
Non-collective Scalable Global Network
Based on Local Communications

Marco Berghoff, Ivan Kondov
Steinbuch Centre for Computing

Karlsruhe Institute of Technology

Karlsruhe, Germany

Email: {marco.berghoff,ivan.kondov}@kit.edu

Abstract—To efficiently perform collective communications
in current high-performance computing systems is a time-
consuming task. With future exascale systems, this communi-
cation time will be increased further. However, global infor-
mation is frequently required in various physical models. By
exploiting domain knowledge of the model behaviors globally
needed information can be distributed more efficiently, using only
peer-to-peer communication which spread the information to all
processes asynchronous during multiple communication steps.
In this article, we introduce a multi-hop based Manhattan Street
Network (MSN) for global information exchange and show the
conditions under which a local neighbor exchange is sufficient for
exchanging distributed information. Besides the MSN, in various
models, global information is only needed in a spatially limited
region inside the simulation domain. Therefore, a second network
is introduced, the local exchange network, to exploit this spatial
assumption.

Both non-collective global exchange networks are implemented
in the massively parallel NAStJA framework. Based on two
models, a phase-field model for droplet simulations and the
cellular Potts model for biological tissue simulations, we ex-
emplary demonstrate the wide applicability of these networks.
Scaling tests of the networks demonstrate a nearly ideal scaling
behavior with an efficiency of over 90%. Theoretical prediction
of the communication time on future exascale systems shows an
enormous advantage of the presented exchange methods of O(1)
by exploiting the domain knowledge.

Index Terms—peer-to-peer communication, distributed mem-
ory, scalable parallel algorithms, massive-parallel performance,
network protocol, stencil code, phase-field method

I. INTRODUCTION

Large-scale computer simulation enables realistic 3D repro-

ductions of various physical phenomena. To efficiently exploit

current and future high-performance computing systems a high

node-level performance and efficient communication schemes

are desired. For various applications, global communication

schemes are required for consistency calculations of the mod-

els. However, global collective communication is showing

non-satisfying scaling behavior. With an increasing number of

communication partners, this can become the limiting factor of

the simulations. Detailed domain knowledge can help to iden-

tify more efficient methods for global information exchange.

In this article, we demonstrate this with two applications, the

phase-field method and the cellular Potts-model.

The phase-field method is used to investigate the microstruc-

ture evolution in many problems of computational material

Fig. 1: Blocks denoted by white lines cover the interface

between water (red) and air (blue). If the water droplet water

condenses on the surface (bottom), the boundary surface and

thus the calculating blocks move upwards.

science [1], [2]. Many of these problems require calculations

only in small interface regions of the simulated domain. As

illustrated in Figure 1 a simulation of a water droplet only

needs to be calculated the interface between water and the

surrounding air. Here the interface is covered by blocks and

only these are calculated. If the droplet moves during the

simulation, the blocks are adapted. To be able to assign created

blocks uniquely to a process, new blocks must be announced

globally.

The cellular Potts-model requires the surface and volume of

distributed biological cells to calculate an energetically more

favorable form of the individual cells. All processes that hold

a part of a cell have to exchange the volume and the surface

changes to each other. If it is not known in advance where

exactly the parts of the cell are, this information must also be

spread globally. Figure 2 shows cells in a simulation domain,

divided in different blocks.

In the recently developed NAStJA framework [4] we employ

a regular block-structured grid to decompose the simulated

domain in small blocks, which are distributed over the MPI

(Message Passing Interface) processes. Each of this blocks

has a regular grid, where stencils can be used to calculate the

partial differential equation with the explicit Euler scheme.

NAStJA is able to process only the interface regions of the

Fig. 2: More than 1000 biological cells placed in 100 blocks

of a structured block grid (white lines). [3]

simulated domain by allocating and distributing just those

blocks that contain a part of the interface, as needed by the

droplet simulation. As the interface moves in the simulated

domain throughout the simulation, the corresponding blocks

are created or deleted. Communicating processes build a local

neighborhood and act autonomously in this neighborhood. The

locality of neighborhoods limits the number of connections

per process and the local communication overhead and leads

to high scalability. The NAStJA framework has being already

employed for a phase-field method [5], [6] especially for

droplets [7], a phase-field crystal model [8]–[10] and for

the cellular Potts model, a cellular automaton for biological

cells [11]. The framework can be extended with a wide range

of algorithms that work on finite difference schema or other

regular grid methods.

