in image processing is the
treatment of channels or feature maps. A convolution is performed
along spatial dimensions (two dimensions for colour images). This is
done with a different filter kernel for every channel (or feature map).
The output of this operation is added up to a new feature map. This
is done with several filter kernel sets to produce more feature maps
and, thereby, extract more features [5]. It can be interpreted as the
network is convolutional along spatial dimensions and fully connected
in spectral direction (see Fig. 4.1). A bias value is added to every pixel
of the output feature maps afterwards. In Fig. 4.1, a 2D convolution is
shown as an example.

In most CNNSs, pooling layers, in which local clusters of values are
combined to a single value (see e.g. [13]), are also used. Commonly,
and also used in this work, is max pooling, which propagates only the
largest value to the next layer. Using pooling leads to less parameters
in the subsequent layers, which results in shorter training times and
reduces the risk of overfitting.

All basics provided in this section are used in the next section to
design a CNN consisting of convolutional and pooling layers.
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Figure 4.1: Principle of a convolutional layer (without bias): The input data
has Cj,, feature maps of size Hj, X Wi, pixels. The input is convolved with Cout
sets of filter kernels. Each set contains one filter kernel for each input feature
map, respectively. The sum of the convolutions of each filter kernel set results
in an output feature map. Therefore, the output has Coyt feature maps of size
Hout x Wout pixels.

3 Neural network design

The input to the CNN are HSIs, which can be interpreted as 3D data
cubes with two spatial and one spectral dimension. To each element of
the cube a reflectance value is assigned.

The proposed CNN consists of two parts: The first part exploits 3D
convolutions along the spatial and the spectral dimensions resulting in
3D feature maps. After each convolutional layer, a pooling layer along
the spectral dimension is used. For this reason, the spatial resolution
is preserved (see Fig. 4.2, first row). This design allows for getting
the position of a detected ingredient. In the second part, the 3D feature
maps are transformed into 2D feature maps by splitting them along the
spectral dimension (see Fig. 4.2, second row). For example, W feature
maps of size X x Y x A lead to W - A feature maps of size X x Y after
splitting. It is an important step in our approach to combine 3D con-
volutions in the first few layers with 2D 1 x 1 convolutions along the
spatial dimensions in the subsequent layers (see Fig. 4.2). The 3D con-
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Figure 4.2: Proposed net architecture: The first three layers are 3D convolu-
tional (conv) layers followed by a pooling layer (pool), respectively. The last two
layers perform a 2D 1 x 1 convolution. The square brackets define along which
dimensions the operation is performed (spatial dimensions: x,y, spectral di-
mension: A). Note that only one 3D feature map is shown for each step.

volutional layers are used for feature extraction. The 2D convolutional
layers operate as fully connected layers along the spectral dimension.

The CNN produces a map for each ingredient as an output. Having
the same spatial resolution as the HSI, the maps may indicate where
an ingredient is detected. The operation performed by the CNN is
spatially invariant because only convolutions are performed along the
spatial dimensions (see Section 2).

The CNN shown in Fig. 4.2 is evaluated in Section 4 with different
filter sizes. In all experiments, batch normalisation is performed before
activation [14], and in each layer, the sigmoid function ¢ : R — R is
used as the activation function:

o(z) = . 4.2)
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4 Experimental results

The dataset used for training and evaluation of the CNN was acquired
in the image processing laboratory of the Institute of Industrial Infor-
mation Technology. Eleven spices were mixed in 155 mixtures, each
consisting of maximum four different spices. Hyperspectral images of
the mixtures with a spatial size of 24 x 24 pixels were acquired. They
consist of 91 wavelength channels from 450nm to 810nm. A white
balance was applied in order to ensure reflectance values as data. The
dataset is divided into a training and a test set with a ratio of 2:1. The
input of the CNN are HSIs, each containing several mixtures (see Fig.
4.2).

To evaluate the result F-measure F is used. It is the harmonic mean
of precision PRE and recall REC:

2-PRE-REC
F = —-——————— 4.
PRE+REC’ (43)
TP TP
PRE=gpir NS 44

In Equation (4.4) TP is the number of true positives, FP the number of
false positives, and FN the number of false negatives.

In the following sections, several parameter sets are compared with
both each other and with the method provided by Makantasis et al. [7].
This method only uses 2D convolutions along the spatial dimensions.
The spectral dimension is treated as a channel or feature map, respec-
tively (see Fig. 4.2, second row). To account for the spectral infor-
mation, Randomized Principal Component Analysis (R-PCA) is used
along the spectral dimension. For all experiments, the sizes of the filter
kernels were chosen according to [7].

4.1 Comparison of filter sizes

In this section, an appropriate size for the filter kernels used in the 3D
convolutional layers is determined. The size of the 2D filter kernels is
restricted to 1 x 1. In Table 4.1, the number of output feature maps for
all experiments is given. The number of input channels is one.
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Table 4.1: Number of the output feature maps of each convolutional layer: The
number of input feature maps of the next layer corresponds to the number of
output feature maps of the current layer, except for layer 4. Here, the number
of input feature maps is the number of output feature maps times the size of
the spectral dimension of layer 3 (see Section 3).

Convolutional layer 1 2 3 4 5
Output feature maps 16 32 64 66 11

In Figure 4.3, several filter kernel sizes are compared using F-
measure. The proposed CNN performs better than the method by
Makantasis et al. [7] for all filter sizes. This implies that using 3D con-
volutions works better than using R-PCA for feature extraction. The
inclusion of spatial information (wyxy > 1) improves the results, but
depends on the setting of the edge lengths wyy and w-. If the spatial
edge lengths are chosen too large, the performance decreases. The best
result is achieved for w- = 7 and wyy = 3. In addition, for smaller w-
larger wyy are beneficial.

The detection performance depends not only on the parameters, but
also on the input data. Therefore, all the spices contained in the mix-
tures are evaluated separately in the next section.
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Figure 4.3: F-measure values for several filter sizes used in the first three layers
(see Fig. 4.2, first row). Here, wyy is the spatial edge length and w- the spec-
tral edge length of the filters. The method by Makantasis et al. [7] is used for
comparison with the recommended filter sizes.
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4.2 Comparison of spices

Figure 4.4 shows F-measures calculated separately for all spices. In
particular, the method in Makantasis et al. [7] and the proposed CNN
using two different parameter sizes are investigated. The parameter
size that leads to the overall best F-measure, and the one that leads to
the best F-measure including no spatial information (see Fig. 4.3) are
compared.

1.00
0.75 - 4
g
=
0
g 0.50 E
7
= 0.25 | _w)\:77wxy:3
Wy =T,Wey =1
I /ckantasis et al.
0.00 LA=m_E-R_E-R TR R O e
> S 5 AD 5 > & o 5 S
S & F F L & & & F er
& & & N QQ’Q ESEN S QQJQ o2
& J < & ‘v‘b & & &Q)@
& <o Q‘b‘ ééo
o‘z’&’x &

Figure 4.4: F-measure for all spices using the best filter size settings. Makantasis
et al. [7] with recommended settings is displayed for comparison.

The accuracy of spice detection variates between the spices for all
methods. The method by Makantasis et al. [7], using R-PCA and only
2D convolutions, shows much higher variance than our method, using
3D convolutions. Besides, spices, which bad detection performance us-
ing the method by Makantasis et al. [7], also lead to lower F-measure
values using the proposed CNN. We conclude that the accuracy of the
detection depends on the input data. This has much stronger implica-
tions for Makantasis et al. [7] than for our method.
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5 Summary

A CNN architecture using only convolutional layers along the spatial
dimensions has been presented. It was shown that the our CNN de-
sign performs a spatially invariant operation and maintains the spatial
resolution of the input HSI. The CNN is performing 3D convolutions
in the first few layers to extract features and is fed with non prepro-
cessed reflectance values. In this work, the goal of the CNN is to detect
ingredients in spice mixtures and was evaluated by a dataset created in
our laboratory. Including spatial information in the 3D convolutional
layers leads to the best results. Nevertheless, the size of the neigh-
bourhood should not be chosen too large. A CNN, which uses only
2D convolutions along the spatial dimensions [7] and R-PCA for pre-
processing, is outperformed by the proposed CNN. The accuracy of
detection depends on the considered spice mixtures for all evaluated
methods.

In the future, the CNN could be trained with data containing the
quantitative amount of spices and used to determine the amount of
ingredients.
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Abstract In the following paper, measurements of shortcrust
samples at different temperatures with high frequency electro-
magnetic waves are disclosed. Therefore, a vector network an-
alyzer is used to generate high frequency signals. The samples
were heated with a standard kitchen oven. Based on the mea-
sured signal parameters (magnitude and phase), the baking pro-
cess can be characterized. Thereby a process control in baking
operation is possible.

Keywords: Process control, radar, electromagnetic waves,
dough, shortcrust, dielectric, transmission, inline measurements.

1 Introduction

The production of foodstuffs like bakery products or convenience food
is even in a fully automated production line a critical task. Food is a
natural product and based on the provenance, the weather conditions
during the growth phase and the production process, the ingredients,
the quality of the base products the final products variate in quality and
consistence. It is the expertise of the people involved in the production
process who are compensating these fluctuations inside the process-
chain. Without the expertise of these bakers, brewers, confectioners
and others who change the process minimal based on their expertise
the quality of the final product will decrease considerable. However,
even these experts have problems when changes inside the machine
park influence the quality. The heating ramp of a backing oven can
change depending on the age of the machine or the running time. The
question is whether high frequency sensors can support this produc-
tion process. When an electromagnetic wave transmits a dielectric ma-
terial, the attenuation and the transition time of the wave are affected
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based on the dielectric constant of the material under investigation. In
the microwave region the humidity inside the product normally domi-
nates the behavior of the material, simplified a wet product attenuates
the signal more and causes a greater delay than a dry product. But
also smaller effects like the fermentation process of dough causes a
detectable change. In this paper, we have a closer look on the baking
process itself and investigate how the temperature profile influences
products like cookies. The idea behind these measurements is not to
control the temperature inside the oven but the speed of the produc-
tion line. To fulfill this task, it is necessary to investigate the behavior
of the dough during the baking process and to develop a measurement
configuration, which allows us to measure inside the oven.

2 System concept

One of the main advantages of the microwave frequency range is the
fact that electromagnetic waves in this frequency range penetrate the
most non-conducting materials. This effect can be used to guide a sig-
nal, which is generated outside the oven through the isolating walls
of the baking oven. Typically, the signals are guided by cables or
metallic waveguide. For the measurements, a frequency-modulated
continuous-wave radar (FMCW) is the best choice to perform the mea-
surements. FMCW is a short-range measuring radar, which is normally
used to determine the distance between the radar and an object. In this
radar systems, a signal of a known frequency is generated which is
modulated over a fixed period and varies up and down in frequency.
A part of the transmitted signal is coupled out and compared with the
received signal. Echoes from a target are then mixed with the transmit-
ted signal to produce a beat signal, which will give the distance of the
target after demodulation. Frequency difference between the received
signal and the transmitted signal increases with delay, and hence with
distance. The delay is not based only on the distance, a change of the
propagation constant also creates a change of the measured distance.
The water concentration typically dominates the value of the dielectric
constant but during the baking several events occur that can be used
to control the baking process. In a first step, it is necessary to check
which of the events causes a dominant change in the dielectric con-



Process control for the food production 47

stant in the microwave frequency range. The main challenge is that
the reduction of the water concentration in the dough superimpose the
smaller changes. The main events which typically occur during a bak-
ing process are the melting of the fats, the dying of the microorganisms,
gases form and expand, sugar dissolves, proteins, including enzymes,
coagulate, starches gelatinize, liquids evaporated, browning occurs on
crust, changes occur to nutrients and pectin breaks down. Some of
the events like the dying of microorganisms cause no relevant change
of the dielectric constant in the microwave region. Others like gases
which are formed or the evaporation of liquids cause a strong change
of the dielectric constant and can be used to steer the baking process.

