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We investigate the classical and quantum Proca field (a massive vector poten-
tial) of mass m > 0 in arbitrary globally hyperbolic spacetimes and in the presence
of external sources. We motivate a notion of continuity in the mass for families of
observables {Om}m>0 and we investigate the massless limit m → 0. Our limiting
procedure is local and covariant and it does not require a choice of reference state.
We find that the limit exists only on a subset of observables, which automatically
implements a gauge equivalence on the massless vector potential. For topologi-
cally non-trivial spacetimes, one may consider several inequivalent choices of gauge
equivalence and our procedure selects the one which is expected from considerations
involving the Aharonov-Bohm effect and Gauss’ law.

We note that the limiting theory does not automatically reproduce Maxwell’s equa-
tion, but it can be imposed consistently when the external current is conserved. To
recover the correct Maxwell dynamics from the limiting procedure would require an
additional control on limits of states. We illustrate this only in the classical case,
where the dynamics is recovered when the Lorenz constraint remains well behaved
in the limit.
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1. Introduction

Vector potentials satisfying Proca’s equation are the most straightforward massive
generalization of the massless vector potential of electromagnetism. They may be used for
an effective description of vector particles in the standard model, such as W- and Z-bosons
(who really acquire their mass through the Higgs mechanism). As a modification of the
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massless photon, the Proca field also provides a theoretical framework to study upper
bounds on the photon mass. It is important to note, however, that the Proca field does
not have a gauge symmetry, unlike the massless vector potential of electromagnetism.1

In this paper we will investigate the massless limit of the Proca field in curved space-
times, with special attention to the emergence of the gauge symmetry. In Minkowski
space this massless limit is textbook material (cf. [20]), but the corresponding problem
in curved spacetimes poses some additional interesting challenges, which we now discuss.

Firstly, we cannot avail ourselves of a vacuum state or preferred Hilbert space repre-
sentation to define the quantum theory. However, it is well understood how to circumvent
this problem using an algebraic approach. On a given spacetime we can then describe the
Proca field of mass m > 0 with an external current j by an abstract ∗-algebra Am,j . For
j = 0 such a construction has already been given by Furlani [19] (under some topological
restrictions) and Dappiaggi [12]. We generalise this to include external sources j using
essentially well-known methods [25, 18]. We will not investigate states and Hilbert space
representations, which forms the next step in the description of the quantum theory.

Secondly, to define a notion of continuity in the mass, we will need to compare the
algebras Am,j at different values of m. Once again we cannot resort to preferred vacuum
states or Hilbert space representations. Instead we will propose a notion of continuity
in the mass for families of observables {Om}m>0, which is formulated entirely at the
algebraic level. This continuity makes use of the fact that the algebras Am,j , for all
m > 0, are isomorphic to an algebra of initial data on a Cauchy surface, which is
independent of m. We prove that our notion of continuity is independent of the choice
of Cauchy surface before we define the massless limit of the Proca field.

Thirdly, the gauge freedom of free electromagnetism admits at least three generalisa-
tions from Minkowski space to spacetimes with non-trivial topologies. One may use e.g.
the field strength tensor F , or equivalence classes of one-forms A, where the pure gauge
solutions are either the closed or the exact one-forms. One of us has previously argued
that the latter choice is physically preferred in a generally covariant setting, because it
allows the correct description of the Aharonov-Bohm effect2 and Gauss’ law [25]. We
will show that this choice of gauge equivalence also arises naturally from the limiting
procedure, thereby providing an additional justification for it.

Note that [25] describe electromagnetism as a U(1) gauge theory which includes
Gauss’ law and the Aharonov-Bohm effect, but avoids the experimentally unobserved
magnetic monopoles. They do so essentially by restricting to trivial principal U(1)-
bundles, which have a canonical flat connection that depends functorially on the space-
time M . This canonical reference connection leads to the familiar theory of one-forms,
which conveniently allows a comparison with the Proca theory.

In Section 2. below we will consider the Proca field of a fixed mass m > 0 in a globally
hyperbolic spacetime. We impose no topological restrictions on the spacetime and we
mildly generalise previous results by including an external current j. In Section 3. we

1An alternative approach to massive electrodynamics due to Stueckelberg preserves the gauge invari-
ance by introducing an extra scalar field, cf. [5].

2Although the Aharonov-Bohm effect restricts the choice of gauge equivalence classes, it does not
require a guage equivalence: it also occurs for the massive Proca field [7].
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will then formulate the continuity in the mass and define the zero mass limit. We will
show that this limit exists only for a certain sub-algebra of observables and, by choosing
this algebra as large as possible, we automatically arrive at the gauge equivalence given
by exact forms, as preferred by [25]. We will also comment on the fact that the zero mass
limit does not automatically implement Maxwell’s equations. We believe that this is due
to the fact that we did not include the behaviour of states in the zero mass limit, and we
illustrate this with an argument concerning the classical Proca field. Although it may
be possible to include classes of states (e.g. Hadamard states [17]) and to study their
behaviour during a limiting process, we will not pursue this in the present investigation.
Section 4. contains our conclusions and a brief outlook. We will use the remainder of
this section to fix our conventions and notations.

A spacetime (M, g) consists of a smooth, four dimensional manifold M, which is
Hausdorff, connected, oriented and para-compact, and a Lorentzian metric g with sig-
nature (− + ++). We assume that (M, g) is globally hyperbolic and time-oriented. A
generic smooth, space-like Cauchy surface is denoted by Σ, with an induced Riemannian
metric h. The Levi-Civita connection on (M, g) will be denoted by ∇ and the one on
Σ by ∇(Σ). We refer to [29] for further standard notations regarding spacetimes (e.g.
causal relations).

Ωp(M) will denote the space of smooth differential forms on M of degree p and
Ωp0(M) the subspace of compactly supported forms. The space of all differential forms
is an algebra under the exterior product ∧. Using the metric we can define a Hodge ∗-
operation such that A∧ ∗B = 1

p!A
µ1...µpBµ1...µp

dvolg, where dvolg is the natural volume
form determined by the metric. We may define a pairing on the space of p-forms by

〈A,B〉M :=

∫
M
A ∧ ∗B (1)

when the support of A∧∗B is compact. The pairing is symmetric, 〈A,B〉M = 〈B,A〉M,
and it defines an inner product on Ωp0(M). Analogous notations apply to (Σ, h). The
co-derivative δ is defined in terms of the exterior derivative d through

δ := (−1)s+1+n(p−1)∗d∗ (2)

when acting on p-forms, where n is the dimension of the manifold and s the number of
negative eigenvalues of the metric. δ and d are each other’s (formal) adjoints under the
pairing 〈·, ·〉M. The Laplace-Beltrami operator � = dδ + δd is a normally hyperbolic
operator. Ωpd(M) will denote the space of closed p-forms on M (with dA = 0) and
Ωp0,d(M) the subspace of compactly supported ones. Similarly, Ωpδ(M) will denote the

space of co-closed p-forms on M (with δA = 0) and Ωp0,δ(M) the subspace of compactly
supported ones. For more details on differential forms we refer the reader to [8].
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2. The Proca field in curved spacetimes

2.1. The classical Proca field in curved spacetimes

For a given external current j ∈ Ω1(M) and mass m > 0, the Proca equation reads(
δd+m2

)
A = j , (3)

where A ∈ Ω1(M) is the Proca field. It is well-known that the Proca operator (δd+m2) is
Green-hyperbolic, but not normally hyperbolic [1]. However, for m > 0, Proca’s equation
is equivalent to a wave equation and a Lorenz constraint:(

� +m2
)
A = j +m−2 dδj , (4)

δA = m−2δj . (5)

Indeed, applying δ to (3) yields (5), and in the presence of this equality, (3) and (4) are
equivalent. Following Dimock [15], Furlani [19] and Pfenning [28] we parametrise the
initial data of differential forms with the following operators:

Definition 1. Let i : Σ ↪→ M be the inclusion map of a Cauchy surface Σ. We
define operators ρ(0), ρ(d) : Ωp(M)→ Ωp(Σ) and ρ(n), ρ(δ) : Ωp(M)→ Ωp−1(Σ) as:

ρ(0) = i∗ , ρ(d) = −∗(Σ)i
∗∗d , ρ(δ) = i∗δ and ρ(n) = −∗(Σ)i

∗∗ , (6)

where i∗ is the pullback. For A ∈ Ω1(M) we then define A(0), A(d) ∈ Ω1(Σ) and
A(n), A(δ) ∈ Ω0(Σ) as:

A(0) = ρ(0)A , A(d) = ρ(d)A , A(n) = ρ(n)A and A(δ) = ρ(δ)A . (7)

Specifying these differential forms is equivalent to specifying the initial data Aµ and
nα∇αAµ on the Cauchy surface Σ with future pointing unit normal vector field n [19].

The wave operator (� +m2) on p-forms has unique advanced (−) and retarded (+)
fundamental solutions E±m : Ωp0(M) → Ωp(M) with supp(E±mF ) ⊂ J±

(
supp(F )

)
[3].

These fundamental solutions can easily be shown to satisfy E±md = dE±m and E±mδ = δE±m.
The advanced minus retarded fundamental solution is denoted by Em = E−m − E+

m.
A solution to the wave equation (4) can now be stated as follows:

Theorem 1. Given m ≥ 0, κ ∈ Ω1(M) and initial data A(0), A(d) ∈ Ω1(Σ) and
A(n), A(δ) ∈ Ω0(Σ) on a Cauchy surface Σ, there exists a unique solution A ∈ Ω1(M) of
the wave equation (� + m2)A = κ with the given initial data. This solution is smooth
and depends continuously on the initial data.

The proof is a straightforward generalization of the source free case [19], see for example
Theorem 2.3 and Lemma 2.4 of [25].

The Proca operator (δd + m2) also has unique advanced (−) and retarded (+) fun-
damental solutions G±m : Ωp0(M)→ Ωp(M) which are given by

G±m = (m−2dδ + 1)E±m , (8)

cf. [2, Example 2.17]. Analogously, we define Gm = (m−2dδ + 1)Em. We then have the
main result of this section:
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Theorem 2. Given m > 0, j ∈ Ω1(M) and initial data A(0), A(d) ∈ Ω1(Σ) on a
Cauchy surface Σ, there exists a unique smooth solution A ∈ Ω1(M) of Proca’s equation(
δd+m2

)
A = j with the given initial data. This solution depends continuously on the

initial data and is determined for every F ∈ Ω1
0(M) by

〈A,F 〉M =
∑
±
〈j,G∓mF 〉J±(Σ) − 〈A(0), ρ(d)GmF 〉Σ + 〈A(d), ρ(0)GmF 〉Σ (9)

Furthermore, it satisfies the constraints

A(δ) = m−2ρ(δ)j and m2A(n) = ρ(n)j + δ(Σ)A(d) . (10)

Proof: We use the equivalence of the Proca equation (3) with the wave equation (4) and
the Lorenz constraint (5). Observe that for every solution A ∈ Ω1(M) of (4)

(� +m2)δA = δ(� +m2)A = δ
(
j +m−2dδj

)
= (� +m2)m−2δj . (11)

This means that the Lorenz constraint (5) propagates, i.e. δA−m−2δj satisfies a Klein-
Gordon equation. The Lorenz constraint is then equivalent to the vanishing of the initial
data of δA−m−2δj on the Cauchy surface Σ [3, Cor. 3.2.4].

