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Chapter 1

INTRODUCTION

Every single application is based on certain materials with appropriate
range of properties. There are optical properties, such as refractive index,
electrical properties, such as conductivity, thermal properties, such as thermal
expansion and heat capacity, mechanical properties such as elastic modulus
and Poisson’s ratio, and acoustical properties like speed of sound or acoustic
impedance. A lens, for example, requires an ideally large refractive index
and a high transparency. At the same time it needs to be form stable, calling
for a large Young’s modulus and low thermal expansion.

Nature provides us with a large variety of accessible materials, which
from a historical perspective helped us to achieve numerous technological
advancements. Nevertheless, the limitation for these improvements lies
on the point when the requisite properties cannot be reached by available
materials. Current technology is, therefore, often limited by the range of
currently accessible material properties. Some of these constraints have
been overcome by discovering or synthesizing new materials. In addition,
available constituent materials can also be used to build composite materials.
Two well-known examples are reinforced concrete and carbon fiber rein-
forced polymer. These composites employ the strength of one component to
overcome the weakness of another, for instance, the high tensile strength of
steel is protecting the surrounding concrete, which has high compressional
strength, but low tensile strength. However, the properties of composites
usually lie within the range of their constituents. Reinforced concrete still
has lower tensile strength than pure steel [1].

Metamaterials, on the other hand, are generally not limited by their con-
stituents for many material properties. These are artificial materials with
unusual effective material properties, that are mainly defined by the struc-
tural design rather than the characteristics of the constituents. Not merely
can metamaterial properties exceed the bounds given by the constituents,
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but they often do by a large magnitude and sometimes even with a different
sign [2]. One popular example are metamaterials with negative refractive
indices [3], a highly unusual property that is not found in any known natural
occurring material. Hence, metamaterials open a new realm of possible
material properties. The strength of metamaterials is not only the range of
accessible material parameters, but also the ability to tailor them by adjusting
simple geometrical parameters.

Discussions about metamaterials often come hand in hand with discus-
sions about 3D printing [2]. The advancement of 3D printing during the last
decade has made it possible to print even highly complex three-dimensional
metamaterials. In future, the benefit may also be vice versa, as metamaterials
endow 3D printers the ability to print materials with a variety of properties
from a small number of cartridges. It has even been proven that, theoretically,
two constituent materials are enough to print metamaterials with any elastic
property [4, 5] or unbounded thermal expansion [6].

In the scope of this work, direct laser writing, a state-of-the-art 3D micro
printing technique, is used to fabricate micro-structured three-dimensional
metamaterials out of ordinary polymers. The objective is to tailor certain
thermoelastic and poroelastic properties, namely thermal expansion and
effective compressibility, beyond the range of the constituents. especially
towards negative values which is very uncommon. It implies a material that
shrinks upon temperature increase, or one that expands under elevated air
pressure.

OUTLINE OF THIS THESIS

In Chapter 2, I will cover the theoretical background on classical thermo-
dynamics and continuum mechanics, which is required to understand and
interpret the results of this work. It is followed by a short introduction to
metamaterials, negative thermal expansion and negative compressibility.

In Chapter 3, the methods I have employed to fabricate and measure our
metamaterial samples are described. To begin with, direct laser writing,
a three-dimensional laser lithography based on two-photon polymeriza-
tion, is introduced. Afterwards I will explain the experimental setup and
measurement techniques including image cross-correlation.

Chapter 4 covers the experimental results for both thermoelastic and poroe-
lastic metamaterials, which demonstrate our ability to tailor the effective
thermal expansion coefficient and effective compressibility. I will present



the design and numerical optimization of the unit cells and demonstrate
the novel techniques I have applied to fabricate the two-component samples
and the novel designs that include sealed hollow volumes. Moreover, I will
measure gas permeation through the microscopic polymer membranes of
the poroelastic metamaterials to prove that the sealed hollow volumes are
airtight.

In Chapter 5, I will close this thesis with the summary of main results and
a brief outlook.






Chapter 2

THEORY

In the scope of this work, I will characterize and discuss metamaterials with unusual
thermoelastic or poroelastic properties. Therefore, I will give a short introduction
to thermodynamics and continuum mechanics in this chapter with focus on the
parts that are relevant for understanding the later chapters. For a more detailed
introduction 1 recommend the books from Reichl [7] and Slaughter [8]. In the end of
this chapter I will talk about bounds of material properties, concentrating on thermal
expansion and compressibility, and briefly introduce the concept of metamaterials.

2.1 FUNDAMENTALS OF THERMODYNAMICS

Classical thermodynamics considers macroscopic systems at equilibrium
and the transition between equilibrium states. Based on four simple laws,
very fundamental statements about the behavior of a thermodynamic system
are made, giving important relations between heat and work and defining
temperature and entropy.

Intensive and Extensive State Variables

Each thermodynamic system is fully defined by a set of state variables. Each
state variable can be either intensive or extensive. Intensive variables describe
quantities that do not depend on the size of the system, like temperature T,
pressure P, density p or chemical potential u. If, for example, one system
with temperature T is divided into two subsystems, each of them will still
be at temperature T.

Extensive variables are additive with regard to the size of the system.
Examples are internal energy U, entropy S, volume V or particle number N.
If two systems with internal energies U; and U, are combined, the resulting
system will have internal energy U = U; + Us.
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These state variables and their relations among each other will be described
more precisely in the following parts.

Thermodynamic Equilibrium

A system is said to be in thermodynamic equilibrium, if the corresponding
state variables stay constant in space and time, which also means that no
macroscopic energy or particle flow occurs. Similarly, two equilibrium sys-
tems are in thermodynamic equilibrium with each other, if their intensive
state variables are equal. When brought into contact with each other, no
net energy or particle flow will occur between them. Being in thermody-
namic equilibrium is an equivalence relation, as stated in the zeroth law of
thermodynamics [7]:

Two thermodynamic systems that are in equilibrium with a third system are in
equilibrium with each other.

It assures that intensive properties of a system can be uniquely measured by
bringing it into contact with a measurement device like a thermometer.

Ideal Gas

In thermodynamics, gases are often described as an ideal gas, in which
the particles are considered to be point like and only interact via elastic
collisions. Under this assumption, the pressure P and volume V are found
to be proportional to the temperature T (also see 2.1.3) and the amount of
substance 1, known as the ideal gas law

PV =nRT . (2.1)

The proportionality factor is the gas constant R = 8.314] mol~! K~!. With
the Avogadro constant Ny = 6.022 x 102> mol 1, particle number N = nNy
and Boltzmann constant kg = R/Nx = 1.381 x 10723 J K1, the ideal gas law
can also be written as

PV = NkgT . (2.2)

2.1.1 FIRsT LAW OF THERMODYNAMICS

The first law of thermodynamics is a statement on energy conservation:
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Within a closed system, the internal energy U stays constant. It can only be
changed by adding heat 6Q or mechanical work 6W from an external source.

Assuming constant particle number N, it is written as
dU = 6Q + 6W. (2.3)

Here, the ¢ indicates that the differentials are not exact, i.e., the corresponding
values (here Q and W) can not be expressed as a gradient of another function
and depend on the path taken, to change a system from one state to another.
The value §W usually represents the volume work performed on the system,

SW = —PdV, (2.4)

but also additional terms are possible, like a change of surface area dA at
surface tension ¢ or a change of the electrical polarization dP in an electric
field E. These additional terms will be neglected for the rest of this chapter,
and only work on the volume is considered.
In a reversible process, during which no energy is dissipated, 6Q can be
written as
6Q = TdS. (2.5)

This equation introduces the entropy S, an extensive variable that is a quan-
titative measure of disorder in a system. Later it will be shown thatdS is
indeed an exact differential and S a real state variable.

Thermodynamic Potentials

If additionally, particles are allowed to flow in or out of the system, a change
in particle number dN changes the internal energy by }_; y1; dNj, where y; is
the chemical potential and N; the number of the particles of type j. Together
with Equations 2.4 and 2.5, the differential of the internal energy can be
written as
dU =TdS—PdV+)_ u;idN;. (2.6)
J

This equation shows that (S,V,{N;}) are the independent variables of U
and all other properties can be derived from these via

ou ou ou
T—g, P__W, and y]—a—N] (27)
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Depending on the conditions within a system, i.e., depending on which
state variables are kept constant, it is convenient to introduce other ther-
modynamic potentials, namely the Helmholtz free energy F = U — TS, the
enthalpy H = U + PV, the Gibbs free energy G = U + PV — TS and the
grand potential ® = U — TS —}_; u; dN;. With Equation 2.6 their differentials
are

dF = —SdT — PdV +) y;dN;, (2.8)
i
dH = TdS+VdP+Zy]~de, (2.9)
J
dG = —SdT+ VdP+ ) u;dN;, (2.10)
i
and d® = -SdT —PdV -} N;dy;. (2.11)

]

2.1.2 CARNOT CYCLE

The Carnot cycle might be the most important cyclic process in thermody-
namics. It defines an upper bound for the efficiency of cyclic processes and
can also be employed to define an absolute temperature scale, as shown later.
Essentially, a system transports heat from a hot reservoir at temperature T
to a cold reservoir at temperature T; < T, while generating work during the
process. This is done in a cyclic manner through the following steps:

1. Isothermal expansion: The system expands isothermally at temperature
T, while being in thermal contact with the hot reservoir and insulated
from the cold reservoir. In the process, the entropy increases from S;
to Sp and the heat Q; = T,(S; — S1) is added to the system.

2. Isentropic expansion: Afterwards, the system is insulated from both
reservoirs and is allowed to expand further without heat exchange and
at constant entropy S, until the temperature drops from T, to Tj.

3. Isothermal compression: Now the system is brought into thermal
contact with the cold reservoir at T} and is compressed by the sur-
rounding. The heat Q; = T;(S; — S1) flows from the system into the
cold reservoir.

10
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Figure 2.1: PV and TS diagrams of an ideal Carnot process. The net work done
after one Carnot cycle is shown in gray on the left and is equal to the difference
in heat, shown in gray on the right.

4. Isentropic compression: In the last step, the system is thermally insu-
lated and compressed further while the temperature increases from T;
to Ty.

In Figure 2.1, the steps are depicted in a PV and a TS diagram. During
expansion, the system does work on the surroundings, and during compres-
sion, work is done on the system from outside. The difference is the net
work W (gray area in the PV diagram) done after one Carnot cycle and is
equal to the difference of the heat taken from the hot reservoir and the heat
added to the cold reservoir (gray area in the TS diagram)

W=0-Q1=(Ta—T)(S52—51) . (2.12)
The fraction of the heat Q, that is converted into work is the Carnot efficiency

W T
_ 2t 1 2.1
1 Q> T (2.13)

2.1.3 SECOND AND THIRD LAW OF THERMODYNAMICS
The first law of thermodynamics forbids the existence of a machine that

periodically generates energy (perpetuum mobile of the first kind). How-
ever, one could imagine a perpetuum mobile that does not violate energy

11
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conservation, for example, a cyclic process that converts heat from only one
reservoir into work (perpetuum mobile of the second kind). The second law
of thermodynamics states the impossibility of a perpetuum mobile of the
second kind. There are lots of other equivalent formulations of the second
law. One expressed using the notion of the Carnot cycle states [7]:

No cyclic process has a higher efficiency than the Carnot cycle, and all reversible
cycles have the same efficiency.

Another equivalent formulation of the second law, that is based on entropy,
will be given in the following.

Temperature and Entropy

An absolute scale of temperature can be defined in several ways. A straight
forward method is to use the ideal gas equation (2.2), since it is also the
principle of gas thermometers. At constant pressure, an enclosed volume
of an ideal gas is found to be proportional to temperature. This defines
the absolute zero temperature at a point, where the volume would be zero.
However, the assumption of an ideal gas breaks down at low temperature.

This is why instead of the ideal gas law, Equation 2.13 is used. The
efficiency of a Carnot cycle defines the relative temperature between two
heat reservoirs. To obtain an absolute scale, one temperature value at a fixed
state has to be defined. Usually the temperature is chosen at the triple point
of water 273.16 K to define the Kelvin scale.

The entropy is then defined via Equation 2.5. For the Carnot cycle, the
closed integral over 6Q/T is zero, which also holds true for any reversible
cycle. Therefore, dS is a real differential (unlike /Q) and the entropy is a
state variable,

oQ

ds > T (2.14)

Equality holds for reversible processes. This inequality is another formulation
of the second law, also known as the principle of maximum entropy:

In a closed adiabatic system, entropy cannot decrease and only stays constant
during reversible processes.
Third Law of Thermodynamics

To obtain an absolute scale for entropy, one absolute value has to be defined.
This is done in the third law of thermodynamics:

12
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It is impossible for any system to reach absolute zero temperature.

An implication of this statement is that the entropy converges to zero for
T — 01in perfect crystals,

li T)=0. )
lim S(T) = 0 (2.15)

Statistical Approach

Statistical thermodynamics approaches the field from a microscopic view-
point via the statistics of particles. A thermodynamic system defined by
macroscopic properties like temperature, pressure, or volume is called a
macrostate. While the macroscopic properties stay constant at equilibrium,
particles within that system still move and occupy different positions. Any ar-
rangement of these microscopic particle positions—or more generally, every
configuration of microscopic states—is called a microstate. In this context,
there is another very intuitive definition of entropy:

S = _kBZPi log Pi . (2.16)
i

The sum goes over all possible microstates of the macrostate and P; is
the probability of the system to be in state i. Since P; € [0,1] it follows
immediately that S > 0.
If M is the number of microstates, and all are equally probable, Equa-
tion 2.16 becomes
S = kglog M, (2.17)

which implies that the entropy gives the amount of disorder in a system.
The larger the number of microstates, the larger the entropy, and if there is
only one possible configuration in the system (M = 1), the entropy is zero.

With this definition of entropy and by using Equations 2.5 and 2.6, the
temperature can alternatively be defined as

ou
T = (E) N . (2.18)

The principle of maximum entropy mentioned earlier will be used to
derive conditions for the stability of a system. This will give fundamental
bounds to the heat capacity and the isothermal compressibility which will
be defined in the next subsection.

13
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2.1.4 THERMODYNAMIC SUSCEPTIBILITIES

Thermodynamic susceptibilities specify how much an extensive variable
changes as a result of a variation of an intensive variable. Consider a
thermodynamic system with fixed particle number N:

To increase the temperature of a system by dT the heat 6Q has to be added
to the system. This defines the heat capacity

_6Q  _dS

C=ar ~Tar

(2.19)

The heat capacity depends on the circumstances under which temperature
is changed. If the volume is kept constant, the heat capacity Cy is obtained.
Likewise, the heat capacity Cp is defined under constant pressure. With
Equations 2.6 and 2.9 they can be written as

ou oH
Cy = (B_T)V , and Cp = (8_T>P . (2.20)

The thermal volume expansion coefficient ay gives the relative volume
change with respect to temperature change at fixed pressure,

o _ ! 8_V (2.21)
V= wv\eT ), '

Similarly, the (static) isothermal volume compressibility x gives the relative
volume change with respect to pressure change at fixed temperature,

1 oV
K= 7 <ﬁ>T . (2.22)

Analogous to ay, the thermal length-expansion a is defined along one
dimension. For now let us assume isotropy and hence equal thermal length-
expansion along every direction,

1 /0L
n = i (ﬁ)P . (2.23)

With V = L3 it is shown that ay and « are connected via

ay =3 . (2.24)

14
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For the rest of this thesis “thermal expansion” and and “thermal expansion
coefficient” will always imply a length expansion. The word “volume” will
be added to specify a volume expansion.

Additionally, the following equations hold [9],

(31’) - (2.25)
oT ) K

TVa?
and Cp—Cy = K{XV . (2.26)

The last equation implies Cp > Cy as long as ¥ > 0. Equality holds if ay = 0.
We will see that indeed x > 0 always holds at equilibrium. However, there
are also non-equilibrium cases where x < 0 is possible.

2.1.5 FLUCTUATIONS AND STABILITY

With the principle of maximal entropy, conditions for stability can be derived
by looking at small fluctuations around equilibrium. Here, the approach of
References [7] and [9] is followed.

Consider a closed system defined by U and V that is split into two equal
subsystems. For simplicity, the particle number N is assumed to be constant
in each subsystem for now,

S(U,V) =5 (%,g) + S, <%,g> . (2.27)

U and V are now allowed to fluctuate, changing their values in subsystem 1
by AlU; and AV, and consequently in subsystem 2 by —AU; and —AV;. The
principle of maximum entropy now implies that any fluctuation in a stable
equilibrium can only decrease the entropy,

1%
0>AS=5; (Q+Au1,—+m/1)

2 2
+ S5 (% — Aul,% — AVl,) — S(U, V) . (2.28)

Looking now at the Taylor expansion of AS around the equilibrium situa-
tion in Equation 2.27,

851 852 aSl a52
== - — —— | AV + ... .
AS (8111 BUZ) AU + <8V1 avz> 1+, (2.29)

15
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it can be seen that the linear terms have to vanish, since the fluctuations can
be both positive or negative. With Equation 2.6 it follows that T} = T, and
Py = D,. If also fluctuations in N are considered, the equality yq1 = p2 of
both chemical potentials is shown in the same way.

These are the conditions for two subsystems to be in equilibrium intro-
duced in Section 2.1. As the conditions hold, the partial differentials that
are evaluated at equilibrium are equal for both subsystems. The Taylor
expansion up to the second order now reads

25, &S, 1 (RS, S,
0>AS = AU+ 5 (S22 AV
(au2 oz (Ath)*+3 av2 vz (av)*

925, 925,
+ (aulavl * auzavz) AtWAVL .
0925 925, 925,
=50 22 AU + 32 2L Aan)? T2y ALAVI e (230)

The condition AS < 0 has to hold for all (small) fluctuations of arbitrary
sign. This implies that the first two terms on the last line have to be negative,

925, 1
= — < ,
oz~ TCy — 0. (231)
25,
and a_vlz <0. (2.32)

Together with the inequality —x? — y? 4 2|xy| < 0,Vx,y € R it follows
that

0251 925,

9%S 9%S
— (AU + —5 (AV)? +2\l Uz av2 5 (AULAV)? <0.  (233)

au? V2

Equality can hold for arbitrarily small, but finite |AU; | and |AV;|. For these
fluctuations, Equation 2.33 is inserted into 2.30 to derive the inequality

9%51 95, _( 9%5, )2 1

= > .
a2 avz  \athov, ) ~ vy = (2:34)

16
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From 2.31 and 2.34 it can be seen that heat capacity and compressibility have
to be positive, i.e.,

Cy >0, and k>0. (2.35)

These conditions are implications of the principle of Le Chatelier. Any
spontaneous fluctuation from equilibrium leads to a reaction of the system
that moves it back towards equilibrium. If that would not be the case,
the system would be unstable, and hence, also not in equilibrium. In a
system with negative heat capacity, the temperature would increase as a
response to a spontaneous outflow of heat due to fluctuations, leading to
even more outflow of heat and increase in temperature. Similarly, a system
with negative compressibility, would increase its pressure as a response to a
spontaneous volume increase, which increases its volume even further.

17
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2.2 FUNDAMENTALS OF CONTINUUM MECHANICS

When studying macroscopic effects of materials, it is convenient to model it
as a continuum instead of individual atoms and use a small set of material
parameters to describe it. Just like the permittivity e and the permeability
u, that describe the optical behavior of a material, continuum mechanics
uses properties like density, Young’s modulus and Poisson’s ratio to describe
the mechanical behavior. We will first derive some of these properties from
Hooke’s law.

Hooke’s Law

An ordinary helical spring will elongate by x if a force F pulls on it. There is
a range where force F and elongation x are proportional to each other, which
is described in Hooke’s law:

F=Dx. (2.36)

The proportionality factor D is the spring constant, and quantifies the stiff-
ness of the spring. In Figure 2.2, the situation is shown for a helical spring
(left) fixed at the top end and pulled on the bottom. There, the elongation x
can also be identified as the displacement of the bottom end. On the right,
the spring is replaced by a rod with length L and radius r < L. Assuming
an isotropic material under small displacements x < L, Hooke’s law is also
valid.

D depends on L and the cross section A = 72 and is, therefore, not a
specific property of the material. By replacing the displacement x with the
(normal) strain

el ox  «x (2.37)

Tl L’ =37
and the force F with the (normal) stress
F

o= Z ’ (238)

Hooke’s law can be written in another form,
o= Ee. (2.39)

This equation introduces the Young’s modulus E = DL/A, a specific

18
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Figure 2.2: A force F that pulls on a spring (left) or a rod (right) will elongate
them by x. Within a certain range, F and x are proportional to each other and
Hooke’s law 2.36 holds.

property that describes the elasticity of the material. The elongated rod in
Figure 2.2 also gets thinner. This behavior is described with the Poisson’s
ratio

_Lor

V= T (2.40)

It is measured in the middle of a long rod to exclude any boundary effects.
As we will see later, E and v together fully define the static behavior of an
isotropic material.

Alternatively, the static elastic behavior is described with the bulk modulus
K and the shear modulus G. In Figure 2.3, the conditions are illustrated on a
cube with volume V = L3. The bulk modulus specifies the resistance of a
material with volume V' against hydrostatic compression under pressure P,

K= —Vg—‘lj . (2.41)
It is the inverse of the compressibility defined in Equation 2.22, in a region
where the function P(V) can be inverted.
The shear modulus G quantifies the resistance against a tangential force F;.
It defines the linear dependence between shear stress T = F;/ A and shear
strain vy = x/L,
T Pt/ A

(2.42)

19
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Hydrostatic Pressure Tangential Force

Figure 2.3: A cube of an isotropic material (left) is compressed under hydrostatic
pressure (middle) or sheared under a tangential force (richt). The stiffness
against these type of deformations define bulk and shear moduli, respectively.

Bulk modulus and shear modulus are related to Young’s modulus and
Poisson’s ratio via

E E
K = m , and G = m . (243)

E, K and G are positive. As a result, the Poisson’s ratio has to lie inside the

interval [—1,0.5] [8].

