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1 Introduction

Back in the year 1959 in the lecture "There’s Plenty of Room at the Bottom" [Fey59],
for the first time, Richard Feynman declared the possibility to employ quantum
effect for computation. However, it was 22 years later when Paul Benioff built the
Hamiltonian models of computers [Ben80]. From then on, quantum computing
has been developing, and especially fast over the past 2 decades. Why is quantum
computer so fascinating? Because "with a suitable class of quantum machines you
could imitate any quantum system, including the physical world", said Richard
Feynman [Fey82a].

The building block of a classical computer is the binary bit, which represents either
zero or one. In contrast, for quantum computer, the building block is called quantum
bit (qubit), which can be state zero or state one, or any arbitrary superposition of
these two eigenstates of the qubit [NC02]. Thus, a quantum computer with N qubits
could be in any arbitrary superposition of maximum 2N states at the same time
(without measurement). However, a classical computer with the same number of
bits can only be in one of these states at one time.

It is the qubit that makes the quantum computer so powerful. A qubit is a two-
state quantum-mechanical system which could be realized by various physical
implementations. Such as photons, distinguished by its polarization (horizontal
and vertical) or by Fock state (zero-photon state and single-photon state) [MW95];
trapped ions [CZ95], nucleus (NMR) [CFH97], and quantum dots [Ima+99], with
spin-up and spin-down as the two states; natural atoms [Blo05], with the two states
defined by the lowest two states in its energy level structure. There is another
important type of qubits: superconducting qubits [DWM04; Koc+07; Man+09],
which is employed in this work and also known as "artificial atom". It is supported
by Josephson junctions (which causes the anharmonicity of the energy-ladder), and
have many advantages which makes it a very promising candidate for quantum
computation in the following aspects.

There are five key requirements called DiVincenzo’s criteria [DiV+00] for building a
quantum computer. The first one is scalable physical system with well characterized
qubits. The superconducting qubits meet this crucial requirement perfectly. As
shown in this work, all qubits are printed by a standard fabrication technique on
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1 Introduction

the surface of a silicon substrate. One could scale it up to an arbitrary number of
qubits. It is also outstanding that the characteristic parameters can be designed
according to the wishes, and for certain type of superconducting qubits (for example
the transmon qubit [Koc+07] employed in this work) the transition frequencies of
the superconducting qubits can be varied by changing magnetic field.

The second requirement is the ability to initialize the state of the qubits to a simple
fiducial state. It is simple for superconducting qubits, because ones only needs
to cool down the chip (with dilution refrigerator for example), and wait for the
qubits to relax to the ground states. Due to the cryogenic temperature to maintain
superconducting, thermal excitation is also suppressed. The third is long relevant
decoherence times. Superconducting qubits have relatively short lifetime(nanosecond
to microsecond scale) because of its mesoscopic scale. Nevertheless, there is enough
time for thousands of gate-manipulations [DS13]. The fourth is a “universal” set of
quantum gates. As for the superconducting qubit, it is achievable to rotate it to any
arbitrary position in the Bloch sphere with microwave pulses. Thus one could build
the universal set of quantum gates [Nis+07]. The last requirement is a qubit-specific
measurement capability. Unlike the nature particles, one does not need to worry
about locating the superconducting qubits he wants to manipulate or readout, since
they are fixed on the chip. What’s more, individual channel for manipulating each
qubit could be build on-chip if necessary.

Nowadays, the interaction between the qubits and the readout resonator is of great
importance for quantum information research[Bla+04]. The system consisting of
one qubit and one readout resonator is well described by the Jaynes-Cummings
model[JC63] which was established in the year 1963. And this model was generalized
5 years later to the model named Tavis-Cummings model[TC68] which describes the
system of multiple qubits and a mutual resonator.

Multiple controllable two-level systems coupled to a mutual resonator has been
employed in many novel applications: for example, the quantum von Neumann
architecture [Mar+11], the systems for tunable long-range interaction between
distant qubits [Fil+11a; Maj+07a; SPS07], the multi-qubit entanglement created
by a collective interaction [RSR07], protection of the system against radiation
decay [Fil+11b], and so on. The multifunctionality enables one to develop the
potential of Tavis-Cummings systems in the field of quantum computers. An analog
quantum simulation [Fey82b; GAN14] for a Dicke model [Dic54] (generalized
Tavis-Cummings model) provides the possibility to study the interaction between
light and mater in the ultra-strong coupling regime, such as the corresponding
eigenenergies and the transient dynamics [Bra+17; Fri+18].

