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Abstract 

Water reacting with silica causes the generation of hydroxyl SiOH accom-
panied by a volume or swelling expansion. The principle of LeChatelier 
ensures that the hydroxyl concentration increases with increasing externally 
applied stresses. From the analysis in [1] it becomes obvious that  

a) the hydroxyl concentration must depend on the multi-axiality of 
the applied stresses, and 

b) that the swelling effect is anisotropic.  

On the basis of the results in [1] it will be shown that under torsion loading 
the strongest effects should occur.  
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1 Motivation for anisotropic swelling 
Strongly different stress states can result in the same hydrostatic stress term h. An example 

for this fact is illustrated in Fig. 1 where the hydrostatic stress disappears completely, h=0. 

This is trivial when all stress components disappear, Fig. 1a. In the case of Fig. 1b where the 

transversal stresses are half of the longitudinal stress with inverse sign, it is according to  

 0)(3
1  zyxh    

The same holds for torsion loading, y=-z, Fig. 1b’. It is hardly imaginable that the 
high tensile stresses in bond direction should have no effect on bond fracture. It has to 
be expected that the reaction in tensile direction should produce swelling even for the 
hydrostatic stress state h=0. 

 
Fig. 1 a) b) Three stress states acting on a Si-O-bond exhibiting the same disappearing hydrostatic 
stress h=0: a) isotropic swelling is expected, for b), b’) swelling in z-direction should dominate as 
illustrated by c), case b’) describes torsion loading, c) water molecule reacting with a stressed bond 

oriented in z-direction, producing two hydroxyls, 2Sz.  

Figure 2 shows the load-displacement curves for bond breaking. Perpendicular to the 
loading direction the necessary energy for splitting the bond is U and must be deliv-
ered by thermal vibrations.  
The portion Nx (subscript x means the bonds oriented in x-direction in which no stress 
acts) of opened bonds results from the Boltzmann equation as 
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The same equation holds for the y-direction 
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The potential barrier U belongs to the case when no stresses are present or when the 
bond is perpendicular to the stress, Fig. 2a. 
 

 
Fig. 2 Energy conditions for bond breaking. 

Under action of a force F in bond-direction, Fig. 2b, the potential barrier is reduced to 
U-F1. Consequently, the occurrence of opened bonds in z-direction is increased  
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where V is an activation volume. In the following considerations, it will be shown that 
the strongest anisotropy effect has to be expected for the torsion loading case. 

For the computations on anisotropic swelling let us follow the derivations made in [1]. 
The stress effect on the equilibrium constant for reaction SiO2+H2O2 SiOH can be 
derived from Eq.(6) of the article by de Boer [2]. Following the procedure in the re-
view article by Hamann [3], we obtain the following equation for the equilibrium con-
stant: 
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  UWkRT  222ln SiOH0,H2O0,  , (1.4) 

where 0,H2O and 0,SiOH are the chemical potentials for molecular water and hydroxyls, 
respectively in the unstressed state; W represents the work per mol of SiOH done by 
the mechanical stresses; and U is the change of the elastic strain energy per mol due 
to a reduction of material stiffness as a consequence of the water reaction.  
The work term W in Eq. (1.4) is for loading in 3 directions x, y, z 

 
)1(
,

)1(
,

)1(
,0/ xswxyswyzswzVW     (1.5) 

with the Cartesian components of swelling strains sw,i, the glass volume, V0, conven-
iently chosen as the molar volume of dry glass, and the superscripts (1) standing for 1 
mole of S. The total swelling volume is in general the sum of the components 

 zswyswxswv ,,,    (1.6) 

Consequently, it holds for 1 mole of S 
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The change of strain energy is for uniaxial loading by z=appl 