2.2.1 CONTINUUM FORMULATION OF LINEAR ELASTICITY

In continuum mechanics, a body is modeled by an infinite set of points B.
Each point P € B has a unique initial position in space ¥(P) € R>. After
a continuous deformation, each point moves to a possibly new position
X(P) € R3.

The difference between positions after deformation and initial positions is
the displacement, which is now a continuous vector field

i(¥(P)) = X(P) — X(P) . (2.44)

Here the displacement is defined with respect to the initial positions X(P).
For small deformations, the strain & can be assumed to be linear to the

displacement [8]:
. 1 ( du; au]
&jj = 5 (a_x] + a_xl> . (245)

20
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X1

Figure 2.4: Visualization of the normal and tangential stress components on an
infinitesimal cube.

It is a symmetric second order tensor containing normal strains on its diago-
nal and tangential strains on its off diagonal elements. It can be represented
in the matrix form
€11 €12 €13
e= | & &3] . (2.46)
€13 €23 €33

Likewise, three normal stresses and six shear stresses can influence each
point. They are illustrated on an an infinitesimal cube in Figure 2.4. The
resulting Cauchy stress tensor is also symmetric [8], leaving only three shear
stresses,

011 012 013
o= |012 022 023] . (2.47)
013 023 033

2.2.2 CONSTITUTIVE EQUATIONS

Stress and strain are connected via a forth order elasticity tensor, giving the
generalization of Hooke’s law (2.39),

c=C:e¢. (2.48)
Component wise and with Einstein notation, it can be written as

0ij = Cijki€xi - (2.49)
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The symmetric stress and strain tensors still have six independent elements,
resulting in 36 elements in the elasticity tensor. For isotropic materials the
situation is much simpler and only two parameters are necessary to describe
the elasticity tensor [8]

Oij = 2"1/[81']' + Agkkéij . (2.50)

A and y are the first and second Lamé parameter, respectively. Equation 2.50
can be represented with the Voigt notation as

011 2‘14 + A A A 0 0 O €11
022 A Z‘M + A A 0 0O €22
033 | A A 2u+A 0 0 O €33
o | T 0 0 0 u 00| ]|’ (2.51)
013 0 0 0 0 |2 0 Y13
012 0 0 0 0 0 |2 Y12

with ;; = 2¢;;. Comparing this to Equation 2.45, it can easily be seen that
7ij are equivalent to the shear stress -y defined in Equation 2.42. As a result,
the second Lamé parameter y, that connects +y;; with the shear strain, is the
shear modulus G.

The first Lamé parameter has no simple physical interpretation. However,
it can be represented with other elastic constants. Considering a small
hydrostatic pressure increase AP acting on an isotropic solid and assuming
there are no other stresses present, the pressure increase leads to normal
stresses 017 = 022 = 033 = —AP. The resulting relative volume change
AV /V is the total volumetric strain or dilatation

e=¢y +exntep=V-i. (2.52)
and with Equation 2.51 the bulk modulus can hence be written as

011+ 0 +033 (2u +3A)e 2

The first Lamé parameter can, therefore, be represented by bulk and shear
modulus:

K

2
A=K-— §G . (2.54)

In total, five elastic parameters have been introduced (counting G = yu as
one). The static behavior of an isotropic material is fully determined by
specifying any two of those. Common pairs are (E,v), (K,G), and (A, p).
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Elastic and Acoustic Waves

For the dynamical behavior of elastic solids, another property, the density p,
has to be taken into account.

Newton’s second law is generalized for continuous media according to [5,
10]. The divergence of the stress is a force density, which is connected to an
acceleration of a mass density. Neglecting body forces, this is written in the
following equation:

2=

P?,TZ =V-o. (255)

For isotropic materials, Equation 2.50 and 2.45 are inserted to obtain a
differential equation for the displacement

0%l

o — A+ 20)V(V @) + ¥V x (V x i) =0 (2.56)

By applying the divergence on this equation, the rotational term drops out.
Together with Equation 2.52 this results in a wave equation for longitudinal
waves.

2
((A + Zy)v2 — p%) e=0 (2.57)

The longitudinal wave velocity vy, is therefore

A2 |K+3G
v = r_ SAnigy (2.58)
P %

Fluids have zero shear moduli and are described by only one elastic constant.
Therefore, they only allow propagation of longitudinal waves. Setting 1 = 0
in Equation 2.57 the acoustic wave equation

1 02
<V2 — vjﬁ) p= 0, (259)

with v, = y/K/p, is obtained. The acoustic pressure p is connected to the
dilatation e via e = —xp.
Equation 2.56 can be rewritten as

0%l

poz — A+ pV(V i) - uVv3ii =0. (2.60)
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This time the rotation is applied. Remembering that the rotation of a gradient
field is zero and with the definition Q) = V x i, an equation for rotational
waves is obtained.

V2 — Ll Q=0 (2.61)
PV = Pop ) ** = '

Rotational waves are superpositions of shear or transversal waves. The
transversal wave velocity vt is therefore

oT = \/g = \/g (2.62)

2.2.3 THERMOELASTICITY

Until now, only mechanical stresses and strains were considered. However,
also changes in temperature can cause stresses and strains in an elastic solid
due to thermal expansion. Generally, thermal expansion can be anisotropic
and is described with a symmetric tensor of rank two including all normal
and tangential thermal expansion coefficients,

X111 ®12 *13
o= |app axn a3 . (2.63)
X13 K23 K33

If the ambient temperature is changed from Ty to T, the temperature change
AT = T — Ty =: 6 causes a thermal strain af. In the elastic stress-strain
relations (Equation 2.49), the thermal strain has to be subtracted from the
total strain, leading to the Duhamel-Neumann relation [11]

0ij = Cijr (ex1 — aa0) - (2.64)

In the following, isotropic solids are considered. The isotropic thermal
expansion tensor is proportional to the identity matrix I3,

100
«a=a|0 1 0], (2.65)
0 01

where « is the coefficient of length expansion defined in Equation 2.23.
Equation 2.64 can now be simplified to [11]

Uij = 2“1181‘]' + Aekkéij - ‘39(51] ’ (2.66)
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with B = (2u + 37 )a.

Equation 2.66 only includes mechanical stresses and strains caused by the
temperature change 6. However, the coupling also happens in the other
direction: mechanical stresses and strains cause temperature and entropy
changes, which occur, for example, in thermoelastic damping [12]. For a full
description of thermoelasticity, entropy change per unit volume s as well as
temperature change 0 have to be considered as individual stress and strain
components. For isotropic solids, Equation 2.51 is expanded to [12]

011 2“1/1 + A A A 0 0 O —‘B €11

022 A 2u + A A 0 00 —‘B €27

033 A A 2u+A 0 0 O —B €33

023 | = 0 0 0 2 0 0 0 Y23 . (2.67)
031 0 0 0 0 U 0 0 Y13

012 0 0 0 0 0 u 0 Y12

—s —B —B —-B 0 0 0 —c/Tj 6

It can be seen that thermal expansion, which is included in B, acts as a
coupling parameter between mechanical and thermal behavior. The thermal
parameters 6 and s are connected via the heat capacity per unit volume c
(compare Equation 2.19).

2.2.4 POROELASTICITY

Poroelasticity studies the mechanical behavior of elastic solids with pores that
are filled with a fluid, often water. A special property of poroelastic materials
is the existence of two longitudinal modes, which are coupled modes from
a longitudinal wave traveling through the solid and fluid, respectively. A
few basic concepts and results obtained by Biot [13, 14] are summarized and
brought into our context. For a complete introduction the books [5] and [15]
are recommended.

In the following an effective isotropic poroelastic material is considered,
consisting of a connected solid skeleton with volume Vs and an open con-
nected pore volume V,,. In the example of a cubic porous structure shown
in Figure 2.5, V5 and V,, are the blue and gray parts of the porous volume
V = L3, respectively. The volume of the porous material is the sum of solid
volume and pore volume,

V=Vt V. (2.68)
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confining pressure P

Figure 2.5: lllustration of a cubic porous structure with volume V = L3. The
solid portion is depicted in blue, the fluid part with pressure p’ is shown in
gray. A confining pressure P acts on all six facets of the cube.

The fraction of the pore volume is the porosity f = V,,/V. Depending on
which volume is observed under which pressure change, many different
coefficients with the units of a compressibility can be defined. The pore
pressure p’ is the pressure inside the pore fluid and the confining pressure
P is the sum of all normal forces acting on the boundary, divided by the
area of the boundary (cube facets with area 612 in Figure 2.5). To keep an
overview, all poroelastic volumes, pressures and compressibilities defined in
this section are summarized in Table 2.1.

A porous material is said to be saturated if the pores are completely filled
with fluid, or drained if the fluid is completely drained from the pores. In a
saturated porous solid, stress and strain inside the fluid can interact with
the solid portion, which is shown in the constitutive equations.
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Poroelastic Constitutive Equations

The constitutive equations of poroelasticity are equivalent to those of ther-
moelasticity [12, 16]. In the isotropic case they can be written as [14]:

011 2]4+A A A 0 0 O Q €11
022 A 2u+ A A 0 00 Q €20
033 A A 2“Ll—|—A 0 0 0 Q €33
O3 | = 0 0 0 U 0 0 O Y23 , (2.69)
31 0 0 0 0 u 0 0] |73
o012 0 0 0 0 0 u O Y12
& Q Q Q 000 R g

with A = A 4+ Q?/R

The similarities with the thermoelastic constitutive equations 2.67 can
clearly be seen. Instead of temperature and entropy, now the additional
stress and strain components are the stress acting on the contained fluid &,

which is related to the pore pressure p’ via & = — fp’ and the fluid dilatation
g given by
3
» ou;
g = , 2.70
1:21 o (2.70)

with the components U; of the fluid displacement. There are two additional
elastic constants defining the poroelastic properties of the material. Q is
a coupling parameter between fluid and solid part and R connects fluid
dilatation and stress. y is the shear modulus, and A corresponds to the first
Lamé parameter A of the drained solid frame. Q and R can be expressed
with measurable values from the following two experiments.

Jacketed Compressibility Test

During the jacketed experiment, the confining pressure is increased from the
initial value Py to P = Py + AP while the pore pressure is kept constant at
p' = Py. As a result, the incremental force induced by the pressure increase
AP acts sorely on the solid portion of the porous boundary. Experimentally,
this is usually done by sealing the sample inside a jacket and applying a
confining pressure. The pore fluid is allowed to escape out of the jacket via
a thin tube, to keep the pore pressure constant.
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Character | Description

Vv volume of porous structure
Vs volume of the solid skeleton
Vo pore volume

f =V,/V | porosity

p confining pressure

p’ pore pressure

Keff unjacketed or effective compressibility
Kj jacketed compressibility

Ks compressibility of the solid skeleton
Kl compressibility of the pore fluid

Table 2.1: Summary of characters naming different volume, pressure and
compressibility values.

By measuring the relative volume change e (see Equation 2.52), the jacketed
compressibility «;j is determined.

1 /oV e
=TV (ﬁ)H ~ AP 271)
0

Within linear approximation, xj can be assumed independent of Py and is
hence equal to the drained compressibility of the solid skeleton.
Unjacketed Compressibility Test

Here, the jacket is left away and both the confining pressure and the pore
pressure are increased by AP. In an experiment, the solid skeleton is im-
mersed into a fluid that exerts AP as a hydrostatic pressure increase. By
measuring e, the unjacketed compressibility is determined.

e 1 (Y ~__C (2.72)
#="v\oP),, AP 7

The unjacketed compressibility will be called effective compressibility later
on. To avoid confusion, the symbol «.¢ is used for both.
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The compressibility of the solid skeleton under hydrostatic loading is
defined by
1 [(9oVs

Ks = 7 (ﬁ)p/:p : (2.73)

If the solid skeleton consists of only one material and has no sealed hollow
volumes, ks would be equal to the compressibility of the constituent material.
Under the same experimental conditions, the coefficient of fluid content ¥
is defined by
_ fle=9)

Y="2p - (2.74)

It measures the fluid volume that is injected into the pores of a unit volume
of the poroelastic media per hydrostatic pressure increase. There is another
way to express this value. If the fluid is incompressible, the volume flow in,
or out of the pores is a direct result of a change in pore volume AV}:

oV,
Y= % (a—1§’> = (1 — f)Ks — Kegf (2.75)

For finite fluid compressibility kg, there will be an additional volume flow
due to compression of the fluid.

Y= (1~ f)Ks — Kegt + fxa (2.76)

Poroelastic Constants

The poroelastic constants Q, and R can be written in terms of the measurable
values f, «j, kegr and 7 as [14]

- f - 5t)
Q= , (2.77)

2

K
z, ff
Y+ Keff — ’sj

f2
and R = —————. (2.78)
Y+ Keff — %}H
The dependence of k. is particularly interesting here, as the metamaterials
introduced in this work will be able to tune the value of x.¢ over a large

range and even to negative numbers. At first glance, the denominator seems
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to depend on the sign of x.¢. However, by inserting Equation 2.76 for ¢, Q
and R are rewritten as
f(1 - f )
Q= / (2.79)
(1= f)Ks + fra — eff

f2
and R = . (2.80)
(1= f)xs + frg — eff

Only x2; remains in the denominator, which does not depend on the sign of
Ketf- ks and xp do not depend on the sign of ., either. The nominator of
the coupling parameter Q does depend on the sign of k.. However, since
usually e /%; < 1 [14], the contribution is rather small.

Longitudinal Poroelastic Waves

In contrast to ordinary elastic waves, it has been predicted and derived
by Biot [13] that poroelastic waves have two longitudinal modes. Without
coupling these can be seen as two pressure waves traveling through solid
and fluid, respectively.

Several densities have to be considered for the dynamic behavior. Let
p = p1 + p2 be the density of an isotropic poroelastic material, p; the density
of the solid portion, and p, the density of the fluid portion (both with
respect to the aggregate volume). Due to coupling between solid and fluid,
their relative movement hinders their individual displacement, resulting
in an increased apparent mass density of the solid p1; = p1 + p, and fluid
022 = p2 + pa- The relative movement between solid and fluid enters as a
third, negative apparent mass density pjo = —p,. In the kinetic energy T,
this can be expressed as [13]

13 ou; ou; OU; ou; \ 2
r= 21._21 (p“ ( Bt> +2012 ( ot ot ) ten (Y) > (281)

The equation for longitudinal waves are now two coupled equations [13],

3 02 _
VZ(PB —+ QS) = @(,0116 + 9128) ,

) (2.82)

d
and V?(Qe+ R#) = 552 (P12€ + 0228) -
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with P = A + 2u. By setting the coupling parameters Q and p1, to zero, the
tirst equation becomes the equation for ordinary longitudinal elastic waves
defined in 2.57.

The wave equation can be solved with an exponential ansatz

e = Cyellkr—wt) and g = Cellkr—wt) (2.83)

If there is no relative motion between solid and fluid, only one longitudinal
wave will exist with the velocity

H
Vo= 1y|—, (2.84)
Vo
with H = P+ R +20Q.

Generally, two solutions exist, each is a coupled wave of the solid dilatation
e and the fluid dilatation & For one mode, the amplitudes have the same sign,
which means that e and & are in phase. For the other mode, the amplitudes
are of opposite sign, i.e., e and € are out of phase [13]. The velocities of both
longitudinal waves can be expressed as

V1 = VC and V2 =

where z; and z; are the two roots of the equation

Ve

(2.85)

(G11022 — 05)2% — (G112 + Fo2f11 — 2012012)Z + (P11622 — P2) =0, (2.86)

with the nondimensional parameters:

~ P11 ~ P22 ~ P12
n=-—, »n =, =—, (2.87)
% 0 % 0 012 P
- p . R
011 = E , Uy = E , and 012 = % . (2.88)
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2.3 BOUNDS OF MATERIAL PROPERTIES

Bounds play an important role in the theory of composites [5]. Understand-
ing the reasons why and under which conditions they exist will usually lead
to a better understanding and sometimes even to a refining of the underly-
ing physics. In the previous sections, it was shown that heat capacity and
compressibility have to be positive and that the Poisson’s ratio of isotropic
materials lies in the interval [—1,0.5]. These fundamental “hard” bounds
can only be circumvented by introducing new effects or changing initial
assumptions. Negative heat capacity exists inside dying stars [17], which are
not at equilibrium and have strong gravitational fields, that are not described
by classical thermodynamics. Negative compressibility is possible, if, for
instance, the requirement of thermodynamic equilibrium is omitted, as we
will see later.

There are also “soft” bounds that hold for all or most naturally occurring
materials. For example, for all natural materials, Poisson’s ratio, refractive
index and effective compressibility are positive, and most natural materi-
als have positive thermal expansion. However, for man-made materials,
especially metamaterials, these bounds can be exceeded, sometimes even
by orders of magnitude. This can lead to new applications that were not
possible before.

2.3.1 METAMATERIALS

The idea of metamaterials is to obtain novel artificial materials with unusual
effective properties, and at the same time, to be able to control and tailor them.
Instead of a periodic arrangement of atoms or molecules, metamaterials
generally consist of a periodic alignment of often complex building blocks,
the unit cells. The properties are not limited to specific fields and can, for
instance, be of optical [3, 18-20], mechanical [10, 21-23], acoustical [24-27],
thermal [28] or electrical [29, 30] nature. They are defined by the structure of
the unit cell rather than the constituent materials. Generally speaking, the
properties of a metamaterial that is built from different constituent materials
do not lie within the properties of its constituents [2]. Often, by tailoring
only one structural parameter, the metamaterial effect can be tuned over a
large range, sometimes even including sign inversions.

The behavior inside one unit cell can be very complex. For optical metama-
terials they can be a result of rapidly oscillating currents or polarization, for
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mechanical metamaterials there can be complex deformation fields, includ-
ing local rotations. In the limit of many unit cells, the complex local behavior
vanishes with respect to an effective global behavior. The metamaterial
can be described as a homogeneous medium with certain effective material
parameters. For wave phenomena, this usually means that the unit cell has
to be much smaller than the wavelength.

Metamaterials have refined many material bounds and have especially
allowed properties that are usually positive to become negative including
negative index of refraction [3, 20, 31], negative Poisson’s ratio [22, 32, 33] and
negative Hall coefficient [30, 34, 35]. This work will explore the possibility
to flip the sign of two other properties that are usually positive: negative
thermal expansion and negative effective compressibility.

2.3.2 NEGATIVE THERMAL EXPANSION

Unlike compressibility, thermal expansion is fundamentally allowed to be
negative. Well-known examples are water between 0°C and 4 °C and zir-
conium tungstate (Zr(WO,),) between —273 °C and 777 °C [36]. However,
most materials have positive thermal expansion: they shown an increase
of their volume when heated. The thermal expansion of ideal gases can be
directly derived from the ideal gas law 2.1:

nR 1

It is therefore always positive.
In solids, the usual positive thermal expansion is a result of the anhar-
monic interatomic potential. A common approximation is the Lennard-Jones

potential
Vip(r) = 4e [(%)u — <g>6] , (2.90)

which is shown in Figure 2.6. It can be seen that the anharmonicity leads to
an increased atomic distance for higher temperatures, which usually results
in positive thermal expansion. Exceptions are discussed in the following.

Mie—Griineisen Equation of State

The connection between an anharmonic interatomic potential and the thermal
expansion can also be seen in the Mie-Griineisen equation of state. It holds
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r/o

Figure 2.6: Lennard-Jones potential. Due to the anharmonic potential, the
average atomic distance increases from r to r; if the temperature is increased
from T to Ty, leading to positive thermal expansion.

for crystalline solids, for which the thermal behavior is mainly defined by
phonons [9],
u-u

P—Py=v v (2.91)

Here, Py and Uj are the pressure and the internal energy at a reference state
and v is the dimensionless Griineisen parameter, that expresses the change
of phonon frequencies wy of a particular mode with respect to the volume,

dlogwy _ V dwy (2.02)

~ dlogV  wp oV’
Usually 7y is assumed to be independent of k. For an anharmonic potential
like in Figure 2.6, wy will, in most cases, increase if the volume is decreased,
which results in a positive Griineisen parameter [37].
Using Equation 2.25 and 2.91, the connection between thermal expansion
and Griineisen parameter is shown to be

x opP . CV
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Figure 2.7: Schematic illustration of transverse vibrations (left) and RUMs (right)
that can result in a decrease in volume, even if the interatomic bond length
increases. Adapted from [38].

C
== ")’KTV - (2.94)

Generally, different phonon modes can have different Griineisen parameters
7i, in which case 7y should be understood as a weighted average over 7; [36].
Since all other parameters on the right side of Equation 2.94 are positive, it
follows that if only phonons contribute to the thermal expansion, a negative
thermal expansion requires a negative Griineisen parameter.

Figure 2.7 depicts possible phonon modes with negative Griineisen param-
eter are transverse phonons and rigid unit modes (RUMSs) [37, 39]. These
can lead to negative thermal expansion, even if the interatomic bond length
increases with temperature. RUMs account for negative thermal expansion
in many solids, like Zr(WQ,),, in some perovskites [36—-38, 40], and the
crystalline phase of glass ceramics [41]. There, rigid polyhedra that consist
of metal oxides with strong bonds are connected to each other at their edges
sharing one oxygen atom. These comparably weak bonds between the rigid
units act as hinges, allowing rotational movement of the polyhedra and lead
to a decrease in volume with increasing temperature.

Two-Component Materials

It is also possible to obtain negative thermal expansion in a porous com-
posite of two isotropic materials A and B. Assuming two different thermal
expansion coefficients a4 and ag > ap, it has been shown by Lakes that
the possible effective thermal expansion coefficients of the composite are, in
principle, unbounded in both positive and negative direction [6, 42]. The idea
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Figure 2.8: A bilayer beam made out of materials A and B with thermal expan-
sion coefficients ap and ag > ap will bend in the direction as illustrated if the
temperature is increased from Ty to T > T according to Equation 2.95.

is using bilayer beams in a porous lattice that bend when the temperature
changes due to the difference in thermal expansion. These and similar types
of two-component materials have recently gained increasing experimental
attention [43—48].

