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1. Form factors in QCD

Form factors constitute a popular playground in any quantum field theory. On the one hand,

they show important features as, e.g., non-trivial infrared divergences, which can be studied in de-

tail and generalized to more complicated Greens functions. On the other hand they are sufficiently

simple such that higher order quantum corrections can be computed. Form factors also enter as

building blocks for virtual corrections a number of physical quantities.

For massive form factors the state-of-the-art are three-loop corrections which have been com-

puted for the vector current in the large-Nc limit in Ref. [1]. The complete (planar and non-planar)

light-fermionic corrections are computed in Ref. [2]. Two-loop corrections for the vector current

are known since more than ten years from [3] including O(ε) [4, 1] and O(ε2) terms [5, 6, 2]. Up

to two loops the results can be expressed in terms of Harmonic polylogarithms (HPLs) [7] since

only the letters 0 and ±1 are present. The explicit results of Refs. [8, 1] contains a further letter,

which is chosen as r1 = eiπ/3; they are expressed in terms of Goncharov polylogarithms [9]. In this

context also the reduction formulae of Goncharov polylogarithm values at sixth roots of unity as

derived in [10] are important.

The three-loop master integrals used in [1] have been obtained in Ref. [8]. In this reference

both the exact calculation has been performed and the threshold limit has been taken to extract the

hard part for q2 = 4m2. These integrals enter the calculation of the matching coefficient between

QCD and non-relativistic QCD which has been computed before numerically in Ref. [11] without

restriction to the large-Nc limit.

Massless form factors (below denoted by Fq) only depend on the virtuality of the external

boson and thus, after factoring out this scale, one has to deal with a pure expansion in ε = (4−d)/2.

Consequently, the three-loop corrections are known since almost ten years [12, 13, 14]. Currently

several groups work on the four-loop corrections. First results at four-loop order have been obtained

in Refs. [15, 16] where all planar contributions to Fq have been computed. This provides a complete

result in the large-Nc limit. The complete (planar and non-planar) contributions to Fq with two

closed fermion lines has been obtained in Ref. [17]. Note that the corrections with three closed

quark loops have been computed in Ref. [18]. Let us also mention the works [19, 20] where the

1/ε2 pole of the four-loop form factor within N = 4 super Yang-Mills theory has been computed

using numerical methods.

In this contribution we concentrate on the discussion of the massive form factor.

2. Massive three-loop corrections to the vector current

The starting point in a practical calculation is the vertex function Γµ(q1,q2) which is conve-

niently decomposed into two scalar form factors

Γµ(q1,q2) = Qq

[

F1(q
2)γµ −

i

2m
F2(q

2)σ µνqν

]

, (2.1)

where q = q1−q2 is the outgoing momentum of the photon and σ µν = i[γµ ,γν ]/2. Qq is the charge

of the considered quark. Sample Feynman diagrams contributing to Γµ(q1,q2) are shown in Fig. 1.
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F1 and F2 are conveniently computed with the help of projectors which are applied to Γµ(q1,q2).

Using the kinematics defined in Eq. (2.1) we have (i = 1,2)

Fi =
1

Qq

Tr

{

(q1/ +m)

[

aFi
γµ +bFi

(q1,µ +q2,µ)

2m

]

(q2/ +m)Γµ(q1,q2)

}

, (2.2)

with

aF1 =
1

4(1− ε)(s−4m2)
, bF1 =

(3−2ε)m2

(1− ε)(s−4m2)2
,

aF2 =−
m2

(1− ε)s(s−4m2)
, bF2 =−

2m2(2m2 + s− sε)

(1− ε)s(s−4m2)2
, (2.3)

and s = q2. It is convenient to introduce the dimensionless variable

s

m2
= −

(1− x)2

x
. (2.4)

Then the low-energy, high-energy and threshold limits correspond to x → 1, x → 0 and x → −1,

respectively. Note that for x > 0 we have s < 0 and thus the form factors do not have imaginary

parts. The same is true for x ∈ C with |x|= 1. For 0 < s < 4m2 we have that x is on the upper half

of the unit circle.

For later convenience we write the perturbative expansion of Fi (i = 1,2) in the form

Fi = ∑
n≥0

( αs

4π

)n

F
(n)

i (x) , (2.5)

with F
(0)

1 = 1 and F
(0)

2 = 0.