 EVU appl 2
2
1

0/   (1.7) 

where ∆E is the change in the Young’s modulus as a consequence of the material 
damage by hydroxyl generation. 
Due to the reaction between water and silica, a stiffness reduction of the SiO2-
structure, E/S, must occur since the interaction forces between the two S-groups are 
lower than the forces between the silicon atoms of the original Si-O-Si bond. The re-
duction in stiffness results in a change in the quantity of elastically stored energy, 
which in turn, contributes to the driving force of the reaction [4]. Since E0, the con-
tribution U has the same sign as W. In the following evaluation, the energy term, 
U, will be neglected assuming that E/S is small due to the low hydroxyl con-
centrations in our calculations. Hence, we use the undamaged Young’s modulus in all 
equations having in mind that the results of our computations are lower limits.  
Equations (1.4) and (1.5) now yield  
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where k0 includes all of the terms that are independent of stress (μ0,SiOH, μ0,H2O and 
ln[C]). The molar volume for glass is V0=27.27 cm3/mol. For one mole of hydroxyl 
with the mass mOH=17g/mole in the volume V0 we obtain the hydroxyl concentration 
in weight units (mass S/mass SiO2)  

  283.0
g/mole60

g/mole17

glass

OH)1( 
M

m
S  (1.9) 

with the related volume strain according to [1] 

  274.0)1()1(  Sv   (1.10) 

Then it holds for )1(
0 vV      

  /molecm5.7274.027.27 3)1(
0 vV   (1.11) 

2 Hydroxyl concentrations for special loading cases 

2.1 Hydrostatic stress state as limit case 
Combining eqs.(1.8) and the equilibrium constant k=S2/C (with the concentration of 
the hydroxyl S = [SiOH] and that of the molecular water C = [H2O]) yields the stress-
enhanced hydroxyl concentration for the most general stress state 
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In the case of a purely equi-triaxial stress state 

  zyx    (2.2) 

the hydrostatic tensile stress h is trivially given as  
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Then eq.(2.1) reads: 
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When V  denotes the partial molar volume for the hydroxyl S, (2.4) can be rewritten as 
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2.2 Uniaxial tension 
Under purely uniaxial tensile stresses z = appl >0, x= y =0, Fig. 3a, it results from 
(2.1) simply 
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Fig. 3 Loading cases: a) uniaxial tension, b) uniaxial compression, c) cylinder under a torsion moment 

Mt. 

In terms of the volume strain v it is 

 











 


RT

VSS vappl
)1(

00 exp  (2.7) 

where the ratio  is a measure for the anisotropy of swelling: 

 
)1(

)1(
,

v

zsw




   (2.8) 

Symmetry in x- and y-directions yields sw,x =sw,y. This causes 

y=-z 

x=0 
z 

appl,z appl,y 

z y 

c)

Mt

b)

y=0 

x=0 

z

z 

a) 

y=0 

x=0 

z 

z 



 

 6

        )1()(2 2
1,,

,2
1

,,, 






 
v

ysw

v

xsw
zswvxswxswzswv  (2.9) 

Since appl>0, the hydroxyl concentration in pure tension increases, S > S0. 

2.3 Uniaxial compression 
In a uniaxial compression test with z = appl <0, x = y = 0, Fig. 3b, it results from 
(2.1) simply 

 
















 

RT
VS

RT
VSS vzzswappl

)1(

00

)1(
,

00 expexp  (2.10) 

the same equation as in tension, but now with a negative applied stress and a different 
value . The consequence is a reduction of the hydroxyl concentration S<S0. 

2.4 Biaxial stress state in a torsion test 
Under torsion loading, the maximum and minimum principle stresses appear in a co-
ordinate system turned by 45° with respect to the length axis. In this system, Fig. 3c, 
the “applied” stresses are  

 0, ,,,  xapplzapplyappl   (2.11) 

Under this load, eq.(2.1) reads  

 






 


RT
VSS yswyswyapplzswzswzappl

)1(
,,,

)1(
,,,

00

)()(
exp


, (2.12) 

Introducing the ratio =sw,z/v, using (2.10) and replacing appl,z=appl 
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Unfortunately, the ratio of strains )1(
,

)1(
, / zswysw   is unknown and has to be determined ex-

perimentally. Simplification of (2.13) for moderate stresses is actually not possible. On 
the other hand, the torsion test would be an ideal tool to decide two closely connected 
points: 
Under load the hydrostatic stress term disappears, h=0. When swelling would be gov-
erned by the hydrostatic stress, not any enhanced hydroxyl concentration would be 
possible. Consequently, no swelling strains could occur, sw,x =sw,y =sw,z =v=0. The 
whole exponent in eq.(2.13) would then disappear with the consequence of S=S0 

f(load). If even in torsion the hydroxyl concentration increases under load, the occur-
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rence of anisotropy in swelling would be proofed. This had been derived and con-
firmed in [1]. 