The bending of bilayer beams with large length to thickness and width
ratios has been investigated analytically by Timoshenko [49]. The mechanism
is depicted in Figure 2.8. If both layers have the same thickness ¢, thermal
expansion coefficients of ap and ap and Young’s moduli E4 and Ejp, respec-
tively, a temperature increase of AT will lead to a bending of an initially
straight beam. Its curvature is given by

1 ag — aa )AT 12
14 + s + Ea

For t — 0 the curvature diverges and hence, thermal expansion using a
mechanism based on bending of bilayer beams can be unbounded [42]. The
curvature also depends on the ratio of Young’s moduli of the constituents
and is maximal if they are equal. The effect is only significant at very large
ratios, for which the curvature will eventually vanish. For small ratios, the
effect is negligible. For instance, if the Young’s moduli are different by a
factor of 3, the curvature will decrease by less than 8 % compared to the case
of equal Young’s moduli.
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2.3.3 NEGATIVE COMPRESSIBILITY

In Section 2.1.5, it was shown that negative static volume compressibility
is not possible in thermodynamic equilibrium. It violates the second law
of thermodynamics. A thermodynamic system with negative static volume
compressibility is therefore unstable. As we will see, stability can be forced
via volume constraints, but an active volume constraint that reacts to a
change in pressure would violate energy conservation. We will also see
that under certain alterations of the assumptions, e.g. “dynamic” instead
of “static” or “linear” instead of “volume” it is possible to obtain negative
compressibility. But first, an alternative explanation why the static volume
compressibility can not be negative is given.

Response Functions and Causality

In the definition of compressibility in Equation 2.22, V and P are volume and
pressure of the same thermodynamic system. The derivative indicates that
the volume change is observed with respect to the pressure. In equilibrium,
the confining pressure of the system is equal to P and acts as a normal force
on dV. The volume change is therefore a linear response [50] to the change
in confining pressure.

Generally, if a time dependent function F(t), e.g. a force, acts on a system
leading to a reaction x(t), the linear dependence can be expressed via a
response function x as

x(t) = / x(t—t)E(t)dt’ . (2.96)

Because of causality, x(t) can not depend on future events F(t' > t), and
hence, x(t — ') = 0 for t < . The mathematical implication is that the
complex Fourier-transformed response function x(w) = x1(w) +ixa2(w) is
holomorphic in the upper half of the complex plane. If x(w) converges to
zero for |w| — oo with 1/|w]| or faster, it can be shown that its real and
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imaginary parts are connected via the Kramers-Kronig relations [7]:

2 w'xa(w
--7 / VR da (297)
w
and xz(w 7D / w,)zcl w' (2.98)

The Kramers-Kronig relations are well-known from optics, connecting the
real and imaginary part of the electric susceptibility or dielectric constant. It
has been shown that they also hold for the complex dynamic compressibil-
ity [51]. The imaginary parts describe attenuation and are positive for w > 0
and therefore, it follows from Equation 2.97 that x1(0) > 0. As a result, the
real part of the compressibility can not be negative in the static case.

However, if the volume change is not measured as a response to pressure
change, but is rather constrained and the pressure is measured with respect
to volume instead, the static bulk modulus and hence, the compressibility
can become negative, as we will see in the following.

Negative Compressibility During Buckling

The differential stiffness can be seen as an one-dimensional mechanical
analog of bulk modulus. During a common phenomenon called buckling,
negative differential stiffness is observed [52, 53], if the force that is acting
onto one buckling object is measured under controlled displacement.

Figure 2.9 depicts the force-displacement curve of one buckling element
modeled with two linear Hooke’s springs and one torsional spring [53].
If the force is measured under displacement control, it follows the solid
curve, showing a region with negative differential stiffness (red). Under
force control, the curve follows the dashed lines, which are discontinuities
in the displacement. If one buckling element is prepared at negative differ-
ential stiffness at position 2 under volume control, and the situation is then
switched to force control, small fluctuations will cause a jump to position 1
or 3. Therefore, no position on the red part of the curve is stable under force
control.

If three buckling elements are arranged in three dimensions, all previous
arguments still hold. By replacing “force” with “pressure” and “displace-
ment” with “negative volume change”, the red part of the curve represents a
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Force

Displacement

Figure 2.9: Relation between force and displacement of one buckling element,
which can be modeled by two linear Hooke’s springs and one torsional spring.
Under displacement control, the force follows the S-shaped curve, showing a
section with negative differential stiffness (red). If the force is controlled, instead
of moving along the red part of the curve, the displacement has discontinuous
jumps along the dashed lines. Adapted from [53]

region of negative bulk modulus, and hence negative compressibility, which
is only observable under volume control. This kind of negative compress-
ibility has been observed in specific foams [54] and was also attributed to a
buckling behavior. Just like in the linear case before, the configuration with
negative compressibility is unstable under pressure control [55].

Strictly speaking, compressibility is a volume reaction under pressure
control and the given buckling examples do not react to a change in confining
pressure with negative compressibility. One could principally regain pseudo
pressure control using an active volume control mechanism, that reacts to a
change in confining pressure with negative compressibility, moving along the
red curve of Figure 2.9 to the corresponding pressure value. Even if this kind
of mechanism can be achieved, it would need to change the volume against
the pressure difference, performing work in the process. In passive media,
this is not possible and would violate the first law of thermodynamics.
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Negative Compressibility During Transitions

Negative compressibility can occur during transitions between different
stable states [56]. A pressure increase can be used to release trapped potential
energy, which will move the system to a new stable state at larger volume.

Negative Dynamic Compressibility

Unlike in the static case, a negative dynamic compressibility is possible in
resonant metamaterial structures [24, 27, 57—-59]. These structures show local
resonances under an acoustic pressure wave, which can, for instance, be
generated by hard spheres with high density embedded in a soft surrounding
material [57]. In a region just above resonance frequency, density and
pressure wave have a phase shift of 180 degrees resulting in negative dynamic
compressibility.

Negative Linear Compressibility

Very anisotropic materials can show negative linear compressibility or nega-
tive area compressibility [60—62], meaning that under increased hydrostatic
pressure, these structures are “stretch densified”. They expand along one
or two dimensions, while shrinking along the other dimensions and getting
denser. The volume compressibility is therefore still positive. These materials
have potentially interesting applications as artificial muscles or actuators [62].

Negative Effective Compressibility in Porous Materials

It is safe to say that negative static volume compressibility simply does
not exist in equilibrium under pressure control. However, it is possible
for a stable porous material to expand as a response of increased static air
pressure without any volume constraints. To understand how this is not a
contradiction, we have to specify what the volume of a porous material is,
and identify on which volume the air pressure acts.

When talking about the volume of a porous structure, one usually means
the effective volume V¢, that includes the volume of the pores (see Sec-
tion 2.2.4). In the upper panels in Figure 2.10(b) and (c), the effective volume
of the cube shaped porous structures with length L is simply L3. Vg is
the intuitive definition of a porous volume. The pores may even be much
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(b) Keff > 0

Figure 2.10: Illustration of effective volume change between ambient hydrostatic
pressure P = Py increased hydrostatic pressure P > P for (a) ordinary solid
material with positive compressibility, (b) porous structure with positive effec-
tive compressibility, and (c) poroelastic metamaterial with negative effective
compressibility. At P = Py, all structures have the effective volume Vi = L3
(volume enclosed by the cube). The skeleton volume Vj is the volume enclosed
by the outer blue surfaces. All volume changes at P > P, are largely exagger-
ated: for (a) and (b) both Vg and Vs decrease, for (c) Vs still decreases, but Vg
increases. Adapted from Reference [63].

smaller than the wavelength of light and not resolvable by conventional op-
tics. However, as long as the pores are still much bigger than air molecules,
an increased air pressure will also increase the pressure inside the pores.
The air pressure is therefore applied on the volume of the solid skeleton Vs
(volume enclosed by the blue surfaces in Figure 2.10) rather than V. We
will call the change in effective volume with respect to hydrostatic pressure

effective compressibility
1 (Vg
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Comparing with Equation 2.72, the effective compressibility is equivalent to
the unjacketed compressibility from poroelasticity. We will keep the notion
“effective compressibility”, to emphasize that it is an effective metamaterial
property. As it always implies a static volume compressibility, we will omit
the words “static” and “volume” in later occurrences.

The effective compressibility is usually assumed to be positive [14]. How-
ever, this is not a fundamental bound, since it is not a direct response,
and neither are confining pressure and effective volume connected in a
thermodynamical sense. While Vs can not increase at elevated hydrostatic
pressure, Vg can increase (see Figure 2.10). Several ways to obtain negative
effective compressibility have been discussed theoretically. For instance,
using an arrangement of negative linear compressibility materials [60], or a
two-component material [64]. Later, we will introduce metamaterials with
negative effective compressibility, and show theoretically and experimentally
that by including hollow sealed volumes, only one isotropic solid constituent
is necessary and that the modulus of the effective compressibility is at least
two orders of magnitude larger than the compressibility of the constituents.

In the next chapter, I will introduce the methods used to fabricate and
characterize the metamaterials discussed in the scope of this work.
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Chapter 3

METHODS

In this chapter, I will first describe the three-dimensional laser lithography method
which I apply for fabrication of metamaterial samples and the typical work flow
connected to it. It is followed by a short introduction on the employed finite-element
method using COMSOL Multiphysics. Afterwards, I will present the measurement
setup and explain the methods used to measure thermal expansion coefficients and
effective compressibilities. It will include a detailed introduction to image cross-
correlation, which was employed to measure tiny length changes on our samples.
Finally, I will measure the thermal expansion coefficient of copper as a benchmark
and quantify small systematic errors.

3.1 DIRECT LASER WRITING

The metamaterials I will introduce in this work require large ratios between
sample size and minimum feature size, which is highly demanding for
fabrication. In order to fabricate the samples in reasonable time, while still
maintaining high precision and quality, a three-dimensional laser lithography
method called direct laser writing (DLW) is used.

Basically, DLW is a sub-micron resolution 3D printing technique [65] for
structures up to millimeter size [66, 67]. At these structure sizes, deforma-
tions due to gravitation are negligible and almost arbitrary three-dimensional
designs can be realized without the need of support structure. This technique
has enabled the fabrication of complex structures in many different research
areas, like photonic crystals [68], optical metamaterials [19, 69], mechanical
metamaterials [70] or micro-scaffolds for examination of living cells [71].

DLW uses a focused laser beam, that changes the solubility of a photoresist
within its focus volume via a nonlinear effect. By moving the laser focus
relative to the sample, a three-dimensional structure is written serially. The
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photoresist can either be an insoluble solid that is rendered soluble (positive
tone photoresist) or a soluble liquid that is transformed into an insoluble
solid by the laser (negative tone photoresist). In the scope of this work we
will use the latter: a liquid photoresist that is composed of a photoinitiator
and a monomer that can be polymerized. After writing the desired structures,
the unexposed photoresist is washed away in a development step.

Two-Photon Polymerization

The photoinitiator contained in the photoresist can be excited via two-photon
absorption (or in general multi-photon absorption) [72] to produce radicals
that initiate free-radical polymerization of the monomer. At a certain expo-
sure level, the polymerization threshold, enough radicals are created to form
an insoluble cross-linked polymer. Usual photoinitiators have a (one-photon)
absorption peak at a wavelength of around 400 nm and are therefore excited
via two-photon absorption at about 800 nm. Ideally one-photon absorption
should be close to zero at the two-photon wavelength.

A nonlinear excitation of the photoinitiator is crucial for writing in three
dimensions, as it ensures that the polymerization only occurs within the
laser focus. In general, three-dimensional laser lithography is not possible
with a linear process like one-photon absorption [73].

The probability for two-photon absorption albeit small, scales with the
square of the intensity. Therefore, high intensities are preferable. To avoid
thermal damage of the photoresist [74], femtosecond pulsed lasers with high
peak intensities at moderate average intensities are used.

Resolution

In general, one has to distinguish between the resolution of DLW and the
minimum structure size (or line width), that is defined by the size of the
smallest polymerized volume, also called voxel [75]. Due to the threshold
behavior, the polymerized voxel has the approximate shape of the volume
inside an iso-intensity surface of the laser focus. It is, therefore, elongated
along the axial direction, depending on the numerical aperture (NA) of
the focusing objective. By changing the intensity of the exposure laser, the
size of the voxel will vary and, in theory, can be made arbitrary small.
In reality, minimum structure sizes are limited by the sharpness of the
polymerization threshold, fluctuations of the laser power, and chemical
aspects of the polymerization reaction.
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3.1 DIRECT LASER WRITING

On the other hand, the resolution of DLW is defined by the minimum
distance two lines can be written next to each other. This is similar to conven-
tional optical microscopy, where the resolution is defined by the minimum
lattice constant ay, of a grating to be resolved. For optical microscopy, the
existence of an optical resolution limit has been known since Ernst Abbe
published his famous formula in 1873,

A A

~ 2nsin(x)  2NA (3.1)

a_x}/

When exposing two parallel lines simultaneously in DLW (e.g. with two
laser foci), the intensities add up, and there is a distance, under which no
local minimum in the intensity exists and the exposure always results in
a single polymerized line. This is the well-known Sparrow-criterion, often
used in fluorescence microscopy [76]. At first glance, it seems to be different
when writing in sequence, which is the usual case for DLW. However, the
photoresist “remembers” prior exposure doses that were below threshold
and it can be assumed that sequential exposure doses are accumulated lin-
early [75]. As a result, also the resolution of sequential writing is limited
by optical diffraction. Because of the quadratic dependence of the expo-
sure dose on intensity, the squares of the intensities have to be added to
determine the resolution with the sparrow criterion. For calculated focus
intensity profiles at a wavelength of A = 800nm and NA = 1.4, a lateral
resolution of ay, = 200nm and an axial resolution of a; = 500 nm have been
determined [75].

3.1.1 SETUP

All metamaterial structures in the scope of this thesis are fabricated by the
commercially available DLW system Photonic Professional GT (Nanoscribe
GmbH) and the 63x, NA = 1.4 objective (Plan-Apochromat Oil DIC, Carl
Zeiss). The setup is shown in Figure 3.1. It uses a frequency doubled
erbium fiber laser with a wavelength of 780nm, a pulse width of under
100 fs and a repetition rate of 80 MHz. An acousto-optic modulator (AOM)
tunes the transmitted laser power electronically. From there, the laser beam
is widened by two lenses, passes two galvanometric mirrors and is coupled
into an inverted microscope. A piezoelectric stage, that is mounted onto a
mechanical stage, carries the sample holder.
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80 fs laser
@ 780 nm

Figure 3.1: [llustration of the DLW setup Photonic Professional GT employed in
the scope of this thesis. A femtosecond pulsed laser is coupled into a inverse
microscope, where it is focused and polymerizes a liquid photoresist. The
piezo stage can move the sample along all three spacial directions and two
galvanometric mirrors allow rapid lateral scanning of the laser focus. An
acousto-optic modulator adjusts the laser power electronically. The setup is
shown in the dip-in configuration, for which the objective is directly immersed
into the liquid photoresist. Adapted from [77].

There are different possibilities to move the laser focus relative to the
sample to write a structure:

1. The mechanical stage is used, when large lateral movements are needed,
like moving between sample positions or writing fields.

2. The z-drive moves the microscope objective axially.

3. The piezoelectric stage allows movement in all three dimensions within
a volume of 300 um x 300 um x 300 pm.

4. Two galvanometric mirrors allow rapid lateral scanning the laser focus.
For the 63 x objective, typical scanning speeds lie on the order of 2cm/s
within a circular writing field with a radius of 100 um.

Writing Configuration

When writing on the top side of a glass substrate, the working distance of
the objective fundamentally limits the structure height at 190 pm assuming
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a glass cover slip with a thickness of 170 um. Even before reaching that
height, aberrations will deteriorate structure quality, since the laser has to
pass already written structures. In order to fabricate taller samples, the
so called dip-in configuration [70] is used. There, the objective is directly
immersed into the photoresist (also see Figure 3.1) and moves away from
the substrate while writing the structure from bottom to top. The refractive
index of the photoresist has to be matched to the objective, as it acts both as
resist and immersion liquid. Using this method, structure heights of even
several millimeters can be realized [67].

3.1.2 SAMPLE FABRICATION

In the following, our typical workflow for fabrication of metamaterial struc-
tures with DLW is presented.

ITO Evaporation

The substrates are conventional glass cover slips (22 mm x 22 mm X 0.17 mm,
Carl Roth). In order to find the interface between substrate and photoresist
more easily, the cover slips are cleaned from dust with a paper towel and a
nitrogen gun and a thin film (8 nm) of indium tin oxide (ITO) is evaporated
via electron-beam evaporation. The cover slips are then tempered at 450 °C
for 10 hours during which the ITO film becomes transparent.

Silanization

The ITO substrates are then exposed to air plasma for 30min to gener-
ate hydroxyl-groups at the surface [78] and immersed into a 1 mM solu-
tion of 3-(trimethoxysilyl)propyl-methacrylate in toluene for one hour. The
trimethoxysilyl-groups bind with the hydroxyl groups, forming a layer of
methacrylate groups at the surface, that can react with the monomer during
radical polymerization. This way, the later written structure is covalently
bound to the surface, which greatly improves the adhesion.

Writing the Structure

Three-dimensional structures are directly imported from a STL-file. Using
the software DeScribe (Nanoscribe GmbH), large structures are split into
smaller writing blocks and each block is sliced by parallel planes of constant
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axial position. Afterwards each slice is hatched into parallel lines. Slicing
distance and hatching distance can be freely chosen.

The metamaterial structures are written in the dip-in configuration (see
Section 3.1.1) using the 63x, NA = 1.4 objective and the corresponding
index-matched photoresist IP-Dip (Nanoscribe GmbH), that is drop-casted
onto the silanized substrate. Within one writing block each slice is scanned
by the galvanometric mirrors while the piezo stage moves the sample axially
after finishing each slice. The mechanical stage and the z-drive are employed
to move between different writing blocks, each one approached from the
same direction to avoid hysteresis effects.

Development and Supercritical Drying

The written samples are developed in mr-Dev 600 (Micro Resist Technology),
which dissolves the remaining liquid monomer. To avoid damages from
capillary effects during drying, the samples are transfered into acetone and
supercritical dried in CO, using the Leica EM CPDo30 (Leica Microsystems).



3.2 FINITE-ELEMENT CALCULATIONS

3.2 FINITE-ELEMENT CALCULATIONS

It is convenient to calculate the theoretically expected behavior of our meta-
materials to better understand the mechanisms and to be able to optimize
geometrical parameters before fabricating actual samples. For this, we use
the finite-element method [79] with the commercially available software
COMSOL Multiphysics and its Structural Mechanics module. The given
problem is solved with the multifrontal massively parallel sparse direct solver
(MUMPS). A complex geometry is discretized into small simple elements,
which is called the mesh. In our case, the three-dimensional geometry is de-
composed into tetrahedrons (typically a number in the order of 10°). Within
each simple element, the equations are solved analytically. To find a solution
for the entire geometry, the parameters of the analytical solutions have to
be chosen to fulfill certain continuity and boundary conditions depending
on the problem, which is done numerically. Generally, results become better
for finer meshes and ideally converge to the exact solution in the limit of
infinite fine meshes. Of course, also the computing time increases with the
mesh size.

To obtain the static mechanical behavior, the static version of Equation 2.55
is solved under the corresponding constitutive equations, which are, if
thermal expansion is included, the Duhamel-Neumann relation (see Equa-
tion 2.64), and Equation 2.45:

V-c=0, (3-2)
0ij = Ciju(ex — axa0) , (3.3)

- 1 (du; au]
&j = 5 (a—x] + a—xi) : (3-4)

The displacement i = (u1,up,u3)T only enters as a derivative, which means
that boundary conditions that fix the absolute value of ii are required.

Later, we will compute the phononic band structure of a periodic structure,
including a surrounding fluid. For the solid part, the Fourier transform of
Equation 2.55 is solved:

V-0 =—pw?il . (3.5)
For the fluid portion, the Fourier transform of Equation 2.59 is solved:
2
w
<v2 + —2> p=0, (3.6)
L
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At the boundary between solid and fluid, the connection between the normal
components of force and acceleration is implemented via

.V L ol
”'TPZW'@- (3.7)

The eigenfrequencies at fixed wave vectors k are calculated with a Bloch
wave ansatz,

P(F) = u(@e™T, (3.8)
with a lattice periodic function u (7).

3.2.1 BouNDARY CONDITIONS

For simplicity, let us consider one simple cubic unit cell with lattice constant
a centered and aligned to an ordinary Cartesian coordinate system.

Open Boundaries

Open boundaries are those that have no additional constraints imposed on

them.

Fixed Constraint

A fixed constraint at a boundary sets the displacement to zero, i = 0.

Periodic Boundary Conditions

To obtain static effective (meta)material parameters, the limit of infinite
number of unit cells is considered. For a cubic translational lattice, the
normal components of the displacement vector on opposite cube facets with
respect to the center have opposite sign. For instance, along the x-axis, it is
implemented by u1(a/2,y,z) = —u1(—a/2,y,z) Vy,z € [—a/2,a/2).

Floquet-Bloch Periodicity

For the calculations of eigenmode frequencies, Floquet-Bloch periodicity is
used to mimic an continuous crystal for the wave. This is done by adding a
phase factor exp(iky!) after a distance of I along the x-direction,

i(1/2,y,z) = ii(—1/2,y,z)e! (3.9)

and analogous for y and z-directions.
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3.3 MEASUREMENT

Since the microscopic samples are rather fragile, it is very challenging to
measure length changes. In order to determine the thermal expansion or
the effective static compressibility, microscopic images are taken at different
temperatures or air pressures, respectively. From these images we extract
the length changes directly via image cross-correlation analysis.