We will first show that the vanishing of the initial data of δA−m−2δj is equivalent
to the constraints (10) on the initial data of a solution A to (4). The vanishing of the
initial value yields:

0 = ρ(0)

(
δA−m−2δj

)
= ρ(δ)A−m−2ρ(δ)j . (12)

For the vanishing of the normal derivative we will use Gaussian normal coordinates near
Σ (cf. [29, pp. 42,43] or [10, pp. 445,446]). The future pointing unit normal vector field
n of Σ is then extended geodesically to a neighbourhood in M, where nα∇αnβ = 0 and
nαnα = −1. Because n is a coordinate vector field we also have (dn)µν = 2∇[µnν] = 0
by Frobenius’ Theorem (see e.g. [29, Theorem B.3.1 and B.3.2]). We then require:

0 =
(
nα∇αδA

)∣∣∣
Σ
−m−2

(
nα∇αδj

)∣∣∣
Σ
. (13)

We will take a separate look at the first summand, using the symmetry of ∇νnβ :

nα∇αδA = nα (dδA)α = nα�Aα − nβ (δdA)β

= nακα −m2 nµAµ + 2nβ∇ν∇[νAβ]

= nακα −m2 nµAµ + 2∇ν
(
nβ∇[νAβ]

)
, (14)

where κ = j +m−2dδj. Writing gµν = −nµnν + hµν , we find:

gσν∇σ
(
nβ∇[νAβ]

) ∣∣
Σ

= (−nσnν + hσν)∇σ
(
nβ∇[νAβ]

) ∣∣
Σ

= 0 +∇ν(Σ)

(
nβ∇[νAβ]

) ∣∣∣
Σ
. (15)
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Here we have made use of the identity hσν∇σBµ = ∇ν(Σ)Bµ for any one-form B tangential

to Σ [29, Lemma 10.2.1]. We note that δ(Σ)B = −∇α(Σ)Bα and that 2nβ∇[νAβ] =

−nβ(dA)βν = −A(d)ν to obtain

nα∇αδA
∣∣
Σ

= ρ(n)κ−m2A(n) + δ(Σ)A(d) . (16)

Inserting this and the formula for κ into Equation (13) we find from ρ(d) = ρ(n)d that

m2A(n) = ρ(n)κ−m−2ρ(d)δj + δ(Σ)A(d) = ρ(n)j + δ(Σ)A(d) . (17)

This proves that (3) is equivalent to (4) and (10). The theorem now follows, except for
the representation (9). This is obtained by using Stoke’s theorem (with a sign ∓ due to
the orientations of Σ and J±(Σ)) and the identity ∗∗ = (−1)s+p(n−p) for p-forms on an
n-dimensional manifold:

〈A,F 〉M =
∑
±
〈A, (δd+m2)G∓mF 〉J±(Σ)

=
∑
±

∫
J±(Σ)

j ∧ ∗G∓mF + d
(
G∓mF ∧ ∗dA−A ∧ ∗dG∓mF

)
=
∑
±
〈j,G∓mF 〉J±(Σ) ∓

∫
Σ

i∗G∓mF ∧ i∗ ∗ dA− i∗A ∧ i∗ ∗ dG∓mF

=
∑
±
〈j,G∓mF 〉J±(Σ) +

∫
Σ

−i∗GmF ∧ i∗ ∗ dA+ i∗A ∧ i∗ ∗ dG∓mF

=
∑
±
〈j,G∓mF 〉J±(Σ) + 〈ρ(0)GmF, ρ(d)A〉Σ − 〈ρ(0)A, ρ(d)G

∓
mF 〉Σ . (18)

Rearranging terms completes the proof.

2.2. The quantum Proca field in curved spacetimes

The quantum Proca field without external sources is described in [12] in a generally
covariant framework [9]. To include the sources we will follow the methods of [25] (see
also [18]), fixing for now the spacetime (M, g), the source j ∈ Ω1(M) and the mass
m > 0. The quantum Proca field is then described by the following algebra:

Definition 2. The unital ∗-algebra Am,j is obtained from the free algebra, gener-
ated by 1 and the objects Am,j(F ), F ∈ Ω1

0(M), by factoring out the relations

(i) Am,j(cF + c′F ′) = cAm,j(F ) + c′Am,j(F ′) linearity, (19a)

(ii) Am,j(F )∗ = Am,j(F ) hermitian field, (19b)

(iii) Am,j
(
(δd+m2)F

)
= 〈j, F 〉M · 1 equation of motion, (19c)

(iv) [Am,j(F ),Am,j(F ′)] = iGm(F, F ′) · 1 commutation relations, (19d)

for all c, c′ ∈ C and F, F ′ ∈ Ω1
0(M), where we write Gm(F, F ′) = 〈F,GmF ′〉M.

For our later investigation of the zero mass limit it will be useful to describe the algebra
Am,j and its topology in more detail in the next few sections.
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2.2.1. The Borchers-Uhlmann algebra

The algebra Am,j is obtained as a quotient of the Borchers-Uhlmann algebra (BU-
algebra), which is defined1 as the tensor algebra of the vector space Ω1

0(M),

BU
(
Ω1

0(M)
)

:=

∞⊕
n=0

(
Ω1

0(M)
)⊗n

. (20)

Elements f ∈ BU
(
Ω1

0(M)
)

are tuples f =
(
f (0), f (1), f (2), . . .

)
, with components f (0) ∈ C

and f (n) ∈
(
Ω1

0(M)
)⊗n

for n > 0, such that only finitely many f (n)’s are non-vanishing.

We will call f (n) the degree-n-part of f . Addition and scalar multiplication are defined
component-wise and the (tensor) product and ∗-operation are determined by

(f · g)(n)(p1, p2, . . . , pn) =
∑
i+j=n

f (i)(p1, p2, . . . , pi)g
(j)(pi+1, . . . , pn) , (21)

(f∗)(n)(p1, . . . , pn) = f (n)(pn, pn−1, . . . , p1) (22)

for all f, g ∈ BU
(
Ω1

0(M)
)

and pi ∈ M. This makes BU
(
Ω1

0(M)
)

a *-algebra with unit
element 1BU(Ω1

0(M)) = (1, 0, 0, . . . ). The BU-algebra carries a locally convex topology

[23], obtained from the topology of Ω1
0(M) [14, Chapter 17.1 to 17.3], which makes it a

dense sub-algebra of the complete BU-algebra

BU
(
Ω1

0(M)
)

:=

∞⊕
n=0

Γ0

(
(T ∗M)�n

)
, (23)

where (T ∗M)�n is the n-fold outer product bundle over Mn (cf. [23, Chapter 3.3]).

We note that the multiplication in BU
(
Ω1

0(M)
)

is a jointly continuous bilinear map and

hence so is the product in BU
(
Ω1

0(M)
)
.

The BU-algebra BU
(
Ω1

0(M)
)

incorporates neither dynamics nor commutation rela-
tions. We will implement these in a two step procedure. First we divide out the two-sided
ideal I dyn

m,j in BU
(
Ω1

0(M)
)

that is generated by elements(
− 〈j, F 〉M, (δd+m2)F, 0, 0, . . .

)
∈ BU

(
Ω1

0(M)
)
, (24)

for F ∈ Ω1
0(M), to implement the dynamics. We define

BUdyn
m,j := BU

(
Ω1

0(M)
)
/I dyn

m,j . (25)

Secondly we divide out the two-sided ideal I CCR
m,j generated by elements[(

− iGm(F, F ′), 0, F ⊗ F ′ − F ′ ⊗ F, 0, 0, . . .
)]dyn

m,j
∈ BUdyn

m,j , (26)

1Here, ⊗ denotes the algebraic tensor product, without taking any topological completion.
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where F, F ′ ∈ Ω1
0(M), to incorporate the CCR. The final field algebra is then

Am,j = BUdyn
m,j/I CCR

m,j . (27)

We may equivalently write Am,j = BU
(
Ω1

0(M)
)
/Im,j , where Im,j is the two-sided ideal

generated by both of the desired relations. A smeared quantum Proca field is then

Am,j(F ) :=
[(

0, F, 0, 0, . . .
)]
m,j
∈ Am,j , (28)

where the equivalence class [·]m,j is taken w. r. t. Im,j . By construction, the quantum
Proca fields fulfill the desired dynamical and commutation relations and we can endow
Am,j with the locally convex quotient topology obtained from BU

(
Ω1

0(M)
)

(cf. [13,
Theorem 12.14.8]).2 Note that the multiplication in Am,j is again jointly continuous.

2.2.2. Reduction to the current-free case

We now show that the algebra Am,j with source j is homeomorphic to the algebra Am,0
with vanishing source. Let us fix a smooth solution ϕ of the inhomogeneous Proca equa-
tion (δd+m2)ϕ = j. We may then define a *-algebra-homomorphism Γϕ on BU

(
Ω1

0(M)
)

which preserves the unit and which acts on homogeneous elements of degree one as

Γϕ :
(
0, F, 0, 0, . . .

)
7→
(
− 〈ϕ, F 〉M, F, 0, 0, . . .

)
(29)

for all F ∈ Ω1
0(M). This uniquely determines Γϕ.

Theorem 3. For m > 0, j ∈ Ω1(M) and ϕ ∈ Ω1(M) a solution of (δd+m2)ϕ = j,
the map Γϕ is a homeomorphism of BU

(
Ω1

0(M)
)

which descends to a homeomorphism
Ψϕ : Am,0 → Am,j.

Proof: The inverse Γ−1
ϕ : BU

(
Ω1

0(M)
)
→ BU

(
Ω1

0(M)
)

is obviously determined by

Γ−1
ϕ :

(
0, F, 0, 0, . . .

)
7→
(

+ 〈ϕ, F 〉M, F, 0, 0, . . .
)

(30)

and both Γϕ and Γ−1
ϕ are continuous on BU

(
Ω1

0(M)
)
. To see that Γϕ(Im,0) = Im,j , it

suffices to show that Γϕ maps the generators of Im,0 onto those of Im,j . We have

Γϕ

((
0, (δd+m2)F, 0, 0, . . .

))
=
(
− 〈ϕ, (δd+m2)F 〉M, (δd+m2)F, 0, 0, . . .

)
=
(
− 〈j, F 〉M, (δd+m2)F, 0, 0, . . .

)
, (31)

for all F ∈ Ω1
0(M), so the generators for the dynamics transform in the desired way. For

the commutation relations we similarly obtain after some elementary algebra

Γϕ

((
− iGm(F, F ′),0, F ⊗ F ′ − F ′ ⊗ F, 0, 0, . . .

))
=
(
− iGm(F, F ′), 0, F ⊗ F ′ − F ′ ⊗ F, 0, 0, . . .

)
. (32)

2To ensure that Am,j is Hausdorff, we will show below that the ideals I dyn
m,j and I CCR

m,j are closed.
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This proves Γϕ(Im,0) ⊂ Im,j and it is straightforward to check in a completely analogous
fashion that Γ−1

ϕ (Im,j) ⊂ Im,0. Diving out the ideals yields the diffeomorphism Ψϕ. We
refer to [26, Theorem 4.15] for more details.

Given an observable of the source free theory Am,0(F ), we obtain

Am,j(F ) = 〈ϕ, F 〉M · 1Am,j
+ Ψϕ

(
Am,0(F )

)
(33)

so the dynamics and commutation relations for Am,0 imply those of Am,j and vice versa.

2.2.3. Initial value-formulation

In order to divide out the dynamical ideal I dyn
m,0 in the source-free case it is convenient

to use an initial value formulation. Let us first characterise the generators of this ideal:

Lemma 1. F ∈ Ω1
0(M) is of the form F = (δd+m2)F ′ for some F ′ ∈ Ω1

0(M) if and
only if GmF = 0.

Proof: If F = (δd+m2)F ′, then GmF = Gm(δd+m2)F ′ = 0. Conversely, if GmF = 0,
then F ′ = G+

mF = G−mF has compact support and F = (δd+m2)F ′.

Now let Σ be an arbitrary, fixed Cauchy surface. We will use the short-hand notation
D0(Σ) = Ω1

0(Σ)⊕ Ω1
0(Σ) for the space of initial data on Σ. We define the map

κm : Ω1
0(M)→ D0(Σ) , F 7→ (ρ(0)GmF, ρ(d)GmF ) , (34)

which maps F to the initial data on Σ of the solution GmF of Proca’s equation (cf. The-
orem 2). In the notation, we omit the dependence of κm on the Cauchy surface.

For any value of m > 0, κm is continuous w. r. t. the direct sum topology on D0(Σ),
and hence ker(κm) is closed [27, pp. 34-36]. By Lemma 1 and Theorem 2 we have

ker(κm) =
{
F ∈ Ω1

0(M) | GmF = 0
}

= (δd+m2)Ω1
0(M) . (35)

By a standard construction [27], κm gives rise to a linear map ξm : Ω1
0(M)/ker(κm) →

img(κm), which is the unique bijective map such that ξm([F ]m) = κm(F ), where [F ]m
denotes equivalence classes in the quotient space [27, 16]. We will now show

Lemma 2. ξm is a homeomorphism onto D0(Σ).

Proof: First we will show that κm is surjective, img(κm) = D0(Σ). We do this by
constructing a map ϑm : D0(Σ) → Ω1

0(M) such that ξm ◦ [·]m ◦ ϑm = id. We choose
a fixed χ ∈ Ω0(M) such that χ = 1 on J+(Σ+) and χ ≡ 0 on J−(Σ−), where Σ± are
Cauchy surfaces in the future (+) and past (-) of Σ. Now let (ϕ, π) ∈ D0(Σ) specify
initial data on a Cauchy surface Σ. Then, by Theorem 2, there exists a unique solution
A ∈ Ω1(M) to the source free Proca equation (δd+m2)A = 0 with the given data. We
note that supp(A) ⊂ J

(
supp(ϕ) ∪ supp(π)

)
(see [3, Theorem 3.2.11]), so defining

ϑm(ϕ, π) := −(δd+m2)χA, (36)
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we see that ϑm(ϕ, π) has compact support contained inJ(A) ∩ J−(Σ+) ∩ J+(Σ−). Ex-
tending G±m to forms with past (+) resp. future (-) compact supports [24, 26] we find

G+
mϑm(ϕ, π) = −χA,

G−mϑm(ϕ, π) = G−m(δd+m2)(1− χ)A

= (1− χ)A , (37)

because ϑm(ϕ, π) = (δd+m2)(1− χ)A. From Gm = G−m −G+
m we therefore find

Gmϑm(ϕ, π) = (1− χ)A+ χA = A (38)

and hence κmϑm(ϕ, π) = (ϕ, π), which completes the proof of surjectivity.
Note that ϑm is continuous, because A depends continuously on (ϕ, π). Since [·]m

is also continuous, so is [·]m ◦ ϑm = ξ−1
m . As ξm is continuous by construction [27,

Proposition 4.6], using the continuity of κm, ξm is a homeomorphism.