2



1 Introduction

In this thesis, we study the Tavis-Cummings system which consists of a supercon-
ducting CPW resonator and 8 transmon qubits whose transition frequencies could
be controlled individually. It is a well understood platform to study not only the
desired effects but also the parasitic phenomenons in scaled-up quantum systems.
Naturally, the more qubits we build in the system, the more complicated it gets, and
the more challenging the circuit control is.

In this work, I show full tunability of a quantum register of 8 transmon qubits, and in
principle, it could be scaled up to any number of qubits. And the calibration strategy
allows for precise local frequency-control up to 6 qubits. When N qubits degenerate
with the resonator, a level repulsion of 2g

√
N is expected in the spectrum. In other

words, the
√

N enhancement of the effective coupling strength of a qubit-ensemble
to the resonator is a hallmark of Tavis-Cummings model. With the 8-qubit sample
studied in this thesis, I am able to bring the transmon qubits one by one into
resonance with the resonator, and measure the effective coupling strength. In this
way it is proved to be an adequate analog quantum simulator for the Tavis-Cummings
model. In previous experimental works, the number of qubits which play a role
in the collective behavior is derived after measurement according to the fitting of
theoretical model, rather than specified beforehand [Mac+14; Shu+17].

The experiments done in this thesis cover key properties of the system, such as local
qubit control, calibration of crosstalk, decoherence, Fano-shaped resonator because
of dissipative background, the higher-level transitions of the qubits. All of these are
subtle features of any recent physical quantum simulators.

The aim of this thesis is to build up scalable fully-controllable qubit circuits. The
approach combines parallel manipulation and readout of multiple qubits using a
frequency-division multiplexing scheme, and meanwhile isolates the qubits from the
non-corresponding control-components. Hence precise single-qubit manipulation
could be done for all qubits. This type of system (multiple qubits manipulated
and readout by a mutual resonator bus) could be used for many fields in quantum
physics, not only for quantum simulation, but also for computational applications,
many-body physics and so on.

The thesis is organized as follows: the fundamental theoretical background of the
coplanar waveguide resonator, superconducting Josephson junction, and transmon
qubit employed in our work is introduced in Chapter 2. The model of the coupled
system and the readout method are discussed as well. Design of the samples
including simulation with the generated pattern and the fabrication technique are
explained in Chapter 3. Experimental results on the testing single-qubit chip is
shown in Chapter 4. In this chapter, measurement on the interested 8-qubits chip
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are discussed in details including fitting to the corresponding theoretical model. In
Chapter 6 we summarize our work and foresee the potential applications.
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2 Circuit QED

2.1 Coplanar waveguide resonator

In the field of Circuit quantum electrodynamics (Circuit QED), both the harmonic
oscillator and the 2-level system work in GHz range, i.e. work with microwave. The
typical macroscopical device to carry the high-power microwave pulses is coaxial
cables. However, it is too bulky for the on-chip design of circuit QED. Instead,
distributed element resonator is a perfect candidate. It could be used to couple
the photons of microwave signal to the superconducting qubit, to implement qubit
readout, and could also work as a quantum bus [Maj+07b] that couples more than
one qubit together.

Superconducting micro-scale coplanar waveguide (CPW) resonator [Wen69; Göp+08]
is chosen in our work because it has a number of favourable properties compared with
other distributed element constructions, such as the micro strip line resonator. The
impedance of CPW design is decided by its transverse size, rather than influenced
significantly by the property of the substrate. What’s more, no requirement of
back-side metalization simplifies the fabrication process and protects the elements
on the front side.

A conventional CPW structure consists of a single conducting strip (center conductor)
accompanied by two pieces of much wider conductors which plays the role of ground
plane. The gap from the center conductor to the ground plane on both sides are the
same and stay constant along the center strip. All metalization is printed on the
same side of the substrate, that’s why it is called coplanar.

The illustration of CPW resonator could be found in Fig. 2.1. The length of the
center conductor varies from several millimeter to two dozen millimeters, so that
the frequency of the fundamental model of the λ/2 resonator is in GHz range. In
the later discussion, introducing a effective permittivity is convenient. According to
Ref. [Poz09], a metal layer sandwiched between the substrate and vacuum could
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2 Circuit QED

Figure 2.1: (Color online)The coplanar waveguide resonator [Poz09]. a) the 3D figure of the building
block of the CPW resonator. The color of metal layer and the substrate are blue and gray respectively. a
center superconductor and two accompanied grounding superconductor printed on a substrate. Both
sides have the same gap between the center conductor and the grounding conductor. With a break
on both ends of the center conductor, it forms a λ/2 resonator. b) cross-section illustration of CPW
resonator corresponding to a). c) The distribution of voltage and current of the resonator. The voltage
has antinodes on both ends of the resonator, while the current has nodes.