3.3.1 EXPERIMENTAL SETUP

An illustration of the measurement setup is shown in Figure 3.2. The whole
setup is fixed on a damped optical table. The sample chamber can be
translated along all three dimensions using a piezo stage and a manual stage.
Metamaterial samples are put inside a chamber and are illuminated by a
diffuse light source made from white LEDs and diffusive foil. The samples
are imaged through a window on top of the chamber using an infinity color
corrected 20x, NA = 0.4 objective (LD Achroplan, Carl Zeiss AG), a tube
lens with a focal length of f = 100 mm (AC254-100-A-ML, Thorlabs) and a
camera (BFLY-PGE-50H5M-C, Point Grey Research). The tube lens is placed
in a distance of 100 mm to the camera sensor (a charge-coupled device),
so that the chief rays between objective and tube lens are approximately
parallel. Using a focal length of 100 mm instead of the standard focal length
of 165 mm results in a magnification of about 12.12x. Camera and piezo
stage are connected to a computer via an I/O data acquisition device (PCle-
6363, National Instruments), which allows automatic acquisition of images
and sample positioning.

Two different sample chambers are used: one for temperature-controlled
measurements and one that allows measurements under controlled hydro-
static pressure.

Heating Chamber and Temperature Control

The chamber designated for temperature controlled measurements is illus-
trated in Figure 3.2(b). It is made out of copper and has a glass window
on top for imaging. Via two holes, one on the bottom and one on the top,
temperature is monitored using Pt100 resistance thermometers. A Peltier
element below pumps heat from the heat sink into the chamber or vise versa,
thus heating or cooling the chamber in the progress. On the very bottom,
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(a) (b)
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Figure 3.2: (a) Schematic measurement setup used in the scope of this thesis.
The sample sits inside the chamber and is positioned with a manual stage and
a piezo stage. A self built microscope made out of a 20x, NA = 0.4 objective,
a f = 100mm tube lens and a camera is utilized to image the samples. To
allow different measurement types, either a heating chamber (b), or a pressure
chamber (c) can be mounted on top of the piezo.

a plate made out of phenolic paper insulates the piezo, protecting it from
thermal damages.

The temperature of the chamber is computer-controlled. We use two
PT100 transducers (Pollin Electronic) to convert the linear Pt100 resistance
dependence into a linear voltage range from 0V for a temperature of 0°C to
1V for 100 °C. There are two potentiometers on each PT100 transducer to
adjust the offset and the slope of the output voltage.

To calibrate the Ptioo resistances, they were insulated in paraffin film
and immersed in deionized water. A high precision thermometer (GMH
3710, Greisinger) was employed to monitor the actual temperature in the
water. First the water was cooled to near 0 °C using water ice, and the offset
potentiometer was adjusted until the output voltage had the correct value
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near 0V. For the second calibration point, the water heated until 60 °C and
the output voltage was calibrated to 0.6 V using the potentiometer assigned
for the slope.

Pressure Chamber and Pressure Control

For pressure-controlled measurements, an airtight pressure chamber made
out of aluminum is used (see Figure 3.2(c)). A 1mm thick and 20mm
diameter cover slip is glued from the inside, sealing a 12 mm diameter hole
on top of the chamber. Samples sealed inside the chamber can be imaged
through this glass window.

The chamber is usually connected to filtered and pressurized air at an
overpressure of AP = 5bar, but also other gases like CO, can be used. A
computer controlled pressure controller (PQ1, AirCom) between chamber
and pressurized gas adjusts the pressure inside the chamber proportional
to the voltage applied by the data acquisition device. For this, an internal
pressure transducer measures the pressure and actively triggers two valves
that control both inlet and outlet until the desired pressure is reached,
keeping it constant at that pressure. For an input overpressure of 5bar, the
pressure controller is able to adjust the overpressure inside the chamber from
AP = Obar to AP = 4.2bar. Additionally, the chamber pressure is observed
with an digital pressure monitor (DC 400, tecsis). To stay away from possible
inaccuracies for pressure control, we apply a maximum overpressure of
AP = 3.8bar for the measurements.

3.3.2 AUTOFOCUS

During measurement, the sample can move out of focus. Especially during
temperature controlled measurements, thermal expansion of the whole
chamber causes unwanted motion. As the cross-correlation analysis relies
on the quality of images, an autofocus algorithm is used to get rid of this
problem as much as possible.

A focused image appears sharp because high frequency intensity fluctu-
ations, typically at edges or small features, are resolved. Any value Fimage
that correlates with the sharpness of an image can be used and the optimal
focal position is determined by at its maximum [80, 81]. Here, the sharpness
is calculated by summing up all squared gray value differences of pixels
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Figure 3.3: Calculated normalized Fimage for images of a copper surface (left)
and a plane within a three-dimensional metamaterial sample (right) taken over
different axial positions. The right curve shows much more noise and is fitted
with a cubic function (red). The peak position determines the best focused
image.

neighboring along the x-axis:

Xmax Ymax

1mage = Z Z x -1, y)) (3-10)

x=2 y=1

where Xmax and ymax are the width and height of the image, respectively and
¢(x,y) are the gray values of the pixels.

The implemented focusing algorithm works as follows: Starting at an axial
position of zy, the piezo stage is used to move from z = zp — Az toz = zg + Az
during which N images are taken. A common choice is Az = 4 um and
N = 84, which means that consecutive images are taken less than 100 nm
apart. For these images, Fimage is calculated and fitted using a cubic function
(see Figure 3.3). The piezo stage then moves to the new axial position of the
optimum focal point identified by the maximum in the fit and the image that
was taken closest to that position is saved.

In Figure 3.3, Fimage is plotted over the axial position. On the left, it is
calculated for images of a copper surface, showing a smooth curve and a
clearly defined maximum. Only 4 um away from the peak position, Fimage
drops by about 30 %. The situation for a three-dimensional metamaterial
sample is shown on the right. The peak can still be clearly identified, but
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Fimage now only drops by about 5 % at a distance of 4 um from the maximum,
and the data is more noisy, making it necessary to perform a curve fit.

3.3.3 NORMALIZED IMAGE CROSS-CORRELATION

The measurement setup described in this section can take microscopic im-
ages of metamaterial samples either at different temperatures or at differ-
ent gas pressures. Out of these images alone, it is possible to extract the
thermally or pressure-induced deformations using normalized image cross-
correlation [82]. The data can be used to observe the operation principle of
the metamaterial and to calculate the thermal expansion coefficient [46], or
effective static compressibility [83, 84]. Normalized image cross-correlation
is a powerful tool and has also been applied in many other works in the
past [22, 66, 67].
The cross-correlation between two functions f, ¢ € L?(R) is defined as

o]

() = [ FBt+T)dt, (311)
or for discrete values
(fxg)(t Z fr(t)g(t+1). (3.12)
t=—o00

The normalized image cross-correlation is a normalized two-dimensional
version of Equation 3.12 and compares two images. We will call one image
the reference and the other one the region of interest (ROI). The reference is
usually part of an image taken at reference conditions (e.g. room temperature,
or atmospheric pressure) and the ROI a smaller region of the reference, or
a region of an image taken at different conditions. For simplicity, reference
and ROI shall both have an odd number of pixels, and the origin (0,0) of
the coordinate system is moved onto the center pixel.

To calculate the two-dimensional cross-correlation C(Ax, Ay), the averages
are subtracted from the gray values to define Irpo; and I

Iror(x,y) = gror(x,¥) — gror (3-13)
Iref(x - Ax'y - Ay) = gref(x - Ax,y - Ax) - gref(Axr Ay) (314)

Here, gror is the mean gray value of the ROI and §,.¢(Ax, Ay) is the mean of
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Figure 3.4: Calculated normalized cross-correlation C(Ax, Ay) between the ref-
erence and the ROI. A clear peak can be seen. The position of the maximum
represents the displacement between ROI and reference.

Qret(x — Ax,y — Ax) for (x,y) inside the ROL Outside their respective areas,
Iror and ¢ are set to zero. The image cross-correlation now reads [82]:

ny ref( Ax/y - Ay)IROI(x/ y)
\/Zx y ref — Ax, Y- Ay)z Zx,y IROI(x/ y)Z)

(3.15)

C(Ax,Ay) =

The denominator is a normalization factor.

Figure 3.4 shows an example of calculated C(Ax, Ay) between a reference
and a ROIL. Whenever the ROl is overlapping with the same, or a similar area
of the reference, C(Ax, Ay) shows a local maximum. In the example, a clear
single absolute maximum can be seen at (Ax, Ay) = (—242, —84). This is the
displacement vector of the ROI with respect to the reference.

Sub-Pixel Position Tracking

The image cross-correlation described above can be used to track pixel posi-
tions over different images with sub-pixel precision. The algorithm used for
that is based on the freely available software package Digital Image Correlation
and Tracking for Matlab [85]. The principle is shown in the following.
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First a set of pixel positions is chosen on the reference image. For each pixel
position, the reference is cropped into a quadratic image, the reference area,
with length 4n1¢orr + 1, corr € IN and with the chosen pixel position being in
the center. This reference area is now compared with a set of measurement
images. On the first image, a quadratic ROI of length 27y + 1 is chosen
around the initial pixel position and the cross-correlation between ROI and
cropped reference is calculated. By finding the absolute maximum of the
cross-correlation, the displacement vector is obtained. For the next image,
the position of the ROI is updated by the calculated displacement vector and
the procedure is repeated.

The updating of the ROI enables tracking of large continuous movements.
Between two consecutive images, however, Ax or Ay should not be larger
than 7¢orr, or else ROI and reference area will not fully overlap. If the overlap
is too low, the algorithm can generate wrong results.

To obtain sub-pixel precision, in addition to finding the absolute maximum
in the cross-correlation, the eight neighboring values around the maximum
are selected. These 3 x 3 correlation values are then fitted with a two-
dimensional parabola and its maximum position gives a displacement vector
with a typical precision of at least 1/10 of a pixel.

Limiting Factors

The value nqorr, that determines the size of the ROI and the reference area,
has to be carefully chosen. Larger values will increase the precision, and, as
described before, allow larger displacements between consecutive images.
However, the calculation averages over the whole ROI. Therefore, when local
displacements are tracked, the ROI cannot be much larger than the moving
part.

Furthermore, if repeating patterns or translational invariance of the ROI
are present, image cross-correlation will easily fail, since there will multiple
maxima (see Figure 3.5). The ROI A chosen on top of the pen is (approxi-
mately) locally translational invariant. The cross-correlation shows a long
line of highly correlating values instead of one well distinguishable peak.
If the ROI B is chosen on one out of three thumbtacks, three maxima can
be seen in the cross-correlation instead of one. Over a set of measurement
images, peak finding may even jump between different maxima. Especially
for metamaterials, that consist of periodically repeated unit cells, the size of
the reference area 4o+ + 1 has to be chosen adequately, for instance, not
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Figure 3.5: Visualization of a situation, where position tracking with normalized
image cross-correlation can be unsuccessful. Instead of one peak, the cross-
correlation between the reference image and the ROI on the pen shows a line
of highly correlating values. Cross-correlation using the ROI on the thumbtack
shows three maxima.

larger than one unit cell.

3.3.4 THERMAL ExPANSION COEFFICIENT OF COPPER

With the ability to track positions with sub pixel accuracy, very precise
length changes can be measured from camera images alone. As a benchmark
test, we have calculated the thermal expansion coefficient of copper from
one reference image taken at room temperature (RT) and one image taken
under a temperature increase of AT = 20K. The literature value at room
temperature is ac, = 1.65 x 107° K~1) [86], which means that over the length
of 1000 pixels, a temperature increase of AT = 20K only causes a length
change of 0.33 pixels.

58



3.3 MEASUREMENT

(b) AT =20K, a = (+1.6+0.1)x107°K""

AR B 7
i NERG LA

x ‘%
5 1 ¥

= B XA ey

¥ v

&>
o

Tum

Ay (Pixel)
o

Tum

—5 —5

-5 0 5 -5 0
Ax (Pixel) Ax (Pixel)

1

%

L]

100pum | %500 1 Pixel displacement

Figure 3.6: Image cross-correlation analysis of the surface of a copper block.
(a) Zoomed-in views of one reference image taken at room temperature RT
(left) and one image taken under a temperature increase of AT = 20K (right),
with small ROIs (solid white squares) and one reference area (dashed white
square) with size n¢or = 16. Cross-correlations between each ROI and reference
area are calculated, showing a peak at zero displacement for the left ROI and
a shifted peak for the right ROI, corresponding to a finite displacement vector
(Ax,Ay). (b) Calculated Displacement vector field on the surface. The mean
displacement vector has been subtracted to visualize the thermal expansion.
For visibility, all vectors are stretched by a factor of 500. ROI and displacement
vector corresponding to (a) are indicated by a red circle. By averaging over all
arrows, a thermal expansion coefficient of « = (1.6 +0.1) x 107> K~! is obtained.
Reproduced from Reference [46].

Figure 3.6 illustrates the cross-correlation analysis to calculate the thermal
expansion of copper. 64 individual pixel positions over the whole imaged
surface are tracked with the same correlation size 1.,y = 16 as is later used
for the thermal expansion measurements of our metamaterials. For one
of these positions (red circle), zoomed-in views are shown in Figure 3.6(a)
including the small ROIs of 33 x 33 pixels (solid white squares) and the
reference area (dashed white square) of 65 x 65 pixels. The peak of the
cross-correlations moves from zero at room temperature towards the upper
left at AT = 20K with a finite displacement vector (Ax,Ay). After all
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displacement vectors have been calculated, the mean displacement vector
is subtracted, which removes any global translation of the sample. The
resulting vectors are plotted in Figure 3.6(b) with a stretching factor of 500,
showing an isotropic expansion. The yellow bar on the bottom indicates
the length of a vector showing a displacement of one pixel (with the same
stretching factor). All displacement vectors are therefore much shorter than
one pixel, demonstrating a very high tracking precision. With the calculated
displacement vectors, relative length changes with respect to their mean
position are calculated and averaged over all pixel positions. The resulting
thermal expansion coefficient & = (1.6 +0.1) x 107> K~! agrees well with
the literature value.

3.3.5 SMALL MAGNIFICATION ERRORS DUE TO WINDOW WARPING

In contrast to the thermal expansion coefficient, the compressibility of copper
can not be measured in our current setup, because of its large bulk modulus
of 142 GPa [87]. Even at the largest overpressure of 3.8bar = 3.8 x 10° Pa,
this results a relative length change of only —9 x 1077, which is practically
undetectable.

Nevertheless, we have performed pressure-controlled measurements of
AL/L on a piece of copper to detect possible systematic errors in our mea-
surement setup. Surprisingly, the copper piece has seemingly expanded
under pressure increase, which is, of course, not possible. The origin of
this systematic error is an optical artifact, caused by outwards warping of
the chamber window, through which the samples are imaged, at increased
chamber pressure.

To quantify the magnitude of this effect, we have performed finite-element
calculations with COMSOL Multiphysics (see previous Section). A pressure
increase of 3.8 bar was introduced as normal forces on all interior surfaces
of the chamber. The bottom layer of the chamber was fixed in position and
all other boundaries were unconstrained. For the aluminum parts, we use
standard literature values of E = 69 GPa and v = 0.33. The glass is modeled
with E = 71.7 GPa and v = 0.17, which are typical values for fused silica.

Figure 3.7(a) compares the undeformed sample chamber at ambient condi-
tions (left) with the deformed sample chamber at increased interior pressure
obtained from the finite-element calculations. Shown are perpendicular cuts
parallel to the yz-plane through the center of the chamber window. The
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Figure 3.7: (a) Cut through the pressure chamber at ambient pressure P = Py ~
1bar (left) and a chamber overpressure of AP = 3.8 bar (right). The modulus of
the displacement vector plotted in a false color scale on the right. Deformations
are largely exaggerated to show the outwards warping of the glass window. (b)
shape of the top window surface along the y-direction through the center. The
center part of =1 mm is fitted with a parabola (red curve). (c) Qualitative beam
paths, demonstrating how the window warping causes a magnification.

modulus of the displacement vector is plotted in a false color scale for the
pressurized sample chamber and has a maximum of around 11 um at the
center of the window. A clear outward warping is observed. For visibility,
all deformations have been largely exaggerated. A cut of the top surface of
the deformed window is plotted in Figure 3.7(b) within a range of £4 mm
from the center. It corresponds to that part of the window marked by the
8 mm scale bar in panel (a). The center part (1 mm) has been fitted with a
quadratic function ag + a2y (red curve) resulting in a; = —1.420 x 10~*/mm.
The same evaluation for the cut through the bottom surface of the window
(not depicted) gives a quadratic coefficient of a, = —1.417 x 10~%/mm. The
curvatures are therefore 24, and 2a}. The focal length f of the deformed

61



3 METHODS

glass window with refractive index ng = 1.46 and thickness d = 1 mm can
be calculated from the lensmaker’s equation [76]

4(ng — 1)dajay
ng '

1
7 = (ng - 1) (2&1’2 — 2a, +

As curvatures 2a; and 24/, on top and bottom of the deformed window
are almost identical, a very long focal length of f = 3.5km is obtained.
Within the size of our measurement setup, the warping has, therefore, not
introduced an additional lens. Instead of focusing parallel beams, it causes
parallel displacement away from the center. This results in a magnified
virtual image of a sample inside the chamber, as demonstrated qualitatively
in Figure 3.7(c).

We have calculated this magnification via ray transfer matrix analysis
assuming a distance of 1 mm between sample and glass window, which is
equal to the window thickness d, a refractive index of n; = 1+ 14 x 1074
inside the chamber (air at 4.8 bar), and a refractive index of n, = 1+ 2.92 x
10~* outside (air at 1bar). The propagation of a ray through the chamber
window is described with matrices T7 and T, for propagation inside the
chamber and within the glass, respectively, R; for refraction at the inner
glass surface and R; for refraction at the outer glass surface.

1 d 10 1 0
Tl - T2 - (O 1) Rl - ni—ng  m RZ - Ng—Mo  HNg (317)
2dhng g 201 Mo

Now we use the distance r; of a parallel beam outside the chamber and the

equation
(%) = RoTLRTh (Z;) (3-18)

and calculate a magnification of ,/71 = 1+ 0.90 x 10~ or a relative length
change of (r, —r1)/r1 = 0.90 x 10~* at AP = 3.8bar. At AP = Obar the
relative length change calculated from ray transfer matrix analysis is zero.
In between the (small) displacement of the window is assumed to be pro-
portional to AP [88], and hence also its curvature and magnification are
proportional to AP.

The resulting AL/L obtained from ray transfer matrix analysis is plotted
as a black line in Figure 3.8. It fits well with the measured AL/L of copper
(blue points).

(3.16)
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Figure 3.8: Apparent linear increase of AL/L of a copper piece measured
under increased hydrostatic pressure, caused by outwards warping of the glass
window (see Figure 3.7(a)). The magnitude of this optical artifact has been
quantified with finite element simulations and ray transfer matrix analysis
(black line).

In the next chapter, I will apply the methods introduced in this chapter to
tabricate and measure micro-structured metamaterial samples. We will see
that the systematic errors due to window warping are negligible, as these
metamaterial samples show relative length changes that are at least two
orders of magnitudes larger in absolute value.
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Chapter 4

REsSULTS

This chapter is split into two sections. 1 will first present the results on thermoelastic
metamaterials that can have negative, large positive, near zero or anisotropic effective
thermal expansion, and then continue with poroelastic metamaterials with very large
negative or positive effective compressibility with absolute values of up to five percent
for one bar pressure increase. At the beginning of each section, I will introduce
and explain the unit cell designs followed by numerical finite-element calculations
including analysis of the dynamic behavior of our poroelastic metamaterials. In
order to fabricate these designs, I have applied advanced DLW methods, that allow
to realize fabrication of multi-component structures with only one photoresist and
even to create sealed hollow volumes. I will perform cross-correlation analysis on the
fabricated metamaterials which is used to determine temperature or pressure-induced
length changes, and also to get insight into the operation principle. Finally, I will
show measurements of the poroelastic metamaterials over time, demonstrating that
the hollow volumes are sufficiently airtight.

4.1 THERMOELASTIC METAMATERIALS

In Section 2.2.3 it was shown that thermal expansion connects the elastic
properties with the thermal properties of a material. In most applications,
in which thermal expansion is dealt with, it is an unwanted effect, since
the volume change can lead to cracks and failure. Bridges and railroad
tracks have expansion joints as a countermeasure for the positive thermal
expansion coefficients. Other applications employ materials with very low
thermal expansion coefficients like the nickel-iron alloy Invar for shadow
masks of CRT monitors. In this context, materials with negative thermal
expansion coefficients have important applications. They can be employed
to counteract a positive thermal expansion coefficient of a different material,
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resulting in a near zero thermal expansion coefficient of the composite. The
glass ceramic ZERODUR® [89] consists of a partially crystalline phase with
a negative thermal expansion coefficient due to RUMs (see Section 2.3.2)
and an amorphous phase with positive thermal expansion coefficient that
cancel each other out. It is used for telescope mirrors (e.g. at the Very Large
Telescope) and cooking tops (known under the name CERAN®).

Materials with near zero or negative thermal expansion are very rare
and the existing ones may be unsuitable for new potential applications.
This makes the possibility to obtain negative thermal expansion using a
metamaterial very attractive. Negative thermal expansion would then be
a result of the unit cell structure and all other desired material properties
would be obtained from the constituent materials. For example, metals could
be used as constituents if good electrical conductivity is required.

As we have mentioned in Section 2.1.4, all thermal expansion coefficients
stated in this section are thermal length-expansion coefficients, which corre-
spond to individual elements of the thermal expansion tensor. We have seen
in Section 2.2.3 that the thermal expansion tensor of an isotropic material
is proportional to the identity matrix. Under uniform temperature changes,
the volume change is isotropic. As a result, a structure build from isotropic
constituents with equal thermal expansion coefficient, will also have an
effective thermal expansion coefficient equal to its constituents. Therefore,
a metamaterial needs to be made of constituents with at least two different
thermal expansion coefficients and voids, to allow us to tailor its effective
thermal expansion coefficient.