Nevertheless, besides from the communication within local

neighborhoods, global information exchange is required. A

use case within the NAStJA framework is the connection of

previously disjoint local neighborhoods. This may be neces-

sary while creating new blocks. With an increasing number

of processes, global collective communications become a

bottleneck and limit the scalability. It is therefore desirable that

a global exchange, involving all MPI processes, of information

can be performed without the use of collective communication

functions. This requires certain prerequisites. Another way to

avoid global collective communication is to use domain knowl-

edge to restrain the width of communications. In the NAStJA

framework, there are different communication schemes, which

are all performed in each time step. Some of these overlap with

the calculations to benefit from communication hiding.

For a clear distinction between the different communication

schemes within the NAStJA framework, we first give a brief

overview of all communication schemes.

(i) Halo exchange – In stencil code simulations, one or

more halo layers usually extend the blocks. The halo

holds a copy of the values of neighboring blocks. After

each calculation step, the halo layers have to be updated.

Therefore, a halo exchange is performed between each

pair of adjacent sides of the blocks.

(ii) Neighborhood exchange – In the autonomously cre-

ating and deleting block modus, NAStJA must prevent

overlaps, i.e., two different processes must not create a

particular block. To ensure this, processes build local

groups. Within a local group, the processes exchange

information about their blocks. The topology of this

network, i.e., the local groups, depends on the blocks

contained on one process and the neighboring blocks.

Each block has up to 125 neighbors so that a process

can have a maximum of 125 neighboring processes per

block.

(iii) Global announcement network – Two subdomains that

are moving towards each other but do not have a joint

local group must create a local group before they touch.

In the autonomous system, however, it is not known

precisely where the other subdomain is located or whether

there is one at all. When a block is newly created, this

is announced globally to all others. A receiver can then

decide if the block is close enough and if he has to build

a local group with it.

(iv) Local exchange network – A particular object, i.e.,

a connected subset of the domain, can be located in

different neighboring blocks. To exchange information

for these objects, all blocks that contain a fragment of

the object must communicate with each other. A priori

these are not known, so all blocks must communicate

with each other.

We can distinguish these communication schemes between

local exchanges and global exchanges. The local exchanges

act between neighboring processes or blocks which have to

communicate with each other. They can be implemented by

peer-to-peer communications that constantly scale with O(1).

Some information must be distributed globally because it

is either required by each process or block or because the

receivers are not known. In the further part of this article, we

only consider the last two communication methods (iii) and

(iv) which need a global exchange of information.

In the next section, we will show different approaches to

achieve global exchange with only local communications. We

outline the necessary prerequisites and present some use cases.

In Section III we compare the introduced global exchange

methods with global collective communication. Therefore we

use scalability measurements of different test cases. We con-

clude with a summary and an outlook.

II. METHODS

In this section, we present methods that are suitable for

global exchange without the use of collective communica-

tion due to their prerequisites or specific domain knowledge.

Firstly, the necessary prerequisites for each method are dis-

cussed.

A. Global Announcement Network

NAStJA implements a global announcement network to dis-

tribute information across all processes. This network includes

all MPI processes independent of the blocks that each process

holds.

In NAStJA, this network is mainly used to announce newly

created blocks to all processes. Each process only knows

neighboring blocks and only maintains a connection to the

processes that host these adjacent blocks. Thus, the process

that creates a new block cannot know all processes that have

this new block in their neighborhood and have to communicate

with the creator process of the new block. A new block does

not have to be known directly, only if the absence of a block

violates the consistency in the knowledge of the individual

processes, i.e., a block is created a second time. Another error

occurs if the simulation result differs from a reference full-

domain simulation, so the new block must be known before

the simulated structure (the interface) touches the border of the

block, and a boundary condition is executed instead of the halo

exchange. These inconsistencies occur at the earliest when the

interface has moved through a block. Details can be found in

Ref. [4]. With the used phase-field stencil, the interface can

move by a maximum of one grid point per time step, so that

the block size specifies how long the global announcement

network may take to distribute the information to the entire

network. Admittedly, the time is reduced by seven time steps,

which are required for the communication setup after the new

communication partner is known.

This global announcement network can be used in cases

whenever consistency is not necessary at each time step, i.e.,

when some time steps may pass before the information is used.

In particular, this network can be used to distribute system

messages that occur only in one process, but to which all

other processes must react. If a process notices that it does not

make sense to continue the calculation because a previously

defined state has been reached, it can report this to every

process. Then a snapshot can be created before terminating

the simulation. Such events could be premature exits when the

simulated object reaches the boundary, and further simulation

results are affected by the finite size of the domain.