3 Measurements

The measurement setup for performing the dielectric measurements of
attenuation and phase consists of a vector network analyzer for gener-
ating the electromagnetic waves in a given frequency range. The used
VNA is able to generate frequencies up to 67 GHz. However, this fre-
quency is too low for analyzation of the shortcrust. Therefore, two
extender modules were used to generate frequencies in a range from
75 to 110GHz. The investigated sample is measured in a transmis-
sion setup (see figure 5.1 a). In this, the electromagnetic waves of the
given frequencies were emitted via a dielectric drop antenna through
the sample and are received with another drop antenna on the back-
side of the sample. Due to the elliptical shape of the antenna a planar
phase front directly behind the antenna is formed (see figure 5.1 b and
c). Therefore, it is possible to arrange both antennae near to the sample.
The antenna has a 3 dB-aperture of around 5°. For the experiments, a
simple shortcrust is used as sample. The shortcrust consists of three
main ingredients: one part of sugar, two parts of fat, and three parts of
flour. Margarine is used as a substitute for fat. The dough is rolled out
to a thickness of 3 and 6 mm and cut into several squares (50x50 mm).
Then the shortcrust samples were baked for 13 minutes (or 18 min-
utes for 6 mm cookies). Therefore, a standard kitchen oven with lower
and upper heat mode was used. Every minute the dough was taken
out of the oven and the transmission through the dough was mea-
sured in amplitude and phase over the complete frequency band from



48 T. Hanf, S. Leuchs, and D. Niifller

(a) Transmission  (b) Elliptical shaped antenna (c) Antenna field pattern
setup

Figure 5.1: Measurement and antenna setup.

75 to 110 GHz. The measurement results of different same sized sam-
ples of the same manufacturing process show strong variation. Figure
5.2 exemplary shows the attenuation of 10 different shortcrust samples
at a heating time of 7 minutes. Due to the strong inhomogeneity in
the temperature distribution in the used oven, it cannot be guaranteed
that every sample has the same temperature and this leads to different
transmission behavior. Accordingly, multiple shortcrust samples were
measured and the results are averaged. It should be noted, that for ev-
ery measurement at a discrete time step of the heating process time a
new set of shortcrust samples is assembled to reduce undesired effects
of cooling and reheating of the samples. For the first view, measure-
ments with different oven temperature and different sample thickness
are done. The results are shown in figure 5.3, in the form of a relative
attenuation with respect to the attenuation at time step ty. The results
are averaged over all sample measurements (as mentioned above) and
over all frequencies too since there are no significant changes in the
frequency range over time visible. An oven temperature of 150 °C and
200°C is used. The curves show some characteristics. First the attenua-
tion of the samples increase until a spot where the attenuation reaches
a maximum value. From this point on the attenuation more or less
linearly decreases until the attenuation later remains on a saturated
level. This behavior is reproduced by several measurements. As men-
tioned above the dough consists of sugar, margarine and flour. The
amount of water in margarine is about 20 %. By heating the dough, the
water inside the dough is also heated. The dielectric losses of water
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Figure 5.2: Measured attenuation of 10 different shortcrust samples at a time
step.

increase with temperature [1] and the attenuation increases. This pro-
cess is depicted in the measurement data. On the other hand the wa-
ter evaporates due to the increasing temperature and at one point the
attenuation decreases. In the measurement plot the increase in atten-
uation corresponds with a decrease of the curve (relative attenuation)
and vice versa. During the series of measurements, it appeared that the
dough samples were noticeably mushy at the beginning. Only from a
temperature of about 90 °C, the dough pieces took a firmer structure.
This temperature coincide with the measured dip in the attenuation
curve. From this point on the outer structure of the samples becomes
drier (from the outside to the inside) and the attenuation decreases.
Figure 5.4 shows the surface temperature of the samples in the heating
process. After a strong raise the temperature slowly reaches a level
with a quite smaller raise. The dip in the curve for the experiments
with an oven temperature of 150 °C is at 5 minutes. By increasing the
temperature to 200 °C the dip moves to a shorter time (3 minutes). By
increasing the temperature the described process is accelerated and the
characteristic dip is reached faster. Increasing the thickness from 3 to
6 mm leads to a massive increase in attenuation, due to more mass of
the sample. The dip does not change its position, at least not within
the limits of 1-minute measurement quantization. The thickness of the
sample seems to have a lower influence on the bounding water mecha-
nism.
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Figure 5.3: Influence of heat and thickness variation on relative attenuation.

Besides the process of water getting free and evaporated, more pro-
cesses take place. These are, amongst other things, the volume increase
due to expanding gases in the shortcrust, denaturation of proteins and
starch gelatinization [2]. To investigate these processes, further series
of measurements with different dough compositions were carried out.

Figure 5.4: Surface temperature of dough pieces during heating process.

First, the amount of margarine is increased by 10 % and in another se-
ries the amount of flour is also increased by 10 %, to see the effects on
the measured data (attenuation and phase shift). The results of these
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measurements are shown in figure 5.5. In the left plot of figure 5.5
the relative phase shifts (with respect to the shift at time step #p) of
the measurements are shown. In the first minutes the phase barely
changes. The phase shift of an electromagnetic wave refers to a time
delay, which is caused by longer transit time through a material. Af-
ter around 4 minutes, the phase changes abruptly. After the beginning
of heating the samples, the core temperature begins to increase more
and more. This leads to an expansion of any gases that are inside the
dough, for example air that has come into the dough by kneading. In
the experiments, this expansion was observed after around 3-4 min-
utes. Due to the physical expansion of the samples, the phase abruptly
changes. After the abrupt change, the phase constantly changes with a
lower slope. By changing the composition of the shortcrust and adding
more flour and margarine, the phase and attenuation results for flour
and margarine look very similar. In contrast, the abrupt phase shift in
the standard recipe is quite higher, the slope after has quite the same
shape. The dip in attenuation curve occurs for the changed compo-
sition 1 minute prior to the standard composition. By adding more
flour the dough becomes a higher contents of starch and proteins. Its
shape is a little bit more brittle since the amount of water is less and
the gelatinization process is more difficult. By adding more margarine
the amount of water and fat increases. With increasing temperature
the attenuation of fat generally increases, but the changes are not that
high [3]. Regarding the measurement curves there are some visible
effects by changing the composition of the dough. To make a more ac-
curate statement of which processes have which influence on the trans-
mission behavior, more measurements have to be performed, for ex-
ample with more different compositions. In general, it should be noted
that there are several points that affect the measurements. It has been
found that the dough pieces do not all have the same transmission be-
havior due to manufacturing variations after production. This error is
attempted to counteract by averaging the measured data. Furthermore,
in the oven used, no constant nor uniform heat distribution can be en-
sured, so that the dough pieces do not all have the same temperature
or temperature distribution. In addition, it can not be guaranteed that
the dough pieces all have the same thickness, since the production was
done by hand. All these sources of error influence the measurement
and impede the interpretability.
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Figure 5.5: Measurement data for different dough compositions.

4 Summary

The results of the paper demonstrate that different events during the
baking process can be observed in the microwave region by measur-
ing the phase and amplitude behavior of a transmitted electromagnetic
signal. These events are for example the volume increase due to expan-
sion of gases, denaturation of proteins and starch gelatinization. The
investigations have shown that a baking process can be mapped in the
attenuation and phase behavior of electromagnetic waves. The mea-
sured curves show some characteristics that can be used for controlling
the baking process and predict its completion. Typically the presence
of water dominates the influence on the dielectric properties. To an-
alyze the influence of the other processes several measurements with
adapted compositions of dough were performed. The results between
the standard prescription and the adapted prescriptions have similar-
ities as well as differences. On the basis of the measurements carried
out, however, no statement can yet be made as to which processes have
which influence on the dielectric properties of shortcrust. It is neces-
sary to perform more measurements to further specify the behavior of
these influences.
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Abstract This paper discusses the accuracy improvement of au-
tomatic analysis of construction and demolition waste (CDW)
by using the combination of image analysis and spectral infor-
mation. This means using the combination of methods of image
processing, methods of spectral analysis and methods of super-
vised learning. The classification performances in colour images
and also in SWIR-spectrums showed, that we have to use a com-
bination of these two components in a combined feature vector to
improve the accuracy of analysis. Investigations on hybrid infor-
mation from colour images and SWIR-spectrums were done and
compared with the separate usage of these information sources.

Keywords: Construction and demolition waste, machine learn-
ing, image processing, spectral analysis, hybrid information.
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1 Introduction

Construction and demolition waste (CDW) are one of the biggest waste
flow in Germany with around 68 million tons per year [1]. At the same
time, the rate of the recyclable amount in producing of high-quality
materials like recycling concrete and recycling asphalt is still relatively
low, with 14 million tons per year (20.7%). For recycled masonry ag-
gregates and recycled mixed aggregates, the lowest recycling rates are
found because of the high heterogeneity and the mineral admixtures.
Therefore, the desired reuse of these materials is very difficult. An
important limitation factor is here the composition and heterogeneity
of the material. The materials from the dismantling of buildings can
be very heterogeneous in its material composition, depending on the
origin, the method of dismantling and the processing. Recycled ag-
gregates are characterized in the context of the quality assurance with
respect to various structural parameters as well as the material compo-
sition. The latter is determined by a manual sorting analysis at rela-
tively small sample sizes and is on the one hand very time-consuming
and on the other hand strongly subjective. On the basis of the param-
eters and the material composition, the possibilities of utilization or
possible fields of application are defined. The quality control is the
prerequisite for obtaining the product status. Quality-controlled prod-
ucts have better chances on the market and thus lead to an image gain
for the building material recycling industry and to a better utilization
of given resources. This requires processes for the analysis of recycled
aggregates, which provide precise, rapid and, above all, representative
results. There are no method or device is developed or in common use,
which allows a high performance recognition of all possible ingredi-
ents of CDW to realise an automatically and exactly analysis of CDW
samples in context of the guidelines to reach a high quality product for
building industry.

The results of own investigations by using image processing tech-
nics in colour images [2], [3] and spectral analysis methods in SWIR-
spectrums [4], [5] showed, that there is a possibility to improve the
accuracy of analysis by combining these two information sources in
one feature vector as basis for classification. So investigations in colour
images, SWIR spectrums and combined hybrid-information were done
and then compared with each other.
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We used pre-engineered system from project “Autopetrographie”
with a 3CCD-line-scan camera to capture colour images and the SWIR
spectrometer Polytec PSS 2120 with an InGaAs detector and a range of
1100 to 2100 nm to record spectrums of the CDW classes. In our clas-
sification routine we used supervised machine learning classifiers [6],
feature selection methods and principal component analysis (PCA).

Previous investigations on a separate colour image dataset showed
a total recognition rate of 96.9% and on a separate spectral dataset of
99.2% by using an optimized support vector machine with polynomial
kernel. We did know that we have to combine the image informa-
tion with the spectral information to enhance the recognition accuracy,
because the best achieved total recognition rate of 99.2% is not good
enough for an automatically analysis of the material composition of
CDW. So we combined the separate feature vectors to a hybrid dataset
for training and testing our supervised classifier.

2 Analysis of image information of several CDW classes

Like described in [3], we used the machine vision software HALCON
to extract features from colour images. It results in feature vectors with
more than 200 features (several contour, colour and texture features).
Our previous investigations on colour images showed, that not all these
features are relevant for classification and it’s necessary to reduce the
amount of redundant information by using feature selection methods.
Several feature selection algorithms were tested and compared with
each other.

All three feature selection methods (InfoGain, chiSquare, ReliefF)
showed similar results. The application of ReliefF results in a smaller
number of significant features in comparison to the two other methods,
but results are better only for one class out of five. The InfoGain fea-
ture selection algorithm provide a good balance between accuracy and
speed.

The classifiers svmPoly and MLP showed an underfitting by using
a low number of features and an overfitting by using a high number
of features. Recognition rates of classifiers are showing a plateau from
115 features. Further increase of the number of features resulted in a
degradation of classification performance. It means that the first 115



58 P. Kuritcyn, K. Anding, E. Linf, and G. Notni

features with the highest relevance are playing a crucial role for the
recognition task.