To divide out the dynamical ideal I dyn
m,0 in BU

(
Ω1

0(M)
)

we lift the map κm to the BU-

algebra. We define Km : BU
(
Ω1

0(M)
)
→ BU

(
D0(Σ)

)
as a BU-algebra-homomorphism

which preserves the units and which acts on homogeneous degree-one elements as

Km :
(
0, F, 0, 0, . . .

)
7→
(
0, κm(F ), 0, 0, . . .

)
.

This completely determines Km and we will now show that ker(Km) = I dyn
m,0 and that

BUdyn
m,0 is homeomorphic to BU

(
D0(Σ)

)
.

Lemma 3. Let m > 0 and j = 0. Then the map Km descends to a homeomorphism
Ξm : BUdyn

m,0 → BU
(
D0(Σ)

)
with Ξm

(
[f ]dyn

m,0

)
= Km(f) where f ∈ BU

(
Ω1

0(M)
)
.

Proof: The surjectivity of Km follows directly from the surjectivity of κm, which was
established in the proof of Lemma 2. Because κm is continuous, so is κ⊗nm on Γ0

(
T ∗M�n)

for any n ≥ 1, by Schwartz’ Kernels Theorem. Therefore, κ⊗nm is also continuous on the

algebraic tensor product
(
Ω1

0(M)
)⊗n

and hence Km is continuous. It follows that Km

descends to a continuous linear map Ξm : BU
(
Ω1

0(M)
)
/ker(Km) → BU

(
D0(Σ)

)
(cf. [27,

Proposition 4.6]). In the same way as Km, the continuous linear map ϑm from the proof of
Lemma 2 can be lifted to a continuous linear map Θm : BU

(
D0(Σ)

)
→ BU

(
Ω1

0(M)
)

such

that Ξm◦[·]m◦Θm = id, which shows that Ξm is a homeomorphism. The inclusion I dyn
m,0 ⊂

ker(Km) is obvious from the facts that Km is an algebra homomorphism and that the

generators of I dyn
m,0 are of the form

(
0, Fi, 0, 0, . . .

)
with Fi ∈ ker(κm), cf. Equation.(35).

The non-trivial part is to show the converse inclusion ker(Km) ⊂ I dyn
m,0 .

Consider an arbitrary element f =
(
f (0), f (1), f (2), . . . , f (N), 0, 0, . . .

)
∈ ker(Km),

where f (k) ∈
(
Ω1

0(M)
)⊗k

. Then each f (n) must be in ker(κ⊗nm ), because Km preserves
degrees. We will show by induction in the degree n that any homogeneous element(
0, . . . , 0, f (n), 0, 0, . . .

)
with κ⊗nm

(
f (n)

)
= 0 is in the ideal I dyn

m,0 .
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At degree 0 the kernel is trivial and at degree 1 we use the fact that κm(F ) = 0 if and

only if
(
0, F, 0, 0, . . .

)
is a generator of I dyn

m,0 (cf. Equation (35)). For the induction step
we assume that the claim holds for elements of degree ≤ n for some n ≥ 1. Consider(
0, . . . , 0, f (n+1), 0, 0, . . .

)
where f (n+1) ∈

(
Ω1

0(M)
)⊗(n+1)

such that κ
⊗(n+1)
m (f (n+1)) = 0.

We can write this for some Fi ∈ Ω1
0(M) and F (n)

i ∈
(
Ω1

0(M)
)⊗n

as

(
0, . . . , 0, f (n+1), 0, 0, . . .

)
=
(
0, . . . , 0,

M∑
i=1

Fi ⊗F (n)
i , 0, 0, . . .

)
. (39)

Let V := span
{
F1, F2, . . . , FM

}
and W := V ∩ ker(κm), which define finite dimensional

subspaces of Ω1
0(M). We find a basis {F̃1, . . . , F̃µ}, µ ≤ M , of W which we can extend

to a basis {F̃1, . . . , F̃M} of V . In this basis

f (n+1) =

M∑
i=1

Fi ⊗F (n)
i =

µ∑
i=1

F̃i ⊗ F̃ (n)
i +

M∑
i=µ+1

F̃i ⊗ F̃ (n)
i

=: X
(n+1)
1 +X

(n+1)
2 . (40)

By construction κm(F̃i) = 0 for i = 1, . . . , µ, so that

(
0, . . . , 0, X

(n+1)
1 , 0, . . .

)
=

µ∑
i=1

(
0, F̃i, 0, 0, . . .

)
⊗
(
0, . . . , 0, F̃ (n)

i , 0, 0, . . .
)

(41)

is in I dyn
m,0 . Furthermore, κ

⊗(n+1)
m (X

(n+1)
1 ) = 0 and therefore also κ

⊗(n+1)
m (X

(n+1)
2 ) = 0.

However, by construction, span
{
F̃µ+1, . . . , F̃M

}
∩ ker(κm) = {0}, which implies that the

κm(F̃i)’s are linearly independent for i = µ + 1, . . . ,M . It then follows that we must

have κ⊗nm (F̃ (n)
i ) = 0 for all i = µ + 1, . . . ,M . Applying the induction hypothesis we

find that (0, . . . , 0, F̃ (n)
i , 0, 0, . . . ) ∈ I dyn

m,0 and therefore (0, . . . , 0, X
(n+1)
2 , 0, . . . ) is also in

I dyn
m,0 . Hence

(
0, . . . , 0, f (n+1), 0, 0, . . .

)
∈ I dyn

m,0 by linearity.

The continuity of Km implies in that the ideal I dyn
m,0 = ker(Km) is closed.

2.2.4. Canonical commutation relations

To include the quantum nature of the fields in BUdyn
m,0 we divided out the ideal I CCR

m,0

generated by the CCR. We now identify the corresponding generators in BU
(
D0(Σ)

)
:

Lemma 4. Let F, F ′ ∈ Ω1
0(M) with κm(F ) = (ϕ, π) and κm(F ′) = (ϕ′, π′). Then

Gm(F, F ′) = G(Σ)
(
κm(F ), κm(F ′)

)
, (42)

where we the bilinear form on the space D0(Σ) of initial data

G(Σ)
(
(ϕ, π), (ϕ′, π′)

)
= 〈ϕ, π′〉Σ − 〈π, ϕ′〉Σ (43)

is a symplectic form, i. e., it anti-symmetric and non-degenerate.
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BU(D0(Σ))
[·]CCR
∼ //

Ξ−1
m

��

BU(D0(Σ))/I CCR
∼

Λ−1
m

��
BU
(
Ω1

0(M)
) [·]dyn

m,0 //

Γϕ

��

Km

77

BUdyn
m,0

[·]CCR
m,0 //

Ξm

OO

��

Am,0

Ψϕ

��

Λm

OO

BU
(
Ω1

0(M)
)

[·]dyn
m,j

//

Γ−1
ϕ

OO

BUdyn
m,j

[·]CCR
m,j

//

OO

Am,j

Ψ−1
ϕ

OO

Fig. 1: A commutative diagram illustrating the various quotients of BU-algebras and
their relations. Bi-directional arrows represent homeomorphisms.

Proof: It is straightforward to show that G(Σ) is a symplectic form. Given F, F ′ ∈ Ω1
0(M)

we can use Equation (10) with j = 0 to compute

Gm(F, F ′) = 〈F,GmF ′〉M = −〈GmF, F ′〉M
= 〈ρ(0)GmF, ρ(d)GmF

′〉Σ − 〈ρ(d)GmF, ρ(0)GmF
′〉Σ

= G(Σ)
(
(ϕ, π), (ϕ′, π′)

)
, (44)

because A = GmF solves the homogeneous Proca equation with initial data κm(F ).

This lemma shows that Ξm(I CCR
m,0 ) = I CCR

∼ is the two-sided ideal generated by(
− i(〈ϕ, π′〉Σ − 〈π, ϕ′〉Σ), 0, (ϕ, π)⊗ (ϕ′, π′)− (ϕ′, π′)⊗ (ϕ, π), 0, 0, . . .

)
. (45)

It then follows from Lemma 10 in appendix A that the ideals I CCR
∼ and I CCR

m,0 are closed.
The proof of the following theorem is immediate (see [26, Theorem 4.14] for details).

Theorem 4. Let m > 0 and j = 0. Then the map Ξm : BUdyn
m,0 → BU

(
D0(Σ)

)
descends to a homeomorphism Λm : Am,0(M)→ BU

(
D0(Σ)

)
/I CCR
∼ .

The results of this section and of Section 2.2.2. and 2.2.3. are summarised in Figure 1.
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2.3. Locality of the quantum Proca field

Finally, we consider the quantum Proca field in the generally covariant setting of [9].

Definition 3. The category SpacCurr consists of triples M = (M, gM, jM) as ob-
jects, where (M, gM) is a (oriented and time-oriented) globally hyperbolic spacetime and
jM ∈ Ω1(M) is a background source, and morphisms ψ : M → N which are orientation
and time orientation preserving isometric embeddings ψ : (M, gM)→ (N , gN ) such that
ψ∗jN = jM and J±M(p) = ψ−1

(
J±N (ψ(p))

)
for every p ∈M.

The category Alg consists of unital ∗-algebras as objects and unit preserving ∗-algebra-
homomorphisms as morphisms. The category Alg′ is the subcategory of Alg consisting
of the same objects but only injective morphisms.

A generally covariant quantum field theory with background source is a covariant
functor A : SpacCurr → Alg. The theory is called locally covariant if and only if the
range of the functor is contained in Alg′.

The construction of such a functor Am for the Proca field of mass m > 0 is straight-
forward: To each M we associate the ∗-algebra Am(M) := Am,j constructed above and
to any morphism ψ : M → N we associate the unit preserving ∗-algebra-homomorphism
Am(ψ) ≡ αψ : Am(M)→ Am(N), whose action is fully determined by the action

αψ
(
Am,M (F )

)
= Am,N (ψ∗(F )) (46)

on the generators Am,M (F ), which we previously denoted by Am,j(F ) without explicitly
indicating the background spacetime M . Am is a well-defined functor for all m > 0 [26].
In fact Am defines a locally covariant QFT, i. e. the homomorphisms αψ are injective.

Theorem 5. Am defines a locally covariant QFT, i. e. a functor into Alg′.

Proof: We will verify that the morphisms αψ are injective. G(Σ) is a symplectic form
on D0(Σ) by Lemma 4 and hence the algebra BU

(
D0(Σ)

)
/I CCR
∼ is simple [4, Scholium

7.1]. The same is true for the homeomorphic algebra Am(M) (cf. Theorems 4 and 3).
Consequently, αψ has either full or trivial kernel. As αψ preserves the unit, the kernel
must be trivial and hence αψ is injective.

3. The zero mass limit

For the main results of this article we will investigate the zero mass limit of the Proca
field in a curved spacetime in both the classical and the quantum case. In Section 3.1.
we will formulate the key notion of continuity of the field theory with respect to the
mass and establish its basic properties. We then define the massless limit in a general,
state independent setup first for the classical Proca field in Section 3.2. and then for the
quantum Proca field in Section 3.3.. At given points, we compare our results with the
theory of the (quantum) vector potential of electromagnetism in curved spacetimes as
studied in [25, 28].
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3.1. Continuity in the mass

When defining a notion of continuity of the field theory with respect to the mass,
the basic problem is that at different masses the smeared fields Am,j(F ) are elements of
different algebras Am,j . Indeed, when constructing Am,j as a quotient of the BU-algebra,
the ideals that implement the dynamics and the commutation relations both depend on
the mass. We therefore need to find a way of comparing the Proca fields at different
masses with each other.