The global announcement network works according to a

multi-hop system and uses a store-and-forward distribution.

The information is provided together with a time to live

counter (TTL) which is initialized with the diameter of the

network. Both the information combined with its TTL are sent

to the peers. Then the TTL is decreased, and the information

is forwarded to its peers in the next time step. In each time

step, one hop is performed. The information can be processed

directly, or if it is essential that all processes execute the

ensuing action at the same time step, the peer waits until

the TTL is 0 to perform the related action. Depending on

the topology of the network a message may be received by

some processes for a second time or may return. In such

cases, the message is ignored and not further sent. Therefore

a buffer containing all information with a valid (positive) TTL

TABLE I: Properties of some selected well-established net-

work topologies.

network topology nodes degree diameter

hypercube 2n n n
butterfly 2n 4 n
cube-connected cycles (order n) n2n 3 2n+ �n/2� − 2
regular nD torus (N edge size) Nn 2n n · �N/2�
Manhattan Street Nn n n · �N/2�+ 1

so that arriving information can be checked for existence in

this buffer. The topology of the global announcement network

is initially negligible.

The network topology is chosen in a trade-off between

the number of connections per process and the diameter,

i.e., the minimum number of hops necessary to complete the

communication. The optimal network topology has a minimum

diameter at minimum degree, i.e., number of connections per

process.

Let us map the global communication network onto a graph

in which the vertices represent the processes and the edges

the connections. In the past, some network topologies have

been designed, discussed, analyzed and built. These include

hypercubes [12], butterfly networks [12], cube-connected cy-

cles [13], [14] and n-dimensional torus networks [15], [16].

Their properties are listed in Table I with the maximum

possible number of vertices, degree, and diameter. If the

number of processes deviates from the regular number of

vertices, it is for the hypercube network especially difficult

to build a modified variant. This is easier for butterfly and

cube-connected cycles networks. However, there the number

of nodes is limited by the fixed degree and given diameters.

The n-dimensional torus network is flexible in these respects,

i.e., the nodes can be increased by increasing the dimension for

a given diameter. In case of undirected graphs, the received

information is sent back directly or alternatively has to be

filtered out to avoid sending them back. So, bidirectional edges

make little sense. Manhattan Street Networks (MSN) [17]–

[19] are similar to torus networks. They consist of directed

edges alternating in positive and negative direction, as Figure 3

shows. Compared to the torus network, this halves the number

of connections and so the degree. The diameter d remains

almost the same, because in the n-dimensional MSN it is

d =

n−1∑

i=0

Ni

2
+ v, (1)

where Ni is the number of vertices in the ith-dimension and

v = 1 if and only if Ni mod 4 = 0 for all i otherwise v = 0.

To obtain the smallest possible diameter, the network should

be as close to cubic as possible. For dimension n and K0

vertices, the number of vertices per dimension is calculated

inductively. Let Ni := � n−i
√
Ki� be the number of vertices in

the dimension i. The remaining vertices of the hyperrectangle

of dimension n − i are defined as Ki+1 := �Ki/Ni�, for

i = 0, . . . , n − 1. In most cases, this results in a non-regular

MSN. As an example, Figure 4 shows the two-dimensional

Fig. 3: Two-dimensional regular MSN of 4× 4 vertices. The

short arrows represent the connection with the opposite side.

Fig. 4: Two-dimensional non-regular MSN with 15 vertices.

The blue rectangle illustrates the regular (cuboid) part of the

MSN. For the red vertex outside of the regular part there is

a direct connection to the regular part, and from the regular

part there is a direct connection to the red vertex, both marked

with a green background.

MSN for 15 vertices. The resulting network consists of a

cuboid MSN plus an incomplete hyperplane. Each vertex in

the hyperplane can be reached with one hop from the cuboid,

and the cuboid can be reached with one hop from each vertex

of the hyperplane, so that the degree Eq. (1) increases by a

maximum of one. In Table II the number of processor cores for

a selection of supercomputer is given. For simulation using all

TABLE II: Number of processor cores for selected supercom-

puters from the Top500 list, June 2018 [20].

cores name top 500 rank

10 649 600 Sunway TaihuLight 2 most cores in the world
2 282 544 Summit 1 number one in the world

361 760 Piz Daint 6 number one in Europe
185 088 Hazel Hen 27 most cores in Germany
114 480 JUWELS Module 1 23 number one in Germany

