KIT | KIT-Bibliothek | Impressum | Datenschutz
Open Access Logo
§
Volltext
DOI: 10.5445/IR/1000087645
Veröffentlicht am 19.11.2018

Solving inverse electromagnetic scattering problems via domain derivatives

Hagemann, Felix; Arens, Tilo; Betcke, Timo; Hettlich, Frank

Abstract:
We employ domain derivatives to solve inverse electromagnetic scattering problems for perfect conducting or for penetrable obstacles. Using a variational approach, the derivative of the scattered field with respect to boundary variations is characterized as the solution of a boundary value problem of the same type as the original scattering problem. The inverse scattering problem of reconstructing the scatterer from far field
measurements for a single incident field can thus be solved via a regularized iterative Newton scheme. Both the original forward problem and the problem characterizing the domain derivative are formulated as boundary integral equations and we carefully describe how these formulations are obtained in the case of Lipschitz domains. The integral equations are solved using the boundary element library Bempp. A number of numerical examples of shape reconstructions are presented.


Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht
Jahr 2018
Sprache Englisch
Identifikator ISSN: 2365-662X
URN: urn:nbn:de:swb:90-876451
KITopen-ID: 1000087645
Verlag KIT, Karlsruhe
Umfang 23 S.
Serie CRC 1173 ; 2018/34
Schlagworte inverse electromagnetic-scattering problem, domain derivatives, boundary element method
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft KITopen Landing Page