One could try to solve this using the C∗-Weyl algebra to describe the quantum Proca
field and the notion of a continuous field of C∗-algebras depending on the mass param-
eter (cf. [6]). This would work very nicely, if the theories were described by a weakly
continuous family of (non-degenerate) symplectic forms on a fixed linear space (cf. [26,
Appendix A], which generalises [6]). However, as it turns out, this approach is ill-suited
for the problem at hand. Indeed, one would like linear combinations of Weyl operators

Wm,j(Fi) = eiAm,j(Fi) (47)

with fixed test-forms Fi ∈ Ω1
0(M) to depend continuously on the mass, but for j = 0 the

norm of an operator like Wm,0

(
(δd+m2

0)F
)
− 1, with a fixed F and m0, can be seen to

be discontinuous at m = m0, where the operator vanishes.
A different attempt is to use the semi-norms pα on BU

(
Ω1

0(M)
)

and the corresponding
quotient space semi-norms

qm,j,α
(
[f ]m,j

)
= inf

{
pα(g) : g ∈ [f ]m,j

}
(48)

to define a notion of continuity of the theory with respect to the mass m. We could
call a family of operators {Om}m>0 with Om ∈ Am,j continuous if and only if the

map m 7→ qm,j,α
(
Om
)

is continuous for all α with respect to the standard topology in
R. While this definition seems appropriate at first sight, it is non-trivial to show the
desirable property that for a fixed F ∈ Ω1

0(M) the smeared field operators Am,j(F ) vary
continuously with m. Even for j = 0 and considering only the one-particle level, we were
unable to prove this.

In this paper we therefore opt for the following solution, which makes use of the
Borchers-Uhlmann algebra of initial data. For simplicity we first consider the case j = 0
and a family of operators {Om}m>0 with Om ∈ Am,0. Since we have found for every

mass m > 0 that Am,0 is homeomorphic to BU
(
D0(Σ)

)
/I CCR
∼ , we can map the family

{Om}m>0 to a family of operators in the single algebra BU
(
D0(Σ)

)
/I CCR
∼ , which already

carries a topology and hence a notion of continuity. When j 6= 0 we combine this idea
with the fact that Am,j is homeomorphic to Am,0. In this way we arrive at the following
notion of continuity.

Definition 4. Let j ∈ Ω1(M) be fixed and let {Om}m>0 be a family of operators
with Om ∈ Am,j . We call {Om}m>0 continuous if and only if the map

R+ → BU
(
D0(Σ)

)
/I CCR
∼ , (49)

m 7→
(
Λm ◦Ψ−1

ϕm,j

)
(Om)
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is continuous, where Λm and Ψϕm,j
are as defined in Section 2.2.4. and 2.2.2. and

{ϕm,j}m>0 is a family of classical solutions to the inhomogeneous Proca equation (δd+

m2)ϕm,j = j which depends continuously on m (i. e. m 7→ ϕm,j ∈ Ω1(M) is continuous).

Equivalently, identifying Om =
[
Õm
]
m,j

for some Õm ⊂ BU
(
Ω1

0(M)
)
, the family

{Om}m>0 is continuous if and only if the map

R+ → BU
(
D0(Σ)

)
/I CCR
∼ , (50)

m 7→
[(
Km ◦ Γ−1

ϕm,j

)
(Õm)

]CCR

∼

is continuous, with Km and Γϕm,j as defined in Section 2.2.3. and 2.2.2..

We now aim to establish some desirable properties of this notion of continuity, most
importantly that it is independent of the choice of Cauchy surface Σ and of the choice
of the continuous family ϕm,j of classical solutions. Our arguments will make essential
use of the following result for normally hyperbolic operators:

Theorem 6. Let P be a normally hyperbolic operator on a real vector bundle X over
a globally hyperbolic spacetime M. Let u0, u1 ∈ Γ(X|Σ) be initial data on a Cauchy
surface Σ and f ∈ Γ0(X). For r ∈ R, let u(r) be the unique solution to (P + r)u(r) = f
with initial data u0, u1 on Σ. Then r 7→ u(r) is a continuous map from R to Γ(X).

Proof: It suffices to prove continuity at r = 0, after shifting P by a constant. We may
write P = ∇α∇α +B, where B is a bundle endomorphism [3]. Here, ∇α is a connection
on X, which may be extended with the Levi-Civita connection to tensor product bundles
of X, TM and their dual bundles. We write, for k = 0, 1, 2, . . . ,

v
(k,r)
α1···αk

:= ∇α1
· · · ∇αk

(u(r) − u(0)) (51)

and we note that (P + r)(u(r) − u(0)) = −ru(0) and hence

(P + r)v
(k,r)
α1···αk = −r∇α1

· · · ∇αk
u(0) − (B(k)v(k,r))α1···αk

+

k−1∑
l=0

(C(k,l)v(l,r))α1···αk
, (52)

where B(k) and C(k,l) are bundle homomorphisms which involve B and the curvature of
∇. It follows that v(k,r) solves an inhomogeneous normally hyperbolic equation with the
operator P + B(k) + r and an inhomogeneous term determined by u(0) and v(l,r) with
l < k.

We now first prove by induction over k that the initial data of v(k,r) converge to 0
in Γ(X|Σ) as r → 0. For k = 0 this claim is trivial, because v(0,r) = u(r) − u(0) has
vanishing initial data for all r. Now suppose that the claim is true for all 0 ≤ l ≤ k − 1

and consider v
(k,r)
α1···αk . Using the unit normal vector field n to Σ we may express v

(k,r)
α1···αk

as a sum of terms in which all indices are either projected onto the conormal direction
or onto the space-like directions cotangent to Σ. If one of the indices is projected onto
the space-like directions, then we may commute the derivatives in Equation (51) to bring
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the space-like index to the left. The commutator terms involve the curvature, which is
independent of r, and at most k−2 derivatives. Hence its initial data vanish as r → 0 by
the induction hypothesis. Similarly, if the first index is space-like, then the initial data of
the term vanish as r → 0 by the induction hypothesis, since convergence in Γ(X|Σ) entails
convergence of all spacelike derivatives. Finally we consider the term where all indices
are projected onto the co-normal direction. For this term we may use Equation (52) to
eliminate two normal derivatives in favour of spacelike derivatives and lower order terms.
Again the initial data of this term vanish in the limit r → 0 by the induction hypothesis.
Adding all components together proves that the initial data of v(k,r) converge to 0 in
Γ(X|Σ) as r → 0.

At this point our proof uses an energy estimate1. To formulate it, we endow the
vector bundles X and TM with auxiliary smooth Riemannian metrics, and we denote
the corresponding pointwise norms by ‖·‖. For every compact K ⊂ Σ and L ⊂ R there
is a C > 0 such that for all r ∈ L∫

D(K)

∥∥v(r)
∥∥2 ≤ C

∫
K

(∥∥v(r)
∣∣
Σ

∥∥2
+
∥∥nα∇αv(r)

∣∣
Σ

∥∥2
)

+ C

∫
D(K)

∥∥f (r)
∥∥2
, (53)

where D(k) is the domain of dependence and v(r) is a solution to (P + r)v(r) = f (r).
We now apply this result to T ∗M⊗k⊗X instead of X and prove by induction that each

v(k,r) converges to 0 in the L2-sense on every compact set K̃ ⊂ M . Indeed, K̃ ⊂ D(K)
for some compact K ⊂ Σ, so it suffices to apply the above energy estimate to v(k,r)

and show that the right-hand side converges to 0. Note that the initial data of v(k,r)

converge to 0 in Γ(X|Σ), and hence also in the L2-norm on every compact K. It remains
to consider the source term of Equation (52),

−r∇α1
· · · ∇αk

u(0) +

k−1∑
l=0

(C(k,l)v(l,r))α1···αk
. (54)

Because u(0) is independent of r we see immediately that the first term converges to 0
as r → 0. For k = 0 the summation vanishes, so the energy estimate proves the desired
convergence of v(0,r). For k > 0 we use a proof by induction. Assuming that v(l,r) → 0
in the L2-sense as r → 0 for all 0 ≤ l ≤ k− 1, the energy estimate then proves the claim
also for v(k,r).

Finally, since v(0,r) and all its derivatives converge to 0 in an L2 sense on every
compact set, they also converge in Γ(X) by the Sobolev Embedding Theorem ([16, Sec.5.6
Theorem 6] ).

For us, the following consequence is most relevant:

Corollary 1. For fixed F ∈ Ω1
0(M), the advanced and retarded solutions E±mF

depend continuously in m ∈ R. Consequently, EmF is continuous in m ∈ R and G±mF
and GmF are continuous in m > 0.

1An explicit proof of this estimate is in B. Cf. [11, App.3, Thm.3.2] for an energy estimate of a quite
similar form, where the independence of C on r can be established by retracing the steps in the proof.
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Proof: We apply Theorem 6 to � +m2 with r = m2. Choosing e. g. u0, u1 = 0 and Σ to
the past/future of the support of F , we see that E±mF depend continuously on m ∈ R,
and hence so does EmF . The continuity of G±mF and GmF follows from the formula
G±m = (m−2dδ + 1)E±m as long as m 6= 0.

Let us now return to the continuity of families of observables and verify that it behaves
well in the simplest examples.

Lemma 5. For fixed one forms F ∈ Ω1
0(M) and j ∈ Ω1(M), the family of operators

{Am,j(F )}m>0 is continuous.

Proof: We see from the definitions of the maps involved in Definition 4 that(
Λm ◦Ψ−1

ϕm,j

)
(Am,j(F )) =

[(
〈ϕm,j , F 〉M, κmF, 0, 0, . . .

)]CCR

∼ , (55)

where [·]CCR
∼ is continuous and does not depend on the mass. Because ϕm,j depends

continuously on m > 0, so does 〈ϕm,j , F 〉M. Furthermore, GmF is continuous in m > 0
by Corollary 1 and the operators ρ(·) are continuous and independent of m, therefore, the
initial data κmF = (ρ(0)GmF, ρ(d)GmF ) also depend continuously on m > 0. Combining
these continuous maps proves the lemma.

We have found the desirable property that the quantum fields vary continuously with
respect to the mass. Note that this result is in fact independent of the choice of the
Cauchy surface Σ, since κm(F ) is continuous in m for every Cauchy surface. Indeed, we
will now show quite generally that the notion of continuity in Definition 4 is independent
of the choice of the Cauchy surface Σ and of the family of classical solutions {ϕm,j}m.

Theorem 7. The notion of continuity in Definition 4 is independent of the choice
of the Cauchy surface Σ and of the family {ϕm,j}m>0 of classical solutions to the inho-
mogeneous Proca equation.

Proof: In this proof we will make repeated use of a joint continuity lemma, which we
state and prove as Lemma 9. This lemma makes use of barrelled locally convex spaces,
and we prove in Lemma 8 that the complete BU-algebra is such a space.

Let {Om}m>0 be a family of operators with Om ∈ Am,j . We first verify the inde-
pendence of the choice of Cauchy surface. For this we choose two Cauchy surfaces Σ,
Σ′ and we consider the family of operators O′m := Ψ−1

ϕm,j
(Om) ∈ Am,0. It then suffices

to prove that the continuity of Λ
(Σ)
m (O′m) implies the continuity of Λ

(Σ′)
m (O′m), where we

have made the dependence on the Cauchy surfaces explicit.
Let us first consider the space of initial data on the Cauchy surface for the wave

equation on one-forms, D̃0(Σ) := Ω1
0(Σ) ⊕ Ω1

0(Σ) ⊕ Ω0
0(Σ) ⊕ Ω0

0(Σ) and its analogue

D̃0(Σ′). For each m we may define a continuous linear map Lm : D̃0(Σ) → D̃0(Σ′),
which propagates the initial data under the wave operator � +m2. By Theorem 6, Lm
is weakly continuous.

Fixed initial data ψ = (ϕ, π) ∈ D0(Σ) can be extended to initial data Ψm ∈ D̃0(Σ),
using the constraint equations of Theorem 2 with m > 0 and j = 0. Note that Ψm
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depends continuously on the mass m. Because D̃0(Σ) is a barrelled space (cf. the proof
of Lemma 8) we may apply Lemma 9 and conclude that LmΨm′ is jointly continuous
in (m,m′) on R+ × R+. In particular, m 7→ LmΨm depends continuously on m > 0.
Consequently, the map τm : D0(Σ)→ D0(Σ′), which propagates initial data for the Proca
field of mass m, is also weakly continuous in m > 0.