22 960 ForHLR II 442 whole system at KIT
10 240 ForHLR II productive mode

TABLE III: Diameter for given processes and different de-

grees, that is equal to the dimension of the MSN. The values

in bold font highlight the dimension that is needed for diameter

limited to 28, which corresponds to block sizes of 35.

number of degree
processes 2 3 4 5 6 7 8 9 10

10 240 102 33 21 16 15 14 13 13 13
22 960 152 43 25 19 17 15 15 14 14

114 486 339 74 37 26 21 19 18 17 17
185 088 431 86 42 29 23 20 19 18 17
361 760 602 107 50 33 26 22 20 19 19

2 282 544 1511 198 78 48 35 29 25 23 22
10 649 600 3264 331 115 64 45 36 31 28 26

processes of these supercomputers the diameters for MSNs of

different dimensions are shown in Table III. The diameters that

are needed to handle blocks with 35 grid points per dimension

are highlighted. This shows that for moderate simulation sizes

with relatively small blocks, three up to four connections

are sufficient to build a global announcement network with

an MSN. Even for extensive simulations with small blocks,

nine connections are sufficient. If the blocks can be made a

little larger, the diameter increased and such the degree will

decrease. Note that there is an exponential progression so that

for high dimensions, the number of hops changes only slightly.

B. Local Exchange Network

The MSN described above manages the global exchange

of information using an arbitrary network which is spanned

over the individual processes. This network does not take into

account the topology of the blocks, i.e., the distribution of the

computing domain. In addition, huge buffers, with a size of at

least the message size per time step multiplied by diameter,

are necessary for exchanges of significant size. For exchanging

information that is restricted in a local but distributed region of

the simulated domain, a further method of exchange is more

reasonable.

In many applications, subregions of the simulation domain

build small objects with a special meaning. These objects can

be droplets, cells, grains, and so on. They occur in multi-

droplet [7], [21], multi-cell [11] or multi-grain [22], [23]

simulations. An entire object can be distributed over several

subdomains (blocks). Furthermore, objects can move freely

and change their size during the simulation, so it is unknown

in which blocks a part of an individual object is located. This

means that to calculate the volume of a particular object, the

partial volumes of that object from each block is required.

To distribute changing properties, e.g., the change in volume

or surface area, all blocks holding a part of the object must

be known, or all blocks have to exchange these properties

with all other blocks. A priori these blocks are unknown

and following the objects over blocks and hold an up-to-

date list of all blocks which hold a part of the objects is

communication intensive. On the other hand, for objects that

only occur in a few blocks, many zero-length messages of

the volume and surface area are exchanged unnecessarily.

a) b)

Fig. 5: (a) Valid and (b) invalid distribution of an object (blue)

over blocks (dashed rectangles). The invalid object distribution

overlaps three blocks in x-dimension. The size of the object

is larger than the size of one box.

a) b)

Fig. 6: Local neighbor exchange in two dimensions. The center

block (blue) (a) sends to eight neighboring blocks and (b)

receives from the same eight neighbors.

Moreover, a collective communication is not desirable for

scalability reasons.

A possible option can be given under the prerequisite

that only the direct neighboring blocks have to exchange

information, this can be done in every time step without the

usage of collective communication. If the spatial extension

of objects does not exceed the extension of one block, this

exchange method can be used. The distribution of the object

across the block boundaries is not affected by this, as shown

in Figure 5(a). An object occurs in a maximum of four blocks

in two dimensions or eight blocks in three dimensions. For

this purpose, individual objects can only be distributed to

blocks if they do not leave a block on two opposite sides.

However, this can be guaranteed if the size of the objects is

limited. The objects can have a maximum size of the block

extension, see Figure 5(b). Because the information is only

sent to the neighbors, the middle part of the object receives

all the information, but the outer parts will not receive it.

Information from the right does not reach the left and vice

versa, so the object information would no longer be consistent

in all parts. The exchange is performed after each calculation

step as shown in Figure 6. Initially, all the information, which

can consist of different amounts of data per block, is stored

in a message package. For example, for each object in a

block two values for the volume and surface area plus an

index of the object are stored in the message package. This

message package is then sent to all direct neighbors, i.e., to

eight neighbors in two dimensions and 26 in three dimensions.

On the receiving side, the message packages of eight in two

dimensions or 26 neighbors in three dimensions are received.