Fig. 6.1 shows the number of specific features among the best. Tex-
ture and colour features are most frequently usable until 115 features
(62 texture and 46 colour features among 115 best features based on
InfoGain—filter, i.e. 94% of these features). It means that texture and
colour feature are the most important features for recognition of CDW
in images.
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Figure 6.1: Number of specific features among the best, selected by InfoGain.
The application of principal component analysis on image dataset

showed a degradation of results. Therefore, this method is not suitable
for this task and leads to overcomplication of features.

3 Analysis of hybrid information of several CDW classes

In our investigations we used a dataset with similar size like in [5]
(nearly 1100 samples out of the 8 superordinated classes: lightweight
concrete, concrete, aerated concrete, sand-lime brick, dense and porous
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brick, gypsum and granite) (see Table 6.1). The image acquisition and
spectrum record were done parallel and as a result, the feature vector
of objects consists of both, the image and the spectral information for
the same object.

The dataset was used for training and testing of different classifiers:
SVM with different kernels, neural networks, decision trees and logistic
regression classifier.

The recognition rates of all classifiers on hybrid dataset are increased
between 1.6% (for Random Forest) and 11% (for MLP) in comparison
to separate usage of spectral information from this dataset. On the
contrary, the recognition rates decreased between 0.6% (for LogitBoost)
and 6.6% (for Random Forest) in comparison to separate usage of im-
age information from this dataset. A similar tendency was found on
dataset with 8 material classes: increasing between 0.4% (for svmPoly)
and 10% (for MLP) in comparison to usage of spectral information
and decreasing between 0.3% (for LogitBoost) and 7.7% (for Random
Forest) in comparison to usage of image information. It shows, that
spectral part of datasets consists irrelevant information, which leads to
degradation of results.

Table 6.1: Number of objects in hybrid dataset.

Material Number of objects in
dataset

Concrete 155

Granite 25

Gypsum 57

Lightweight concrete 200

Aerated concrete 225

Sand-lime brick 199

Dense brick 75

Porous brick 105

Feature selection and feature transformation methods are required
to solve this problem. Investigations in [5] showed, that it is necessary
to use PCA for the transformation of spectrum to achieve higher accu-
racy of analysis. The application of 16 first principal components for
classification results in reduction of computation time in comparison
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to using of all 501 wavelength specific features and leads to increase of
classifier performance.

The classifier svmPoly showed the highest recognition rate of 99.7%
on hybrid dataset with 8 material classes. The classifier MLP is close
with total recognition rate of 99.6%.

The current investigations on the spectral part of hybrid dataset have
confirmed previous results — the optimal number of principal compo-
nents is between 14 and 18 PC’s.

After optimization of spectral part, there is one more possibility to
improve results. Image part of hybrid dataset can be optimized as well.
Feature selection methods were used for this task.

Some classifiers like MLP and svmLinear showed weak dependency
of performance from number of used features. Other classifiers like
svmPoly and LogitBosst showed worse results by using low number
of features (underfitting) and by using high number of features (over-
fitting). Classifier Random Forest showed worse results by using high
number of features.
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Figure 6.2: Comparison of the accuracy of the SVM with polynomial kernel for
image, spectral and hybrid dataset (consists of 8 different material classes).
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The two algorithms InfoGain and PCA were applied on the part of
image information (120 features were selected) and spectral informa-
tion (16 PC were selected) of hybrid dataset respectively. The best re-
sults showed the SVM classifier with polynomial kernel (Figure 6.2). In
Figure 6.2 the comparison of the achieved accuracy of the SVM with
polynomial kernel is shown for the image dataset, the spectral dataset
and also for the combined hybrid dataset.

The achieved individual recognition rates based on the use of fea-
ture selection methods on the image feature vector and the principal
component analysis on the spectral feature vector. In summary the
individual recognition rates of the 8 classes achieved by SVMPoly for
the hybrid dataset showed a very high recognition performance with
nearly 100% (only for the classes lightweight concrete of 99.8% and for
concrete of 99.9%).

4 Summary

The investigations on combined information (hybrid information) from
colour images and SWIR-spectrums showed, that it’s possible to im-
prove the accuracy of analysis for the classes concrete, lightweight con-
crete, sand-lime brick and dense brick in comparison to the indepen-
dent usage of the separate data. With application of the InfoGain fea-
ture selection on colour image part and PCA on spectral part of the
data and using of a SVM classifier with polynomial kernel it’s possible
to achieve recognition rates of nearly 100% for all reviewed material
classes. Most of them showed a 100% recognition rate due to relatively
small dataset size. The results showed that a method for automatic
recognition of all common CDW classes could developed, which al-
lows a high performance recognition of all CDW classes to realise an
automatically analysis of the material composition of CDW in context
of the guidelines. It will be a reliable method for ensuring the qual-
ity of secondary building materials produced from construction and
demolition waste.

Further investigations are planned for testing the method on a bigger
dataset.
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Detection and classification of heterogeneous
materials as well as small particles using
NIR-spectroscopy by validation of algorithms
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Abstract Detection, characterization and sorting of plastics us-
ing Near-Infrared (NIR) Spectroscopy is State of the Art for plas-
tic recycling processes. NIR active materials could be character-
ized according to the specific spectra of each material in the NIR
spectrum. This works well for homogeneous materials, as they
have known uniform spectra. For the detection of heterogeneous
material and particles with smaller size than the resolution of
NIR camera, the analysis becomes difficult due to mixed spec-
tra. In this paper, the capturing of spectra information with a
NIR camera takes place simultaneously with the optical detec-
tion with a VIS (Visible light) camera. The NIR spectra and VIS
information are combined for the analysis of the mixed spectra,
because the higher resolution of VIS camera contributes to a clear
definition between the plastic materials and the background as
well as between the selected materials. In order to determine the
material composition, different kinds of mixed spectra of plas-
tics with background as well as of plastic composition were de-
tected and analyzed. The background is a conveyer belt made of
black plastic, and the studied types of plastics are Polypropylene
(PP), Polystyrene (PS), High-Density-Polyethylene (HDPE) and
Polyvinylchloride (PVC). For the analysis, several algorithms
will be developed and tested. In the end, a universal algorithm
which performs well for all kinds of mixed spectra will be se-
lected and improved.

Keywords: NIR-spectroscopy, resolution, analysis, sorting, het-
erogeneous material, Classification.
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1 Introduction

Plastic is one of the most widely used materials in the industry. De-
tection, classification and sorting of all types of plastic materials are
important processes in the recycling chain of plastics. The state of
the art for the sorting of plastics is sensor-based sorting with Near-
Infrared (NIR) spectra technology [1,2]. Different kinds of plastic ma-
terials show distinct spectra in the NIR wavelength area. According to a
known specific reflection of different wavelength, the material could be
detected and classified. The accuracy of NIR based sorting of plastics
can be higher than 98 % with a throughput up to 6tons/h [3]. How-
ever, the application of NIR classification is limited. In some cases, the
detection of heterogonous material can be a challenge due to the mixed
spectra, mainly because the pixels in the contact zones and at the object
edges are compositions of two or more types of materials [4]. The spec-
tra of these pixels are not unique anymore as pure material. Especially
when processing small heterogonous particles, the recognition of these
particles can result in a wrong classification due to low spatial resolu-
tion. In this context, the particle size for the detection with NIR tech-
nology is also limited. For example, during the quality-management-
process of the Polyethylene terephthalate (PET) flakes, the flakes can be
smaller than the resolution of NIR camera, the spectra are, accordingly,
mixing of PET and background. Thus, the classification is not possi-
ble. In this study, different types of mixed spectra were analyzed. The
pixels with mixed spectra are confirmed with the information from the
VIS camera due to its higher resolution. The mixed spectra of various
plastic materials with background has been captured and analyzed. Be-
sides, the mixed spectra of contact zones of different kinds of materials
have been investigated. Several algorithms were tested for the analysis
in order to compare with each other and find out the most suitable one
for the classification of mixed spectra. The aim of this research is to
investigate the possibility of the detection and classification of hetero-
geneous material and particles with smaller size than the resolution of
NIR camera through analysis of mixed spectra with different kinds of
algorithms.
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2 Material and methodology

The test rig used in this investigation was the NIR sensor-based sorting
system at the Department of Processing and Recycling (I.A.R.), RWTH
Aachen University. A simplified scheme of the test rig is shown in

figure7.1.
VIS camera NIR camera
—_— —
headlight headlight
sample

conveyor belt /
\ —>

® ®

Figure 7.1: scheme of the test rig at LA.R.

*

During the capturing process, the samples passed through the NIR
light and the cameras simultaneously on a conveyer belt. The halo-
gen lamps were placed with an angle to the capturing area of the
two cameras to ensure enough light for the process. The conveyer
belt of this test rig is made of black PVC, which reflects much less
light comparing to other colors. The NIR-camera used was the model
NI17E from Specim®, Spectral Imaging Ltd, with a frame rate up to
30fps. It captures the reflection of the light in the wavelength area
between 900nm and 1700nm. As the capturing of the wavelength
area between 900-1000nm was not stable, only the wavelength area
of 1000-1700nm was analyzed in this study. The spatial resolution
was 320 pixels in the capturing width with 400 mm and the spectral
resolution was approximately 5nm. In case of the VIS camera, the
manufacturer is IDS Imaging Development Systems GmbH. The cam-
era has a spatial resolution of 1280 pixels in the capturing width. The
frame rate is up to 1550 fps as line camera with an automated optical
inspection height of 4. Both NIR and VIS camera are applied as line
camera. For the VIS camera, the line-photos are merged together as
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a two-dimensional (2D) picture. The NIR camera, however, provides
each line a 2D picture, in which one direction is the spatial resolution
of 320 pixels and the other direction with 256 pixels is the spectral res-
olution. The reflectance is reflected from the picture with different grey
scales of each pixel. In the following, the grey scales are shown as a
line in diagram to be intuitive.

As the frame rate of VIS camera is more than 50 times higher, and the
spatial resolution 4 times higher than of NIR camera, a definition of the
contact zones of NIR picture was achieved with the help of VIS camera.
To clearly define the contact zones of the materials, the pictures of NIR
and VIS camera were combined. The capturing with NIR camera was
firstly merged to a picture to show the position and the size of the
samples.

2.1 Algorithms

Different kinds of algorithms are tested for the identification of the
mixed spectra. The most important character to determine the perfor-
mance of the algorithms in prediction is the accuracy of the classifica-
tion. Besides, the computation time was compared, since the results of
the classification are often needed immediately.

Manual classification

There are different studies in which various manual classification al-
gorithms for plastics detection with NIR spectra were developed [1,5].
The idea is to classify the materials according to the position and/or
ratio of the spectra peaks. The spectra can be raw spectra or the spec-
tra processed with first derivative. One of the examples is to distin-
guish among PET, Polypropylene (PP), Polystyrene (PS), High-Density-
Polyethylene (HDPE) and Polyvinylchloride (PVC) through calculating
the ratio of the reflectance in two different wavelength areas, 1656 and
1724 nm. The algorithm was capable to classify the materials according
to the known ratio range of each plastic type, but was limited to the
five types mentioned above [1]. The mixed spectra were firstly ana-
lyzed manually based on the classification algorithms developed. The
reflectance of the contact zones with different compositions are shown
and the characteristic peaks were found manually. The performance
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of the peaks, e.g., the position, the level and the ratio of positive and
negative peaks were analyzed and the most relevant characteristic per-
formances are chosen as classification factor for the mixed spectra.

Machine learning

Machine learning provides automated methods for data analysis to
make computers modify or adapt their activities. In other words, with
machine learning, the patterns in data are automatically detected and
used to predict future data, for example, to classify the data [1, 3].
There are different types of machine learning and numerous algorithms
within them. The algorithms which are tested in this investigation are
decision trees, k Nearest Neighbors algorithm (KNN) and Support Vec-
tor Machines (SVM).