We now extend this result as follows. For 1 ≤ n ≤ N we consider the continuous
linear map TN,nm := 1⊗n−1⊗ τm⊗ 1⊗N−n on Γ0

(
(T ∗Σ⊕T ∗Σ)�n� (T ∗Σ′⊕T ∗Σ′)�N−n

)
,

which may be defined using Schwartz’ Kernels Theorem. One may extend the proof of
Theorem 6 and Corollary 1 to show that TN,nm is also weakly continuous in m > 0. We
then define the map TNm := TN,1 ◦ TN,2 ◦ · · · ◦ TN,N which is again weakly continuous
in m > 0, by a repeated application of the joint continuity Lemma 9, using the fact
that each of the spaces Γ0

(
(T ∗Σ ⊕ T ∗Σ)�n � (T ∗Σ′ ⊕ T ∗Σ′)�N−n

)
is barrelled. Let us

now consider the lift of τm to a continuous linear map Tm : BU(D0(Σ)) → BU(D0(Σ′))
between complete BU-algebras (using sections of the bundle T ∗Σ⊕T ∗Σ and its analogue
on Σ′). Its action on Γ0

(
(T ∗Σ⊕T ∗Σ)�n

)
is simply given by TNm , which shows that Tm is

also weakly continuous in m > 0. We note that each Tm is a homeomorphism and that
it maps the ideal I CCR,Σ

∼ onto I CCR,Σ′

∼ . This means that it also maps the closed ideal

I CCR,Σ
∼ onto I CCR,Σ′

∼ and it descends to a homeomorphism T̃m between the quotient

algebras BU
(
D0(Σ)

)
/I CCR,Σ
∼ and BU

(
D0(Σ′)

)
/I CCR,Σ′
∼ . The weak continuity of Tm in

m > 0 implies the weak continuity of T̃m in m > 0.
The complete algebra BU(D0(Σ)) is barrelled, as shown in Lemma 8, and hence

so is the quotient BU
(
D0(Σ)

)
/I CCR,Σ
∼ [27, Proposition 33.1]. Furthermore, because

the ideal I CCR
∼ is a closed subspace of BU

(
D0(Σ)

)
(cf. Section 2.2.4.), the quotient

BU
(
D0(Σ)

)
/I CCR,Σ
∼ is a dense subspace of BU

(
D0(Σ)

)
/I CCR,Σ
∼ . On this subspace, T̃m

restricts to Λ
(Σ′)
m ◦

(
Λ

(Σ)
m

)−1
. Identifying

Λ(Σ′)
m (O′m) = T̃mΛ(Σ)

m (O′m) (56)

we may therefore use the assumed continuity of Λ
(Σ)
m (O′m) in m > 0 and the known weak

continuity of T̃m together with Lemma 9 to find that m 7→ Λ
(Σ′)
m (O′m) is continuous in

m > 0. This proves the independence of the choice of the Cauchy surface Σ.
We now turn to the independence of the choice of classical solutions. Let {ϕm,j}m

and
{
ϕ′m,j

}
m

specify continuous families of classical solutions to the inhomogeneous
Proca equation and fix a Cauchy surface Σ. We denote the initial data of ϕm,j and
ϕ′m,j by (φm, πm) and (φ′m, π

′
m), respectively. For each m > 0 we now define an algebra

homeomorphism Lm on the BU-algebra BU
(
D0(Σ)

)
by stipulating that Lm preserves the

unit and acts on homogeneous elements of degree 1 as

Lm
(
0, (α, β), 0, 0, . . .

)
:=
(
G(Σ)

(
(φm − φ′m, πm − π′m), (α, β)

)
, (α, β), 0, 0, . . .

)
. (57)

We can extend each Lm in a unique way to a homeomorphism of the completed BU-
algebra BU(D0(Σ)), using Schwartz’ Kernels Theorem. We denote the extended operator
by the same symbol Lm. The action of Lm on a homogeneous element ψ(N) of degree
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N , i. e. on a section ψ(N) ∈ Γ0

(
(T ∗Σ⊕ T ∗Σ)�N

)
, can be written out explicitly as a sum

of terms of degrees ≤ N . Because φm, πm, φ
′
m and π′m depend continuously on m > 0, so

does the section (φm−φ′m)⊕(πm−π′m) and also the sections
(
(φm−φ′m)⊕(πm−π′m)

)�n
for each2 n ≥ 1. It follows that the components of Lmψ

(N) also depend continuously on
m > 0. Thus we see that Lm is weakly continuous in m > 0.

Note that Lm preserves the ideal I CCR,Σ
∼ (just as in the proof of Theorem 3), and

hence it also preserves the closed ideal I CCR,Σ
∼ . The Lm therefore descend to homeo-

morphisms L̃m of the quotient algebra BU
(
D0(Σ)

)
/ I CCR,Σ
∼ , and the weak continuity of

Lm in m > 0 implies the weak continuity of L̃m in m > 0. We note that L̃m preserves
the dense subalgebra BU

(
D0(Σ)

)
/I CCR,Σ
∼ and one may verify directly from Theorem 2

and the definitions of the relevant maps that L̃m acts on this subalgebra as

Λm ◦Ψ−1
ϕ′m,j

◦Ψϕm,j
◦ Λ−1

m . (58)

If Λm ◦Ψ−1
ϕm,j

(Om) depends continuously on m > 0, then so does

Λm ◦Ψ−1
ϕ′m,j

(Om) = L̃m ◦ Λm ◦Ψ−1
ϕm,j

(Om) (59)

by the joint continuity Lemma 9.

3.2. The classical case

For fixed initial data A(0), A(d) ∈ Ω1(Σ) on a fixed Cauchy surface Σ there is a family
of solutions Am,j to the Proca equation of mass m > 0 with source term j ∈ Ω1

0(M).
We have seen in Theorem 2 that these solutions take the form

〈Am,j , F 〉M =
∑
±
〈j,G∓mF 〉J±(Σ) + 〈A(0), ρ(d)GmF 〉Σ − 〈A(d), ρ(0)GmF 〉Σ (60)

for any fixed F ∈ Ω1
0(M).

We may think of F as the mathematical representation of an experimental setup
which measures the field configuration A through the pairing 〈A,F 〉M and we wish to
investigate for which F , if any, we can take the limit m→ 0 in Equation (60) above for
all choices of Σ and all initial data A(0), A(d).

Lemma 6. For fixed F ∈ Ω1
0(M), the limit m→ 0 of the right-hand side of Equation

(60) exists for all smooth space-like Cauchy surfaces Σ and all initial data A(0), A(d) ∈
Ω1(Σ), if and only if F = F ′ + F ′′ with F ′ ∈ Ω1

0,δ(M) and F ′′ ∈ Ω1
0,d(M) such that

〈j, F ′′〉M = 0.

Proof: Suppose that for a given F ∈ Ω1
0(M) the right-hand side of Equation (60) con-

verges as m→ 0 for all smooth space-like Cauchy surfaces Σ and all A(0), A(d) ∈ Ω1(Σ).

2This may be shown by induction over n ≥ 1, e. g. using the joint continuity Lemma 9 and noting
that the linear map γ 7→ ((φm − φ′m)⊕ (πm − π′m)) � γ is weakly continuous in m > 0 for any section γ
of any vector bundle.
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Because we can vary the initial data arbitrarily and independently, all three terms in
Equation (60) must converge separately. In particular, limm→0 ρ(0)GmF must exist in a
distributional sense. Recall that GmF = m−2EmdδF + EmF , where the second term is
in Ω1(M) and depends continuously on m ∈ R by Corollary 1. It then follows from the
same corollary and from the continuity and linearity of ρ(0) that

ρ(0)E0dδF = lim
m→0

ρ(0)EmdδF

= lim
m→0

m2ρ(0) (GmF − EmF )

= lim
m→0

m2 ·
(

lim
m→0

ρ(0)GmF − ρ(0)E0F
)

= 0, (61)

where we used the existence of the limit of ρ(0)GmF . Because this holds on every Cauchy
surface, the one-form E0dδF must annihilate every space-like vector at every point.
Because all tangent vectors are linear combinations of space-like vectors we conclude
that E0dδF = 0 and hence also E0δdF = E0(δd + dδ)F = 0. We may then define
F ′ := E+

0 δdF = E−0 δdF and F ′′ := E+
0 dδF = E−0 dδF and note that these have compact

supports. Furthermore, since δ and d intertwine with E+
0 on forms, δF ′ = 0 = dF ′′ and

F ′ + F ′′ = E+
0 (dδ + δd)F = F . (62)

Combining this formula with G±m = E±m(m−2dδ + 1) we find

G±mF = E±mF
′ +m−2E±m(dδ + δd+m2)F ′′

= E±mF
′ +m−2F ′′. (63)

Substituting this in the first term of Equation (60) we see that∑
±
〈j,G∓mF 〉J±(Σ) =

∑
±
〈j, E±mF ′〉J±(Σ) +m−2〈j, F ′′〉M (64)

must converge as m→ 0. The terms in the first sum converge as m→ 0 by Corollary 1,
and hence the last term must also converge. This clearly implies 〈j, F ′′〉M = 0, showing
that F must have the stated form.

Conversely, when F = F ′ + F ′′ with δF ′ = 0 = dF ′′ and 〈j, F ′′〉M = 0, then it
follows from Equation (63) that GmF = EmF

′, which has a limit as m → 0. Together
with Equation (64) and the continuity of ρ(d) and ρ(0) it follows that the right-side of
Equation (60) converges as m→ 0.

Note that F ′ and F ′′ are uniquely determined by F = F ′ + F ′′ and δF ′ = 0 = dF ′′,
because Ω1

0,δ(M)∩Ω1
0,d(M) = {0}. Indeed, if F̃ ∈ Ω1

0(M) satisfies dF̃ = δF̃ = 0, then

also �F̃ = 0 and hence F̃ = 0 by [3, Corollary 3.2.4].
For a fixed m > 0 and j ∈ Ω1(M) there are F ∈ Ω1

0(M) which define trivial ob-
servables in the sense that 〈Am,j , F 〉M = 0 for all field configurations (i. e. for all initial
data). The following lemma characterizes them:
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Lemma 7. For fixed m > 0 and j ∈ Ω1(M), F ∈ Ω1
0(M) defines a trivial observable

if and only if F = (δd+m2)F̃ for some F̃ ∈ Ω1
0(M) with 〈j, F̃ 〉M = 0.

Proof: Arguing as in the proof of Lemma 6, we see that F defines a trivial observable
if and only if GmF = 0 and 〈j,G+

mF 〉M = 0. The first condition is equivalent to
F = (δd + m2)F̃ for some F̃ ∈ Ω1

0(M) by Lemma 1. The second condition then means
that 〈j, F̃ 〉M = 0.

For any fixed m and j one would normally divide out these trivial observables, because
they are redundant. For our purposes, however, this is rather awkward, because the
space of trivial observables depends on m and j. However, we can remove some of the
redundancy in the following way:

Theorem 8. Let j ∈ Ω1(M) fixed. For F ∈ Ω1
0(M), Equation (60) admits a mass-

less limit for all initial data on all Cauchy surfaces if and only if there is a F ′ ∈ Ω1
0,δ(M)

such that F − F ′ is a trivial observable for all m > 0.

Proof: It follows from Lemma 6 that F = F ′+F ′′ with F ′ ∈ Ω1
0,δ(M) and F ′′ ∈ Ω1

0,d(M)
such that 〈j, F ′′〉M = 0. From Equation (63) we see that for all m > 0 it holds GmF

′′ = 0
and 〈j,G+

mF
′′〉M = m−2〈j, F ′′〉M = 0, so F ′′ = F − F ′ defines a trivial observable for

all m > 0 by Lemma 7 and its proof.

In other words, for the massless limit it suffices3 to consider all co-closed forms Ω1
0,δ(M).

The meaning of this can be quite easily understood under the duality 〈·, ·〉M. One
finds that D1(M)/dD0(M) is dual to Ω1

0,δ(M) (see [25, Section 3.1]). Here, D1(M)
denotes the set of distributional one-forms (in a physical sense, these are classical vector
potentials), so restricting to co-closed test one-forms is equivalent to implementing the
gauge equivalence A → A + dχ, for A ∈ D1(M) and χ ∈ D0(M) in the theory. This
dual relation is easily checked for A′ = A+ dχ and F ∈ Ω1

0,δ(M)

〈A′, F 〉M = 〈A,F 〉M + 〈dχ, F 〉M
= 〈A,F 〉M + 〈χ, δF 〉M = 〈A,F 〉M . (65)

This is a nice result, because it elucidates the gauge equivalence in the Maxwell theory.
Note that it is a priori unclear how to implement the gauge equivalence in Maxwell’s the-
ory on curved spacetimes due to the non-trivial topology. Maxwell’s equation δdA = 0
suggests that two solutions that differ by a closed one-form give rise to the same config-
uration, but one can argue that only exact one-forms should be treated as pure gauge
solutions, because the Aharonov-Bohm effect does distinguish between configurations
that differ by a form that is closed but not exact [25]. It is gratifying to see that we
arrive at a gauge equivalence given by the class of exact forms, simply by keeping the set
of linear observables as large as possible in the limit, i. e. Ω1

0,δ(M).
Hence, we have already captured one important feature of the Maxwell theory in the

massless limit of the Proca theory! It remains to check whether also the dynamics are
well behaved in the massless limit.