The conclusions based on swelling effects under torsion load were:  

a) The individual principal stresses affect the water/silica reaction differently. 

b) The equivalent consequence to the non-symmetry of swelling strains: Swelling 

strains depend on the individual principal stresses.  

Evaluation of experimental results by Agarwal et al. [5] and FE-computations show 
that the strain ratio =sw,z/v, representing anisotropic swelling, is in tension =1.92 
[1] and =2.06 [6], respectively. Both values are a clear indication for anisotropic 
swelling. 

3 Limit-case considerations  

3.1 Orientation of reaction events 
A volume element with a number of N Si-O bonds is shown in Fig. 4. In a statistical 
sense, the number of N arbitrarily oriented Si-O-bonds can be dismantled in “compo-
nents” oriented in the x-, y-, z-directions of a rectangular coordinate system with N/3 
single bonds in each direction.  
 

 
Fig. 4 Volume element containing a number of N Si-O bonds (2-dimensional representation) divided 
into each N/3 bonds oriented in x-, y-, and z-directions. 

Under mechanical tensile stresses arbitrarily applied in z-direction, the probability of 
reaction events should be increased for the bonds Nz. The maximum swelling strain in 
z-direction should therefore result when all reactions occur at bonds Nz exclusively. In 
the FE-study made before, we considered this special case and looked for the maxi-
mum swelling strain sw,z. Maximum anisotropy is reached if all stress-enhanced reac-
tion events are located at bonds oriented in z-direction showing the probability Pz 
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or more general for the probability Pi = Px,y,z 
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This probability is schematically shown in Fig. 5 for three limit cases. For high uniaxi-
al stress in z-direction, z, the probability Pz tends to Pz=1, i.e. all reaction events 
are orientated in z-direction, (A) in Fig. 5.  

Without an external stress x=y=z=0 one would expect the expansion in all direc-
tions to be equal, x=y=z. as shown as (B) in Fig. 5. The same has to be expected for 
an equi-triaxially loaded volume element with x=y=z0. 

 

 
Fig. 5 Schematic representation of the “reaction probabilities” Pi on the stress acting in a volume ele-

ment for the case of uniaxial loading (illustrated for the z-component z). 

For high compressive uniaxial stresses, z -, water molecules can only react in Nx- 
and Ny-directions. This case is in Fig. 5 introduced as (C). The same dependency 
shown in Fig. 5 for stresses in z-direction must trivially hold for the other two orienta-
tions x and y. It is self-evident that the FE-computation cannot provide further infor-
mation on the detailed curve Pz=f(z). For this purpose, appropriate experiments or 
MHD-computations are necessary. 

The solid curve in Fig. 5 may be represented by a hyperbolic tangent function  
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with the fixed coefficient a=arctanh[1/3].  

1 

z 

Pi 

1/3 

(A) 

(B) 

(C)

0.5 

Pz 

Px=Py 



 

 9

3.2 Special results for 0 obtained by superposition 

For simple problems with non-negative stresses involved, we can make predictions by 
superposition of tensile results.  

In the case of uniaxial tension, z , the results from FE-computations are given in 
the first line of Table 1. As an example of application to a more complicated stress 
state, the second line shows results for the limit case of torsion equivalent to the biaxi-
al stresses y=  z, x =0. 

 z y x Pz Py Px sw,z/v sw,y/v sw,x/v W/(V0
)1(

v z) 

Tension  0 0 1 0 0 2.06 -0.53 -0.53 2.06 

Torsion  z 0 1 0 0    2.06(0.53) 

2.59 

Table 1 Work W done under uniaxial tension and torsion loading (=2.06). 

Since the work under torsion, last column in Table 1, is larger than in uniaxial tension, 
we have to expect stronger stress enhancement in hydroxyl generation and swelling 
strains.  
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