KIT | KIT-Bibliothek | Impressum | Datenschutz
Open Access Logo
DOI: 10.5445/IR/1000087636
Veröffentlicht am 19.11.2018

Splitting methods for nonlinear Dirac equations with thirring type interaction in the nonrelativistic limit regime

Krämer, Patrick; Schratz, Katharina; Zhao, Xiaofei

Nonlinear Dirac equations describe the motion of relativistic spin-$\frac{1}{2}$ particles in presence of external electromagnetic felds, modelled by an electric and magnetic potential, and taking into account a nonlinear particle self-interaction. In recent years, the construction of numerical splitting schemes for the solution of these systems in the nonrelativistic limit regime, i.e., the speed of light c formally tending to infnity, has gained a lot of attention. In this paper, we consider a nonlinear Dirac equation with Thirring type interaction, where in contrast to the case of the Soler type nonlinearity a classical twoterm splitting scheme cannot be straightforwardly applied. Thus, we propose and analyze a three-term Strang splitting scheme which relies on splitting the full problem into the free Dirac subproblem, a potential subproblem, and a nonlinear subproblem, where each subproblem can be solved exactly in time. Moreover, our analysis shows that the error of our scheme improves from $\mathcal{O} $ ($r$$^{2}$$c$$^{4}$) to $\mathcal{O} $ ($r$$^{2}$$c$$^{3}$) if the magnetic potential in the system vanishes. Furthermore, w ... mehr

Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht
Jahr 2018
Sprache Englisch
Identifikator ISSN: 2365-662X
URN: urn:nbn:de:swb:90-876369
KITopen-ID: 1000087636
Verlag KIT, Karlsruhe
Umfang 20 S.
Serie CRC 1173 ; 2018/33
Schlagworte Dirac equation, time integration, splitting methods, error estimates, highly-oscillatory, nonrelativistic limit
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft KITopen Landing Page