3It is unclear if there is any remaining redundancy.
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3.2.1. Dynamics and the zero mass limit

In the massless limit one may hope to find a vector potential A0,j satisfying Maxwell’s
equations δdA0,j = j at least in a distributional sense, i. e. 〈A0,j , δdF 〉M = 〈j, δdF 〉M
for every test one-form F ∈ Ω1

0(M). Note that δdF is co-closed, so by Theorem 8 we
may substitute F̃ = δdF in the limit

〈A0,j , F̃ 〉M := lim
m→0
〈Am,j , F̃ 〉M (66)

= lim
m→0

(∑
±
〈j,G∓mF̃ 〉J±(Σ) + 〈A(0), ρ(d)GmF̃ 〉Σ − 〈A(d), ρ(0)GmF̃ 〉Σ

)
for any given initial data A(0), A(d) on any Cauchy surface Σ. However, using

lim
m→0

G±mδdF = lim
m→0

E±mδdF = E±0 δdF

= F − E±0 dδF (67)

we only find

〈A0,j , δdF 〉M =
∑
±
〈j, F − E∓0 dδF 〉J±(Σ)

− 〈A(0), ρ(d)E0dδF 〉Σ + 〈A(d), ρ(0)E0dδF 〉Σ
= 〈j, F 〉M −

∑
±
〈j, E∓0 dδF 〉J±(Σ) + 〈A(d), ρ(0)E0dδF 〉Σ, (68)

where we used the fact that ρ(d)EmdδF = − ∗(Σ) i
∗ ∗ dEmdδF = 0 since d and Em

commute. The second term in Equation (68) will not vanish in general (e. g. when
dF = 0 but 〈j, F 〉M 6= 0). Ergo, the fields A0,j defined as the zero mass limit of the
Proca field Am,j will not fulfill Maxwell’s equation in a distributional sense. While this
might seem surprising at first, it is quite easy to understand when we recall how we have
found solutions to Proca’s equation, using the massive wave equation (4) combined with
constraint equations on the initial data to ensure that the Lorenz constraint (5) is fulfilled.
Similarly, one solves Maxwell’s equation by specifying a solution to the massless wave
equation (δd+dδ)A0,j = j and restricting the initial data such that the Lorenz constraint
δA0,j = 0 is fulfilled. The problem in the massless limit lies with the constraints. Recall
from Theorem 2 that, in order to implement the Lorenz constraint, we have restricted
the initial data by

A(δ) = m−2ρ(δ)j , and A(n) = m−2
(
ρ(n)j + δ(Σ)A(d)

)
. (69)

It is obvious that, in general, the resulting A(δ) and A(n) diverge in the zero mass limit,
so there is no corresponding solution to Maxwell’s equations with the same initial data.
In order to keep the dynamics in the zero mass limit, we need to make sure that the
constraints are well behaved in the limit. Since we do not want the external source or
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the initial data to be dependent of the mass, we have to require that A(δ) and A(n)

vanish, i. e. we need to specify4

δj = 0 , and (70)

δ(Σ)A(d) = −ρ(n)j . (71)

This corresponds exactly to the constraints on the initial data for the Maxwell equation
which implement the Lorenz gauge (cf. Pfenning [28, Theorem 2.11]). With these con-
straints, we can now look at the remaining term of 〈A0,j , δdF 〉M in Equation (68). We
do this separately for the two summands. Using that d commutes with pullbacks and
inserting the constraints on the initial data, we find

〈A(d), ρ(0)E0dδF 〉Σ = 〈A(d), d(Σ)ρ(0)E0δF 〉Σ
= 〈δ(Σ)A(d), ρ(0)E0δF 〉Σ
= −〈ρ(n)j, ρ(0)E0δF 〉Σ (72)

For the first summand
∑
±〈j, E

∓
0 dδF 〉J±(Σ) we use the partial integration as in the proof

of Theorem 2 and find, using m = 0 and the constraint δj = 0 as specified above,∑
±
〈j, E∓0 dδF 〉J±(Σ) =

∑
±
〈dδj, E∓0 F 〉J±(Σ) + 〈ρ(δ)E0F, ρ(n)j〉Σ − 〈ρ(δ)j, ρ(n)E0F 〉Σ

= 〈ρ(0)E0δF, ρ(n)j〉Σ . (73)

Using the symmetry of the inner product 〈·, ·〉M we find that the remaining terms of
Equation (68) cancel when restricting the initial data such that they are well defined in
the zero mass limit. We therefore obtain the correct dynamics in that case:

〈A0,j , δdF 〉M = 〈j, F 〉M − lim
m→0

(∑
±
〈j, E∓mdδF 〉J±(Σ) − 〈A(d), ρ(0)EmdδF 〉Σ

)
= 〈j, F 〉M . (74)

In combination with Theorem 8 we have thus shown

Theorem 9. Let F ∈ Ω1
0(M) be a test one-form and j ∈ Ω1(M) an external current.

Let Am,j be the solution to Proca’s equation specified by initial data A(0), A(d) ∈ Ω1
0(Σ)

via Theorem 2.
Defining the zero mass limit 〈A0,j , F 〉M = limm→0〈Am,j , F 〉M of the Proca field, the

following holds:

1. The limit exists if and only if F is equivalent to an observable F ′ with δF ′ = 0
for all m > 0, i.e. F − F ′ is trivial in the sense of Lemma 7 for all m > 0. This
effectively implements the gauge equivalence of the Maxwell theory.

4The first equation follows from ρ(δ)j = 0 on all Cauchy surfaces.
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2. The field A0,j is a Maxwell field, that is, it solves Maxwell’s equation, if and only if
the current is conserved, δj = 0, and ρ(n)j = −δ(Σ)A(d), implementing the Lorenz
gauge.

Note that the conservation of the external current δj = 0 is not required in order to
solve Proca’s equation, but it is necessary to solve Maxwell’s equations (δdA = j entails
δj = 0). It is therefore not surprising that this condition is also necessary to recover the
dynamics in the zero mass limit. In analogy to the quantum theory, we may think of
the field configuration A as a state, whereas F is an observable. We then see from the
theorem that the limits of observables give rise to the gauge equivalence of the classical
vector potential, but additional conditions on the limits of states and external currents
are needed in order to recover Maxwell’s equation.

3.3. The quantum case

In the quantum case we define the observables in the zero mass limit as follows:

Definition 5. For any fixed j ∈ Ω1(M) and O ∈ BU
(
Ω1

0(M)
)

we say that [O]m,j ∈
Am,j has a zero mass limit if and only if

lim
m→0

(
Λm ◦Ψ−1

ϕm,j

)(
[O]m,j

)
exists for all Cauchy surfaces Σ and all families {ϕm,j}m≥0 of classical solutions to the

inhomogeneous equation (δd+m2)ϕm,j = j which depend continuously on m. Here, Λm
and Ψϕm,j

are as defined in Section 2.2.4. and 2.2.2..
We call the zero mass limit trivial if and only if the above limit vanishes for all

Cauchy surfaces Σ and all families {ϕm,j}m≥0. If the zero mass limit exists, we denote
its equivalence class modulo trivial observables by [O]0,j .

Note that we included m = 0 in the family {ϕm,j}m≥0. This is done for the following

reason. Even when j = 0 we may choose a non-trivial family {ϕm,0}m≥0 and due to the

isomorphism Ψ−1
ϕm,0

we are then considering quantum fluctuations around the classical
solutions ϕm,0. If the quantum field is to converge, it seems reasonable to require that
the classical background field ϕm,0 also converges. For general sources this implies that
ϕ0,j satisfies Maxwell’s equations and hence the current must be conserved, δj = 0.

We can think of the zero mass limit of an operator O as a family of operators in the
algebras BU

(
D0(Σ)

)
/I CCR
∼ , indexed by Σ and by the family {ϕm,j}m≥0. Using the prop-

erties of the topological algebras BU
(
D0(Σ)

)
/I CCR
∼ , it is not hard to see that the operators

O ∈ BU
(
Ω1

0(M)
)

which have a zero mass limit form a ∗-subalgebra of BU
(
Ω1

0(M)
)

in
which the operators with a trivial zero mass limit form an ideal, generated by homoge-
neous elements of degree 1 with a trivial limit. We are interested in the quotient algebra
which we denote by A0,j and which is generated by 1 and by homogeneous degree-one
elements, which we denote by A0,j(F ). These are the massless field operators and we can
think of them as the massless limits of the field operators Am,j(F ). Our next theorem
focuses on these field operators. As our main result we determine for which F ∈ Ω1

0(M)
the limit A0,j(F ) exists.
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Theorem 10. For given j ∈ Ω1
δ(M), Am,j(F ) has a zero mass limit A0,j(F ) if and

only if F ∈ Ω1
0(M) is of the form F = F ′ + F ′′ with F ′ ∈ Ω1

0,δ(M) and F ′′ ∈ Ω1
0,d(M)

such that 〈j, F ′′〉M = 0. The zero mass limit is trivial if and only if F ′ = δdα for some
α ∈ Ω1

0,δ with 〈j, α〉M = 0.

Proof: Note that(
Λm ◦Ψ−1

ϕm,j

)(
Am,j(F )

)
=
[(
〈ϕm,j , F 〉M, κmF, 0, 0, . . .

)]CCR

∼ . (75)

Just as in the last paragraph of the proof of Lemma 6 we see that all F of the stated
form have a limit limm→0GmF = limm→0EmF and hence the limit of the initial data
limm→0 κmF exists on every Cauchy surface. By assumption on the ϕm,j , 〈ϕm,j , F 〉M
also has a limit as m → 0. Because [·]CCR

∼ is continuous and independent of m we see
that limm→0

(
Λm ◦Ψ−1

ϕm,j

)(
Am,j(F )

)
exists for all F of the stated form.

Assume that limm→0

(
Λm◦Ψ

−1
ϕm,j

)(
Am,j(F )

)
exists. This means that for each Cauchy

surface Σ there is a family of elements gm ∈ I CCR
∼ such that

lim
m→0

(
〈ϕm,j , F 〉M, κmF, 0, . . .

)
+ gm (76)

exists in BU (D0(Σ)). Using the projection S of Lemma 10, we have

S
((
〈ϕm,j , F 〉M, κmF, 0, 0, . . .

)
+ gm

)
=
(
〈ϕm,j , F 〉M, κmF, 0, 0, . . .

)
= S

(
〈ϕm,j , F 〉M, κmF, 0, 0, . . .

)
, (77)

because
(
〈ϕm,j , F 〉M, κmF, 0, . . .

)
only has components up to degree 1, so it is symmetric.

The continuity of S then implies that

S
(

lim
m→0

(
〈ϕm,j ,F 〉M, κmF, 0, 0, . . .

)
+ gm

)
= lim
m→0

S
((
〈ϕm,j , F 〉M, κmF, 0, 0, . . .

)
+ gm

)
= lim
m→0

(
〈ϕm,j , F 〉M, κmF, 0, 0, . . .

)
, (78)

exists. This implies that both limm→0〈ϕm,j , F 〉M and limm→0 κmF exist. The first of
these conditions already follows from the assumptions on ϕm,j but the second implies
in particular that limm→0 ρ(0)GmF exists. Because this is required for every Cauchy
surface, the argument presented in the proof of Lemma 6 shows that F must be of the
stated form.

Note that GmF = EmF
′ by Equation (63). If the limit is trivial, then we must

have E0F
′ = 0, which means that F ′ = �α with α := E+

0 F
′ = E−0 F

′ ∈ Ω1
0(M).

Since 0 = δF ′ = �δα we find δα = 0 and F ′ = δdα. If the limit is trivial we also
see from Theorem 2 and Equation (64) that 0 = limm→0〈ϕm,j , F 〉M = 〈j, α〉M, using
〈j, F ′′〉M = 0. This shows that trivial limits must have F ′ of the stated form. The
converse is easily verified from the same equations.
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As in the classical case we find that the algebra A0,j of the massless limit is generated by
field operators A0,j(F ) with F ∈ Ω1

0,δ(M) ranging over the co-closed test one-forms. Just
as in the classical case, discussed in Section 3.2., this implements the gauge equivalence
of the Maxwell theory, using the choice of gauge equivalence of [25]. Hence also in the
quantum case, the limit exists only if we implement the gauge beforehand.

