KIT | KIT-Bibliothek | Impressum | Datenschutz

(De)Lithiation Mechanism of Hierarchically Layered LiNi$_{1/3}$Co$_{1/3}$Mn$_{1/3}$O$_{2}$ Cathodes during High-Voltage Cycling

Hua, Weibo 1; Schwarz, Björn ORCID iD icon 1; Knapp, Michael ORCID iD icon 2; Senyshyn, Anatoliy; Missiul, Alkesandr; Mu, Xiaoke 3; Wang, Suning; Kübel, Christian ORCID iD icon 2,4; Binder, Joachim R. 1; Indris, Sylvio ORCID iD icon 2; Ehrenberg, Helmut 2
1 Institut für Angewandte Materialien (IAM), Karlsruher Institut für Technologie (KIT)
2 Center for Electrochemical Energy Storage Ulm & Karlsruhe (CELEST), Karlsruher Institut für Technologie (KIT)
3 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
4 Karlsruhe Nano Micro Facility (KNMF), Karlsruher Institut für Technologie (KIT)

Abstract:

In view of the requirements for high-energy lithium ion batteries (LIBs), hierarchically layered LiNi1/3Co1/3Mn1/3O2 (NCM111) cathode materials have been prepared using a hydroxide coprecipitation method and subsequent high-temperature solid-state reaction. The diffraction results show that the synthesized NCM111 has a well-defined layered hexagonal structure. The initial specific discharge capacity of a Li/NCM111 cell is 204.5 mAh g−1 at a current density of 28 mA g−1 between 2.7 and 4.8 V. However, the cell suffers from poor capacity retention over extended charge-discharge cycles. The structural evolution of NCM111 electrode during electrochemical cycling is carefully investigated by in situ high-resolution synchrotron radiation diffraction. It is found that the nanodomain formation of a layered hexagonal phase H3 and a cubic spinel phase after charging to voltages above 4.6 V is the main source for the structural collapse in c direction and the poor cycling performance. This process is accompanied by the removal of oxygen, the transition metal (TM) migration and the crack generation in the nanodomains of the primary particles. These results may help to better understand the structural degradation of layered cathodes in order to develop high energy density LIBs.


Verlagsausgabe §
DOI: 10.5445/IR/1000087647
Veröffentlicht am 20.11.2018
Originalveröffentlichung
DOI: 10.1149/2.0051903jes
Scopus
Zitationen: 25
Web of Science
Zitationen: 25
Dimensions
Zitationen: 26
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Materialien – Energiespeichersysteme (IAM-ESS)
Helmholtz-Institut Ulm (HIU)
Institut für Nanotechnologie (INT)
Karlsruhe Nano Micro Facility (KNMF)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2019
Sprache Englisch
Identifikator ISSN: 0013-4651
urn:nbn:de:swb:90-876478
KITopen-ID: 1000087647
HGF-Programm 37.01.02 (POF III, LK 01) Components and Cells
Erschienen in Journal of the Electrochemical Society
Verlag Electrochemical Society
Band 166
Heft 3
Seiten A5025–A5032
Vorab online veröffentlicht am 06.11.2018
Schlagwörter Batteries - Lithium; high voltage cycling; in situ diffraction; structural evolution; 2017-018-018189 2018-021-024249 TEM
Nachgewiesen in Web of Science
Scopus
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page