Decision tree Decision tree for classification has been more popular
over recent years due to low computational cost. It is important for
machine learning that the algorithm works as fast as possible since
the results are often needed immediately for sorting or online quality
control. The idea of classification tree is to start at the root of the
tree and progress down to the leaves, until the features match and the
decision is made. In other words, the classification is broken down
into a set of logical disjunctions about each feature in turn. [5,6] The
constructing of decision tree algorithms is based on heuristics starting
at the root and choosing the most informative feature at each step to
construct the tree gradually [5, 6]. Firstly, the root is assigned a label
according to a major vote among all labels over the training data. For a
new node, a series of iteration is carried out and the effect of splitting
a single leaf is examined on each iteration. The split which performs
best among all possible splits is chosen to be a new node and local
optimization is made at the construction of each node [6].

kNN Nearest Neighbor (NN) algorithms belong to the simplest of all
machine learning algorithms for classification. The idea of kNN is to
look at similar data and choose to be in the same class as them without
searching for a predictor within some predicted class of functions. The
training set is memorized, the label of any new instance is predicted
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on the basis of the labels of the closest neighbors in the training data.
In other words, NN is a learning-by-memorization type of rule. [5, 6]

The datapoints which positioned within input space are classified
according to the nearest neighbors. K nearest neighbors could be iden-
tified and the class is set to the most common one out of those for the
nearest neighbors. The choice of k is important. If k is too large, the
consideration of points which are too far away reduces the accuracy. In
case k is too small, the methods are sensitive to noise. Computing the
distance to the datapoints in the training set is required for the algo-
rithms, which can cost relatively much time. The computational costs
are higher as the number of dimensions grows. [5]

SVM The SVM is one of the most popular and widely used algo-
rithms in modern machine learning due to the computational advan-
tages over probabilistic methods. It provides impressive classification
performance on relatively large datasets. [5, 6]

SVM algorithm was originally designed for learning linear predictors
in high dimensional feature spaces for binary classification. The data
are classified through searching for largest margin as large as possible.
Figure 7.2 shows the principle of the SVM binary classification. The
red and black lines are possible separators to classify the data and the
separator in black should be chosen as separator due to largest margin.

(6]

Figure 7.2: The principle of SVM binary classification.
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The SVM is also capable to classify data which are not linearly sep-
arable. The solution is to introduce some slack variables so that the
separator is a combination of various linear separators. Besides, SVM
is not limited in two-class classification. For the problem of N-class
classification, the SVM can be trained to learn how to classify one from
all other classes, then a new SVM which classifies a new class from all
others. This means, for N-class classification, there are N SVMs. [5]

2.2 Materials

For the analysis of mixed spectra, samples made from PP, HDPE, PS
and PVC were collected. The materials were divided equally into two
groups. The first group is for learning information. The mixed spectra
of the first group were analyzed manually or learned with machine
learning algorithms. The second group contributed to test the accuracy.
For all the algorithms, the information for learning was the same and
the data for testing purpose were identical.

3 Results and discussion

According to the known frame rate ratio and the resolution of both
cameras, the relationship between the same pixels in NIR picture and in
VIS picture could be confirmed. In the picture of VIS camera, the con-
tact zones were chosen and the coordinates thereof were determined,
the corresponding coordinates of the pixels in NIR picture can be ac-
cordingly calculated and clearly defined. The spectra data of the pixels
are then analyzed.

3.1 Mixed spectra of plastics and background

For the analysis of the mixed spectra of PP, HDPE, PS and PVC with
background, there are 9 classes for the classification: Background, pure
PP, pure HDPE, pure PS, pure PVC, PP with background, HDPE with
background, PS with background and PVC with background.
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Manual classification

To analyze the data manually, the data for different classes were in-
dicated in diagrams to find out the characters which are unique that
could be used as classification factor. Figure 7.3 shows the raw spec-
tra and the spectra process with the first derivative of learning pixels
for PP, mixed pixels with PP mixed with background as well as back-
ground as examples. For the spectra processed with the first derivative,
the thick lines are the average of all the values for each wavelength area.

raw spectra
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Figure 7.3: Raw spectra and first derivative for the manual analysis (from top
left to bottom right: Raw spectra of PP, PP with background, background; first
derivative of the same sequence).

According to the raw spectra, the differences between PP, back-
ground and PP with background were considerably big. The re-
flectance of PP was stronger than PP with background and the back-
ground reflects, as mentioned above, much less light. A general clas-
sification of PP, PP with background and background can be achieved
with raw spectra values. However, in order to classify different kinds
of mixed spectra, the classification with average values of reflectance
is not sufficient. Moreover, the spectra have a large range in the re-
flectance of certain wavelength, see raw spectra of PP with background.
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Since the form is characteristic for the classification, the spectra pro-
cessed with first derivative were further analyzed and trained to clas-
sify the mixed spectra, along with the average value of raw spectra. The
average value contributes to the classification between plastic, plastic
with background and background, the first derivative is responsible for
the classification of types of material. Looking at the first derivative of
PP and PP with background, the peaks have the same positions, only
the values are different. Thus, the values of the peaks are the classi-
fication factor between pure materials and the same type of material
with background. Figure 7.4 shows the mixed spectra of PS with back-
ground, PVC with background as examples and the average values of
all kinds of mixed spectra in one diagram.

2000

2 1500
I

10 100 1500 00 1300 1400 1500 0 1300 1400
wavelength(nm) wavelength(nm) wavelength(nm)

Figure 7.4: Mixed spectra processed with first derivative of PS with back-
ground, PVC with background and the average values (Red: HDPE with Back-
ground; Yellow: PP with background; Green: PS with background; Blue: PVC
with background).

In the first two figures, the spectra are very similar to each other
and it is difficult to classify the data. In the diagram at the right side,
only the wavelength area from about 1050 to 1670 nm is shown to make
the difference clearer. From the results, it can be seen that the distinct
differences of HDPE with background, PS with background and PVC
with background are in the wavelength area of approximately 1150 to
1300nm. The characteristic peaks in this area are located in different
wavelength, some of which are positive peaks and some are negative.
Based on the information above, the algorithm for manual classification
is defined as following:

¢ Pre-classification of the background: find the background with
the average values of reflectance using a relatively low threshold,



72 X. Chen and A. Feil

as the average value of some of the pixels with mixed spectra are
similar to the value of background.

e Find the important peaks of the spectra processed with first
derivative for each material, background included, and classify
the pixels in the same class if they have the similar peaks

¢ According to the average values of the raw spectra and the values
of peaks, the pixels are classified to pure material or material with
background

The classification results of 4 samples with different materials as ex-
amples are shown in figure 7.5. The samples in the picture are HDPE,
PP, PS, PVC from left to right. The colors which represent the mixed
spectra of the materials are the same as the thick lines in figure 7.3, the
black represent the background. The greyscales from low to high are
HDPE, PP, PS, PVC.

Figure 7.5: Classification results with manual classification.

As a result, the classification worked properly for most of the pixels
for pure material. For the classification of mixed spectra, only pixels
of PP with background were correctly classified. The accuracy for clas-
sifying other mixed spectra was low. In some cases, the background
pixels were classified as mixed materials. The accuracy of the classifi-
cation was about 90.7 % and the computational time of the classification
was 5.18 seconds.
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Decision tree

The information used for the analysis of the manual classification was
learned with decision tree algorithms. Figure 7.6 demonstrates the best
classification resulted from decision tree.

Figure 7.6: Classification results with decision tree algorithm.

With decision tree algorithm, the mixed spectra of HDPE with back-
ground, PP with background could be mostly classified to the right
group, as well as pure PP and PS. The classification of pure HDPE
and PVC was not very successful, as some of the pixels were classi-
fied as PS. The accuracy of classification for mixed spectra of PS with
background was lower comparing to HDPE and PP with background.
Almost all the mixed spectra of PVC with background were not clas-
sified correctly. The accuracy for training and classification was 91.5 %
and the computational time was 2.85 seconds.

kNN

Figure 7.7 shows the classification results with kNN algorithm.

With kNN algorithm, almost all pixels of pure HDPE, PP and PS
were classified properly. The accuracy of the classification of PVC was
lower than the others, similar to the decision tree algorithm, a part of
the pixels were classified as HDPE. For the classification of the mixed
spectra, the accuracy decreased, since for HDPE with background and
PP with background, some of the pixels were classified as background.
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Figure 7.7: Classification results with kNN algorithm.

The classification of PS with background and PVC with background
was not successful, only few pixels were right classified. The accuracy

for training and classification was 89.4 % with a computational time of
17.4 seconds.

SVM

Figure 7.8 shows the best classification achieved of all the SVM algo-
rithms.

Figure 7.8: Classification results with SVM algorithm.

With this algorithm, the classification of both the pure material and
mixed spectra was successful, comparing to other algorithms. How-
ever, the accuracy of classification of PS with background and PVC
with background was lower than of other classes. The accuracy for the
classification was 96.1 % with a computational time of 27.1 seconds.
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The results of the classification with all kinds of algorithms show that
the classification of mixed spectra of PS with background and PVC
with background was more difficult than other classes. The reason
for this is that the mixed spectra of HDPE with background, PS with
background and PVC with background are very similar, like figure 7.4
shows. It must be noticed that most of the wrong classification was
PS with background and PVC with background as HDPE with back-
ground, due to more data of mixed spectra of HDPE with background
than the other two in the learning data. The pixels for the classification
were more likely to be classified into the class with more data. An-
other reason why the classification accuracy is not high enough is the
small size of the database. There were enough spectra for the learning
of pure materials, for the mixed spectra, however, much less. A larger
size of database brings, in the other side, a problem of increased com-
putational time, especially for the KNN-Algorithms, as the distance to
the datapoints must be calculated and compared.

3.2 Mixed spectra of different compositions of plastics

As the conveyer belt of the test rig was also plastic, the analysis of
the mixed spectra of plastics with background is a special case of the
analysis of different kinds of compositions. In that case, one of the
components was certain, the conveyer belt. In order to classify the
mixed spectra of the contact zones and the pure materials, there are
11 classes: Background, HDPE, PP, PS, PVC, HDPE with PP, HDPE
with PS, HDPE with PVC, PP with PS, PP with PVC, PS with PVC.
The analysis methods were the same as for the analysis of plastics with
background. The classification results are shown below in table 7.1.

Table 7.1: Accuracy and computational time for the analysis of mixed spectra
of different plastic compositions.

Algorithms manual | Decision Tree | kNN | SVM
Accuracy (%) 89.3 91.0 925 | 96.5
Computational time (seconds) 9.8 104 28.7 | 48.8

The classification results show that the accuracy with SVM algorithm
was higher than others, like the analysis of plastics with background.
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However, the computation costed significantly more time. It must be
mentioned that the accuracy and the computational cost are dependent
on the size of learning information and the pixels chosen as learning
information. In this case, the analysis and classification of 6 samples in
one process results in a higher computational cost. One of the solutions
to reduce the computational time of SVM is to analyze based on lines
instead of objects. The classification can be more than 300 times faster,
since the computational time listed above is for over 300 lines.

4 Conclusions

The analysis of mixed spectra of different kinds of plastics with black
PVC as background, as well as of different kinds of compositions have
been implemented. The classification of each of them was achieved
through manual classification, decision tree algorithms, kNN algo-
rithms and SVM algorithms. The results demonstrate that the clas-
sification of mixed spectra is generally possible and, the accuracy to-
gether with the computational time are depending on the used algo-
rithms. For the classification of the mixed spectra of plastics with back-
ground and composition of plastics, the SVM algorithms proved to be
the more accurate one, although the computation costs more time than
the other algorithms. Classification manually is possible for pure ma-
terials, but it does not work properly for the mixed spectra. However,
it must be mentioned that for the algorithms for manual classification,
the way of programming is for each person different and the accuracy
and computational time are depending on the program. In general,
machine leaning algorithms are more universal, as the only effort is to
pre-processing of learning information as input for the computer, the
classification can be done automatically. This is easier for especially
numerous types of materials, the data can be added and learned faster
than manual analysis, since for manual analysis, data of all types of
material must be compared.