The message packages are unpacked. If the data have been

received from all neighbors, these can be processed. To ensure

that the data is consistent, the local changes of the values are

exchanged. From these, the absolute values are calculated, so

the sum of the local changes is equal to the change of the

entire object. Since objects move, they can enter blocks in

which they were not before. In addition to the changes of

volume and surface, their absolute values must be transferred,

such that the newly entered blocks can calculate the current

values of volume and surface from the changes. The amount of

transferred data depends on the number of different objects and

the number of different types of values. For typical simulation

setups with a block size of 803 and an object size of 103,

information of up to 512 different objects has to be exchanged.

For an exchange of volume and surface, each with absolute

value and a value for the change, as well as four values for

a center of mass calculation, these are summed up to 13

values including keys and thus in total almost 7000 values

per exchange.

C. Data-aware Global Multi-hop Network

The most recently introduced method allows to distribute

data locally to neighbors so that these data can be considered

as global for all partners specified under the given require-

ments, i.e., all other partners do not need this data. The

former method (see Section II-A) performs a global exchange

independent of the structure of the simulation domain. A

combination of both methods is the extension of the local

neighbor exchange with an additional TTL counter. This

method is useful for events that are fast spreading throughout

the whole domain but that are not time-critical. The only

difference to the local exchange network is the appending of

the TTL counter to the exchanged data which slightly increases

the size of the exchanged message package. The number and

partner of all connections stay the same. In a second step,

these stored data are forwarded to the neighboring blocks of

the first receivers. In this way, information can be propagated

through the whole domain, or even only through parts of it.

For this purpose, the topology of the simulation domain is

used and not an arbitrary topology as it is used in the method

from Section II-A. This allows restricting the exchange to local

areas up to n blocks away from the triggering block.

As an example, refer to Figure 7, in the shown block chain

two hops are needed to get the information from A to C,

for reasons of clarity only one dimension is illustrated. An

arbitrary object is located in A and B. The properties are

distributed to the neighbors, so C also holds these properties

received from B. If a property is changed starting from A,

this property is transferred to B via the neighbor exchange.

The object behaves consistently since A and B hold the same

properties for this object. However, C has not yet heard of

the change, and that is not a problem as long as the object is

not located in C. Through the multi-hop exchange, C will be

Block A Block B Block C

t t + 1

Fig. 7: Multi-hop exchange in one dimension. Block A gener-

ates a message and send this to block B in the time step t. In

the next time step t+1, block B sends this message to block

C.

informed about the change one time step later, if the object

will move into C after that, it is also consistent here. This

procedure is useful and necessary if, for example, degenerate

objects that occur in both A and C must be deleted. So every

block in the extended neighborhood will be informed in the

next n time steps, where n is equal to the distance to the

original creator block of that message.

D. Theoretical Evaluation of the Different Network Topologies

A significant disadvantage of all-to-all communications is

that the size of the message size must be known in advance

so that it must be generously increased to the largest message

size that is possible. Our presented networks can all work

with MPI Probe and thus can handle the receiving of data

of different sizes. Furthermore, it is sufficient to send a tiny

message if no data has to be exchanged, the size of this is

neglected in the calculation below. The number of messages

can, therefore, vary significantly. Nevertheless, we want to

give estimates for the message rate (M), and the amount of

exchanged data (E) for the different networks.

Let m be the message size, N the number of nodes and B
the number of blocks in the simulation. For non-dynamically

adaptive simulations, usually B = N is selected. For the MSN,

the diameter results in d ≈ n
√
N , where n is the dimension

of the MSN. For the local exchange networks, the diameter is

the largest number of blocks in one dimension, d ≈ 3
√
B.

(i) For all-to-all communications, it is M = N ·N and E =
N ·N ·m.

(ii) An MSN with one message from one process in one

time step results in M = n · N and E = n · m, this

exchange then occurs in the d subsequent time steps. For

one message per process in a time step M = n · N
and E = n · N · m, this exchange also takes place in

the d following time steps. If each process generates

a message of size m in each time step, the result is

M = n ·N and E = n ·N ·m · d. Here, the size of the

message is m ·d, since the messages from the d previous

time steps are distributed further. It should be noted that

m · d is an upper limit, old messages that have already

been sent or forwarded are not sent again. However, as

described above, a message that has already been sent can

be received again, for example when exactly one four-

Fig. 8: Distribution of information in the multi-hop local

exchange, for the sake of clarity two steps in 2D. Incoming

messages from sides only have to be forwarded to the opposite

side. For edges in 3D or corners in 2D, these must be

forwarded to three blocks on the opposite side. For corners in

3D, forwarding to seven neighbors is necessary. This results in

6 ·1+12 ·3+8 ·7 = 97 forwardings in 3D and 4 ·1+4 ·3 = 16
in 2D.

node-cycle has ended in the MSN, but they are not sent

on the journey again.