In what follows, I will experimentally demonstrate tailored thermal ex-
pansion of a two-component metamaterial made by constituents of unequal
thermal expansion coefficients. Despite having constituents with positive
and isotropic thermal expansion coefficients, the effective thermal expansion
coefficient of the metamaterials range from positive value exceeding that of
any of the constituents, over zero, to even negative or anisotropic values.

4.1.1 METAMATERIAL DESIGNS

Our main approach is based on a theoretical two-dimensional design by Gatt
and Grima [64], that can be expanded into a three-dimensional structure [44].
It uses the mechanism of bending bilayer beams described in Section 2.3.2.
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(b)
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Figure 4.1: (a) Operation principle of one basic element with length a used to
obtain negative thermal expansion. Two lever arms with length [ are separated
in distance of /2. They are connected with bilayer beams with layer thickness t.
Two constituent materials A (gray) and B (blue) have different thermal expansion
coefficients of wp and ap, respectively. At increased ambient temperature, the
bilayer beams bend and the lever arms convert the bending into a rotation
(with angle @), resulting in a decrease in length. (b) Four basic elements are
arranged into a two-dimensional planar structure. The lever arms are now
crosses. At increased temperature they rotate clockwise and anticlockwise
in a checkerboard manner, which causes a shrinkage in 2D. Adapted from
Reference [46].

Basic Mechanism

The mechanism is illustrated in Figure 4.1(a) with all relevant geometrical
parameters indicated. One basic element consists of two constituent materials,
which we will call component A (shown in gray) and component B (shown
in blue). The thermal expansion coefficients of the components are ax
and ag > ap, both are assumed to be positive. The basic element can be
decomposed into bilayer beams and lever arms. Within linear approximation,
a small temperature increase AT will increase the length of the bilayer beams
with a mean thermal expansion coefficient of («), that lies between ap and
ap. Due to a finite difference of the thermal expansion coefficients, the bilayer
beams will bend in addition, causing a rotation of the lever arms by an angle
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@, that can be calculated using Equation 2.95

a/4  (ap—ap)ATa 12
ro 4 t144+ Ea 4 Es 7
Eg T Ea

¢ = (4.1)

The rotation angle decreases the length of one element by 2/ sin(¢). This geo-
metrical length decrease can be described with a negative thermal expansion

coefficient Lsin(p)
_ 2lsin(g
[Xgeom —_— W . (4.2)

Inserting Equation 4.1 under linear approximation gives

l 6

()4 =(&A —QB);———F——F— - .
geom (A B)t14+lé—‘;+g—i (43)

The resulting effective thermal expansion coefficient, which is an effective
metamaterial property, can be expressed as the sum of the mean thermal
expansion coefficient («) of the constituents and the geometrical contribution
described with ageom,

[ 6
Keff = <0‘> + Xgeom = <(X> + (lXA - “B)—ﬁ . (4.4)
144+ 22 4+ 22

To obtain a negative effective thermal expansion coefficient, the mean thermal
expansion coefficient has to be overcompensated by a negative geometrical
contribution due to ageom-

Three-Dimensional Unit Cells

Now, let us transition from the basic element towards a three-dimensional
unit cell. Four basic elements are arranged into a two-dimensional unit
cell [64] shown in Figure 4.1(b). Six of these planar structures, two parallel
xy, xz and yz-planes, respectively, are stacked into a three-dimensional
unit cell shown in Figure 4.2(a). Planar structures parallel to the xy-plane
are highlighted in Figure 4.2(b). The geometrical parameters are listed in
Table 4.1. All parameters were chosen with respect to the lattice constant
a. Since we only consider relative length changes in the static regime, the
effective thermal expansion coefficient of the unit cell is independent of a.
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(b)

Figure 4.2: (a) Blueprint of a two-component unit cell that can be decomposed
into the basic elements shown in Figure 4.1. It is assembled onto a simple
cubic translational lattice with lattice constant 2. Geometrical parameters are
stated in Table 4.1. (b) Same unit cell as in (a), but with two planes P; and P,
parallel to the xy-plane highlighted. These planes go through the centers of
the three-dimensional crosses and correspond to the planes that are imaged in
the measurements. At increased temperature, the bending beams rotate crosses
within each plane, moving their centers inwards (illustrated by yellow arrows),
resulting in a negative effective thermal expansion coefficient. Adapted from
Reference [46].

In three dimensions, the lever arms of the basic element shown in Figure 4.1
become three-dimensional crosses (eight in each unit cell), and the beams
now have a finite width b. The unit cell has three mirror planes going
through its center and parallel to the xy, xz, and yz-planes, respectively.
They cut the unit cell into eight centrosymmetric parts, each consisting of
one three-dimensional cross and attached beams (also see Figure 4.4(b)).
The unit cell is, therefore, not the primitive unit cell (see Appendix B), it is,
however, much more suitable for description.

The operation principle of the three-dimensional unit cell is the same as
for the basic element: At increased temperature, the bilayer beams bend
and rotate the connecting crosses, which moves their centers inwards. For a
negative effective thermal expansion coefficient, the rotation must overcom-
pensate the positive mean thermal expansion coefficient of the beams.
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Parameter | Value \ Description

a 100 um | lattice constant

b/a 2.5% | width of beam relative to a

t/a 2.5% | thickness of each layer relative to a

l/a 40 % length of cross or lever arm relative to a

Table 4.1: Standard geometrical parameters used for modeling and numeri-
cal calculations of the thermoelastic metamaterials in this section, unless
stated otherwise.

If the components A and B in each beam are exchanged, the geometrical
effect is reversed. Instead of negative effective thermal expansion, the result
would be a positive effective thermal expansion coefficient, that is much
larger than that of each component. A blueprint for such a unit cell is shown
in Figure 4.3(a).

Exchanging the constituent materials A and B only for those beams re-
sponsible for the length change along one direction, for instance, the y-axis
seems to lead to a highly anisotropic thermal expansion tensor at first glance.
However, the effects would cancel out in the current design. For example,
an arrangement with a negative thermal expansion coefficient along the
x-axis and a large positive thermal expansion coefficient along the y-axis
would require each cross to simultaneously perform opposite counteracting
rotations around the z-axis. The rotations couple of the length changes of
different axes, which means that compressing the unit cell along one axis
also compresses it along the orthogonal axes. This is the reason the negative
Poisson’s ratio of the unit cell is negative. We have calculated a value of
—0.41 with COMSOL Multiphysics.

To solve this dilemma, only two basic elements with the same orientation
are arranged in each plane. In the plane depicted in Figure 4.1(b), for
example, only the vertically oriented elements are kept. In two dimensions,
both remaining elements would be disconnected. Fortunately, in the three-
dimensional arrangement, all the elements are still connected, as it can
be seen in Figure 4.3(b). Each plane now only contains basic elements
for length changes along one of the three principal axes and the thermal
expansion coefficients along each axis can be independently tailored. The
almost completely decoupled axes in regard to length changes results in a
near zero Poisson’s ratio of v = 3 x 107°.
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(b)

Figure 4.3: (a) Same blueprint as in Figure 4.2(a), but with constituents A (blue)
and B (gray) exchanged in each beam. This unit cell has a large positive thermal
expansion coefficient. (b) Unit cell for anisotropic thermal expansion with a
negative thermal expansion coefficient along x and z-axes and a large positive
thermal expansion coefficient along the y-axis.

4.1.2 NUMERICAL CALCULATIONS

In order to better understand the three-dimensional behavior of our unit cells
and to optimize geometrical parameters, we have analyzed them numerically
with a COMSOL Multiphysics (see Section 3.2). In the following numerical
calculations, unless stated otherwise, component A (gray) and B (blue)
are modeled as elastic materials with thermal expansion coefficients of
ap =4x10°K and ag =6 x 107° K1, Young’s moduli of E5 = 4GPa
and Eg = 3GPa, and a Poisson’s ratio of v = 0.4.

Figure 4.4(a) visualizes calculated temperature induced deformations of
the unit cell shown in Figure 4.2(a) assuming periodic boundary conditions
along the x, y, and z-directions. Figure 4.4(b) depicts the complex three-
dimensional rotation of one cross leading to an inward movement of its
center towards the center of the unit cell. The resulting effective thermal
expansion coefficient is calculated to be ao = —5.168 X 105K~

If ap = ap = 4 x 10°°K™! is assumed instead, the effective thermal
expansion coefficient would be equal to both components, and hence positive.
This implies that for continuity reasons, a.¢ has to be zero for a certain
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(b)

Figure 4.4: (a) Calculated deformed unit cell from Figure 4.2 under increased
temperature showing an overall volume decrease. A negative effective thermal
expansion coefficient of aeg = —5.168 x 107> K~ is derived. For visualization,
deformations have been largely exaggerated. (b) One eighth of the calculated
deformed unit cell (slightly more exaggerated compared to (a)) containing
one three-dimensional cross and bilayer beams is highlighted. It visualizes
the complex rotations in three dimensions that leads to volume decrease. The
underlying semi-transparent gray structure corresponds to the undeformed state
of the unit cell. Material parameters are: ap = 4 X 105K, ag =6 x107°K 1,
En =4GPa, Eg = 3GPa, and v = 0.4. Adapted from Reference [46].

intermediate value of ag. This is shown in Figure 4.5, where the calculated
effective thermal expansion coefficient is plotted as a function of ag. As
expected from Equation 4.4, a.¢ decreases linearly with increasing ag. The
sign change happens at ag ~ 5 x 107> K1, at a ratio of ag/ap ~ 1.2. The
same numerical calculation was repeated for two additional ratios of E5 /Ep
(shown in red and yellow) while the Young’s modulus of component A was
fixed at Ex = 4GPa. Even at a ratio of Ep/Eg = 4, the influence of the
Young’s moduli is rather small, as expected from Equation 4.4.

For comparison, we have also performed numerical calculations on cor-
responding three-dimensional models of a basic element and a plane illus-
trated in Figure 4.1 with periodic boundary conditions along one and two
dimensions, respectively. The three-dimensional models were obtained by
extruding them by b = 0.1 % a into the third dimension. Material parameters
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Figure 4.5: Calculated effective thermal expansion coefficient a. of the unit
cell shown in Figure 4.2 for different thermal expansion coefficients of com-
ponent B, ap, and a constant thermal expansion coefficient of component A,
ap =4 x 107> K! (indicated by the green arrow). Different colors correspond
to different Young’s moduli ratios E5 /Ep of the components (see legend) with
a fixed value E5o = 4GPa. A sign change of a. happens at ag ~ 5 x 107 ° K.
Adapted from Reference [46].

are the same as in Figure 4.4. An effective thermal expansion coefficient of
a1p = —6.768 x 107> K~! was obtained for the basic element and an almost
identical thermal expansion coefficient of ayp = —6.768 X 10°K~! was
obtained for the plane, since at each cross, both connected basic elements
perform a rotation in the same direction and with the same magnitude. The
individual rotations, therefore, do not influence each other within a plane.
Compared to the result for the three-dimensional unit cell, a1p and ayp are
about 30 % larger. The reason will be explained in the next part.

Comparison with Analytical Solution

In Equation 4.4 we have derived an analytical expression for the thermal
expansion coefficient of one basic element shown in Figure 4.1(a). With
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Figure 4.6: (a) Calculated effective thermal expansion coefficient a¢ of the unit
cell shown in Figure 4.2 with respect to the beam width b/a. The small arrow
refers to the layer thickness t/a. For comparison, the effective thermal expansion
coefficient obtained by the analytical expression from Equation 4.4 is plotted as
a solid line. The dashed line corresponds to the numerically calculated values
a1p = ap for the basic element and the planar structure. For small values of b,
aefs approaches the dashed line.

the same geometrical material parameters as for the numerical calculations
and the approximation (a) ~ (ap + ap)/2, we obtain an effective thermal
expansion coefficient of aapaiytical = —6.938 X 102K, With a relative
deviation of 2.5 %, it fits nicely with the numerical results for both the basic
element and the two-dimensional arrangement. The small difference could
be caused by the influence of the attached lever arms, or by a deviation from
the initial assumption of long and thin bilayer beams for Equation 2.95.

In the three-dimensional unit cell, however, each cross has to perform
rotations around each cubic axis simultaneously. A rotation of a cross
around the z-axis, for example, will also lead to additional bending of the
beams connected on the top and bottom orthogonal to the bending direction
causing the rotations. This reduces the magnitude of the rotations and
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explains the difference in thermal expansion (e = —5.168 x 107> K™ 1).
For b/t < 1, the additional bending can be performed much easier than
the bending causing the rotations and one may assume that the thermal
expansion coefficient of the unit cell converges to the thermal expansion
coefficient of one basic element for b/t — 0. To test this hypothesis, we have
performed a numerical sweep for different values of b, and otherwise same
standard parameters as used before.

The results are plotted in Figure 4.6. As predicted, the modulus of the
effective thermal expansion coefficientincreases for falling b and approaches
the numerically obtained values for the basic element and the planar struc-
ture (shown as dashed lines) for b/t < 1. The solid line near the dashed
lines corresponds to the analytically obtained value. The same convergence
behavior has been also confirmed for another set of parameters (I/a = 30 %,
t/a=2%, a5 =1x10°K !, ag =3 x 102K, Ex =3GPa, Eg = 1GPa,
and v = 0.4).

To investigate whether the linear dependence of the effective thermal
expansion coefficient on [ and 1/t from Equation 4.4 is also valid for the three-
dimensional unit cell, we have additionally performed numerical sweeps
for parameters [ and t. The linear dependence of « on [ is confirmed in
Figure 4.7(a). In Figure 4.7(b), numerically obtained values for « are plotted
over a/t. For a fixed value of b/a = 2.5% (blue points), an additional
contribution due to a change in cross-section aspect ratio b/t, as we have
seen before, causes a deviation from linearity. For fixed aspect ratios, here as
b/t =1 (red points), the linear dependence on 1/t is regained.

To conclude the numerical analysis, we can say that in order to obtain a
large metamaterial effect, [ /a has to be chosen as large as possible, while
b/a and t/a have to be chosen as small as possible. We have also shown
that the effective thermal expansion of the metamaterial can be tuned from
positive, over zero, to negative values just by changing the thermal expansion
coefficient of one constituent material within a small and positive range.

4.1.3 GRAY-TONE LASER LITHOGRAPHY

Our micro-structured two-component metamaterial samples are fabricated
by means of DLW, as described in the previous chapter. The numerical
calculations have shown that for our current design of a negative thermal
expansion metamaterial (Figure 4.1 and Table 4.1) a negative sign is obtained,
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Figure 4.7: Calculated effective thermal expansion coefficient ag of the unit cell
introduced in Figure 4.2 with respect to the relative cross length I/a, showing
a linear dependence, and (b) with respect to the inverse layer thickness a/t.
The blue points in (b), for which the beam width was fixed to b/a = 2.5%,
deviate from linearity. However, the red points, for which beam width and layer
thickness are equal show a linear trend.

if the thermal expansion coefficients of the constituent materials have a ratio
of at least 1.2. This can, for example, be realized using different photoresists
for each component. However, this would involve a difficult multi-step
process, which could render fabrication of large samples almost impossible
with current technology. In our favor, we have found out that the thermal
expansion coefficient of a structure written with the IP-Dip photoresist
depends on the exposure dose. Just like a conventional printer can print
different grayscale shades from one cartridge, we are able to employ gray-
tone laser lithography [46], using the exposure power as a parameter, to 3D
print different thermal expansion coefficients from only one photoresist.

Thermal Expansion Coefficients of Polymerized IP-Dip

In Figure 4.8(a), the thermal expansion coefficients of polymer cubes writ-
ten with IP-Dip with dimensions of 100 pm X 100 pm x 100 um are plotted
against the exposure laser power. We have chosen a slicing distance of
500nm, a hatching distance of 200nm and a scan speed of 20mm/s. To
measure the thermal expansion coefficient, each polymer cube was heated
from room temperature at Ty = 23°C to about Ty + AT = Tp + 20K and
subsequently cooled to room temperature again. Images were taken during
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Figure 4.8: (a) Thermal expansion coefficients of 100 um x 100 um x 100 um
polymer cubes written with IP-Dip using different exposure laser powers. Blue
and red points correspond to different sample series. (b) Measured relative
length-change with respect to temperature increase of a cube written with a
laser power of 25 mW (blue point in (a)). The slope of the linear fit (black line)
determines the thermal expansion coefficient. Adapted from Reference [46].

this process and the relative length changes with respect to the image taken
at Tp were calculated via image cross-correlation (see Section 3.3.3) and
plotted over AT. This is shown in Figure 4.8(b) for the cube fabricated with
an exposure laser power of 25 mW (corresponds to the blue point at 25 mW)
from Figure 4.8(a). The thermal expansion coefficient of the cube is obtained
from the slope of the linear fit.

The different colors correspond to two different sets of samples. Apart
from the smallest and largest exposure laser power the measured thermal
expansion coefficients are very similar for both sets of sample. The devi-
ations can be explained as follows: The smallest exposure laser power is
near the polymerization threshold, where small changes of the exposure
conditions have a large influence on the polymerized material, whereas at
the largest exposure laser power, small explosions have already started to
form spontaneously.

A clear decrease of the thermal expansion coefficient with respect to
exposure laser power can be seen, from about 8 x 10> K~! at low exposure
laser powers down to about 5 x 107> K~! at high exposure laser powers.
We understand this behavior as a change in cross-linking density. Higher
exposure powers are known to increase the cross-linking density inside the
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Figure 4.9: Writing strategy to avoid floating pieces. The arrow depicts the axial
writing direction. Parts of the unit cell that are only connected on the top (2.
and 4.) are written from top to bottom.

polymer [90, 91] and a higher cross-linking density tends to decrease thermal
expansion [92, 93].

Fabrication

Metamaterials with negative effective thermal expansion were fabricated
based on the design shown in Figure 4.2. Numerical calculations in Sec-
tion 4.1.2 have demonstrated that large effects are obtained for large //a
and small b/a and t/a. We choose a fixed unit cell size of 100 um and a
minimum feature size of 2.5 um, that can be comfortably and reproducibly
tabricated with DLW. To avoid touching beams, the maximum cross length
I/a was set to 40 %. As a result, we basically end up with the standard
geometrical parameters listed in Table 4.1. These parameters are therefore
our target parameters for fabrication. To correct for the aspect ratio of the
voxel, that would lead to an increased thickness along the axial direction, all
thicknesses in the axial direction have been reduced by 0.5 um.

We have fabricated metamaterials composed of 4 x 4 x 2 = 32 unit cells,
stitched together from writing blocks with a size of 1.5a x 1.5a x 0.5a. Stitch-
ing edges were moved away from the center of the beams by introducing
an offset of —0.23a in all directions. Each writing block was sliced with
a distance of 500nm and then hatched by parallel lines at a distance of
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Figure 4.10: Scanning electron microscope pictures of fabricated metamaterial
structures with 4 x 4 x 2 unit cells following the blueprint depicted in Fig-
ure 4.2(a). (a) One-component control sample, where only the gray part of the
sample shown in Figure 4.2(a) has been written. (b) Two-component sample
with visible pre-bending of the beams compared to (a), due to different shrink-
age of the two components during development. The metamaterial structure
has reversed the shrinkage into an expansion of the sample compared to (a).
This also confirms the operation principle of the metamaterial. (c) and (d) are
magnified views of (a) and (b), respectively. Adapted from Reference [46].

200nm. The average exposure power was set to 32.5mW for component A
and 19 mW for component B, both at a scan speed of 20 mm /s. Unconnected
floating parts during fabrication were avoided by adapting the axial writing
direction for different segments, as shown schematically for one unit cell in
Figure 4.9.

Scanning electron microscope pictures of fabricated metamaterial struc-
tures are shown in Figure 4.10. The structure in Figure 4.10(a) is an one-
component control sample, that only includes the gray component shown
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in Figure 4.2(a). For the two-component structure in Figure 4.10(b), each
component was written with a different exposure laser power. While the
beams of the control sample are straight, as they are supposed to be, the
beams of the two-component sample are visibly bent. The bending arises
from different volume shrinkage of the components. A lower cross-linking
density is connected with a larger thermal expansion coefficient as well
as a higher shrinkage, as more residual monomer is washed away during
development. Comparing Figure 4.10(a) and (b), this has resulted in an
expansion (or negative shrinkage) of the two-component sample, confirming
the operation principle of our metamaterial. It is basically the same behavior
as negative swelling [94, 95], but under reversed experimental conditions.

Within the linear regime pre-bending does not change the principle of
operation and is also unproblematic in the fabrication process of the negative
thermal expansion metamaterial. However, if we change to the unit cell
design of Figure 4.3(a) for large positive thermal expansion coefficients,
where the constituents in each beam are exchanged, also the pre-bending
will change in direction, resulting in large shrinkage. This leads to touching
beams and a nullification of the metamaterial effect. Therefore, the shrinkage
has to be compensated beforehand.

Using COMSOL Multiphysics we have calculated an expanded structure
with 4 x 4 x 2 unit-cells, with fixed constraints at the bottom and otherwise
open boundaries for a large temperature change. The obtained deformed
three-dimensional structure is shown in Figure 4.11 and is directly used as
the model for fabrication with DLW. Shrinkage during development will
ideally return it to its undeformed state with straight beams.

A temperature increase on the metamaterial with large positive effective
thermal expansion bends the bilayer beams in the same direction as shrinkage
during development does on the metamaterial with negative effective thermal
expansion. As a result the structure shown in Figure 4.11 looks very similar
to the fabricated metamaterial shown in Figure 4.10(b).

Due to the complexity of the structure, the slicing distance had to be
decreased to 200nm and the hatching line distance to 100nm. To keep a
similar exposure dose, a laser power of 24 mW was used for component A
and 16 mW for component B, at the same scan speed of 20mm/s. These
are also the writing parameters for the metamaterials with an anisotropic
thermal expansion (Figure 4.3(b)).