With the successful analysis of mixed spectra of plastics and back-
ground, it is possible to detect and classify particles which are smaller
than the resolution of NIR camera with NIR technology. Besides,
the success of classification of mixed spectra of different compositions
makes the detection and classification of heterogeneous material theo-
retically possible, which offers an additional option for plastic sorting.
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Abstract Hyperspectral imaging in near-infrared region (NIR) is
a powerful tool for characterization and detection in food indus-
try. In particular, the scan of powders is a subject of interest for
adulteration evaluation. However, such samples involve intimate
mixture hence complex non linear effect in the reflectance sig-
nal. In this study, Adaptive Matched Subspace Detector (AMSD)
is implemented for detecting peanut flour adulteration in wheat
flour. The method consists of a hypothesis test based on the lin-
ear mixing model. This is compared with a non supervised tech-
nique based on Principal Component Analysis rejection method.
Results show that AMSD performs the best by detecting adulter-
ated pixels in samples with global concentration from 20% down
to 0.02%. A coefficient of determination of 0.90 is obtained be-
tween the number of detected pixels and the global concentra-
tion of samples. PCA rejection method shows relevant but insuf-
ficient results by detecting much fewer adulterated pixels than
AMSD. This study shows that the implementation of AMSD is
successful and more efficient than rejection method based on the
inner product variability.

Keywords: Subpixel detection, peanut, hyperspectral.
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1 Introduction

Near-infrared hyperspectral imaging (HSI) is a technique that provides
both spatial and spectral information for a sample. The near-infrared
range is a particularly interesting since no sample preparation is re-
quired and various organic information can be studied. Thanks to this,
HSI has been recognized as an emerging tool for controlling food safety
for a decade [1] . For example, HSI has been successfully employed to
detect melamine adulteration in milk powder [2] [3] [4]. Melamine
and milk particles were detected in the case of an intimate mixing and
for pixel size bigger than particles. In this context, the resulting spec-
tral signatures of the mixture is nonlinear and complex to explain [5].
However, since melamine and milk powder spectral signatures are very
different, they can be directly used for the implementation of a de-
tection method. This is done using Principal Component Analysis
(PCA) [3], Partial Least Square Regression (PLSR) [4] or by spectral
similarity analysis [2].

As the allergic population seems to grow, allergens contamination
is a hot topic for food issue as well. Peanut adulteration in wheat
flour has been achieved using HSI and PCA [6] . In this case, peanut
particles were bigger than the pixel so that no intimate mixing occurs
in the powder. However, the detection of peanut in wheat flour is more
difficult since spectral signatures are closer than the melamine and milk
situation.

Subpixel detection is a subject of interest in remote sensing appli-
cation. For Earth observation, pixel field of view are about several
meters so that each pixel may contain spectral contributions of several
end members. As long as the mixing only occurs in the sensor, linear
mixing model theoretically holds. However, for multi-layer samples
or intimate mixing structure, the linear assumption is not valid. On
the other hand, nonlinear models require a deep knowledge about the
samples that are very difficult to obtain [5]. As a consequence, linear
mixing model is often employed using additional interaction terms.
The Adaptive Matched Subspace Detector (AMSD) is derived from the
linear mixing model (LMM) using a hypothesis test. This detector is
used at the subpixel context since each pixel is treated individually
without spatial information [7].
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In this study, we propose to address the detection of peanut particles
in wheat flour at the subpixel level. AMSD technique is compared with
a PCA model based rejection method to detected adulterated pixels of
flour mixing.

2 Theory

2.1 AMSD

The LMM describes each pixel of a hyperspectral image as a linear
combination of component spectra or endmembers (cf. equation 8.1).

M
x=) msg+w (8.1)
k=1

where

x is the spectrum of the pixel;

sk are the spectra of the M endmembers;

ai are the abundances of the M endmembers;

M is the number of endmembers;

w is a vector that accounts for the lack-of-fit of the LMM.

In the LMM, the subspace S generated by the s; vectors should be
representative of all the chemical species in the mixing. For a detec-
tion problem, S is divided in two parts : the background subspace S,
and the target subspace S;. The matrix S, contains the spectra of the
endmembers considered as background and S; contains the targeted
endmembers.

For the AMSD, the detection problem is a hypothesis test. In each
case, a LMM is assumed according to the presence of the target. For
the null hypothesis, the spectrum of the pixel is assumed to lie in the
background subspace. The alternative hypothesis assumes x lies in the
union of both subspaces S; and S;, (cf. 8.2).

Hy:x = Spap +w

8.2
Hj : x = Sta; + Spap +w ®.2)

where we assume w — N(0,031).
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Designing a detector for the hypothesis test can be done using the
likelihood ratio (LR). Since the abundance vectors a; and a; as well as
the noise variance 02 are unknown, the generalized likelihood ratio is
used [7]. As a result, the ratio between the error sum of squares (SSE)

under each hypothesis is used as a detector (cf. 8.3).

SSEg
damsp(x) = SSEHO -1 (8.3)
1

where

SSEn, = (x — Spap) T (x — Spap),
SSEy, = (x — Spar + Sbab)T(x — Siay + Spap).

2.2 PCA rejection method

In this study, PCA provides orthogonal components for modeling
wheat pure sample: Vj,. Only the k first components are kept to retain
the main spectral variance: Vj, . As a result, an orthogonal projector
can be constructed (cf. 8.4).

Pbik =1-— Vb{vbk (8.4)

Using the projector Pblk, the residual of each pixel with respect to the

PCA model based on the pure wheat sample can be computed. Finally,
the sum of squares (SS) of these residuals are used as a metric for the
pixel rejection method (cf. 8.5).

drejection(x) = SS(XPZJJ,Z) (8.5)

3 Material and methods

3.1 Samples

Defatted peanut flour and white wheat flour were bought and mixed
together in different proportions. A total of 8 weight concentrations of
peanut were obtained: 20%, 10%, 5%, 2%, 1%, 0.5% 0.2% and 0.02%.
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For each concentration, 3 replicates of approximately 13 g of flour were
measured as well as one pure peanut flour sample and one pure wheat
flour sample. Each sample was prepared using a precision balance (ac-
curacy of 0.01g) and by manually shaking the resulting mix. Samples
were put into a polylactic (PLA) sample holder of 7 mm depth for the
hyperspectral measurement.

3.2 Hyperspectral acquisition

A SWIR camera from SPECIM (SPECIM, Spectral Imaging Ltd., Ouluy,
Finland) was used for hyperspectral measurement. The samples were
lightened by four halogen lamps at 58cm from the camera. Black mea-
surement and white reference were acquired in order to obtained the
normalized reflectance.

3.3 Detector design

For designing the AMSD, non negative matrix factorization (NMF) was
applied on the pure wheat flour and peanut flour sample. The k first
components were used to design the matrix S, and S;. When the detec-
tor is applied on a test image, a non negative least square resolution is
applied on each pixel to calculate the corresponding abundance vectors
a; and a,. Then, the estimation of x under each hypothesis is used for
the calculation of SSEp, and SSEy,. The resulting value of d 4psp(x)
must be finally compared to a threshold value 77 which is obtained ac-
cording to equation 8.6. This boils down to minimizing the probability
of false alarm on the test images.

1 = max damsp(x) (8.6)

where X is the matrix containing the spectra from the reference pure
wheat flour image.

Similarly, the PCA rejection method gives a final detection by thresh-
olding dyejection (x). The threshold value is obtained from 8.6 by replac-

ing d apsp (x) with drejection(x)'
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AMSD (k=2) - 2% replicate C PCA rejection (k=2) - 2% replicate C

Figure 8.1: Detection map for wheat flour mixed with 2% of peanut flour (repli-
cate C) using the AMSD (left) and the PCA rejection method (right). White
pixels: detection, black pixels: no detection.

4 Results and discussion

Even though the two methods are very different, they both provide
consistent results. Figure 8.1 illustrates the fact that the detection maps
obtained on a same sample show similar spatial results. Indeed, even if
the PCA rejection method detects much fewer pixels than AMSD does,
the position of the detected pixels correspond to detected clusters on
the AMSD detection map.

Table 8.1 exhibits a high correlation between the number of detected
pixels and the expected concentration of peanut for the AMSD method.
Results also show that AMSD is robust to the choice of k. On the other
side, the PCA rejection method exhibits lower R? score as well as a high
dependency to the value of k.

These results are explained by the fact that the PCA rejection method
generally detects much fewer pixels than AMSD. This can be seen as
an example on Figure 8.1. Indeed, in most cases, PCA rejection works
well for location where clusters of peanut particle are present. In this
case, there is more chance that a pixel has an almost full contribution
of peanut. More generally, PCA rejection method has the advantage
to not be dedicated to one adulterant spectral signature. In return, the
detection method is less sensitive to the peanut adulteration. Adding
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more than 2 components to the rejection model (choosing k > 2) makes
R? worst. This is because the accepted variability increases so that
peanut particles are comprised in it and thus, not detected.

For the subpixel detection problem, the contribution of the target
may be hidden by the background. If their spectral signatures are sim-
ilar, the detection may be difficult. In this case, supervised target de-
tection is necessary. Indeed, the change in the spectral signal may be
of the same order than the background variability which makes unsu-
pervised method fail.

Table 8.1: Coefficient of determination (R2) between the number of detected
pixels in each image and the corresponding concentration of peanut flour.

k 1 2 3
RZAMSD 090 [090 [0.89
RZPCA 055 [0.61 [0.19

5 Conclusion

The study shows the AMSD approach is relevant for subpixel detec-
tion problem. Even if the complexity of the mix may involve non linear
effects on the signal mixture, the hypothesis test based linear mixing
models is relevant. In contrast, the PCA rejection method gives inter-
esting results but appears to be insufficient to detect the majority of the
adulterated pixels. Indeed, in this model, outliers are assumed to have
higher spectral differences than the inner product variability. In the
case of peanut and wheat flour, this assumption appears to be ques-
tionable. Finally, AMSD enables to find adulterated pixels down to a
global concentration of 0.02% but the detector sensitivity at the pixel
level is still to be investigated. The high R? score obtained between the
number of detected pixels and the true sample concentration shows
that AMSD provide a successful and relevant detection of peanut in
wheat at the subpixel level.
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Abstract Automatic inspection tasks have successfully been im-
plemented in several industrial fields and are of growing impor-
tance. Visual inspection using optical sensors is wide spread due
to the vast variety of different sensors, observable features and
comparatively low prices. It seems obvious that corresponding
systems are blind towards mechanical features and inspection of
those typically requires highly specialized, inflexible and costly
systems. Recently, we have shown in the context of sensor-based
sorting that tracking objects over a time period allows deriving
motion-based features which potentially enable discrimination
of optically identical objects, although an optical sensor is used.
In this paper, we take one step back from the specific application
and study the classification of test objects based on their trajecto-
ries. The objects are observed while receiving a certain impulse.
We further refrain from manually designing features but use raw
coordinates as extracted from a series of images. The success of
the method is demonstrated by discriminating spheres made of
similar plastic types while bouncing off a plane.

Keywords: Machine vision, motion features, tracking.

1 Introduction

How can a cooked egg be distinguished from a raw one? Obviously,
the difference cannot be determined by their appearance. A common
household trick is to lay both eggs on a flat surface, rotate them like a
spinning top and observe their rotation. While the boiled egg rotates
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uniformly, the raw egg performs a much more unstable movement due
to the inertia of the liquid interior of the egg. This example demon-
strates how an object to be tested is stimulated within the framework
of an experiment in order to observe a characteristic behaviour. Due to
their cognitive abilities, humans are immediately able to evaluate the
observed movement behaviour and distinguish between the two ob-
jects. To a certain extent, an optical inspection is carried out here on
the basis of a non-optical object property, namely the inertial tensor.