(iii) For the local single-hop exchange network, M = 26 · B
and E = 26 · m for one message from one block and

E = 26 ·B ·m when every block sends a message.

(iv) In the multi-hop method, M = 26 · B remains to take

older messages into account. E = 26 ·m · d is the upper

limit. Here, the sending back of messages can be waived,

too. In addition, a message does not have to be sent to all

neighbors if it is known that another neighbor is sending

it there, which reduces the average number of connections

per message to less than four, see Figure 8. This implied

E ≤ 4 ·m · d.

While all-to-all (i) has a scaling of O(N2) in relation to

the number of nodes, the other networks strongly depend

on the number of generated messages. The MSN (ii) varies

from O(N) to O(N1+ 1
n), depending on the dimension n.

The single-hop exchange (iii) is linear O(1), for the multi-

hop exchange (iv) it varies from O(1) to O(N
1
3) depending

on the number of generated messages.

III. RESULTS

In this section, we present measurements and results of

the two different communication methods for global data

exchange in the NAStJA framework.

For the scaling test we perform simulations on the

ForHLR II located at Karlsruhe Institute of Technology. The

ForHLR II consists of 1152 20-way Intel Xeon compute nodes.

Each of these nodes has two deca-core Intel Xeon processors

E5-2660 v3 with the Haswell architecture which run at a base

clock rate of 2.6GHz and have 10× 256KB of level 2 cache

and 25MB shared level 3 cache. Each node provides 64GB of

main memory and an FDR adapter to connect to the InfiniBand

4X EDR interconnect. In total 512 nodes can be used that are

connected by a quasi-fat tree topology with a bandwidth ratio

of 10 to 11 between the switches and leaf switches. NAStJA

used the implementation of OpenMPI.

All scaling tests were performed in the setting of a weak

scaling. For the basis value (t1) we use the runtime on one

full node with 20 cores. The side length of 100 for a cubic

block is chosen, and one block per process is used. During

the tests, we omit all disk I/O routines. The parallel efficiency

η is defined by

η =
t1
tp
, (2)

where tp is the parallel run time with p nodes.

The test size increases by power of two up to 512 nodes,

corresponding to 10 240 processes. We use for all tests an

artificial constant workload of 65ms per process and use a

halo exchange of six sides. The simulations run 1000 time

steps, and an average is calculated.

A. Global Announcement Network

Figure 9 shows measurements of the time and efficiency

for a constant workload and a global exchange via the five-

dimensional MSN compared to collective communication. For

global exchange by collective MPI operations, the size of

the exchange array must be specified in advance. The actual

required size is not known before and has to be estimated

generously. So the global operations were measured for 400B
which corresponds to 100 integer values and 8 kB and 800 kB.

As expected, the efficiency for many processes and large

exchange arrays drops significantly, but even the exchange

of hundred values has an efficiency of only 75% on 10 240
processes. In contrast, the exchange using the MSN has an

efficiency of over 90% and shows excellent scalability.

B. Local Exchange Networks

The both networks described in Section II-B and II-C have

the same network topology. The only difference is the amount

of data sent. The data-aware global multi-hop network (II-C)

uses a store-and-forward mechanism to forward received data

to the next neighbors. Measurements in Figure 10 show the

time and efficiency for different data sizes. It was measured

again with a constant workload of 65ms per process and a

halo exchange of six sides. The data sizes used are 400B,

8 kB and 800 kB. The efficiency is over 95% on 256 nodes

with 5 120 processes for all measured data sizes. At least for

the sizes shown up to 800 kB this exchange is independent of

the size of the transmitted data.