We now turn to the algebraic relations in A0,j . For this we view [O]0,j as an
equivalence class of a family of limits limm→0

(
Λm ◦ Ψ−1

ϕm,j

)(
[O]m,j

)
in the algebras

BU
(
D0(Σ)

)
/I CCR
∼ , indexed by the Cauchy surface Σ and the family {ϕm,j}m≥0 and

we set A0,j(F ) := [(0, F, 0, . . .)]0,j , in particular. Exploiting the algebraic structure of
the algebras BU

(
D0(Σ)

)
/I CCR
∼ we then find in a natural way5 that

A0,j(αF + βF ′) = αA0,j(F ) + βA0,j(F
′) (79)

A0,j(F )∗ = A0,j(F ) (80)

for all F ∈ Ω1
0,δ(M) and α, β ∈ C, corresponding to the linearity and the hermitian

field property. For the canonical commutation relations we note that for all co-closed
F, F ′ ∈ Ω1

0,δ(M), GmF
′ = EmF

′ and hence[
A0,j(F ),A0,j(F

′)
]

= lim
m→0

[
Am,j(F ),Am,j(F ′)

]
= i · lim

m→0
Gm(F, F ′) · 1

= i · lim
m→0
〈F,E′F 〉M

= i E0(F, F ′) · 1 . (81)

For co-closed test one-forms F ∈ Ω1
0,δ, the fundamental solutions E±0 of the massless

Klein-Gordon operator are actually also fundamental solutions to Maxwell’s equation,
i. e. it holds E±0 δdF = E±0 (δd + dδ)F = F , so we find that the fields in the zero
mass limit are subject to the correct canonical commutation relations. Indeed, using
ρ(δ)E0F

′ = i∗δE0F
′ = i∗E0δF

′ = 0 and the analogous expression for F , we may rewrite
the commutator in terms of initial data as

E0(F, F ′) = 〈F,E0F
′〉M = −〈E0F, F

′〉M
= 〈ρ(0)E0F, ρ(d)E0F

′〉Σ − 〈ρ(d)E0F, ρ(0)E0F
′〉Σ (82)

in analogy to Equation (44).
Note that E0(F, F ′) for F, F ′ ∈ Ω1

0,δ(M) is in general degenerate, hence the quantum
field theory associated with A0,j will in general fail to be local in the sense of Definition
3. However, this is perfectly in line with Gauss’ law for the free vector potential [25].
The methods of loc.cit. Section 3.5 allow a full characterisation of the smeared fields in
the center of A0,j .

5This means that the relations below hold for the corresponding limits limm→0

(
Λm ◦Ψ

−1
ϕm,j

)
([O]m,j)

for each Cauchy surface and for each family of classical solutions {ϕm,j}m≥0.
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It remains to verify whether A0,j solves Maxwell’s equation, i. e. if for all F ∈ Ω1
0(M)

it holds A0,j(δdF ) = 〈j, F 〉M. Because δdF is co-closed, the limit A0,j(δdF ) is well
defined. For any Cauchy surface and any family {ϕm,j}m≥0 we have(

Λm ◦Ψ−1
ϕm,j

)(
Am,j(δdF )

)
=
[(
〈ϕm,j , δdF 〉M, κmδdF, 0, 0, . . .

)]CCR

∼

=
[(
〈δdϕm,j , F 〉M, κmδdF, 0, 0, . . .

)]CCR

∼

= 〈j, F 〉M1 +
[(

0, κmδdF, 0, 0, . . .
)]CCR

∼ , (83)

which is independent of {ϕm,j}m≥0. This essentially means that it suffices to consider the

source free case, because the second term in Equation (83) is Λm
(
Am,0(δdF )

)
. Because

GmδdF = EmδdF converges to E0δdF we have

lim
m→0

κmδdF =
(
ρ(0)E0δdF, ρ(d)E0δdF

)
=
(
ρ(0)E0δdF, 0

)
, (84)

where we have used that E0δdF = −E0dδF is closed and therefore it holds ρ(d)E0δdF =
ρ(n)dE0δdF = 0.

To recover Maxwell’s equation, we need to verify that the second term in Equation
(83) vanishes in the limit m→ 0 for any Cauchy surface. However, this fails in general.
Indeed, if B ∈ Ω1(M) is the solution of the wave equation �B = 0 with initial data
ρ(0)B = ρ(d)B = ρ(n)B = 0 and ρ(δ)B ∈ Ω0

0(Σ) not constant, then B = E0F for some
compactly supported F ∈ Ω1

0(M) (cf. the proof of Lemma 2). However, E0δdF =
−E0dδF = −dδE0F = −dδB does not vanish, because δB ∈ Ω0(M) is a function
which is not constant. In particular, because d commutes with pull-backs, ρ(0)E0δdF =
−dΣρ(δ)B 6≡ 0 because ρ(δ)B is not a constant function. Conversely, following the proof
of Theorem 10 and Lemma 6 we see that the limit only vanishes for all Cauchy surfaces
if E0δdF = 0, which means that F ∈ Ω1

0,δ(M) + Ω1
0,d(M).

We have encountered a similar situation in the investigation of the classical theory
in Section 3.2.1. (cf. Equation (68)). There we could get rid of similar remaining terms
by restricting the initial data of the field configuration (i. e. of the state of the system)
such that the Lorenz constraint is well behaved in the limit. In the quantum scenario,
our definition of the massless limit already requires δj = 0, but the remaining constraint
equation has not been imposed. Indeed, in our present setting, which focuses on observ-
ables, the Lorenz constraint does not appear directly at all.

Nevertheless, we may impose the desired dynamics in a consistent way by dividing out
a corresponding ideal. Note in particular that the limit algebra is not simple, because the
skew-symmetric form in Equation (81) is degenerate: 〈F,E0δdF

′〉M = 0 when δF = 0.
It follows that the operators A0,j(δdF )− 〈j, F 〉M1 commute with all other operators in
the algebra A0,j and they therefore generate a two-sided ideal.

In the source free case this ideal is generated by the operators A0,0(δdF ), which
correspond to the limit of [(0, κmδdF, 0, . . .)]

CCR
∼ with limm→0 κmδdF = (ρ(0)E0δdF, 0).

It is interesting to note that AF := E0δdF is a space-like compact solution to the source
free Maxwell equation, δdAF = −δdE0dδF = 0, and that it is of the form AF = dχ
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with the space-like compact function χ := −E0δF . Solutions of the form AF can also be
characterized in terms of their initial data,(

ρ(0)AF , ρ(d)AF
)

=
(
− d(Σ)ρ(0)χ, 0

)
. (85)

Under the correspondence F 7→ E0F of observables (with δF = 0) and space-like compact
solutions to Maxwell’s equation, the observables δdF therefore generate a subspace that
looks like a kind of pure gauge solutions (see for example [25] or [28]). However, the kind
of “gauge equivalence” on the level of the observables, rather than the fields, does not
seem to come out of the limiting procedure naturally.

It seems plausible that one can recover the correct dynamics by including states in the
investigation and formulating conditions on their limiting behaviour, which essentially
require that the remaining constraint equations is well behaved in the limit. It is unclear
if our limiting procedure can also be improved to directly recover the dynamics without
considering states. One idea is to consider the homeomorphisms that propagate the
algebras of initial data BU

(
D0(Σ)

)
/I CCR
∼ from one Cauchy surface to another. If one

can formulate a condition that ensures that these homeomorphisms remain well behaved
in the limit, then the resulting limits should have a well behaved time evolution. It would
be of interest to develop these ideas and to compare the results with the massless limit
of Stueckelberg’s theory, which preserves the gauge invariance at all masses at the cost
of introducing a coupling to an additional scalar field and all the associated additional
complications [5]. We leave the investigation of these worthwhile questions to the future.

4. Conclusion and Outlook

We have studied the classical and quantum Proca field in curved spacetimes, using
a general setting including external sources and without restrictive assumptions on the
spacetime topology. We have shown that the quantum theory is locally covariant in the
sense of [9], where the injectivity of the morphisms is related to the non-degeneracy of
the symplectic form.

We have shown that the theory depends continuously on the mass m > 0, in a
way which we have defined. Using specific BU-algebra homeomorphism, we mapped
families of smeared Proca fields at different masses, initially elements in different BU-
algebras, into the BU-algebra of initial data. The topology of the latter algebra then
determines a notion of continuity for the family of operators. For m > 0 we showed
that this notion of continuity is independent of the choice of Cauchy surface and of the
classical inhomogeneous solutions ϕm,j appearing in the homeomorphisms. This result
relied crucially on the use of energy estimates. Note that a C∗-Weyl algebra approach
is ill-suited for the investigation of the zero mass limit, as one of us has argued in [26,
Appendix A].

For the quantum theory we defined the zero mass limit by requiring a continuous
family of observables to converge on every Cauchy surface and for every continuous
family {ϕm,j}m≥0 of inhomogeneous classical solutions. (For the classical theory we

considered a somewhat simplified setting.) Investigating the zero mass limit we found in
both cases that the limit exists and the theory is generated by the class of observables
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described by co-closed test one-forms. This effectively implements a gauge invariance
on the (distributional) solutions to Proca’s equation by exact (distributional) one-forms.
This is of interest, because in general curved spacetimes the spacetime topology allows
different possible choices of gauge invariance (using e. g. closed forms instead). Our
limiting procedure naturally leads to the same gauge invariance that was advocated in
[25], using the independent argument that it can account for phenomena such as the
Aharonov-Bohm effect and Gauss’ law.

In the zero mass limit we also find that the quantum fields fulfill the basic proper-
ties of linearity, the hermitian field property and the correct CCR, all in line with the
massless vector potential of electrodynamics. However, we do not automatically recover
the expected Maxwell dynamics. In the classical case, this is caused by a potential
divergence in the constraint equations on the initial data of field configurations. This
may be avoided by requiring the external source to be conserved, δj = 0, and by re-
quiring that the initial data of the configuration also satisfy the constraint equations of
Maxwell’s theory as given e. g. by Pfenning [28]. In the quantum case we did not clarify
if Maxwell’s equation can be obtained in the zero mass limit, e. g. by imposing additional
conditions on the limits of observables or on states, or by requiring the homeomorphisms
that propagate initial data between different Cauchy surfaces to remain well defined in
the massless limit.

The further development of these ideas might require a detailed investigation of
Hadamard states, which is also of interest in its own right. So far these states seem
to have been considered only in a restricted class of spacetimes [17]. Furthermore, it
would be interesting to make a detailed comparison of our massless limit and the mass-
less limit of Stueckelberg’s theory as presented e. g. in [5]. We leave the investigation of
these worthwhile questions to the future.
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A Additional Lemmas

Let X be a complex vector bundle over a smooth differential manifoldN . As in Section
2.2.1. we may define the complete BU-algebra BU(Γ0(X)) over Γ0(X) as the direct sum

BU
(
Γ0(X)

)
= C⊕

∞⊕
n=1

Γ0

(
X�n

)
, (86)

using the outer tensor product of vector bundles (see [23, Chapter 3.3]). We endow this
algebra with the inductive limit topology of the subspaces

BUN = C⊕
N⊕
n=1

Γ0(X�n) . (87)



[Author and title] 30

Note that BU
(
Γ0(X)

)
is the completion of the BU-algebra C⊕

∞⊕
n=1

Γ0(X)⊗n.

Lemma 8. The complete Borchers-Uhlmann algebra BU
(
Γ0(X)

)
is barrelled.

Proof: The spaces Γ0

(
X�n

)
of compactly supported sections of a complex vector bundle

are LF-spaces, as they are defined as the inductive limit of the Frechét spaces of sections
with support in some compact Kl where {Kl}l is a fundamental sequence of compact
Kl ⊂ N (see [14, 17.2.2 and 17.3.1]). Since LF-spaces are barrelled [27, Chapter 33,
Corollary 3] and the direct sum of barrelled spaces is again barrelled [21, 18.11], we find
for any N ∈ N that BUN is barrelled. Additionally, the inductive limit of barrelled spaces
is barrelled [22, Chapter V, Proposition 6], hence the complete BU-algebra over smooth
compactly supported sections Γ0(X) over a complex vector bundle X is barrelled.

We will use barrelled spaces in order to apply the following result:

Lemma 9. Let X be a barrelled locally convex space, let η : [c, d]→ X be a continuous
map on a closed interval and let Lm : X → Y be a family of continuous linear maps
into a locally convex space Y indexed by m ∈ [a, b]. If the map m 7→ Lm is weakly
continuous, i. e. if m 7→ Lmx is continuous on [a, b] for each x ∈ X, then the map
(m,m′) 7→ Lmη(m′) is continuous on [a, b]× [c, d].

Proof: The weak continuity of m 7→ Lm implies that for each x ∈ X the image of
m 7→ Lmx is compact. The family of maps Lm is therefore pointwise bounded. Because
X is barrelled we may apply the uniform boundedness principle to find that the maps
Lm are equicontinuous. For any (m0,m

′
0) ∈ [a, b] × [c, d] we set x := η(m′0) and we

pick an arbitrary convex open neighbourhood y + V of y := Lm0
x, where V is an open

neighbourhood of 0. By equicontinuity there is an open neighbourhood U ⊂ X of 0 such
that Lm(U) ⊂ 1

2V for all m ∈ [a, b]. As η is continuous there is an open neighbourhood
W ′ ⊂ [c, d] of m′0 such that η(W ′) ⊂ x + U . Similarly there is an open neighbourhood
W ⊂ [a, b] of m0 such that Lmx − y ∈ 1

2V for all m ∈ W . It follows that for all
(m,m′) ∈W ×W ′

Lmη(m′)− y = Lm
(
η(m′)− x

)
+ (Lmx− y) ∈ 1

2
V +

1

2
V ⊂ V (88)

which proves the desired continuity.