Scanning electron micrographs are shown in Figure 4.12. Panel (a) depicts
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Figure 4.11: (a)Side view and (b) top view of the calculated deformed metama-
terial structure consisting of 4 x 4 x 2 unit cells designed for a large positive
effective thermal expansion coefficient (Figure 4.3(a)) at a large temperature
increase. The bottom is fixed in position and all other boundaries were mod-
eled as open. This deformed structure is used as a model for fabrication and
compensates the polymer shrinkage during development.

the metamaterial with with large positive thermal expansion fabricated in an
expanded state with beams that are bent in the opposite direction as they do
during development (see Figure 4.11). Notably, all beams are straight after
fabrication (also see Figure 4.12(c)), indicating that the precompensation has
been successful. Panel (b) shows a fabricated metamaterial designed for
anisotropic thermal expansion, based on the unit cell shown in Figure 4.3.

4.1.4 MEASUREMENTS

Fabricated metamaterial samples are measured using the setup described
in Section 3.3. To minimize outgassing of the polymer, the samples are
heated to 60 °C for one hour inside the chamber with the peltier element.
Subsequently the chamber is flooded with dry nitrogen, sealed, and cooled
back to room temperature (Ty = 23 °C). The camera image is focused on the
upper xy-plane (P; in Figure 4.2(b)) of the top layer of unit cells.

Starting at room temperature, the chamber temperature is increased by
AT = 10K and afterwards by another 10K (AT = 20K). At each of the three
temperature points, we wait several hours, to be sure that micro-structure
and sample chamber (where the temperature is measured), have the same
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Figure 4.12: Scanning electron microscope pictures of fabricated metamaterial
structures with 4 x 4 x 2 unit cells. (a) Metamaterial structure designed for
large positive thermal expansion, fabricated in using the precompensated model
shown in Figure 4.11. The bilayer beams have been fabricated in a pre-bent state
and have become straight again after development. (b) Metamaterial structure
designed for anisotropic thermal expansion. (c) and (d) are magnified views of
(a) and (b), respectively.

temperature. Afterwards, ten pictures are taken with the autofocus algorithm
to compensate for any temperature induced defocussing (see Section 3.3.2).
Additionally, lateral movement is tracked by means of image cross-correlation
and most of it is compensated automatically during the measurement using
the piezo stage.

After the images are taken, small individual ROIs of 33 x 33 pixels
(ncorr = 16) are tracked with image cross-correlation (see Section 3.3.3) over
all measurement images and their displacement vectors are calculated. This
gives us the ability to determine the overall relative length change, as well as
local deformations.
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Figure 4.13: (a) Temperature induced displacement vector fields obtained by
image cross-correlation and the underlying optical micrograph of an one-
component control sample as shown in Figure 4.10. The sample consists of
4 x 4 x 2 unit cells and was heated by AT = 20K. From the displacement vectors,
a positive effective thermal expansion coefficient of ac; = (+4 +£0.5) x 10> K1
is extracted. (b) Magnified view of (a). The arrows demonstrate a similar
positive thermal expansion on the beams and crosses. All arrows have been
scaled by the indicated factors. Adapted from Reference [46].

Negative Thermal Expansion

We begin with an one-component control sample based on the design shown
in Figure 4.10(a), fabricated with an exposure laser power of 32.5 mW. Mea-
sured displacement vectors under a temperature increase of AT = 20K are
shown in Figure 4.13. All measured displacement vectors are averaged over
the ten pictures taken and scaled by the indicated scaling factors. The yellow
displacement vectors at the center of the crosses revealing roughly isotropic
length changes, allowing us to calculate the effective thermal expansion
coefficients analogous to the thermal expansion coefficient of copper (see
Figure 3.6). As expected, all displacement arrows in Figure 4.13(a) point
outwards. We obtain an positive effective thermal expansion coefficient of
tef = (+440.5) x 107K~ (the errors are estimated), which is caused
by the positive thermal expansion coefficient of the polymer. The value is
a little lower than the one measured on a cube with same exposure laser
power in Figure 4.8. Obviously, exposure and polymerization conditions
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Figure 4.14: Same measurement as shown in Figure 4.13, but for the two-
component sample. From the displacement vector field (a) a negative effective
thermal expansion coefficient of ag = (—5 4 0.5) x 107> K~ is obtained. (b)
Magnified view of (a) showing the mechanism within one unit cell. The positive
expansion of the beams (blue arrows) are overcompensated by the rotation
of the crosses (red arrows), resulting in an overall negative effective thermal
expansion (yellow arrows). Adapted from Reference [46].

for a bulk cube and a porous structure with small feature sizes are not the
same, even for equal exposure laser powers. In the magnified view shown in
Figure 4.13(b), individual parts of one unit cell are measured. The behavior
of one cross is highlighted by a set of four red arrows, sets of two blue arrows
quantify the expansion of the beams and, just like before, the yellow arrows
indicate the displacement of the cross centers. Within each set of arrows, the
mean displacement vector is subtracted to only reveal the relative movement
with respect to their mean position. The semitransparent lines are guides
to the eye, connecting arrows that belong to the same set. As expected for
the one-component material, each set of arrows shows the ordinary positive
thermal expansion coefficient of the constituent material.

The two-component metamaterial shown in Figure 4.10(b) was fabricated
with exposure laser powers of 32.5 mW and 19 mW for component A and B,
respectively. In contrast to the one-component control sample, the displace-
ment vectors of the two-component metamaterial (see Figure 4.14(b)) point
towards its center and a negative effective thermal expansion coefficient
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Figure 4.15: Displacement vector field of the same sample as shown in Fig-
ure 4.14, but focused on a lower layer (corresponds to P, in Figure 4.2). A
negative effective thermal expansion coefficient of e = (—5 4 0.5) x 107> K™!
is obtained, but the arrows show much more noise as compared to the measure-
ment in Figure 4.14 due to worse image quality.

of ag = (—5£0.5) x 102K~ is extracted. From the arrows we can also
calculate the anisotropy. In y-direction the thermal expansion coefficient
is 25 % smaller in absolute value than in x-direction. We explain this with
sample imperfections caused by drifts during writing and the pre-bending
of the beams during development. Figure 4.14(b) verifies our understanding
of the operation mechanism. The bilayer beams still expand positively, but
unlike for the control sample, their bending causes rotations of the crosses,
alternating between clockwise and anticlockwise rotations in a checkerboard
pattern in the same way as it is illustrated in Figure 4.1. The rotations
overcompensate the positive expansion of the beams causing an inward
movement of the centers of the crosses and hence resulting in a negative
effective thermal expansion coefficient.

Figure 4.15 displays the measured displacement vectors for the same
sample that was already shown in Figure 4.14, but for the focus plane placed
in a layer lower. This corresponds to the plane P, shown in Figure 4.2
for the upper layer of unit cells. The image quality is visibly worse, it is
focused through the top layer, which is why arrow length and direction
fluctuate much more, but the general shrinkage can clearly be seen. The
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Figure 4.16: Numerical calculations corresponding to the measurements of
the control sample shown in Figure 4.13 represented in the same way as the
experiments. Material parameters are: ap = 4 X 105K™!, Ex =4GPa, v = 04.
From the displacement vector field in (a), we obtain a.; = +4 x 107> K.
Adapted from Reference [46].

arrows point inwards and a negative effective thermal expansion coefficient
of ag = (—540.5) x 1072 K~ is obtained, the same value within the errors
as in the top layer. This finding confirms that a. is also negative inside the
metamaterial volume, and not just the outermost layer.

The obtained experimental results are now compared with numerical cal-
culations. The same geometrical and material parameters as in the structure
shown in Figure 4.4 are used. To model the experimental conditions, we
choose a finite sample with 4 x 4 x 2 unit cells. The computational complex-
ity is decreased by using two planes of mirror symmetry cutting through
the center of the structure. One mirror plane is parallel to the xz-plane and
the other is parallel to the yz-plane, reducing the geometry to 2 x 2 x 2 unit
cells. At the xz-mirror plane the y-component of the displacement vector is
set to zero, and analogously the x-component of the displacement vector is
set to zero at the yz-mirror plane. The bottom layer is fixed in position, and
all other boundaries are free to move.

We present the numerical calculations in the same way as the experiments.
Obtained displacement vectors for the one-component control structure are
depicted in Figure 4.16 and a positive effective thermal expansion coefficient
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Figure 4.17: Numerical calculations corresponding to the measurements of the
two-component metamaterial shown in Figure 4.14 represented in the same way.
Material parameters are: ap = 4 X 105K, ag =6 x 107°K™1, Ex = 4GPa,
Eg = 3GPa and v = 0.4. A negative effective thermal expansion coefficient
of aegf = —5 x 109K~ ! is extracted from the arrows in (a). Adapted from
Reference [46].

of aeg = +4 x 107> K~ is calculated. The displacement vectors agree well
with the experimental results depicted in Figure 4.13. Looking closely into
panel (b) a small residual rotation of the cross can be seen. It is a result of
the boundary condition of a fixed bottom surface.

Calculated results of the two-component structure are shown in Figure 4.17
and a negative effective thermal expansion coefficient of aeg = —5 x 107° K1
is obtained. Again, the displacement vectors agree well with those shown in
Figure 4.14 and also visualize the same rotations in panel (b).

Near Zero Thermal Expansion

In Figure 4.5, it was shown that near zero effective thermal expansion
coefficient can be obtained by simply increasing the thermal expansion
coefficient of component B. Therefore, we have fabricated a metamaterial
identical to the one shown in Figure 4.14(a), but with an exposure laser
power of 25 mW instead of 19 mW for component B, which results in a larger
thermal expansion coefficient (see Figure 4.8).
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Figure 4.18: (a), (b) Same measurement as shown in Figure 4.14, but for a sample,
fabricated with exposure laser powers of 25 mW and 32.5 mW instead of 19 mW
and 32.5mW. The measured displacement vectors agree well with the calculated
ones in (c) and (d) and demonstrate a near zero effective thermal expansion
coefficient of ag = (04 0.5) x 107> K~!. Adapted from Reference [46].

On this metamaterial, we have performed the same measurement pro-
cedure and image cross-correlation analysis as shown in Figure 4.14. The
obtained displacement vectors are depicted in Figure 4.18(a) and (b). The
crosses rotate in the same directions as in Figure 4.14(b), but with less
magnitude. At this point. they merely compensate the positive beam ex-
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Figure 4.19: Same measurement as shown in Figure 4.14, but for a metamaterial
structure with inverted components for the beams (see Figure 4.3(a)). Compared
to Figure 4.14(b) crosses now rotate in the opposite direction, adding to the
positive effective thermal expansion coefficient of the beams and leading to a
large positive effective thermal expansion coefficient of wegr = (+12 £ 0.5) x
10> K~ !, which is larger than any of the constituents.

pansion, resulting in a near zero effective thermal expansion coefficient of
et = (0£0.5) x 107> K~ L. It also stands out that there is less pre-bending
of the beams than before, indicating that the constituents are also more
similar to each other with regard to shrinkage during development. In
Figure 4.18(c) and (d), we have reproduced this behavior numerically, using
ag = 5x 1075 K~! compared to ag = 6 x 10">K~! as shown in Figure 4.17.
Again, numerical and experimental results agree well.

Large Positive, and Anisotropic Thermal Expansion

We have measured the fabricated metamaterial with large positive ther-
mal expansion shown in Figure 4.12(a). The derived displacement vec-
tors are shown in Figure 4.19. Compared to Figure 4.14(b), they reveal
an opposite rotation direction of the crosses. Instead of compensating it,
the geometrical effect now contributes to the positive expansion of the
beams. This leads to a large positive effective thermal expansion coefficient
of aef = (+124+0.5) x 105K~ 1.
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Figure 4.20: Image cross-correlation analysis of a metamaterial designed for
anisotropic thermal expansion (see Figure 4.3) with 4 x 4 x 2 unit cells. Effective
thermal expansion coefficients of aeg , = ( —4+0.5) x 107°K~! along the x-
direction and aegf, , = (+15+£0.5) x 10~ >K~! along the y-direction are extracted
from the d1sp1acement vectors.

Using the unit cell design for anisotropic thermal expansion (see Fig-
ure 4.3) we further demonstrate striking thermal expansion control. The
displacement vectors measured on 4 X 4 X 2 unit cells are shown in Fig-
ure 4.20. As designed it has a negative effective thermal expansion coefficient
of tegp , = (—440.5) x 107> K~ ! along the x-axis and a large positive effec-
tive thermal expansion coefficient of aeg = (4+1540.5) x 1072 K~! along the
y-axis.

In conclusion, we have fabricated micro-structured three-dimensional two-
component metamaterials by gray-tone laser lithography using only a single
photoresist. On these thermoelastic metamaterials, we have experimentally
demonstrated effective thermal length-expansion coefficients that ranged
from positive value exceeding that of any of the constituents, over zero, to
negative or anisotropic values.
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4.2 POROELASTIC METAMATERIALS

In the last section, we have introduced a two-component metamaterial, that
applies a mechanism to convert positive volume changes of the constituents
into a negative effective volume change to obtain negative thermal expansion.
In principle, the mechanism works for any volume changes, as long it is
different for both constituents by a factor of at least 1.2 for that particular
unit cell, which is why we have also seen a negative shrinkage in Figure 4.10.
Simply by exchanging the the constituents with different thermal expansion
coefficients with constituents with different compressibilities of the same
ratio, the effective metamaterial volume will expand under hydrostatic pres-
sure increase, resulting in a negative effective (or unjacketed) compressibility
(see Equation 2.99).

However, ordinary polymers have static bulk moduli of a few gigapas-
cals [96], which means that the compressibilities lie below 10 °Pa' and a
pressure change of 1Pa, therefore, only results in relative length changes
of around 1071, To obtain a relative length change of 1073, which we ap-
proximately observed in Figure 4.13 and 4.14, the surrounding hydrostatic
pressure has to be increased by 107 Pa = 100 bar, which is, of course, quite
inconvenient for measurements. Therefore, we have introduced a novel idea
of including sealed hollow volumes inside the unit cell to make use of the
high compressibility of air or vacuum.

4.2.1 METAMATERIAL DESIGNS

Our first design of a metamaterial with negative effective compressibility
is based on the unit cell shown in Figure 4.2. Its vital elements are sealed
hollow volumes inside three-dimensional cylindrical crosses, which replace
the ordinary crosses. Instead of bilayer beams, it has only one constituent
solid material. Figure 4.21(a) shows one unit cell inside a simple cubic
translational lattice containing eight of these three-dimensional crosses. A
cut through view of one cross is depicted in Figure 4.21(c).

A deformed version of the unit cell calculated with COMSOL Multiphysics
(see Section 3.2) is shown in Figure 4.21(b). At increased hydrostatic pressure,
the thin circular membranes of the crosses warp inwards (see cut through
view in panel (d)). At each membrane, two beams are attached asymmet-
rically, which translates the warping into a rotation of the crosses, leading
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(a)

Figure 4.21: (a) Unit cell designed for negative effective compressibility based
on Figure 4.1. It contains eight three-dimensional crosses with sealed hollow
volumes inside. A cut through view of one cross is shown in (c). All relevant
geometrical parameters are indicated. (b) Deformed unit cell under elevated
hydrostatic pressure. The warping membranes (see (d)) cause a rotation of the
crosses which leads to an overall expansion of the unit cell. Adapted from
Reference [63].

to an overall expansion of the unit cell. This is similar to the mechanism
for negative thermal expansion discussed in Section 4.1. But in this case,
the small volume decrease caused by the positive compressibility of the
constituent is negligible and easily overcompensated by the geometrical
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Figure 4.22: (a) Simplified design of a simple cubic unit cell with negative
effective compressibility consisting of one hollow cube and lever arms attached
to the faces. (b) Cut open unit cell showing the interior. Notice the smaller
cubes inside at the corners. (c) Metamaterial with 4 x 4 x 4 unit cells repeated
in a simple cubic translational lattice. (d) In comparison, a unit cell designed
for large positive effective compressibility with the same interior structure. The
lever arms have merged into a single connector in the middle. All relevant
geometrical parameters are indicated. Adapted from Reference [84].

effect.

More recently, we have introduced a simplified design depicted in Fig-
ure 4.22. Each unit cell has simple cubic symmetry and consists of only one
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hollow cube with four lever arms attached to each face. Inside the hollow
cube, there are smaller cubes sitting in each corner directly behind the lever
arms as shown in the cut open unit cell in Figure 4.22(b). These smaller cubes
are important for the development process, as we will see later. The principle
of operation is similar. At increased hydrostatic pressure, the warping of
the membranes rotates the attached lever arms, causing their ends to move
outwards. This leads to an increase of the effective volume. A metamaterial
made by 4 x 4 x 4 unit cells is shown in Figure 4.22(c). In Figure 4.22(d),
instead of four lever arms, a single connector is attached in the center of each
membrane. In comparison to the other design, this leads to large positive
effective compressibility.

4.2.2 STATIC NUMERICAL CALCULATIONS

In order to obtain a better understanding of the proposed poroelastic metama-
terials and to optimize geometrical parameters, we have performed numerical
analyzes using COMSOL Multiphysics (see Section 3.2). The continuum
elasticity problem is solved under linear approximation for a small increase
of hydrostatic pressure AP. This is introduced as a normal force acting on
all outer surfaces, including the surfaces at the boundary on the unit cell to
mimic the conditions for an unjacketed compressibility test (see Section 2.2.4).
Additionally, we assume periodic boundary conditions.

Parameter Sweeps

Let us first focus on the unit cell illustrated in Figure 4.21. The relevant
geometrical parameters are the cross length I, the membrane thickness t and
radius 7, and the beam thickness c and width b. Like in Section 4.1.2, the
absolute scale defined by the lattice constant a is irrelevant and only the
relative sizes with respect to a matter. Therefore, we express each geometrical
parameter with respect to a.

In Figure 4.23, we have performed numerical sweeps for the different
geometrical parameters of the unit cell. Unless varied, each parameter is
held constant at the standard values of t/a = 1%, r/a = 10%, b/a =
2%, c/a = 4%, and [/a = 38%. The hollow volumes are assumed to be
completely empty (vacuum).

Since the unit cells consist of only one constituent material, the effective
compressibility scales proportionally with the constituent’s Young’s modulus
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Figure 4.23: Numerical parameter sweeps on the unit cell introduced in Fig-
ure 4.21. (a) We calculate the dimensionless product x.¢E which is independent
of E. For a standard parameter set of t/a = 1%, r/a = 10%, b/a = 2%,
c¢/a=4%,and I/a = 38% and a constituent’s Poisson’s ratio of v = 0.4, this
set leads to x.E = —165.23, compared to kE = +0.6 of the constituent solid.
(b)-(f) One geometrical parameter is varied as indicated. All other parameters
are fixed to the standard parameter set. Adapted from Reference [63].

E. Or in other words, «.gE is constant over E. This is numerically confirmed
in Figure 4.23(a) over five orders of magnitude. Therefore, the calculated
effective compressibility is represented by the dimensionless product «.¢E,
which is representative for any value of E. For the Poisson’s ratio of the
constituent, a typical polymer value of v = 0.4 is chosen. Together with
the standard parameter values stated above, we obtain a negative effective
compressibility x.gE = —165.23. Compared to the value for the constituent
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material,

E
KE= 2 =3(1-2v) =06, (4.5)

the absolute value of the effective compressibility is more than two orders
of magnitude larger. Remarkably, this unit cell also exhibits a negative
Poisson’s ratio of —0.97, which approaches the limit of a perfect dilational
metamaterial [22].

Figure 4.23(b) demonstrates that the modulus of x.¢E increases for larger
[/ a, similar to the result in Figure 4.7(a). From panels (c) and (d) we conclude
that large aspect ratios c/b of the beams are favorable. On the one hand, c/a
has to be large since the beams should not bend in that direction to force the
crosses to rotate. On the other hand, b/a has to be small, to allow the beams
to bend easily along that direction to allowing the orthogonal rotations of
the crosses. The membrane radius and thickness have, by far, the largest
influence on «.¢E as seen in the double logarithmic plots of panels (e) and
(f). To obtain a large effect, thin membranes with large radii are preferred.

We apply the gained knowledge to slightly adjust the geometrical param-
etersto t/a =07%,r/a=12%,b/a =1.5%,c/a = 4%, and I/a = 38 %.
These are the parameters further used for fabrication. To stay within ex-
perimentally feasible values, we choose a lattice constant of 4 = 150 um.
Furthermore, the sealed hollow volumes are connected through the center of
the cross, reducing the number of sealed hollow volumes by a factor of four.
This does not noticeably alter the magnitude of effective compressibility
but simplifies the fabrication process. The resulting unit cell is depicted in
Figure 4.24.

Evacuated and Air-Filled Interior Volumes

Until now, all sealed hollow volumes were assumed to be evacuated, i.e. to
have an interior pressure of P, = 0. During the actual measurements, they
are, however, air-filled with an initial interior pressure of P, = Py ~ 1.01bar.
When the external air pressure is increased by AP, the membranes warp
inwards, decreasing the interior volume V; and hence increasing the interior
pressure by AP;. We have numerically investigated the influence of gas filled
interior volumes for the simple cubic unit cells in Figure 4.22 for different
values of t/a and otherwise fixed and optimized geometrical parameters
of: b/a = 3%, c/a =15%,d/a = \/2(c/a+t/a+0.04),/a = 70%, and
r/a = 48% — 0.5]/a. The elastic solid is modeled with typical polymer
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4.2 POROELASTIC METAMATERIALS

Figure 4.24: Adjusted unit cell optimized for fabrication (a) and a cut through on
cross (b) based on the design shown in Figure 4.21. All interior hollow volumes
within one cross are connected through the center. Geometrical parameters are
a=150um, t/a =07%,r/a=12%,b/a=15%,c/a = 4%, and l/a = 38 %.
Adapted from Reference [83].

values of E = 3GPa and v = 0.4. The gas is assumed to be an ideal gas.
Since the interior volume is sealed, the equation P;V; = n;RT = const. holds.
As initial conditions, the exterior hydrostatic pressure P and the interior gas
pressure P; are both set to the reference pressure Py = 1.01 bar, at which the
geometry is assumed to be at equilibrium. The interior hollow volume has
an initial value of V; = V.