be represented by the metal layer inside a homogenous dielectric material with the
effective permittivity, which is calculated by

εe =
εr + 1

2
+

εr − 1
2

(1 + 12h2/w)−1/2, (2.1)

with the dimensions and parameters labeled in Fig. 2.1. εr is the relative permittivity
of the substrate. The type of λ/2 resonator is chosen in our experiment. That means
both ends of the center conductor are floating, as there are gaps at both ends with
width wg, which forms the standing wave of current and voltage inside the center
conductor (Fig. 2.1 c) and the created coupling capacitor sets the coupling strength
from the resonator to the in and out port. At both of the ends of center conductor
the current has a node while the voltage has a antinode. Since the transmon qubits
(discussed in Chap. 2.3) are capacitively coupled, for the fundamental model of the
resonator, they must sit at the end of the resonator. The fundamental model of the
resonator f0 is straightforward:

f0 =
υph

λ
=

υph

2l
. (2.2)
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2.1 Coplanar waveguide resonator

It corresponds to the wavelength of the fundamental model λ0 = 2l. As l is the
length of the resonator which must be integer multiples of half wave-length. Thus
the higher model of the resonator fn = n f0, n = 2, 3, 4 . . .. The phase velocity

υph =
c√
εe

, (2.3)

here c is the speed of light in vacuum, and
√

εe is the effective permittivity discussed
above. The corresponding propagation constant is then given by

β = k
√

εe. (2.4)

According to Ref. [Göp+08], the capacitance and inductance per unit length Cl and
Ll of CPW transmission line is

Cl = 4ε0εe
K(k0)

K(k′0)
, (2.5)

Ll =
µ0K(k′0)

4Kk0
. (2.6)

with K (the complete elliptic integral of the first kind) and arguments

k0 =
w

w + 2s
, (2.7)

k′0 =
√

1− k2
0. (2.8)

Here w and s are the center conductor width and the gap width of the CPW
respectively(See Fig. 2.1 b). One notices that Cl is determined by the geometry of
the CPW resonator and effective permittivity εe, on the other hand, Ll is determined
by the geometry only. The characteristic impedance of the CPW which is defined by
the ratio of maximum voltage and current is calculated by

Z0 =

√
Ll
Cl

. (2.9)

It is noteworthy that as discussed in Ref. [Sim04], the structure of the CPW is
not with random value, but with the layout that results in the Z0 getting close to
50Ω, because it is the standard impedance for all the electronic equipment used in
measurement. For our work, the center conductor width w = 6.6µm and the gap
width s = 6.6µm are chosen. The substrate is pure silicon with thickness of 300µm
and relative permittivity εr = 11.6. The design and measurement will be shown in
Chap. 3.
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2 Circuit QED

Figure 2.2: (Color online)The equivalent circuit diagram of CPW resonator. a) The resonator (red) is
coupled to the input and output ports through a coupling capacitance and a serial loading resistor. The
resonator could be replaced by distributed elements (blue). Around resonance, the resonator could be
represented by a lumped-element RLC oscillator (shown in green). b) The coupling capacitance Cκ

and serial loading resistor RL are transformed to parallel capacitor and resistor according to Norton
theorem to analyze their function.

The transmission line resonator could be presented by a parallel RLC oscilla-
tor [Göp+08] around its resonant frequency. The circuit diagram and corresponding
parameters are shown in Fig. 2.2 (a). The impedance of the RLC oscillator is

ZRLC =

(
1
R
+

1
iωLn

+ iωC
)−1

. (2.10)

When the angular frequency ω approximates ωn, where ωn = 1/
√

LnC is the angular
frequency of the nth mode,

ZRLC ≈
R

1 + 2iRC(ω−ωn)
, (2.11)

with arguments

R =
Z0

lα
, (2.12)

Ln =
2Ll l
n2π2 , (2.13)

C =
Cl l
2

, (2.14)
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2.1 Coplanar waveguide resonator

where α is the attenuation constant. The coupling capacitance Cκ and serial loading
resistor RL (see Fig. 2.2 (a) could be transformed to parallel capacitor C? and resistor
R? according to Norton theorem to analyze their function (see Fig. 2.2 (b), and
Ref. [Göp+08])

C? =
Cκ

1 + (ωnCκ RL)2 , (2.15)

R? =
1 + (ωnCκ RL)

2

(ωnCκ RL)2 . (2.16)

Here RL has a standard value of 50Ω, and Cκ could be obtained by simulation of the
real geometry which will be discussed below.