Away from the home kitchen, the task of sorting particles contained
in a material stream according to certain criteria exists in several in-
dustrial fields. There exist two main types of systems for automation
of the sorting process, namely mechanical sorting and sensor-based
sorting [1]. Examples of mechanical sorting include sieving for separa-
tion based on size, sink—float processes for separating materials based
on specific gravity and air-stream separation for separating particles
with different aerodynamic characteristics. In sensor-based sorting, the
characteristic used to distinguish particles from different classes deter-
mines the choice of the sensor used. For instance, RGB cameras are
used for discrimination based on color, texture and shape, hyperspec-
tral cameras can be used to retrieve information about the chemical
composition of the particles and X-ray in order to measure the atomic
density.

1.1 Problem statement and contribution

In the introductory example, we were interested in sorting objects ac-
cording to mechanical properties. For many cases, this can be achieved
by using mechanical sorting as discussed above. However, such pro-
cesses typically suffer from a lack of flexibility, limited throughput
and/or cost-intensive implementation. Sensor-based sorting systems
appear to be an attractive alternative in all these regards. However,
systems designed for high-throughput typically use imaging sensors
and are hence by definition limited to optically perceivable character-
istics.

In this paper, we propose a machine vision approach for the clas-
sification of objects based on non-optical properties in the context of
automatic visual inspection. Our approach is based on the use of an
area-scan camera in combination with object tracking methods. The
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classification is based on the trajectories of objects as observed in a spe-
cific scene. The movement of the objects is tracked using an image
sequence recorded at a high temporal resolution. We present an ex-
perimental setup in which the objects are observed while receiving a
certain impulse. The setup supports the generation of huge datasets by
realizing a circulation of test objects. With the help of machine learn-
ing, it is shown that optically identical objects made of similar materials
can be distinguished from each other based on their trajectories with-
out any further feature engineering. The proposed approach can easily
be extended for high throughput applications and requires inexpensive
hardware.

1.2 Related work

Although the use of imaging sensors dominates in sensor-based sort-
ing, other systems have been proposed to sort materials on the ba-
sis of non-optical properties. An example is performing classification
based on impact resonant acoustic emissions. For instance, in [2], the
applicability of such sorting systems is evaluated for the detection of
damaged wheat kernels, including defects that are optically not per-
ceivable. In [3], the authors propose a similar system for the sorting
of End-of-Life vehicles’ plastic materials. Their system further includes
laser triangulation scanning to combine information regarding the size
of single plastic flakes with features derived from the impact acoustic.

Several works have also discussed the idea of performing classifica-
tion or quality assessment on the basis of motion information obtained
from image data. For instance, in [4], two material properties of fabric,
namely stiffness and area weight, are estimated based on motion in-
duced by unknown wind forces. The authors propose a framework
which includes extraction of the magnitudes of motion from video
data, deriving statistical features and implements a regression model
to estimate the material properties. In [5] a quality control system for
application in an industrial setting based on the tracking of sputters
during a laser-welding process is proposed. The events are tracked at
a high frame rate in order to distinguish strong sputter events that are
critical to the welding process from harmless ones. Regression of physi-
cal properties of objects from video data has also recently been studied.
Motivated by gaining knowledge about how humans learn to predict
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motion of objects in the real world, the authors propose a model that
allows predicting physical properties which are then fed into a physics
engine in order to simulate the continuation of a dynamic scene [6].

Recently, we have proposed utilizing motion-based features for the
characterization of materials in sensor-based sorting [7,8]. We have
shown that spheres made of different materials can be distinguished
based on their motion while being transported on a conveyor belt.
However, to that point, we restricted ourselves to using test objects
made of strongly differing materials. Furthermore, rather primitive,
hand-crafted features based on motion statistics were used and only
passively induced interaction with the environment, in this case fric-
tion with the conveyor belt, was considered. The study presented here
distinguishes itself from the former one in that very similar materials
are used as test objects, no feature engineering is performed and an
active impulse on the test objects is observed.

2 Materials and methods

The following is a description of the setup designed to acquire a dataset
and the methods used for analyzing the data.

2.1 Data acquisition

The phenomenon we want to observe in our experimental setup is elas-
tic collision. We adopt the setup from [3] by using an inclined plane
to accelerate the test objects and a second plane with which the objects
collide, see Figure 9.1. Hence, we observe the test objects while bounc-
ing off the second plane. After the collision(s), the test objects fall into
a funnel and are re-applied on the inclined plane by using a Venturi
loader.

With respect to the optical hardware, we use the camera Ximea xiQ
MQO022 and an 8 mm lens. The camera is connected to a computer us-
ing the USB 3.0 interface. We further crop the image to an resolution of
1220 x 950 pixels and record images at 194 fps. [llumination is realized
by using an LED back light.

As for test objects, we are interested in using objects of the same
shape made of different, yet similar materials. For this purpose, we cre-
ated 3D prints of sphere shaped test objects made of different plastics.
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(a) Field of view of the camera. (b) Exemplary motion pattern observed by
the camera.

Figure 9.1: Impressions of the observed experimental situation.

We consider 8 materials from 4 different types of plastic, namely acry-
lonitrile butadiene styrene (ABS), polyamide (PA), polycarbonates (PC)
and polypropylen (PP). All spheres have a diameter of 10 mm. An im-
pression of the test objects is provided in Figure 9.2. It is important
to note that the difference in appearance, i.e., color, is not used for the
classification.

Figure 9.2: Photo of the test objects, from 1. t. r.. ABS1, ABS2, PA1, PA2, PC1,
PC2, PP1, PP2.

Our goal is to extract discrete time series data from the images which
represent the path traveled by the test objects in 2D space. We neglect
the third dimension as the objects move approximately only in one
plane and the camera points perpendicular to that plane. In order to
locate an object in an image, we apply image processing. In a first step,
an image received from the camera is segmented using background
subtraction using the implementation from the OpenCV library which
is based on [9,10]. The resulting binary image is further pre-processed
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using morphological operations, namely erosion and subsequent dila-
tion, followed by Gaussian filtering. In case an object is contained in
the image, its contour is extracted using the implementation of [11] in
OpenCV, yielding a measurement of form

p(t) == (x,y,t). 9.1)

The contextual attribute of the time series is a timestamp and the be-
havioural attribute is given by the 2D position of the center of the
sphere in the image. A trajectory is then modelled as a set of sub-
sequent measurements:

T:={p(t1),..., p(tn) | tn < tus1} - (9.2)

As has been mentioned, our experimental setup enables circulation of
a test object by re-applying it over and over again. Therefore, we need
to determine which measurements belong to a single trajectory and
which to different ones. We can group measurements to a single tra-
jectory by determining the time difference between two measurements.
At a constant recording speed, a trajectory is only valid if two consec-
utive points also originate from two directly consecutive images of the
recording. A trajectory of a single pass can hence be formalized as

T:= {P(tl),. . .,P(tn) | ty < tn+1rtn+1 —t;, < 6} (93)

where € := 1/fps is the time between two consecutive frames.

2.2 Data preparation and analysis

Prior to data analysis, we perform data cleaning in order to make sure
we only work with trajectories without missing or possibly faulty mea-
surements. For instance, we require that for each time point only a
single measurement exists. The movement of each object is therefore
described by a trajectory consisting of a temporally unambiguous point
set to ensure that no faulty detection is included. We further only con-
sider complete trajectories. The latter is ensured by exploiting a priori
knowledge about the scene. We require that the first measurement lies
within the area were the test objects enter the scene, i.e., the upper left
corner with respect to Figure 9.1, and the last measurement where the
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objects leave the scene, i.e, the lower left corner. Using the described
procedure, we create a dataset containing individual trajectories that
are labeled with the corresponding material. For each of the 8 mate-
rials, the resulting dataset contains more than 10000 trajectories that
were deemed valid.

We intend to use the recorded coordinates directly as the input for
the classification without any further feature extraction. However, the
trajectories are of varying length which results in a variable length of
the feature vector, which is not supported by many classification al-
gorithms. Therefore, for our experiments, we use two ways to extract
trajectories of fixed length. The first method is extraction and padding.
We calculate the median length of all recorded trajectories and use this
length to either crop trajectories that contain more measurements or
pad shorter trajectories to the length by filling up with zero-valued co-
ordinates. The second method is based on geometric interpolation of
the trajectories. The sampling is calculated with the help of a spline in-
terpolation and the trajectories are up-sampled to 256 data points. We
further discard the temporal component, i.e., the timestamp associated
with each measurement, for the interpolation.

As a learning model, we use a support vector machine (SVM) with
a radial basis function (RBF) kernel. The features, i.e., the coordinates,
are standardized by removing the mean and scaling to unit variance.

3 Experimental results

For the experimental validation, we consider two types of classification
problems. The first problem is to classify the material based on the
trajectory data according to the plastic type as described in Section 2.1.
For each type, there exist two individual test objects. For the second
classification problem each individual test object is to be classified. We
use 10000 trajectories of each material for the training and testing, re-
sulting in a total of 80000 samples. The dataset is split into train and
test sets whereas the size of the test set is 30% of the entire dataset.
Results when using cropped and padded trajectories are provided
in Figure 9.3. As can be seen from Figure 9.3 (a), test objects of type
PA and PC can be distinguished very well from the other types while
a noteworthy amount of false classifications happen for ABS and PP.
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With respect to the latter, it can also be seen that the wrong classifica-
tions happen mainly between these two classes, i.e., ABS test objects are
held falsely for PP and vice versa. From Figure 9.3 (b), the amount of
false classifications with respect to the material within the plastic types
can further be seen. It can be observed that with respect to PA, for
instance, a large amount of false classification happen within the type,
while this is not the case for PC. The false classifications happening
between ABS and PP can be seen as well.
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(a) Results using material types. (b) Results using individual test objects.

Figure 9.3: Normalized confusion matrices for classification results for cropped
and padded trajectories.

Results for the geometrically interpolated trajectories are very simi-
lar to those using the cropped and padded trajectories, see Figure 9.4.
Overall, a slight loss in classification performance can be observed,
which might be explained by the loss of temporal information. More
precisely, the data does not allow to extract information whether a test
object passes the experiment faster than another one. In turn, results
show that the cropping and padding did not harm the classification
performance, which suggests that the additional step of interpolation
is not necessary.
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Figure 9.4: Normalized confusion matrices for classification results for geomet-
rically interpolated trajectories.

4 Conclusions

In this paper, we have extended our previous work on motion-based
classification for application in automatic visual inspection. We de-
signed an experimental setup suitable for the recording of huge
amounts of data which makes application of purely data driven learn-
ing models feasible. Furthermore, we showed that modelling the tra-
jectory as a time series with a timestamp as the contextual and 2D
position as behavioural attribute suffices to achieve high classification
performance, making feature engineering dispensable.

In the near future, we intend to gain more knowledge about the ro-
bustness of the classification performance by not only mixing materials
but also shapes of the test objects. Furthermore, we want to integrate
the approach in sensor-based sorting by incrementally adapting the ob-
served situation. For instance, instead of an impulse induced by a col-
lision, a rippled chute could be used as a transport mechanism. Lastly,
the approach can be made applicable for high throughput applications
by integrating multiobject tracking. This would allow motion-based
classification of several objects observed at the same time.
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Abstract PhasmaFOOD is a H2020 project with the goal of
building a miniaturized, smart multi-sensor food scanner.
Equipped with a NIR sensor, a UV-VIS sensor and a RGB cam-
era it aims to be a portable, highly versatile solution for various
food safety issues, ranging from aflatoxin detection in grains and
nuts, over shelf-life prediction in meats and fish to detection of
adulteration in meat, edible oils and alcoholic beverages. The
unique combination of sensors, operation via a smartphone ap-
plication and sophisticated data analysis methods offer the pos-
sibility of rapid, non-destructive measurements that can - in con-
trast to costly and slow laboratory instruments - be applied at
every stage of the production chain, from farm to fork. After a
brief introduction of the PhasmaFOOD system architecture the
data analysis approach, especially the image analysis, based on
dictionary learning is explained in detail.