First, the exterior pressure is increased to P = Py + AP while the interior
pressure is held constant (P, = P) and the deformed unit cell (see insets
in Figure 4.25) is calculated under periodic boundary conditions. Using
Gauss’s theorem, we can avoid meshing the interior and directly calculate
the interior volume change AV; by integrating the normal component of the
displacement vector over the interior surface, which gives us the interior
volume V; for P, = Py. As the constituent material is nearly incompressible
compared to the flexible membranes we can approximate V; ~ Vo for
P, = P = Py+ AP. As the interior volume V; is known for two values of
P;, we can linear interpolate in between to find the corresponding interior
pressure that fulfills the condition P;V; = n;RT. Including this value of P;,
the numerical calculations are repeated and the convergence of P;V; towards
n;RT is checked. This process can be iteratively refined. For the calculations
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Figure 4.25: Calculated effective compressibilities for the unit cells with (a)
ket < 0 introduced in Figure 4.22(a) and (b) k¢ > 0 introduced in Figure 4.22(d)
over the membrane thickness t/a. Note the double-logarithmic scale. In the
case of evacuated cubes (P, = Py = 0 shown in blue), k¢ diverges with the same
slope as the green lines (3 and —3 for (a) and (b), respectively) for t/a — 0.
For air-filled cubes (Py = 1.01bar shown in red), x.¢ converges towards the
horizontal solid black lines instead, which are independently calculated. The
dashed black line corresponds to the compressibility %, = 101 %/bar of air.
Two insets show a diagonal cut through the deformed unit cell (black) compared
to the undeformed state at AP = 0 (gray), illustrating the mechanism. The
arrows point at the ratios t/a used in Figure 4.39. Parameters are: b/a = 3%,
c/a=15%,d/a = \@(c/a +t/a+0.04),1/a=70% and r/a = 48% — 0.51/a.
Adapted from Reference [84].

under linear approximation, however, no further iterations are needed. With
the correct value for P;, k. is calculated.

The calculated values for k¢ over t/a are summarized in Figure 4.25 in
double-logarithmic plots. In the case of evacuated cubes (blue points), the
effective compressibility diverges with |keg| « (t/a)~> for t/a — 0 both
for the unit cell designed for x.¢ < O (panel (a) and Figure 4.22(a)) and
ketf > 0 (panel (b) and Figure 4.22(d)), as indicated by the green lines. In
the case of air-filled cubes (red points), k¢ converges for t/a — 0 in both
panels. Interestingly, the red points in panel (b) converge to a value of
about 270 % /bar, which is almost three times as large as the compressibility
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Kair = 101 % /bar of air (dashed line).

To verify the iterative method to calculate the air filled cubes described
above, we have modeled the air inside as an isotropic Cauchy elastic solid,
with a bulk modulus of K = 1.01 x 10° Pa and a near zero shear modulus.
The results are indistinguishable from the ones obtained from the iterative
method (red points in Figure 4.25).

There is an intuitive explanation for the different behavior between evac-
uated and air-filled cubes [84]: The elastic behavior of membranes was
intensively studied by Timoshenko [88]. It is well-known that the displace-
ment in the center of a thin clamped circular membrane with radius rpy
and thickness t is proportional to ¢, /# for a fixed pressure difference be-
tween both sides. The scaling with =3 also holds for different shapes, like
rectangular membranes. The behavior of the cubes under a small pressure
increase can be modeled with Hooke’s springs. Along each principle cubic
direction, there are two membranes on opposite sides of the cube. Their
displacement can be expressed as an effective Hooke’s spring with a spring
constant Dy « 1/#3. The compression of the air inside acts like a second
Hooke’s spring D, parallel to the first. For evacuated cubes the resulting
spring constant is equal to Dy, as D, = 0. This fits with the (¢/a) 3 scaling
of the blue points in Figure 4.25. For air-filled cubes, D, is finite. As D1 — 0
for t/a — 0, the resulting spring constant converges to D>.

For a warped circular membrane, the displacement in the center is approxi-
mately twice as large as the average displacement. The relative length change
is, therefore, about twice as large as the relative volume change AV;/Vj, that
defines the spring constant D;. In our case, the ratio is even larger. This is
the reason why the air-filled cubes converge to an effective compressibility
larger than that of air in Figure 4.25(b). We can put this into a simple for-
mula. In the linear regime for a small increase of surrounding hydrostatic
pressure AP, and a corresponding increase of the interior pressure AP, the
compressibilities ke and x,ir can be written as

1 AV 1AV
Keff = Veff AP and Kair = Vl A Pi . (46)

For t/a — 0 the interior pressure change converges to AP. The effective
compressibility in the limit of small t/a, can be expressed as

lim . AVer/ Ve

Keff = Kair Axfl/‘/l (47)
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The fraction on the right side of the equation mainly depends on the area
of the membranes and the size of the interior volume. At small t/a it is
approximately constant with respect to t/a. We have calculated its value
for the smallest ¢/a values of the evacuated cubes (blue points at the left
end of plot panel in Figure 4.25). In the case of k¢ < 0, a value of —2.6 is
obtained, while for xqg > 0, the result is 4+-2.7. The corresponding limits for
the effective compressibility according to Equation 4.7 are plotted as solid
horizontal lines in each graph. These horizontal lines are calculated from the
behavior of the evacuated cubes alone and clearly predict the convergence
behavior of k. for the air-filled cubes (red points) for t/a — 0.

These different results between air-filled and evacuated cubes brings up
the question, whether the unboundedness of «, is a direct consequence of
the infinite compressibility of vacuum. Let us do a gedankenexperiment. We
modify the unit cell with ¢ > 0 (Figure 4.22) by assuming a rigid material
everywhere, except in the center of the faces, where a flexible membrane
with radius 7y, and thickness t is embedded. We keep rfn/ 3 constant and
scale b with ry according to b/rm = const. < 1. In the limit of r, — 0
(AVege/ Veoge) / (AV;/ V;) diverges with 1/ 12 . Hence, even for air filled cubes,
there is no fundamental bound for xg.

4.2.3 EIGENFREQUENCY CALCULATIONS

It is expected that poroelastic materials have two longitudinal modes (see
Section 2.2.4) instead of one in ordinary isotropic elastic materials. To inves-
tigate whether the sign of x.¢ has any influence on the dynamic behavior,
we have calculated the acoustic band structure of both the unit cells with
Keff < 0 and xeg > 0 introduced in Figure 4.22.

We have chosen a lattice constant of 75 um, a relative membrane thickness
of t/a = 2% and otherwise the same geometrical parameters as in Fig-
ure 4.25. The constituent solid elastic material was modeled with a density
of p = 3000 kg/m?3, a Poisson’s ratio of v = 0.4 and various Young’s moduli
E. The surrounding gas was modeled with a density of p,;, = 1.2kg/m? and
a bulk modulus of K,j; = 10° Pa.

Using COMSOL Multiphysics the coupled acousto-elastic wave equations
were solved under Floquet-Bloch periodicity (see Section 3.2). Band struc-
tures for the unit cell with x.¢ < 0 and are shown in Figure 4.26, calculated
for Young’s Moduli of 2000 GPa, 700 GPa, 458 GPa, and 40 GPa. Here, the

wave vectors k lie between the I and X-point of the reciprocal unit cell. There
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Figure 4.26: Acoustic band structures for wave vectors between I' and X of the
simple cubic Brillouin zone, calculated for the unit cell shown in Figure 4.22(a)
with a constituent Young’s modulus of (a) E = 2000 GPa, (b) E = 700 GPa, (c)
E = 458GPa, and (d) E = 40GPa. Geometrical parameters are a = 75 pum,
t/a = 2% and otherwise the same as in Figure 4.25. The two longitudinal bands
are highlighted in blue and red.

are two longitudinal modes, highlighted in blue and red, respectively. Both
are coupled acousto-elastic modes described with an acoustic pressure p
in the fluid and an elastic dilatation e in the solid, with different relative
amplitudes and phases.

In Figure 4.27, the dilatations e of the solid unit cells are plotted over the
phase for ky/a = 0.1. Blue and red curves correspond to blue and red points
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Figure 4.27: (a),(c), and (d) Dilatation e over the phase for the longitudinal
modes at ky/a = 0.1 shown in the panels (a),(c), and (d) of Figure 4.26. Blue
and red curves correspond to blue and red points in Figure 4.26, respectively.
The dilatations are normalized with regard to an acoustic pressure (b) with an
amplitude of 1Pa.

in Figure 4.26, respectively. Figure 4.28 and 4.29 show the same calculations
as Figure 4.26 and 4.27, but for the unit cell with x.¢ > 0.

The amplitudes of e correspond to an acoustic pressure p normalized
with an amplitude of pp = 1Pa in the gas (see Figure 4.27(b)). For the
upper longitudinal modes (red), e and p are out of phase, while they are in
phase for the lower longitudinal modes (blue). This basically confirms the
theoretical prediction of Biot [13] (also see Section 2.2.4). The acoustic wave
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Figure 4.28: Acoustic band structures for wave vectors between I' and X of the
simple cubic Brillouin zone, calculated for the unit cell shown in Figure 4.22(d)
with a constituent Young’s modulus of (a) E = 500 GPa, (b) E = 110GPa, (c)
E = 82,16 GPa, and (d) E = 10GPa. Geometrical parameters are a = 75 um,
t/a = 2% and otherwise the same as in Figure 4.25. Both longitudinal bands
are highlighted in color.

in the gas has a maximum potential energy density of

Epot _ P%
Vv

=354%x10 °J/m>. (4.8)

Pair C3ir

The maximum potential energy densities of the elastic mode are calculated
via £

ot 1 2
‘p/ - zEsolide ’

(4-9)
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Figure 4.29: Same as Figure 4.27, but corresponding to Figure 4.28.

where Egj;q is the Young’s modulus of the solid structure.

From the amplitudes in Figure 4.27(a) and with the calculated value of
Egolig = 111.33MPa, we obtain maximum energy densities of Epot/V =
2.61 x 1078]/m3 for the blue curve and Epot/V =290 x 1073]/m?3 for the
red curve. Comparing these values with Equation 4.8 shows that the blue
points in Figure 4.26(a) are mainly modes of acoustical nature, while the
red points are mainly elastic modes. Also, an anticrossing between the red
branch and the back folded blue branch is observed (at ~ 2.2 MHz).

When lowering the Young’s Modulus of the solid constituent, the elastic
wave velocity decreases and hence, the red points in Figure 4.26 move
downwards, while the blue points stay approximately constant. At the
point where both branches are expected to cross, an anticrossing is observed
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Figure 4.30: Elastic eigenmodes at a phase of zero corresponding to the (a) blue
and (b) red curve of Figure 4.27(c), and the (c) blue and (d) red curve of Figure
4.29(c). The modulus of the displacement vector |ii| is plotted in a false color
scale.

again (see Figure 4.26(b) and (c)). The corresponding maximum energy
densities to the amplitudes shown in Figure 4.27(c) are Epot/V = 5.72 x
107°J/m3 (blue curve) and Epot/V = 3.29 x 107°J/m3 (red curve). Both
are on the same order as the maximum acoustical energy density (Equation
4.8), and are, therefore, strongly mixed acousto-elastic modes. Further
decreasing E, acoustic and elastic modes decouple again. For E = 40 GPa in
Figure 4.26(d), the blue points are mainly elastic modes, while the red points
have become mainly acoustic modes. From Figure 4.27(d), we calculate
maximum energy densities of Epot JV =224 x10"2]/m3 (blue curve) and
Epot/V =841 x 10719]/m? (red curve).

The shape of the longitudinal elastic eigenmodes are depicted in Figure
4.30. They correspond to Figure 4.27(c) and 4.29(c) at a phase of zero, and
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look very similar for both unit cells.

Comparing the dynamic calculations of the unit cell with ke < 0 Kegs > O,
we observe no fundamentally different behavior. In Section 2.2.4, we have
already seen that the dependence of the poroelastic constants on the sign of
Keff €nters as Kegr/ k). The jacketed compressibility «; is even much larger than
Keft for our structures. For the unit cell shown in 4.22(a), we have calculated
Ketf/ K = —0.013, which is only a minor contribution. Therefore, we conclude
that the sign of k¢ does not significantly alter the dynamic behavior of our
poroelastic metamaterial.

4.2.4 FABRICATION OF SEALED HoLLOW VOLUMES

The fabrication of the required sealed hollow volumes is a challenging task.
Not only do they have to be sealed, but also airtight with a timescale much
longer than the time it takes for measurement. As mentioned in the previous
chapter, one advantage of micro-fabrication with DLW over conventional
macroscopic 3D printing methods is the ability to write without support
structure. But even then, fabricated sealed hollow volumes will still be filled
with the liquid monomer, that has to be removed.

We have discovered that the solvent (in our case mr-Dev 500) permeates
through the membranes during development, expanding the hollow volumes
in the process. This also means that the membranes are rather impermeable
for the liquid monomer in comparison. For thin membranes, the osmotic
pressure built inside rips them open, allowing the liquid monomer to escape.
This process is shown in Figure 4.31. After dissolving all monomer and
drying the sample, the hollow volumes will eventually be filled with air.

The key issue within this process is the way, in which the hollow volumes
burst open. If the stresses during the build up of osmotic pressure are
rather uniformly distributed, it will rip open large cracks, which are, of
course, not airtight. The size of the cracks can be influenced by tailoring
the stress distribution. If the stresses are confined in small “weak spots”
of the membrane, these locations will break beforehand and the resulting
cracks will be comparably small. Luckily for us, these small cracks can seal
themselves afterwards, leaving us with airtight sealed hollow volumes.

We have investigated this process for different unit cells. All fabricated
structures in this section are written with an exposure laser power of 19 mW,
a slicing distance of 200 nm and a hatching distance of 100 nm. Figure 4.32(a)
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Figure 4.31: Structure with sealed hollow cubes during development with mr-
Dev 500. The time passed after the first image (left) is taken is indicated. After a
few seconds permeation of the solvent into the cubes lead to an expansion until
they have almost spherical shape (see red arrows). After that, they burst and
release the liquid monomer, that was trapped inside. After just half a minute,
all cubes are ruptured.

shows a scanning electron microscope picture of a fabricated metamaterial
with 2 x 2 x 2 unit cells based on the design from Figure 4.24. The used
geometrical parameters are a = 150 um, t = 1.05 um, r = 18 um, b = 2.25 um,
¢ = 6um, and / = 57 um. In the input geometry for DLW, we reduce the
thickness of the membranes parallel to the xy-plane by 0.5 um to compensate
for the aspect ratio of the laser focus. Note that due to the finite voxel
sizes, the real membrane thicknesses are still expected to be larger than the
numerical input values.

One of the cracks that opened during development can be seen in the
middle of the membrane depicted in Figure 4.32(b). Its position fits with
the location of the maximum von Mises stress calculated for an increase of
internal pressure shown below. The lever arms are connected in a L-shape
on the membrane, which confines the von Mises stress in a small region. The
resulted crack is, therefore, rather small and has resealed after development.
Later, we will see that it is also airtight. As all hollow volumes within one
cross are interconnected, only one membrane needs to undergo the breaking
and resealing process.

The best way to measure how airtight the volumes are, is by observing
the expected metamaterial effect. Therefore, we compare the results with
an identical metamaterial structure, but with holes inside each hollow cross
(see Figure 4.32(c)) to make it intentionally not airtight. These crosses have
no visible cracks, since the hole allowed the liquid photoresist to flow out
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Figure 4.32: (a) Scanning electron micrograph of a fabricated metamaterial with
2 X 2 x 2 unit cells based on the blueprint depicted in Figure 4.24. (b) Zoom-
in onto one cross, showing a small crack that opened in the middle of one
membrane during the development process. The position fits to the computed
maximum von Mises stress shown below. (c) Zoom-in of a control sample with
holes intentionally introduced into each hollow cross, resulting in an intentional
not airtight structure. Adapted from Reference [83].

during development.

To show the importance of the smaller cubes at the interior corners shown
in Figure 4.22(b), we have investigated similar design, but without the inner
cubes. It is the structure that is observed in Figure 4.31. Scanning electron
micrographs are depicted in Figure 4.33. As seen in panel (b) the calculated
von Mises stresses are not concentrated in one spot, but rather along the
edges of the cube. When these cubes break during development, large parts
near the edges are experiencing stresses close to the yield stress, resulting
in large cracks that leave open holes. Again, the position of maximum von
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Figure 4.33: (a) Scanning electron micrograph of an unsuccessfully fabricated
metamaterial based on a design similar to the one shown in Figure 4.22(a), but
without the interior cubes sitting in each corner and a different arrangement of
lever arms. (b) Magnified view, showing large openings along the edges of the
hollow cubes. In the calculated von Mises stress distribution shown below, the
maxima are not confined in a small spot, but rather extended along the edges
of the cubes, causing the large openings during development.

Mises stresses calculated for an internal pressure increase fit well with the
position of observed cracks.

This is why we have introduced smaller cubes at the corners inside the
larger hollow cube for the designs of Figure 4.22. With increasing size c, the
maximum von Mises stress moves away from the edges of the large cube
towards the position, where the corner of the smaller cubes meets the mem-
branes. We have fabricated 4 x 4 x 4 unit cells of both the design for negative
effective compressibility and the design for positive effective compressibility
with a lattice constant of 2 = 75 um and a membrane thickness of ¢t = 1.1 um.
Like before, the membrane thickness was reduced by 0.5 pm along the axial
direction to compensate for the aspect ratio. Other geometrical parameters
were the same as for the numerical calculations, with absolute values of
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Figure 4.34: Scanning electron micrographs of a fabricated metamaterial struc-
ture consisting of 4 x 4 x 4 unit cells designed with (a) k. < 0 and (b) % > 0.
It is based on the blueprints shown in Figure 4.22. (c) Magnified view of the
sample shown in (a), zoomed in onto one of the small cracks that formed during
the development process. The calculated von Mises stress distribution of the
same section is depicted next to it. The maximum von Mises stress lies at the
position where the crack occurred. (d) same as (c), but for the structure shown
in (b). Adapted from Reference [84].

b =225um, ¢ = 11.25um, d = 21.71um, I = 52.5um and r = 9.75 um.
Electron micrographs of fabricated metamaterials are shown in Figure 4.34.
The von Mises stresses are concentrated on the spot, where the corners of the
inner cubes touch the membrane. As expected, these are the regions where
small cracks occur during development.

Before measuring the effective compressibility of fabricated metamaterial
structures, the question arises, whether the hollow volumes are really empty
from liquid photoresist. We are able to confirm this under a widefield
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(a)

Figure 4.35: (a) Fluorescence images of different z-layers of one fabricated unit
cell based on the design shown in Figure 4.24(b) (also compare Figure 4.32)
acquired using a confocal laser scanning fluorescence microscope. (b) Cross-
sectional view of a three-dimensional reconstruction calculated from the z-stack
of fluorescence images taken. (c) Corresponding part of the unit cell cut out
from the underlying three-dimensional blueprint of Figure 4.24. Adapted from
Reference [83].

microscope because of the different refractive indices, but to be completely
sure, we have examined one fabricated unit cell based on the blueprint
in Figure 4.24 under a laser scanning fluorescence microscope (LSM510
META, Carl Zeiss AG) with an oil-immersion objective (Plan-Apochromat
63 x NA = 1.4, Carl Zeiss AG). Here, a droplet of immersion oil (Immersol
518 F, Carl Zeiss AG) is put directly onto the structure to minimize the
refractive index mismatch. The written polymer and the liquid photoresist
both exhibit significant autofluorescence [97]. In case the interior volumes
are filled with liquid photoresist, the laser scanning fluorescence microscope
would observe bright fluorescence inside, while empty interior volumes
would not fluoresce.

Selected fluorescence images for different z-positions are depicted in Fig-
ure 4.35(a), showing the top part of the unit cell (left), cylindrical part of the
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crosses (middle) and the center of the crosses (right). A cross-sectional view
of the three-dimensional model obtained from the fluorescence data, repre-
sented as an iso-intensity surface, is depicted in Figure 4.35(b). The hollow
interior structure of the crosses is clearly visible, which means that there is
no residual photoresist inside. To compare the data, the corresponding part
of the three-dimensional model (see Figure 4.24) is depicted in panel (d). As
expected, the interior structures look very similar.

4.2.5 STATIC MEASUREMENTS

As it was just demonstrated, we have successfully fabricated different poroe-
lastic metamaterials that include hollow interior volumes. To test if these
hollow volumes are actually airtight, we first compare both fabricated meta-
materials depicted in Figure 4.32. One has presumably sealed and airtight
hollow crosses, while the other has deliberately introduced holes in each
cross and is, therefore, not airtight.

To measure the effective compressibility, the samples are put inside the
pressure chamber (see Section 3.3). The air pressure inside the cham-
ber is increased stepwise from Py = lbar to a maximum pressure of
P = Py + AP = 4.8bar in less than 30s. At each pressure step, one picture
is taken after the pressure has stabilized (takes about 2s) and the relative
length change AL/ L is measured via image cross-correlation. For AL/L < 1,
the relative effective volume change is obtained via AV, / Ve =~ 3AL/L and
the effective compressibility

3 AL

Keff ~ “LAD (4.10)

can be calculated.