Approximating CPW resonator to a RLC oscillator is convenient to characterize
the resonator. For example the quality factor (i.e. Q factor), a crucial parameter
which describes how fast the energy is lost of the resonator. The Q factor is defined
by [Poz09]

Q = ωr
average energy stored

power loss
. (2.17)

The internal Q factor Qi is the quality factor of the resonator itself only. But an
additional circuit coupled to the resonator is always needed to manipulate it, which
cause addition loss corresponding to the coupling Q factor Qc. Thus, the total Q
factor of the coupled system is named as loaded quality factor QL, and the relation
between these Q factors are

Q−1
L = Q−1

c + Q−1
i . (2.18)

The loaded Q factor corresponding to the symmetric Norton equivalent circuit is
calculated by

QL = ω?
n

C + 2C?

R−1 + 2R−1
?

, (2.19)

where
ω?

n = 1/
√

Ln(C + 2C?) (2.20)

is the shifted resonator angular frequency. For C? � C, the shift of the resonator is
negligible, Qi and Qc could be calculated by

Qi = ωnRC, (2.21)

Qc =
ωnR?C

2
. (2.22)
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2 Circuit QED

2.2 Superconductivity and Josephson junction

2.2.1 Superconductivity

Exact zero electrical resistance was first found by H. K. Onnes [Onn11] in 1911
during the investigation on mercury at low temperature, which led to the production
of liquid helium. The next milestone is the observation of complete expelling of
magnetic flux fields in superconductors when cooled below their critical temperature,
by W. Meissner and R. Ochsenfeld [MO33] in 1933.

There was no microscopic theoretical explanation of superconductivity until the year
1957, in which the BCS theory [BCS57] was proposed by J. Bardeen, L. Cooper and J.
R. Schrieffer. According to their theory, particle called Cooper pair is formed by a pair
of electrons with opposite spin and momentum because of a weak photon-induced
attraction. Since the Cooper pairs have zero total spin and momentum, they obey
the Bose-Einstein statistics [Bos24], and all condense to the lowest energy state at
low temperature. The coupling between the pair of electrons of the Cooper pair
also results in the energy gap ∆ between the ground state (which is occupied by
the Cooper pairs) and the excited states of the single electrons (which are called
quasi-particles). This finite energy gap also explains the perfect conductivity of
superconductors, because the scattering is inhibited. The quantization of flux [DF61;
DN61] proofs that inside superconductor, the carriers of charge are Cooper pairs
rather than single electrons which means the superconducting current in a closed
loop is only able to create the flux of integer multiples of the flux quantum Φ0 = h/2e,
where e is the electron charge and h is Planck constant.

In the year 1950, V. L. Ginzburg and L. D. Landau developed Ginzburg-Landau theory
to describe superconductors without examining the microscopic properties [Tin04].
The wave function corresponding to macroscopic superconducting state is

Ψ(~r, t) = |Ψ(~r, t)|eiθ(~r,t), (2.23)

where the amplitude |Ψ(~r, t)| corresponds to the Cooper pair density, and θ(~r, t) is
the phase. There after, superconductivity was treated as a macroscopic quantum
effect based on the behavior of the Cooper pairs in the superconductor.

2.2.2 Josephson Junction

A Josephson junction [Jos62] is a device consists of two superconductors connected
by a thin layer insulator. The amplitude of the wave function remains constant
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2.3 Transmon qubit

inside a bulky superconductor and decays exponentially exceeding the edge (see
Fig. 2.3). However, if the insulator is thin enough, the wave function of one side is still
non-negligible on the other side of the barrier, which means that the Cooper pairs are
able to tunnel through the barrier to the other side. In the year 1962, B. D. Josephson
developed two relations to describe the physics of Josephson junction [Jos62]: the
superconducting phase evolution equation and weak-link current-phase relation,
which are in the following form:

U(t) =
h̄
2e

∂ϕ

∂t
I(t) = Ic sin(ϕt),

(2.24)

These two relations indicate as long as the constant supercurrent floating through
the junction is no larger than the critical current, there is no voltage through the
junction. If the supercurrent (or the phase) changes, the voltage through the junction
depends on the time evolution of the phase.

Figure 2.3: (Color online)The Josephson junction [Lis03]. (a) illustrates the building block of the
Josephson Junction: two bulky superconductors separated by a thin layer of insulator. (b) shows the
curve of the amplitude corresponds to the Cooper pair density. Inside the thin insulator, there is
overlap between the 2 exponentially-decayed wavefunctions, which permits the interaction between the
2 superconductors.