Keywords: PhasmaFOOD, food scanner, optical sensing, spec-
troscopy, learning, image classification, image compression.
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1 Introduction

PhasmaFOOD (www.phasmafood.eu) is a H2020 funded project of the
European Union with a strong consortium of 9 stakeholders with ex-
pertise in food safety, spectroscopy, hardware and software develop-
ment and machine learning, namely Intrasoft International S.A., Wings
ICT Solutions, Ltd, VizLore Labs Foundation, RIKILT - Wageningen
Reasearch, Agricultural University of Athens, Italian National Research
Council, University of Rome Tor Vergata, Fraunhofer IPMS and Freie
Universitdt Berlin. The objective of the PhasmaFOOD project is to de-
velop a miniaturized, portable, smart multi-sensor food scanner. The
system comprises a miniaturized, portable device integrating three dif-
ferent sensors and various light sources and a distributed software ar-
chitecture. The PhasmaFOOD software architecture consists of a pro-
grammable micro-controller that steers the sensors in the portable de-
vice, a mobile app that serves as an interface to the user and is used to
conduct measurements, calibrate the device and present recommenda-
tions based on the decision making in the cloud platform. The unique
combination of three different optical sensors, a Near Infra-Red (NIR)
spectrometer, a UltraViolet (UV) - Visible (VIS) spectrometer, operable
in reflectance and fluorescence mode, a high resolution color imaging
system, and sophisticated machine learning algorithms offer the poten-
tial to cover a wide range of applications in food safety.

The PhasmaFOOD solution is designed to meet three major require-
ments: Portability: the spectrometer is hand-held and can be config-
ured on the mobile app. Hence, it works in various environments
where food is sold or processed. Versatility: The specific combina-
tion of sensors (NIR spectrometer, UV-VIS spectrometer and CMOS
camera) covers a spectal range from 400nm to 1900 nm, and, via the
camera provides also textural information about the sample at hand.
Hence, a wide range of food types and use cases can be targeted. Fast,
non-destructive predictions: The three optical sensors work without
the need to damage the product under investigation and deliver a mea-
surement instantly. Therefore, it is well suited to time-critical problems
like the shelf-life prediction of raw meat or fish, where waiting several
days for results from laboratory measurements is not an option. The
targeted use cases include:
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1. Detection of mycotoxins in various grains and nuts. Aflatoxin de-
tection.

2. Detection of (early signs of) spoilage in fruits, vegetables, meat and
fish. Shelf-life prediction.

3. Detection of food fraud in alcoholic beverages, oil, milk powder and
meat.

2 PhasmaFOOD system architecture

The PhasmaFOOD system consists of a miniaturized sensing device, a
mobile application and the PhasmaFOOD cloud platform. The sensing
device is used to take measurements of food samples with its inte-
grated optical sensors. The sensing system is connected via bluetooth
to a smart mobile device, such as a tablet or mobile phone, from which
it is operated via the PhasmaFOOD mobile application. The mobile app
receives data from the sensing device and forwards them to the cloud
platform. On the PhasmaFOOD cloud platform the data is stored in
the database and decision making algorithms are applied to incom-
ing measurements. The predictions obtained from the use-case specific
analysis algorithms are sent back to the mobile application and pre-
sented to the user.

2.1 Sensing device

The PhasmaFOOD sensing device is a portable multi-sensor device,
comprising the sensing sub-unit, in which a NIR spectrometer, a UV-
VIS spectrometer and a CMOS camera, illumination units and driving
boards for all components are located, and the electronics sub-unit,
a custom-built microcontroller, equipped with a recharchable battery,
several communication interfaces (USB, BLE, WiFI), external memory
(microSD) and additional sensors (inertial measurement unit, temper-
ature sensor). The electronics sub-unit is able to configure the sensing
sub-unit, read-in the raw sensor data, perform preprocessing opera-
tions and communicate with the mobile app. Due to the integration of
an ARM processor, RAM and a FPGA unit even advanced processing
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of sensory data can be performed on the sensing device itself. The de-
tails of the electronics sub-unit can be found in [1] The sensing sub-unit
(shown in figure 10.1(a))and the electronics sub-unit are mounted in a
3D-printed housing as shown in figure 10.1(b).

(a) PhasmaFOOD sensing sub-unit  (b) PhasmaFOOD portable multi-sensor
device

Special emphasis was given to a modular design in order to en-
able the replacement of sensing or lighting components. For the cur-
rent prototype the following sensors were chosen: A miniaturized NIR
spectrometer by Fraunhofer IPMS [2] (spectral range: 1000 — 1900nm,
size: 17 x 12 x 16mm?), the Hamamatsu C12880MA UV-VIS spec-
trometer (spectral range: 340 — 850nm, size: 20.1 x 12.5 x 10.1mm?>),
and the Ximea MU9PC-MH CMOS camera (resolution: 5MP, size:
15 x 15 x 8mm?®). The range of the two spectrometers covers the en-
tire visible and the near infra-red spectrum and is supported by a RGB
camera to include spatial information as well. The sensors are accom-
panied by various lighting units, i.e. white LEDs, a NIR and a UV
lightsource. Hence, the device is able to record a NIR spectrum, a flu-
orescence measurement, a visible reflectance spectrum of the sample
under UV illumination and a RGB camera image.

2.2 Mobile application

The device is operated by the user via the PhasmaFOOD mobile app.
In the mobile app the user selects one of the pre-defined use cases
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and the food type under consideration. The app then guides the user
through the measurement process, displays the data and presents anal-
ysis results in comprehensible form. Expert users can also configure
the sensing device for new use cases, adjust the lighting and tweak the
parameters of the sensors, such as integration time, number of internal
measurements etc. through the app. The measurements received from
the device via BLE, together with additional input from the user are
bundled in one json object and sent to the cloud platform for further
processing and analysis. The current status of the mobile application
is described in [3].

2.3 Cloud platform

The cloud platform is the focal point of the PhasmaFOOD system. Run-
ning on two virtual machines, it hosts the data warehouse, the rule en-
gine for decision making, the web dashboard and the machine learning
‘playground’, a tool for configuring new machine learning pipelines
for each available dataset. For each use case exists a labelled dataset
in the data warehouse, on which machine learning algorithms for each
sensor are trained. These datasets are produced by experts in food
chemistry laboratories and contain measurements with additional in-
struments that give ground truth values for the quantities of interest
that the PhasmaFOOD system attempts to predict, i.e. aflatoxin con-
tamination for use case 1, microbia counts and age of the samples for
use case 2 and information on adulterands for use case 3. Based on
these decision making algorithms, the rule engine outputs a verdict on
the food quality of an incoming measurement, which is presented to
the user in the mobile app. Details on the cloud functionality can be
found in [3].

3 Data analysis strategy

The different steps that transform the raw measurements into a food
quality verdict are distributed across the PhasmaFOOD system. Simple
preprocessing of the sensor data is done in the electronics subsystem of
the PhasmaFOOD device, whereas the extraction of high level features
and the final prediction is currently done on the cloud platform. A
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redistribution of these decision making steps to the mobile app or even
the device to optimize the use of resources will be subject of further
investigation in the last stage of the PhasmaFOOD project. The deci-
sion making is based on supervised learning methods. While simple
preprocessing steps are the same for all food types under considera-
tion, the computation of expressive features and the best prediction
algorithm for a certain quantity of interest vary with use case and food
type. Hence, for each labelled dataset corresponding to a use case and
food type a variety of models are trained and evaluated to find a suit-
able analysis strategy. The data recorded with the spectrometers only
amount to a few kilobytes. Thus, there is no need to perform com-
pression on the embedded device. The image data on the other hand
requires special treatment to reduce the traffic over the BLE connection
from the device to the mobile app and subsequently to the cloud.

3.1 Structured dictionary learning

It is desirable to reduce the size of the images (ca. 15Mb) signifi-
cantly thereby retaining the significant information for later classifi-
cation. Since natural images are highly redundant, a common idea for
lossy compression is to represent the image as a linear combination of
suitably chosen dictionary atoms. General purpose lossy compression
algorithms like JPEG or JPEG2000 use fixed dictionaries such as cosine
atoms or wavelet atoms, respectively that are well suited to represent
natural images. While these algorithms focus entirely on good recon-
struction of all natural images, measured by human perception, the
goal for image compression in the PhasmaFOOD project is different.
Each use case and food type produces a very narrow class of images
that look very similar, with subtle variations due to spoilage of aged
or adulterated food samples. These variations must be captured for
further analysis at the same time reducing the ammount of dat to be
transfered. Finally, since the compression/feature extraction algorithm
runs on the embedded device, it should be fast and with low com-
putational complexity. Therefore, the idea is to learn a data-adapted
dictionary that focusses on sparse and discriminative encoding. The
time-consuming learning part can be done offline on the cloud plat-
form. For the encoding with the learned dictionary fast algorithms
exist that can be run on the device as shown in figure 3.1. Dictionary
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Figure 10.1: Compression scheme.

learning [4] has proven a successful technique for a variety of imaging
task, such as sparse coding, denoising or image inpainting. In its basic
form, it solves the problem

min || X — DA|3+A||All; subjectto ||difo=1 forl=0,1,2,...,
(10.1)

where D € R"™N is the dictionary to be learned, X € R" ™ is the
matrix of training samples and A € RN*" the matrix containing the
codes. The regularization term A||A||; enforces sparsity in the codes
and the columns d; of the dictionary are constrained to have unit norm
to avoid scaling ambiguities. The problem can be solved by iteratively
alternating between computing the codes A thereby keeping D fixed,
i.e. sparse coding, and updating the dictionary atoms to better repre-
sent the data for fixed sparse codes. Additional terms can be incorpo-
rated in the objective function to induce task-specific properties of the
solution. In [5] a classification loss was added to render the problem
supervised, in [6] label information was included via a Fisher discrim-
ination criterion. In [7] the dictionary was structured into a common
and class-specific parts, which was used in [8] for fine-grained image
classification. This approach is adopted here and combined with inco-
herence promoting terms [9] that stabilize the sparse coding and en-
courage the sub-dictionaries to encode different information. Let the
dictionary be partitioned as D = [Dy, Dy, ..., Dr], where Dy € R"*N
is the common dictionary and D; € R™Ni for j = 1,...,L are the
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class specific dictionaries. As another minor modification to the basic
problem 10.1, instead of the I/; regularization of A, here the number
of nonzeros is constrained directly to be < s. Each sample x; with
corresponding label y; is encoded only using Dy and Dy,. With the
aforementioned incoherence terms the objective becomes

L L
f(D,A) = [|X— DA3 + Z(;)V;‘HD]‘TijH%‘f‘ gnd\Dij— In; |13, (10.2)
= j=

where D_; denotes the dictionary composed of all but the jth sub-
dictionary and Iy is the N X N identity matrix. Let S; denote the
indices of dictionary atoms belonging to the jth sub-dictionary. Then
the discriminative encoding property of the codes can be expressed as
the constraint

ai( |J S =0ify;=j. (10.3)
k¢{0,j}

The sparse coding step for a training sample x; with label y; takes
the form

min [|x; — [Do, Dy,]a||3 subject to |a]g <'s, (10.4)

which can be solved efficiently by orthogonal matching pursuit (OMP)
[10]. OMP only needs to compute inner products between the sample
and the dictionary atoms and is hence suited to run on the embedded
device, which has only limited capacities.

For the dictionary update step the algorithm in [9] is employed. De-
note by X; the samples in class j and A; the corresponding sparse codes.
Set

Z]‘:X]’—DOA]’(SO) fijZl,...,L,
Zyg=X—[D1,...,Dr]A(S ).
Computing the derivative of the objective with respect to a sub-

dictionary D; and setting the result to 0, aj;(tl))jj ) — 0leads toa Sylvester-

type matrix equation

PDj + D]‘Q =R (10.5)
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with the matrices

P =yu,D_;,D—j,
Q= A;(S)Ai(S)" + ;D Dj — In,,
R =Z;Ai(S)"

The Sylvester equation could be solved by the Bartels-Stewart algo-
rithm [11], if Q and R were independent of D;. Following [9], an
approximate solution to equation 10.5 can be obtained by intializing
D? = Dj and then solving PD; + D;Q" = R’ for a few iterations, where

Q" and R’ are computed using D;_l (normalized to have unit norm
columns) and the updated sparse codes.