Measured relative length changes averaged in the xy-plane are plotted over
the overpressure AP in Figure 4.36. For the sample with sealed crosses (blue
points), the length change increases linearly with a relative length change
of over 1% at maximum overpressure. Here, we have also measured the
behavior under decreasing pressure after reaching maximum overpressure
(dark blue circles) and observe no hysteresis, suggesting that most of the
crosses are actually airtight. From this length change we calculate a large
negative effective compressibility of ke = —0.8 % /bar.
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Figure 4.36: Relative length change with respect to applied overpressure AP.
Full dots are measured during pressure increase, circles are measured during
pressure decrease. The blue data points are taken on a metamaterial sample
(see Figure 4.32(a)). The observed length increase corresponds to a negative
effective compressibility of —0.8 %/bar. The same measurement on a control
structure with intentional holes introduced into each cross (see Figure 4.32(c))
and on a piece of copper are shown in green and black, respectively. The red
line is calculated numerically with the following parameters: t/a = 1.15%,
r/a = 12%, b/a = 1.5%, c/a = 4%, l/a = 38%, E = 3GPa, and v = 0.4.
Adapted from Reference [83].

Figure 4.37(a) shows the displacement vectors with respect to their mean
position (compare Figure 4.14) that correspond to the blue point at the
largest overpressure AP = 3.8 bar in Figure 4.36. All arrows point outwards,
demonstrating a very homogeneous expansion in the xy-plane.

It is, of course, important to check, whether the sample also expands
in the z-direction. Therefore, we have performed the same measurement
on the same sample, but turned by 90° to image the xz-plane. An image
taken at AP = 3.8 bar is depicted in Figure 4.37(b). The displacement vectors
are calculated with respect to the glass substrate on the bottom. As the
bottom layer is fixed to the substrate, the bottom unit cells can hardly move
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Figure 4.37: Displacement vectors calculated from measured images using image
cross-correlation on a metamaterial composed of 2 x 2 x 2 unit cells (compare
Figure 4.32(a)) under a pressure increase of AP = 3.8 bar superimposed onto (a)
top view and (b) side view of the poroelastic metamaterial. The arrows indicate
a large negative effective compressibility. From the vectors in (a) we derive
Keit = —0.8%/bar. For the control structure that exhibits holes inside each
hollow cross, the displacement vectors are smaller than the small red circles in
the middle of each cross. All arrows have been scaled by the indicated factors.
Adapted from Reference [83].

sidewards, which is why the arrows there mainly point upwards. This
boundary effect vanishes at the second layer of unit cells (third and forth
layer of crosses from the bottom), which exhibit ordinary bulk behavior like
in panel (a).

This result is compared with numerical calculations. We have seen in
Figure 4.23(f) that k¢ strongly depends on the membrane thickness t/a,
which is simultaneously the parameter most difficult to control during DLW.
Therefore, we choose t/a as a fit parameter and otherwise same parameters
as in Figure 4.24. With material parameters of E = 3GPa and v = 0.4
and a thickness of t/a = 1.15% we reproduce the metamaterial behavior
numerically (red line in Figure 4.36). This thickness is 675 um larger than
the thickness t/a = 0.7 % used as an input value for fabrication. However,
due to the finite voxel size, fabricated membranes thicknesses are larger
than the input values. A lateral voxel size of 500 nm is not unusual for the
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4.2 POROELASTIC METAMATERIALS

exposure powers we use. Sample imperfections (see Figure 4.37) are another
source for deviations. All in all, the numerical values are consistent with the
experiments within the fabrication errors.

During the same measurement of the metamaterial sample with holes
in each cross there is no difference between the interior pressure and the
surrounding chamber pressure and the membranes do not warp. As a result,
nearly zero relative length change is measured (green points in Figure 4.36).
We obtain the same result for a piece of copper (black points in Figure 4.36).

Strictly speaking, we would expect to measure a small negative length
change caused by the positive bulk material compressibilities. For the larges
pressure increase AP = 3.8 bar the relative length change is expected to lie in
the order of —10° for the metamaterial with holes and around —9 x 10~7
for copper (see Section 3.3.5). Instead we measure small positive relative
length changes of 1.0 x 10~* and 4.3 x 10~#, respectively. For copper, this
has been explained as an artifact of the measurement setup due to warping
of the chamber window in Section 3.3.5. The magnitude of this optical effect
is about two order of magnitudes smaller than the effective metamaterial
compressibilities and therefore negligible. On top of this measurement
artifact, the metamaterial with holes showed an additional length increase.
We attribute this to absorption of gas, which causes a swelling of the bulk
polymer under pressure. For CO,, this swelling effect is even larger as we
will see later.

In Figure 4.23, the membrane thickness t has been identified as one of
the parameters with the largest influence on the effective compressibility.
We also want to reproduce this trend experimentally and have fabricated
and measured three additional samples with the same parameters as for the
sample measured in Figure 4.36, three samples with a reduced membrane
thickness of At = —0.2 um, and three more samples with an increased thick-
ness of At = 0.2 um. Measured effective compressibilities are plotted over
At in Figure 4.38. They demonstrate the anticipated trend of larger modulus
of negative effective compressibility for thinner membranes. A difference
of 0.4 um in membrane thickness changed the effective compressibility by a
factor of three.

Large Negative or Positive Effective Compressibility

We were able to obtain even larger effects with the simplified simple-cubic
unit cell design. The relative length change of nominally identical samples
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Figure 4.38: Effective compressibility with respect to a change in membrane
thickness At and otherwise identical parameters as in Figure 4.36. The dots
are calculated from measured displacement data. Different colors at each At
represent different samples fabricated with nominally identical parameters. All
horizontal error bars are estimated, vertical error bars are +3¢ calculated from
10 measurements taken on one sample. The black triangle is derived from the
blue points in Figure 4.36. The solid black line is calculated numerically (At
corresponds to a lattice constant of 4 = 150 um). Adapted from Reference [83].

as shown in Figure 4.34 has been measured with the same process as before.
Results are plotted in Figure 4.39. There, we have observed unusually
large length changes of AL/L = 5% for the sample with negative effective
compressibility (panel (a)) and AL/L = —5 % for the sample with positive
effective compressibility (panel (b)) at a maximum pressure increase of
AP = 3.8bar. The slopes are initially linear, which we have reproduced
with numerical calculations in the linear regime (black line). From the initial
slopes we derived an effective compressibility of k. = —4.7 % /bar and
ket = 5.0 %/bar for Figure 4.39(a) and (b), respectively.

As the absolute values |kq| are much larger than in Figure 4.36, geometri-
cal nonlinearities are not negligible any more. At large pressures we observe
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Figure 4.39: Relative length change versus hydrostatic pressure increase mea-
sured via image cross-correlation (blue dots). (a) Metamaterial as shown in Fig-
ure 4.34(a) with a large negative effective compressibility of k. = —4.7 % /bar.
(b) Metamaterial designed for x.¢ > 0 as shown in Figure 4.34(b) demonstrating
large positive effective compressibility of k. = 5.0 % /bar. The black lines are
numerical calculation in the linear regime as in Figure 4.25 with t/a = 1.76 %
and t/a = 1.78 % for (a) and (b), respectively. The red curves are the same calcu-
lations but including geometrical nonlinearities. Adapted from Reference [84].

significant deviations between the measured data and the linear calculations,
starting at around AP = 2bar or AL/L = 3%. Therefore, we have also
included numerical calculations that consider geometrical nonlinearities (red
curves). Apart from that, they are identical to the linear calculations. Clearly,
the red curves fit much better to the experimental data.

For the largest pressure changes, the length changes are easily visible on
the microscopic images. In Figure 4.40, we have put optical micrographs
of the samples as shown in Figure 4.34 taken at AP = Obar and AP =
3.8 bar side by side. Panel (a) and (b) show the sample with k. < 0 (see
Figure 4.40(a)) and a clear expansion at increased pressure can be seen. Panel
(c) and (d) show the sample with x.¢ > 0 (see Figure 4.40(b)) and a shrinkage
is observed. The magnitudes are quantified with image cross-correlation.
One ROI of 121 x 121 pixels is chosen in the middle of each cube. These
displacement vectors are used to calculate the largest length changes plotted
in Figure 4.39.
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Figure 4.40: Optical micrographs of the fabricated metamaterial shown in Fig-
ure 4.34(a) taken at (a) reference pressure Py ~ 1bar and (b) under a pressure
increase of AP = 3.8bar. The dashed yellow box marks the outer edges of the
cubes in (a). The same box is put in (b) to visualize the change in size. Red ar-
rows are calculated with image cross-correlation. They are scaled with a scaling
factor of three. (c) and (d) depict the same as (a) and (b), but for a fabricated
metamaterial as shown in Figure 4.34(b). A clear shrinkage is observed in (d).
Adapted from Reference [84].
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4.2.6 GAs PERMEATION THROUGH POLYMER MEMBRANES

The lack of hysteresis in Figure 4.36 suggests that the sealed hollow volumes
can be considered as airtight for at least the measurement time. To quantify
the time constant, we have measured AL/ L of the same metamaterial as in
Figure 4.36 over time. The results are shown in Figure 4.41 (blue points). At
t = 0 the chamber pressure is increased from Py ~ 1bar to P = Py + 3.8 bar
and a relative length change of AL/L ~ 1% is observed. Afterwards the
chamber pressure is held constant at AP = 3.8bar and AL/L is monitored
over time. After one hour the metamaterial has relaxed back to its initial
state with AL/L = 0. At this point the sealed hollow volumes have ac-
commodated to the increased chamber pressure. The chamber pressure is
now abruptly decreased to the initial value Py while the hollow volumes
still are at increased pressure, which warps the membrane outwards. The
mechanism is effectively reversed and we observe a negative relative length
change of AL/L ~ —1 % that decays back to zero with approximately the
same time constant. From the exponential fits (red curves), a time constant
of Thiy = 745s = 12.4min is derived, much longer than the measurement
time for Figure 4.36.

One possible reason for the pressure compensation over time could be
cracks that are not completely airtight, which causes air flows through the
remaining holes. Assuming laminar flow and small circular holes with
radius r, and a length equal to the L, the air flow is described by the
Hagen-Poiseuille equation. For compressible fluids it reads:

ART  mrg(P— Pe) (pi+PC>

Q=" = &L 2P,

Q is the volume flow at chamber pressure P, P, is the pressure inside the
hollow volumes and y is the viscosity of the fluid or gas. The dependence
on r{ stands out immediately and quantitative calculations (see Appendix A)
reveal that ry, has to be in the order of 10nm to explain the observed time
constant. Since the remaining holes would be a result of the rather erratic
cracking and resealing process during development, fluctuations in their size
would cause large differences in the time constant between samples. If ry
differs by a factor of two, the time constants are expected to differ by a factor
of 16. This is not the case, as time constants on the same order of magnitude
were measured on different samples (compare Figure 4.42). As a result, we
assume the majority of the cracks to be properly sealed and our explanation

(4.11)
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Figure 4.41: The relative length change AL/L of the metamaterial shown in
Figure 4.37 is measured over time to determine the time constant of gas perme-
ation through the membranes of the crosses. At t = 0, the chamber pressure is
increased from ambient atmospheric pressure Py ~ 1bar to P = Py + 3.8 bar and
then held constant. AL/L shows an exponential decay. After AL/L has reached
a nearly constant value, the chamber pressure is decreased to Py. This results
in a reversed effect and a second decay is measured. Red and black curves are
exponential fits. If the chamber is pressurized with air (blue points) we derive a
time constant of T,;; = 745s. For CO, (green points) the decay is significantly
faster, with a time constant of 7co, = 26 s. Adapted from Reference [83].

for the exponential decay of AL/L over time is permeation of air through the
membranes, just like for the solvent during development (see Figure 4.31).

Permeation includes different processes that lead to a particle flow through
the a membrane like diffusion, sorption and desorption. The substance flow
71 can be calculated via an equation similar to Fick’s first law:

. kA(P,—PF)
n= T . (4.12)

It depends on the permeability k, which depends strongly on the type of
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Figure 4.42: Decay of the relative length change over time as shown in Fig-
ure 4.41, but for samples with different membrane thicknesses t (see Figure 4.38).
The numerical input values for t are listed in the legend. From exponential
fits, time constants of Tyg5 = 492s, 7105 = 556 s and Ty 75 = 669 s are obtained
for samples with numerical input values of t = 0.85um, ¢t = 1.05 um and
t = 1.25um, respectively. As expected from Equation 4.12, the decay times
decrease for thinner membranes.

gas or liquid that permeates through the membranes. In literature, the
ratio k/u, which is another measure for permeability, is often quoted in the
units 1barrer ~ 3.346 x 10~ molm/(sm? Pa) [98]. It is connected to the
diffusivity D (in units m?/s) and the solubility S (in units mol/(m?3 Pa)) via
k/p = DS [99]

For many polymers the value for CO, it is often more than one order of
magnitude higher than for Ny, caused by the high solubility of CO; [100-103].
Therefore, we have repeated the same measurement on the same sample, but
pressurized the chamber with CO,. This is plotted in green in Figure 4.41.
As expected, the decay times are significantly shorter. The exponential fits
for CO; (black curves) give a time constant of 7co, = 265s. At the end of the
tirst decay, AL/L approaches a plateau, which we explain with solution of
CO; into the bulk polymer that causes a swelling. We have seen a similar

121



4 RESULTS

swelling behavior with lower magnitude for the control sample pressurized
with air in Figure 4.36.

For the measured time constants of 7co, and T,;; in Figure 4.41 we calculate
k/u = 0.02barrer for air and k/u = 0.6 barrer for CO, (see Appendix A).
Compared to the range of values reported in literature [101, 104], these are
even rather low permeabilities. Also, the fact that they lie more than one
order of magnitude apart is another confirmation that the observed pressure
equalization over time is caused by permeation rather than Poiseuille flow
through a hole. For the latter, the only variable that depends on the type
of gas is the dynamic viscosity, which does not depend on pressure for
ideal gases [105]. As the dynamic viscosities of air (4 = 18.5 uPas) and CO;
(u = 15pPas) [106] have a relative difference of only about 20 %, they can
not explain the observed time constants.

Also Oy has usually a higher permeability than N, [102], which could be
the reason, why the single exponential fits in Figure 4.41 does not fit the
blue data points (air) well at the beginning of the decay. For air, which for
the most part consists of 78 % N, and 21 % O,, two exponential decay times
are expected.

In summary, the time dependent measurements of AL/L have shown
that the cracks we have seen in Figure 4.32(b) are resealed and airtight.
The observed exponential decay is a result of gas permeation through the
polymer. Just by observing AL/L we were able to measure the permeability
and distinguish between different gases.
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Chapter 5

CONCLUSION

In this thesis, I have explored the possibility of tailoring thermal expansion
and effective compressibility with a metamaterial to lie outside range of its
constituents.

The fundamentals were covered in Chapter 2, which included an in-
troduction to thermodynamics and continuum mechanics. It was shown
that the static compressibility can not become negative in thermodynamic
equilibrium. From the field of poroelasticity the effective (or unjacketed)
compressibility was introduced, which, in contrast, can become negative. In
Section 2.3 bounds of material properties were discussed and the reason,
why most materials have positive thermal expansion was explained.

The methods were introduced Chapter 3, including an overview of the
fabrication method direct laser writing, a brief explanation of the finite-
element method with COMSOL Multiphysics, and a description of the
measurement setup. The measurement method image cross-correlation was
explained and demonstrated thoroughly.

With these methods it was possible to measure the thermal expansion
coefficient of copper, which was done as a benchmark. Moreover, a small
systematic magnification error during pressure controlled measurement was
identified and quantified. It was caused by pressure induced warping of the
glass window on top of the pressure chamber.

The main results of this work were summarized in Chapter 4. In Sec-
tion 4.1.1, I have introduced different two-component metamaterial designs
used to tailor the effective thermal expansion coefficient. Instead of compli-
cated multi-step fabrication with two different photoresists, I have demon-
strated the ability to fabricate multi-component structures with one pho-
toresist. With the exposure laser power as the adjustment parameter I have
shown that it is possible to tune the thermal expansion coefficient of the
polymerized material from about 5 x 107> K1 to 8 x 107> K.
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5 CONCLUSION

With this ability, two-component metamaterials were fabricated in only
one writing step and a negative effective thermal expansion coefficient
of aeg = (=54 0.5) x 107°K~1, as well as a near zero effective thermal
expansion coefficient of aeg = (0 £ 0.5) x 107°K~! were obtained. The
measurement method with image cross-correlation enabled us to observe
the principle of operation as well, demonstrating that the crosses rotate in
the expected directions.

Fabrication of the metamaterial design for large positive thermal expansion
has proven to be rather challenging, due to the fact that the pre-bending of the
beams causes a large positive shrinkage during sample development. In ear-
lier experiments, this has always resulted in touching parts, that canceled the
effect. Nevertheless, fabrication was successful eventually by precompensat-
ing the shrinkage and a large positive effective thermal expansion coefficient
of g = (+1240.5) x 107> K~ ! was obtained. In the end of Section 4.1, also
an anisotropic metamaterial was fabricated and measured, showing effective
thermal expansion coefficients of aeg , = (—4+0.5) x 107 °K ! along the
x-axis and aeg = (+15 £ 0.5) x 107> K~! along the y-axis. With such a high
thermal expansion control, these thermoelastic metamaterials can become a
promising candidate to protect sensitive instruments from thermally induced
stresses.

The results on poroelastic metamaterials were presented in Section 4.2. I
have introduced novel designs that employ sealed hollow volumes to obtain
very large negative or positive effective compressibilities. In Section 4.2.2
the unit cells were analyzed with finite-element calculations, which showed
that the membrane thickness has the largest influence on the metamaterial
effect. Additionally, the difference between air filled and evacuated hollow
volumes was quantified. On the dynamic behavior, the sign of the effective
compressibility did not show any significant influence. We have contributed
this to the small ratio of |res /|-

In Section 4.2.4 it was shown, that the the sealed liquid photoresist is
dissolved from the fabricated hollow volumes through cracks that occur
due to osmotic pressure increase. By designing the structure in such a
way that the von Mises stresses during pressure increase are confined in a
small region, I have succeeded in fabricating empty hollow volumes that
are airtight. The emptiness has been confirmed by confocal laser scanning
microscopy while measurements of the effective compressibility over time
has proven that the hollow volumes are airtight and that the observed decay
times are due to gas permeation through the membranes.
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Experimentally, positive and negative effective compressibilities as large
as —4.7 %/bar and 5.0 %/bar were obtained (Section 4.2.5), making the
deformations easily visible just by looking at the sample images. In future,
the large length changes of poroelastic metamaterials could be used to build
actuators, for example, in programmable metamaterials [107-110], or soft
robotics [111] with the surrounding air pressure as an external stimulus.
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Appendix A

TIME CONSTANTS

EstiMmATION OF HOLE RADIUS

We roughly estimate the radius ry, of a circular hole inside the membrane to
explain the time constant 7,i, = 745 of the decay shown in Figure 4.41 (blue
points) with the Hagen-Poiseuille equation

ART _ nrt (P —P.) (P, + P ' (A1)
P 8.” L 2P
In the case of small pressure differences, we can approximate
L+ D
PI;Z;C Cx1, Vi = const. . (A.2)
With 71 = P,V;/(RT) we obtain a differential equation
. 7P
p=-bSp-P A.
1 SVL‘/I( 1 C) ’ ( 3)
which has a known solution
mr P
Pi(t) = Pc + (Pi(0) — P) exp _Wt / (A.4)
and hence a time constant of
8uLV;
St (A.5)
nthC
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Figure A.1: Time constant T of pressure equalization versus hole radius ry, in
double-logarithmic scale. Measured time constant in Figure 4.41 for air is shown
as a dashed line. The lines cross at r, = 11.4nm.

For T = 1, we insert all constants (listed in Table A.1) and obtain a hole
radius of r, = 11.4nm.

Until now, we have assumed small pressure differences. For the maximum
pressure difference at the start of the measurement in Figure 4.41, the calcu-
lations have an additional factor (P, + P.)/(2P.) ~ 0.6. Including this factor,
the calculated hole radius has a similar value of 1, = 13.0 nm.

ESTIMATION OF PERMEABILITIES

We have explained the decay shown in Figure 4.41 with permeation of
gas through the membranes. Here, we calculate the permeabilities that
correspond to the measured time constants. From Equation 4.12 we obtain

. kART
P = Vi—VL(Pi —P). (A.6)
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Parameter | Value \ Description

Vi 74080 um?3 volume of hollow interior

A 9776 um?> effective membrane area

L 1.725 pm hole length or membrane thickness
Tair 745 s measured time constant for air
Tco, 26s measured time constant for CO,

P, 4.8 x 10° Pa chamber pressure

R 8.314]/(mol K) | ideal gas constant

u 18.5 uPas dynamic viscosity of air

T 296.15K room temperature

Table A.1: Constants used for calculations in this chapter. They correspond
to the three-dimensional cross shown in Figure 4.24 and the measurement
shown in Figure 4.41.

The time constant is Viul
it
- A.
" T kART (A7)
For the measured time constants in Figure 4.41 and the constants are listed
in Table A.1, we obtain permeabilities of k/u = 0.02barrer for air and
k/u = 0.6 barrer for CO,.
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Appendix B

PriMmMIiTIVE UNIT CELLS

Here, we show possible primitive unit cells for the design shown in 4.2. If
the unit cell is repeated in a cubic translational lattice, there is additional
translational invariance along the space diagonals (+a/2,+a/2,+a/2)T.
Therefore, the Wigner—Seitz cell is is a truncated octahedron, as shown in
Figure B.1, and the one shown in 4.2 is a bcc unit cell consisting of two
primitive unit cells. However, the structure inside the truncated octahedron
contains lots of disconnected parts, making the Wigner—Seitz cell unsuitable
to describe the metamaterial with.

(a) (b)

Figure B.1: (a) Unit cell as shown in Figure 4.2 with a truncated octahedron
indicating the Wigner—Seitz cell. (b) Wigner—Seitz cell obtained by intersecting
the unit cell with the truncated octahedron.
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Figure B.2: Primitive unit cell containing four of the eight octants in Figure 4.2.

A possible primitive unit cell, that is connected, is shown in Figure B.2. It
consists of four of the eight octants, one along each space diagonal, of the
unit cell shown in Figure 4.2. However, it is rather asymmetric.
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