IV. CONCLUSION AND OUTLOCK

Efficient scalability is of enormous importance for software

on HPC systems. Global information exchange mostly uses

collective communications, which are known to scale unfa-

vorably, especially for large amounts of data and many com-

municating processes. This behavior could also be reproduced

in this work. However, with detailed knowledge of the model

system, it is possible to identify prerequisites that enable

1 8 64 512

100

1,000

Nodes/20 cores

Ti
m
e
t/
m
s

MSN
400 B
8 kB

800 kB

(a)

1 8 64 512

0

0.2

0.4

0.6

0.8

1

Nodes/20 cores

Effi
ci
en

cy
η

MSN
400 B
8 kB

800 kB

(b)

Fig. 9: Scaling at constant workload (65ms) per process with

halo exchange of six sides and a global exchange. Comparison

of the MSN to global collective communication with 400B,

8 kB and 800 kB. (a) Average time per time step and (b)

efficiency.

distributing this information globally without collective com-

munications. It has been shown that it is possible to use multi-

hop networks to spread time uncritical information through

the entire simulation domain using only local peer-to-peer

communications. The presented scaling results show that in

simulations with more than 10 000 processes it is still possible

to achieve an efficiency of more than 90%. The MSN used

here has a larger degree than other network topologies, but the

MSN is easy to understand and to implement for non-regular

numbers of vertices. With the excellent scalability measured

as shown in the results, it is also completely sufficient. The

diameter can be controlled via the dimension of the MSN, so

that a suitable n-dimensional MSN can be found depending

on the specific application.

For other information, which is distributed over blocks but

limited locally, local exchanges are sufficient, and standard

MPI collective communications can be dispensed. In such

cases, an efficiency of more than 95% is possible if the size

of the calculated objects is limited to a sufficiently small size.

The method from Section II-B can also be extended in the

way that the local exchange goes to the nearest neighbors

and their neighbors. This increases the number of exchanges

1 4 16 64 256

66.5

67

67.5

68

Nodes/20 cores

Ti
m
e
t/
m
s

400 B
8 kB

800 kB

(a)

1 4 16 64 256

0

0.2

0.4

0.6

0.8

1

Nodes/20 cores

Effi
ci
en

cy
η

400 B
8 kB

800 kB

(b)

Fig. 10: Scaling at constant workload of 65ms per process

with halo exchange of six sides and an additional exchange.

(a) Average time per time step and (b) efficiency.

to 24 in two dimensions and 124 in three dimensions. The

absolute time is expected to get slightly worse, but this time

stays constant with the number of processes. This would

allow treating objects that have an extension of twice the

length of the block edge in each dimension. Whenever it is

worthwhile to use small blocks, which could fit into the cache

and cause more exchange instead, is to be considered on a

case-by-case basis. Furthermore, the communication methods

presented here show a constant scaling behavior, so that a good

scaling behavior can also be projected onto future exascale

systems.

ACKNOWLEDGMENT

This work was performed on the computational resource

ForHLR II funded by the Ministry of Science, Research

and the Arts Baden-Württemberg and DFG (“Deutsche

Forschungsgemeinschaft”).

We thank J. Rosenbauer and J. Hötzer for the fruitful

discussions.

REFERENCES

[1] M. Bauer, J. Hötzer, M. Jainta, P. Steinmetz, M. Berghoff, F. Schorn-
baum, C. Godenschwager, H. Köstler, B. Nestler, and U. Rüde, “Mas-
sively parallel phase-field simulations for ternary eutectic directional
solidification,” in Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis. ACM,
2015, p. 8.

[2] J. Hötzer, M. Jainta, P. Steinmetz, B. Nestler, A. Dennstedt, A. Genau,
M. Bauer, H. Köstler, and U. Rüde, “Large scale phase-field simulations
of directional ternary eutectic solidification,” Acta Materialia, vol. 93,
no. 0, pp. 194 – 204, 2015.

[3] J. Rosenbauer, personal communication.
[4] M. Berghoff, I. Kondov, and J. Hötzer, “Massively parallel stencil

code solver with autonomous adaptive block distribution,” IEEE
Transactions on Parallel and Distributed Systems, 2018. [Online].
Available: http://doi.acm.org/10.1109/TPDS.2018.2819672

[5] B. Nestler, H. Garcke, and B. Stinner, “Multicomponent alloy solidifica-
tion: phase-field modeling and simulations,” Physical Review E, vol. 71,
no. 4, p. 041609, 2005.

[6] M. Berghoff, M. Selzer, and B. Nestler, “Phase-field simulations at the
atomic scale in comparison to molecular dynamics,” The Scientific World
Journal, vol. 2013, 2013.

[7] M. Ben Said, M. Selzer, B. Nestler, D. Braun, C. Greiner, and H. Garcke,
“A phase-field approach for wetting phenomena of multiphase droplets
on solid surfaces,” Langmuir, vol. 30, no. 14, pp. 4033–4039, 2014.

[8] K. Elder, N. Provatas, J. Berry, P. Stefanovic, and M. Grant, “Phase-field
crystal modeling and classical density functional theory of freezing,”
Physical Review B, vol. 75, no. 6, p. 064107, 2007.