To apply the described algorithm the raw image is first scaled to the
range [0, 1] in each channel, then a square region of interest is extracted
to exclude the edges of the sample holder. The selcted region is divided
into non-overlapping patches of shape (p x p x 3), which then serve as
input to the algorithm, resulting in dictionary atom size 3p?. The sparse
codes of an image’s patches can be quantized and entropy coded to
further reduce the size, if needed. In the cloud, an SVM is trained on
the sparse codes of the training samples, resulting in a verdict for each
image patch.

4 Discussion and conclusion

Although the literature on dictionary learning suggests good results
in terms of compression rates and high accuracies have been achieved
in classification tasks using structured dictionaries, the performance of
the presented approach for the specific application in the context of
PhasmaFOOD remains to be thoroughly investigated once enough la-
belled data has been collected. Furthermore, image data may not in all
use cases contain information about the state of the food samples under
consideration. This must be taken into account in data fusion strate-
gies. In case one sensor does not contain useful information, a high
level fusion strategy, i.e. combining the single predictions together to
get a final verdict can simply assign a low weight to the useless sensor.
In low level data fusion approaches this useless sensor might severly
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distort the classifier, unless a very strict feature selection method is
used.

5 Summary

In this article the PhasmaFOOD system architecture was described. An
approach to image compression and feature extraction based on learn-
ing a structured dictionary from labelled training data was presented
in detail. The training of this dictionary is time consuming, but can be
done offline on powerful computers, whereas the encoding of an image
with it can be done on an embedded device efficiently by using OMP.
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Abstract Mosaic filter-on-chip CMOS sensors enable the paral-
lel acquisition of spatial and spectral information. These mosaic
sensors are characterized by spectral filters which are applied
directly on the sensor pixel in a matrix which is multiplied in
the x- and y-direction over the entire sensor surface. Current
mosaic sensors for the visible wavelength range using 9 or 16
different spectral filters in 3x3 or 4x4 matrices. Methods for the
reconstruction of spectral reflectance from multispectral resolv-
ing sensors have been developed. It is known that the spectral
reflectance of most natural objects can be approximated with a
limited number of spectral base functions. In these cases con-
tinuous spectral distributions can be reconstructed from multi-
spectral data of a limited number of channels. This paper shows
how continuous spectral distributions can be reconstructed us-
ing spectral reconstruction methods like Moore-Penrose pseudo-
inverse, Wiener estimation, Polynomial reconstruction and Re-
verse principal component analysis. These methods will be eval-
uated with monolithic mosaic sensors. The Goodness of Fit Co-
efficient and the CIE color difference are used to evaluate the
reconstruction results.

Keywords: Multispectral, filter-on-chip, spectral reconstruction.
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1 Introduction

To meet the growing expectations concerning the quality in industry,
biology and medicine miniaturized photonic micro sensors are now
available for simultaneous optical characterization of shapes, colors
and spectra.

The latest developments in photonic micro sensor systems enable
simultaneous recording of those information with specialized multi-
spectral resolving mosaic filter-on-chip CMOS sensors.

2 Sensor technology

The mosaic filter-on-chip CMOS sensors are characterized by spectral
filters which are applied directly on the sensor pixel in a matrix which
is multiplied in the x- and y-direction over the entire active sensor sur-
face. Current mosaic sensors for the visible wavelength range using 9
or 16 different spectral filters in 3x3 or 4x4 matrices.

For the realization of these sensors two technologies are used. First
is a monolithic approach where the filters are directly applied on the
CMOS sensor surface. Second is a hybrid approach where the filters
are applied on a separate substrate and the substrate is afterwards ar-
ranged on the CMOS sensor surface [1].

3 Methods and algorithms

The following section provides a general guideline for the application
of multispectral resolving mosaic filter-on-chip CMOS-sensor-systems
in the visible wavelength range. This includes the performed metrolog-
ical characterization of the system, the derived correction of the sensor
data, the derived sensor value extension and the provision of ready to
use sensor data for final application (Figure 11.1).

With the metrological characterization of the spectral, optical and
electrical properties of the sensor-system a value correction and exten-
sion model can be derived [2], [3]. Using pre-characterized properties,
a correction matrix for the pixel reflectance can be calculated to mini-
mize spectral crosstalk [4], [5]. With the acquisition of dark and white
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Figure 11.1: Characterization, correction and extension model for mosaic filter-
on-chip CMOS-sensor-systems.

reference images during the pre-characterization a fixed pattern correc-
tion for the correction of intensity differences per spectral band can be
implemented for the purpose of pixel value harmonization [6].
Afterwards a pixel separation for the alighment of the separated mul-
tispectral sub-images among themselves can be applied. Furthermore,
shifts in the measured spectra can be minimized by a finite aperture
correction [7]. For the sensor value extension typical reconstruction
methods can be categorized into linear and nonlinear techniques.
Examples for linear techniques are Moore-Penrose pseudo-inverse
(MPPI) [8], Wiener estimation (Wiener) [9] and Reverse principal com-
ponent analysis (PCA) [10]. Nonlinear estimation methods like Polyno-
mial reconstruction (Poly) [11] have more variations, but some of them
can be considered as combinations of multiple linear estimations. Some
of the reconstruction methods require an iterative process, such as the
ones based on compressive sensing theory [12]. It is known that the
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spectral reflectance of most natural objects can be approximated with a
limited number of spectral base functions. In these cases the continu-
ous spectral distributions can be reconstructed from multispectral data
of a limited number of channels [12].

The paper will show how continuous spectral distributions can be re-
constructed using these reconstruction methods for monolithic mosaic
filter-on-chip CMOS-sensor-systems. The Goodness of Fit Coefficient
(GFC) [13] and the CIE color difference (DeltaE) [14] are used to eval-
uate the reconstruction results of experimental measurements with a
16-channel monolithic mosaic filter-on-chip CMOS camera.

For the accuracy of colorimetry, the GFC must be at least 0.995 [15].
GFC > 0.999 is to be regarded as a good fit and GFC > 0.9999 as a
perfect fit of the spectra [14]. CIEDE2000 is a CIE recommended color
difference formula that contains new terms for improving the predicted
color difference in the blue range and for neutral colors for pairs of
samples with small color differences [15].

4 Results and summary

In the following section the spectral reconstruction methods will be
evaluated under realistic conditions. For every evaluation the following
data is necessary: Spectral characteristics of the multispectral resolving
sensor (Figure 11.2, left), target sets for calibration and reconstruction
which consist of the reflectance spectra of different “Colorcheckers”
(Figure 11.2, middle) and a radiation spectrum of an illuminant (Fig-
ure 11.2, right).

By pointwise multiplication of the spectral characteristics of the mul-
tispectral resolving sensor with the reflection spectra of the reconstruc-
tion set, the sensor-system responses are determined. Then the recon-
struction matrices of Moore-Penrose pseudo-inverse, Wiener estima-
tion, Reverse PCA and Polynomial reconstruction are calculated. In
the investigation, the coupling factor p will be 0.99 for Wiener esti-
mation and the number of principal components for PCA [ will be 8.
After the sensor-system responses are determined the reflection spec-
tra are reconstructed using the reconstruction matrices. The standard
light D50 is assumed to be the recording light source when convert-
ing from spectrum to L*a*b* color space. Under the standard observer
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assumptions with 2° field of view, the color difference between the
measured and reproduced colors were determined. At the end, the
reconstructed spectra are evaluated according to GFC.

Furthermore the color differences in the visible wavelength range
from 380 to 780 nm where analyzed. In the evaluation, the mean value,
the minimum value and the median value of all reconstructed reflec-
tion spectra by GFC are named GFChjesn, GFChpiy and GFChyeginy Te-
spectively. The mean, minimum, and median of all color differences
are named as DeltaEpe,,,, DeltaEy,, and DeltaEpgian-

For the practical evaluation the Colorchecker Passport is used as cal-
ibration set. The Spyderchecker is used as the reconstruction set. The
multispectral images are acquired with a digital resolution of 10 bits.
To minimize random noise, 25 images of the calibration and reconstruc-
tion set were chosen and the mean value of the images was calculated
for further processing. The reflectance spectra of the reconstruction set
which are measured with a spectrometer are shown as Ground Truth to
evaluate the performance of the reconstruction methods (Figure 11.3).

The reconstruction results of MPPI, Wiener, Poly and PCA were eval-
uated with GFCpjea, GFCpiyy and GFEChpginn (Table 11.1).

The Poly reconstruction method shows the best approximation of
the reconstructed spectra to the Ground Truth. Furthermore, the
DeltaEpes, values of the reconstruction set were determined (Fig-
ure 11.4).
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Figure 11.2: Example data for the evaluation of spectral reconstruction meth-
ods.
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Figure 11.3: Evaluation of different reconstruction methods for 16-channel mo-
saic filter-on-chip CMOS camera (reconstructed spectra).

In the graph, the DeltaEy.,, values according to spectral recon-
struction methods are displayed for every color number of the Spy-
derchecker reconstruction set. Furthermore, the average of the
DeltaEpteqan values is displayed for the spectral reconstruction methods.

To illustrate the color deviation in the reconstructed color images the
color differences determined for the targets of the reconstruction set
are plotted on the respective target (Figure 11.5).

The color difference of the reproduced colors in MPPI and PCA can
be easily perceived by human eyes. This is where the limited wave-
length range of the camera becomes noticeable.
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Table 11.1: Evaluation of different reconstruction methods for a monolithic
mosaic sensor (GFChea, GFCpiy and GFCpedian)-

GF CMeun GF CMin GF CMedian
MPPIT | 0.9949 | 0.9727 | 0.9981

Wiener| 0.9594 | 0.9414 | 0.959%4
Poly | 0.9986 | 0.9944 | 0.9990
PCA | 09947 | 09712 | 0.9976
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Figure 11.4: Evaluation of different reconstruction methods for a monolithic
mosaic sensor (DeltaEpjeqy,, DeltaE gy, and DeltaEpgogion)-

The paper gives an overview about the characterization and cor-
rection of mosaic filter-on-chip CMOS-sensor-systems. Furthermore,
the paper shows how continuous spectral distributions can be recon-
structed using a 16-channel monolithic mosaic filter-on-chip CMOS-
sensor-system with spectral reconstruction methods. Methods for the
evaluation of spectral reconstruction and color calculation have been
shown. For the evaluation of spectral reconstruction methods with
multispectral resolving filter-on-chip CMOS-sensor-systems a combi-
nation of target sets for calibration and reconstruction have been in-
vestigated. It could be shown that in the performed evaluation Poly-
nominal reconstruction method provides the most robust and accurate
approaches for the spectral reconstruction with multispectral resolving
mosaic filter-on-chip CMOS-sensor-systems.



118 P.-G. Dittrich et al.

1192 | 13.09 1539 1519 . 1782 1336

21.22 1325 16.89

876 | 1_k.a |

21.61 1542 1554

13.47 9.92

19.60 548

(d) PCA reconstruction method

(c) Poly reconstruction method

Figure 11.5: Evaluation of different reconstruction methods for 16-channel mo-
saic filter-on-chip CMOS camera (reconstructed color images and DeltaE .,
values).

It should be noted that the results have been evaluated in a lab en-
vironment. Current monolithic mosaic filter-on-chip CMOS cameras
cannot cover the entire visible wavelength range for correct color cal-
culation because of limitations in the filter technology and the usage of
additional bandpass filters.

Multispectral resolving mosaic filter-on-chip CMOS cameras provide
a new approach for Multi-/Hyperspectral Imaging. It has been shown
that an extended sensor model can be developed and used to get cor-
rected and extended sensor data for improving the capabilities of these
cameras in optical characterization tasks.
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