One of the first steps in the practical calculation is the definition of integral families for the

massive three-loop vertices. In fact, for the large-Nc limit1 eight families are needed which have

been introduced in Ref. [8]. This information is used by q2e and exp [21, 22] which process the

qgraf [23] output and generate FORM code. Let us illustrate this output for the one-loop diagram

of Fig. 1 which is given by (the two- and three-loop amplitudes look very similar):

*--#[ d1l1sub1 :

FT1(nu7)

*DFT1(+p12,M1)

*FT1(mu3)

*DFT1(-p11,M1)

*FT1(nu8)

*Dg(nu7,nu8,-p13);

#define INT1 "L1Fm1"

*--#] d1l1sub1 :

1Note that there are further planar integral families which, however, only contribute to subleading colour factors.
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Figure 1: Sample diagrams contributing to F1 and F2 at one-, two- and three-loop order. Solid, curly and
wavy lines represent quarks, gluons and photons, respectively.

Here, FT1 corresponds to a γ matrix and Dg represents the gluon propagator. DFT1 stands for the

fermion propagator with mass M1 and the momentum given in the first argument. This momentum

is assigned by exp according to the definition of the corresponding integral family. The prepro-

cessor variable INT1 gets the name of the integral family as value. In the further course of the

calculation a FORM file is loaded which has the name L1Fm1 and which contains rules to decom-

pose the numerator in terms of the denominator. It also identifies scalar integrals which serve as

input for FIRE.

For the reduction to master integrals we use FIRE5.2 [24] in combination with LiteRed [25,

26]. Once the reduction for each family is complete we use the program tsort, which is part of

the latest FIRE version [24] and based on ideas presented in Ref. [27], to obtain relations between

primary master integrals, and to arrive at a minimal set. For the large-Nc limit of F1 and F2 we

need 89 master integrals. The complete fermionic corrections of Ref [2] require further 15 master

integrals. Let us mention that we could perform the reduction to master integrals both for Feynman

gauge and also for the linear ξ term2 (where ξ is the QCD gauge parameter). ξ drops out after

quark mass renormalization, which is performed on-shell. In principle also the three-loop correc-

tion of the on-shell wave function renormalization constant contains ξ , however, not is the large-Nc

limit. The MS counterterm of the strong coupling constant is ξ independent.

After renormalization of the ultra-violet divergences the n-loop corrections to the massive

form factor develops infrared poles up to order 1/εn where the coefficients are determined by

2For the fermionic corrections [2] all ξ terms have been considered.
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Figure 2: Real parts of ε0 one-, two- and three-loop contribution of F1 as a function of x. The leading
high-energy term is subtracted so that F1 is zero for x = 0. The solid (black) lines show the exact result
and the short-dashed (blue) lines represent the high-energy approximations including terms up to order x4.
The long-dashed (red) curves contain low-energy expansion terms up to order (1− x)4. The number of light
fermions is set to zero (nl = 0).

the QCD beta function and the cusp anomalous dimension Γcusp. With our explicit calculation of

the form factor we provide an independent cross check of Γcusp in the large-Nc limit up to three

loops [28, 29, 30, 31].

The analytic results for F1 and F2 are quite long and we refrain from printing them in this

contribution. Mathematica-readable expression for the large-Nc limit can be downloaded from

https://www.ttp.kit.edu/preprints/2016/ttp16-053/ and

https://www.ttp.kit.edu/preprints/2017/ttp17-023/. In these files also ex-

pansions around the three kinematic limits x → 0,1 and −1 can be found. In Fig. 2 we confront the

high (x → 0) and low-energy (x → 1) limits with the exact result for the ε0 term for F1 (the results

for F2 are very similar) at one, two and three loops. We do not show the threshold approximation

which would reproduce the singularity for x →−1. It is noteworthy that the approximations cover

almost the whole region in x. A similar behaviour as for the large-Nc limit is also observed for the

complete light-fermion contribution [2]. Thus, if a fast evaluation of F1 and F2 is needed one could

resign to the approximations without loosing noticeably precision.

To complete the massive three-loop corrections to F1 and F2 one has to consider also non-
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planar non-fermionic contributions. It is expected the the corresponding analytic result leaves the

class of Goncharov polylogarithms and elliptic integrals appear. Still, we expect that fast and

flexible numerical evaluations of the form factors along the lines of Ref. [32] are possible.
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