[9] M. Berghoff and B. Nestler, “Phase field crystal modeling of ternary
solidification microstructures,” Computational Condensed Matter, vol. 4,
pp. 46–58, 2015.

[10] M. Guerdane and M. Berghoff, “Crystal-melt interface mobility in bcc
fe: Linking molecular dynamics to phase-field and phase-field crystal
modeling,” Physical Review B, vol. 97, no. 14, p. 144105, 2018.

[11] F. Graner and J. A. Glazier, “Simulation of biological cell sorting
using a two-dimensional extended Potts model,” Physical Review Letters,
vol. 69, no. 13, p. 2013, 1992.

[12] Y. Solihin, Fundamentals of Parallel Computer Architecture. Solihin
Publishing and Consulting LLC, 2009.

[13] F. P. Preparata and J. Vuillemin, “The cube-connected cycles:
A versatile network for parallel computation,” Commun. ACM,
vol. 24, no. 5, pp. 300–309, May 1981. [Online]. Available:
http://doi.acm.org/10.1145/358645.358660

[14] I. Friš, I. Havel, and P. Liebl, “The diameter of the cube-connected
cycles,” Information processing letters, vol. 61, no. 3, pp. 157–160,
1997.

[15] D. Banerjee, B. Mukherjee, and S. Ramamurthy, “The multidimen-
sional torus: analysis of average hop distance and application as
a multihop lightwave network,” in Communications, 1994. ICC’94,
SUPERCOMM/ICC’94, Conference Record,’Serving Humanity Through
Communications.’IEEE International Conference on. IEEE, 1994, pp.
1675–1680.

[16] P. Fragopoulou and S. G. Akl, “Efficient algorithms for global data
communication on the multidimensional torus network,” in Parallel
Processing Symposium, 1995. Proceedings., 9th International. IEEE,
1995, pp. 324–330.

[17] B. Khasnabish, “Topological properties of Manhattan street networks,”
Electronics Letters, vol. 25, no. 20, pp. 1388–1389, 1989.

[18] T.-Y. Chung and D. P. Agrawal, “Design and analysis of multidimen-
sional Manhattan Street Networks,” IEEE transactions on communica-
tions, vol. 41, no. 2, pp. 295–298, 1993.

[19] F. Comellas, C. Dalfó, and M. A. Fiol, “Multidimensional Manhattan
street networks,” SIAM Journal on Discrete Mathematics, vol. 22, no. 4,
pp. 1428–1447, 2008.

[20] TOP500.org, “Top500 List - June 2018,” 2018. [Online]. Available:
https://www.top500.org/list/2018/06/

[21] F. Weyer, M. Ben Said, J. Hötzer, M. Berghoff, L. Dreesen, B. Nestler,
and N. Vandewalle, “Compound droplets on fibers,” Langmuir, vol. 31,
no. 28, pp. 7799–7805, 2015.

[22] L. Gránásy, T. Pusztai, and J. A. Warren, “Modelling polycrystalline
solidification using phase field theory,” Journal of Physics: Condensed
Matter, vol. 16, no. 41, p. R1205, 2004.

[23] N. Moelans, F. Wendler, and B. Nestler, “Comparative study of two
phase-field models for grain growth,” Computational Materials Science,
vol. 46, no. 2, pp. 479–490, 2009.

Repository KITopen

Dies ist ein Postprint/begutachtetes Manuskript.

Empfohlene Zitierung:

Berghoff, M.; Kondov, I.

Non-Collective Scalable Global Network Based on Local Communications

2018. 9th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems

(ScalA), Dallas, TX, USA, November 12, 2018, Institute of Electrical and Electronics

Engineers (IEEE).

doi: 10.554/IR/1000087658

Zitierung der Originalveröffentlichung:

Berghoff, M.; Kondov, I.

Non-Collective Scalable Global Network Based on Local Communications

2018. 9th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems

(ScalA), Dallas, TX, USA, November 12, 2018, 25–32, Institute of Electrical and Electronics

Engineers (IEEE).

doi:10.1109/ScalA.2018.00007

Lizenzinformationen: KITopen-Lizenz

https://publikationen.bibliothek.kit.edu/1000087658
https://publikationen.bibliothek.kit.edu/1000087658
https://publikationen.bibliothek.kit.edu/1000087658
https://doi.org/10.1109/ScalA.2018.00007
https://www.bibliothek.kit.edu/cms/kitopen-workflow.php