For our next lemma we will call an element of BU
(
D0(Σ)

)
symmetric if and only if it is

totally symmetric in each degree.

Lemma 10. Let BUS (D0(Σ)) denote the linear subspace of the Borchers-Uhlmann
algebra of initial data BU

(
D0(Σ)

)
consisting of symmetric elements. Then there is a

unique continuous linear surjective projection S : BU
(
D0(Σ)

)
→ BUS

(
D0(Σ)

)
whose

kernel is ker(S) = I CCR
∼ as defined in Section 2.2.4.
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Proof: For each N ≥ 1 and each permutation σ of the set {1, . . . , N} we introduce the

permutation operator P
(N)
σ :

(
Γ0(T ∗Σ⊕ T ∗Σ)

)⊗N → (
Γ0(T ∗Σ⊕ T ∗Σ)

)⊗N
defined by(

P (N)
σ f

) (
p1, . . . , pN

)
:= f

(
pσ(1), . . . , pσ(N)

)
, (89)

where we view elements of
(
Γ0(T ∗Σ⊕T ∗Σ)

)⊗N
as sections in Γ0

(
(T ∗Σ⊕T ∗Σ)�N

)
. The

symmetric tensor product
(
D0(Σ)

)⊗SN
is then the range space of the projection

P (N) :=
1

N !

∑
σ

P (N)
σ . (90)

Note that each P
(N)
σ is continuous, because the topology of Γ0

(
(T ∗Σ ⊕ T ∗Σ)�N

)
is

invariant under the swapping of variables. It follows that P (N) is a continuous surjection.
We will first argue that BUS

(
D0(Σ)

)
∩ I CCR
∼ = {0}. For this we note that each

f ∈ I CCR
∼ is by definition of the form

f =

k∑
i=1

hi ·
(
− iGm(ψi, ψ

′
i), 0, ψi ⊗ ψ′i − ψ′i ⊗ ψi, 0, 0, . . .

)
· h̃i (91)

for some k ∈ N, hi, h̃i ∈ BU
(
D0(Σ)

)
and ψi, ψ

′
i ∈ D0(Σ), where we have used the

shorthand notation Gm(ψi, ψ
′
i) = 〈πi, ϕ′i〉Σ − 〈ϕi, π′i〉Σ for ψi = (ϕi, πi). If f 6= 0 then

its highest degree part is of some degree N ≥ 2 and we can write it explicitly, using the
above representation, as

f (N) =

k∑
i=1

h
(Ni)
i

(
ψi ⊗ ψ′i − ψ′i ⊗ ψi

)
h̃

(N−2−Ni)
i , (92)

where h
(Ni)
i is the highest degree part of hi and h̃

(N−2−Ni)
i is either the highest degree part

of h̃i or 0. It follows by inspection that P (N)f (N) = 0. Now, if f ∈ I CCR
∼ is non-zero and

symmetric and if f (N) is its highest degree part, then f (N) = P (N)f (N) = 0, contradicting
that f (N) is the highest degree part. It follows that BUS

(
D0(Σ)

)
∩ I CCR
∼ = {0}.

We now construct for each degree N ≥ 2 two continuous linear maps

α(N) :
(
Γ0(T ∗Σ⊕ T ∗Σ)

)⊗N → (
Γ0(T ∗Σ⊕ T ∗Σ)

)⊗N
,

β(N) :
(
Γ0(T ∗Σ⊕ T ∗Σ)

)⊗N → I CCR
∼ ,

(for N = 2 we use
(
Γ0(T ∗Σ⊕ T ∗Σ)

)⊗(N−2)
= C) such that

f = P (N)f + α(N)f + β(N)f . (93)

We start with the observation that

f = P (N)f − 1

N !

∑
σ

(P (N)
σ − 1)f . (94)
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Every permutation σ can be written as a composition σ = τ1 ◦ τ2 ◦ · · · ◦ τl, where each

τi is a transposition of neighbouring indices. We then find P
(N)
σ = P

(N)
τ1 · P (N)

τ2 · · ·P (N)
τl

and, using a telescoping series,

(
P (N)
σ − 1

)
f =

l∑
i=1

(
P (N)
τi − 1

)
P (N)
τi+1
· · ·P (N)

τl
f (N+2)
m . (95)

This is now a sum over terms where the left-most operator P
(N)
τi −1 yields a commutator.

Using the CCR we may reduce this commutator to a term of lower degree, i. e.(
P (N)
τi − 1

)
f ′ = f̃ ′ + g , f̃ ′ ∈ Γ0(D0(Σ))⊗(N−2) , g ∈ I CCR

∼ (96)

for any f ′ ∈ Γ0(D0(Σ))⊗N , where f̃ ′ depends continuously on f ′ and hence so does g.
Repeating this procedure for each term in Equation (95) and each term in the sum in
Equation (94) yields a well-defined expression of the form

f = P (N)f +
∑
j

f̃j +
∑
j

gj , (97)

where j runs over some index set, f̃j is homogeneous of degree N − 2 and gj ∈ I CCR
∼ .

Because f̃j and gj depend continuously on f , it suffices to define α(N)f :=
∑
j f̃j and

β(N)f :=
∑
j gj . We refer to [26, Lemma B.5] for more details.

In Equation (93) we may now proceed to symmetrise the term α(N)f of degree N−2.
Note that elements of degree 0 or 1 are automatically symmetric. By induction we can
then show that

f =

bN/2c∑
j=0

P (N−2j)α(N+2−2j) · · ·α(N)f +

bN/2c∑
j=0

β(N−2j)α(N+2−2j) · · ·α(N)f . (98)

(Here the maps α are to be omitted when j = 0.) We now define S as S =
⊕∞

N=0 SN in
terms of the continuous linear maps

SN :
(
Γ0(T ∗Σ⊕ T ∗Σ)

)⊗N → BUS (D0(Σ)) ,

f 7→
N/2∑
j=0

P (N−2j)α(N+2−2j) · · ·α(N)f , (99)

for all N ≥ 0. Note that S is continuous and because the α(N) and β(N) vanish on
symmetric elements, S acts as the identity on BUS (D0(Σ)). It follows from Equation
(98) that every element f ∈ BU

(
D0(Σ)

)
can be decomposed into f = f ′ + g, where f ′

is symmetric and g ∈ I CCR
∼ . Since BUS

(
D0(Σ)

)
∩ I CCR
∼ = {0}, this decomposition is

unique and we must have f ′ = Sf . This entails in particular that

BU (D0(Σ)) = BUS
(
D0(Σ)

)
⊕ I CCR
∼ , (100)

that ker(S) = I CCR
∼ and that S is the unique projection with the given range and kernel.
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B Proof of the energy estimate (Eq. 53)

Theorem 11. Let P be a normally hyperbolic operator on a real vector bundle X
over a globally hyperbolic spacetime M and let Σ ⊂ M be a smooth, space-like Cauchy
surface. For all compact sets K ⊂ Σ and L ⊂ R there is a C > 0 such that∫

D(K)

∥∥v(r)
∥∥2 ≤ C

∫
K

(∥∥v(r)
∣∣
Σ

∥∥2
+
∥∥nα∇αv(r)

∣∣
Σ

∥∥2
)

+ C

∫
D(K)

∥∥f (r)
∥∥2
, (101)

where D(k) is the domain of dependence and v(r) is a solution to (P + r)v(r) = f (r).

Proof: We may identify M = R × S and g = −Ndt2 + ht, where t ∈ R, N > 0,
Σt := {t} × S is a smooth spacelike Cauchy surface with metric ht and Σ = Σ0. We set

ξα := −N∇αt, so that ξα is a future pointing time-like vector field and nα := N−
1
2 ξα is

its normalisation. Without loss of generality we may assume that the auxiliary norm ‖·‖
on TM is given by 2nαnβ + gαβ .

For the purposes of this proof we choose the connection ∇ on X to be the one which
is compatible with the auxiliary metric on X. Any different choice of connection in (101)
can easily be accommodated for by adjusting C at the end of the proof. Note that for
suitable smooth bundle homomorphisms A and B it holds P = gαβ∇α∇β +Aα∇α +B.

Let us fix r for now and drop the superscripts on v and f . We define the quantities

Tαβ := ∇αv · ∇βv −
1

2
gαβ

(
‖∇v‖2 + ‖v‖2

)
, (102)

Pα := ξβTαβ , (103)

ε := nαPα =
√
NnαnβTαβ

=
1

2

√
N
(

(2nαnβ + gαβ)∇αv · ∇βv + ‖v‖2
)
, (104)

where · refers to the hermitian inner product on X. Note that ε ≥ 0.
We may now choose a T > 0 such that D(K) ⊂ (−∞, T )× S and a compact K ′ ⊂ Σ

which contains K in its interior. Then we may choose an auxiliary Cauchy surface Σ′ of
(−∞, T )×S such that D(K) lies to the past of Σ′, but Σ′ contains Σ\K ′. Furthermore,
we may choose a C ≥ 1 such that the following inequalities hold on [0, T ]× S:

N±
1
2 ≤ C , ±(∇αξβ +∇βξα) ≤ C

√
N(2nαnβ + gαβ) ,

|∇αξα| ≤ C
√
N , ‖R‖ ≤ C , ‖A‖ ≤ C and ‖B‖ ≤ C , (105)

where R is the curvature of ∇ on X. In addition we may assume that |r + 1| ≤ C for
all r ∈ L and that ht ≤ Cht′ on K ′ for all t, t′ ∈ [0, T ] and similarly for the hermitian
metric in X.

It will be convenient to introduce Lt := Σt ∩ J−(Σ′) for t ∈ [0, T ] and the “energy”

ε(t) :=

∫
Lt

ε . (106)
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We now want to estimate the quantity

E(t) :=

∫
([0,t]×S)∩J−(Σ′)

ε (107)

for t ∈ [0, T ]. We note first of all that

d

dt
E(t) ≤ lim

τ→0+
τ−1

∫
[t,t+τ ]×Lt

ε ≤ C
∫
Lt

ε , (108)

where the constant C is needed to estimate the factor
√
N which arises due to a change

of volume form. Furthermore, using Stokes’ Theorem:∫
([0,t]×S)∩J−(Σ′)

∇αPα = ε(t)− ε(0) +

∫
Σ′∩([0,t]×S)

ναPα , (109)

where να is the forward unit normal to Σ′. One may show that the bilinear form

ναnβ + nανβ − gαβnγνγ (110)

is positive definite and nγνγ < 0. This entails that ναPα ≥ 0 and hence

ε(t)− ε(0) ≤
∫

([0,t]×S)∩J−(Σ′)

∇αPα . (111)

Furthermore, we may estimate

|∇αPα| ≤
∣∣Tαβ∇αξβ∣∣+

∣∣ξβ∇αTαβ∣∣ , (112)

where
∇αTαβ = v ·Rαβ · ∇αv − v ·B · ∇βv − (r + 1)v · ∇βv + f · ∇βv . (113)

For the term involving f we can use the further estimate∣∣ξβf · ∇βv∣∣ ≤ C‖f‖ · ‖∇v‖ ≤ 1

2
C
(
‖f‖2 + ‖∇v‖2

)
. (114)

Using our choice of C we can then estimate all the terms in ∇αPα to find

ε(t) ≤ ε(0) +

∫
([0,t]×S)∩J−(Σ′)

8C2ε+
1

2
C‖f‖2 (115)

and consequently

d

dt
E(t) ≤ Cε(t) ≤ 8C3E(t) + Cε(0) +

1

2
C2

∫
D(K′)

‖f‖2. (116)

Therefore, d
dte
−8C2tE(t) ≤ Cε(0) + 1

2C
2
∫
D(K′)

‖f‖2. With E(0) = 0 this yields

e−8C2TE(T ) =

∫ T

0

d

dt
e−8C2tE(t)dt ≤

(
Cε(0) +

1

2
C2

∫
D(K′)

‖f‖2
)
T (117)
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and hence

E(T ) ≤ C ′
(
ε(0) +

∫
D(K′)

‖f‖2
)

(118)

for a suitable C ′ > 0 independent of r. Note that E(T ) ≥
∫
D(K)

‖v‖2 and that ε(0) ≤

C ′
∫
K

(∥∥v(r)
∣∣
Σ

∥∥2
+
∥∥nα∇αv(r)

∣∣
Σ

∥∥2)
when we choose C ′ large enough. Finally, we may

shrink K ′ to K without adjusting the constants C or C ′ which leads to the desired
estimate.
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