2.3 Transmon qubit

In the past few decades, qubit based on superconducting Josephson junction
has developed enormously. Because of its excellent scalability, controllability and
well-established fabrication technique, superconducting qubit is considered as
a promising candidate for quantum computing. It evolves from typical charge
qubit [Bou+98], flux qubit [Moo+99; Chi+03] and phase qubit [Mar09], to more
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2 Circuit QED

complicated superconducting qubits, such as transmon qubit [Koc+07], Xmon
qubit [Bar+13], fluxonium qubit [Man+09] and so on.

The qubit employed in this work is transmission-line shunted plasma oscillation
qubit, namely transmon qubit. It is originated from the Cooper pair box (CPB)
qubit, however works in a totally different region of the proportion of the Josephson
energy (EJ) and charging energy (EC), where EJ � EC. The schematic diagram and
equivalent circuit diagram are shown in Fig. 2.4. The red part in Fig. 2.4 (a) is the inter
digital capacitance that creates the large shunting capacitance which corresponds to
Cs in Fig. 2.4 (b). The two black crosses represent the Josephson junctions. The length
of the upper and lower capacitors coupled to the center conductor and the ground
respectively are varied, in order to change the effective coupling capacitance. The
Hamiltonian of transmon is the same with the CPB qubit, which reads as [Koc+07]

Ĥ = 4EC(n̂− ng)
2 − EJ cos ϕ̂. (2.25)

The decisive difference of transmon from the CPB system is the relatively large
shunting capacitance (Cs), which therefor reduces the charging energy EC =

e2/2Ctotal (Ctotal = Cg + Cs + CJ), so that enhances the EJ/EC ratio. The large EJ/EC
ratio reduces the sensitivity of charge noise, while sacrifices the anharmonicity
of the energy level. However, that’s worthwhile since the anharmonicity drops
algebraically while the sensitivity decreases exponentially in EJ/EC. The potential
of transmon is cosine type because the term containing EJ plays the main role of the
system. By expanding this term to the 4th order around ϕ = 0, and then treat the
quartic term in the leading order perturbation theory, the eigenenergies inside the
cosine potential are derived:

Em ' −EJ +
√

8EJ EC(m +
1
2
)− EC

12
(6m2 + 6m + 3), (2.26)

where m is the mth level, and
√

8EJ EC/h̄ is the Josephson plasma frequency. The
transition frequency between the ground state and the first excited state is

f01 =
E01

h
=

E1 − E0

h

=

√
8EJ EC − EC

h
.

(2.27)

The absolute anharmonicity is defined to be α ≡ E12 − E01, and the relative
anharmonicity is αr ≡ α/E01. According to the eigenenergies in Eq. 2.26, one obtains

α ' −EC,

αr ' −
√

EC/8EJ .
(2.28)
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2.4 Theoretical model of qubits coupling to a harmonic oscillator

Figure 2.4: (Color online)Layout of the transmon qubit. (a) is schematic diagram of transmon qubit. the
red part is the inter digital capacitance that creates the large shunting capacitance (Cs in figure b).
The two black crosses represent 2 Josephson junctions. The upper and lower capacitors coupled to the
center conductor and the ground respectively are varied to vary the effective coupling capacitance.
(b) shows the equivalent circuit diagram of transmon coupled to a CPW resonator. The 2 Josephson
junctions form a SQUID loop. By manipulating the flux penetrating this loop, one is able to control the
transition frequency between the eigenstates of the transmon.

2.4 Theoretical model of qubits coupling to a harmonic
oscillator

2.4.1 Jaynes-Cummings model

In the year 1963, E. T. Jaynes and F. W. Cummings built the most fundamental
theoretical model to describe a single atom interacting with a harmonic cavity [JC63].
Under the rotating wave approximation which eliminate the energy non-conservation
terms in the interaction Hamiltonian, the Hamiltonian of this model is known as:

Ĥ = h̄ωc(â† â +
1
2
) +

h̄ωa

2
σ̂z + h̄g0(âσ+ + â†σ−), (2.29)

where ωc and ωa are the frequencies of the cavity and the atom respectively, and g0 is
the coupling strength between them. This Hamiltonian could be solved analytically.
Define detuning ∆ = ωa −ωc. In the basis |g, n + 1〉, |e, n〉 (n is the photon number
in the resonator, and |g〉, |e〉 denotes the uncoupled ground state and excited states
respectively), one obtains the eigenenergies

E±,n =(n + 1)h̄ωc ±
h̄
2

√
4g2

0(n + 1) + ∆2,

Eg,0 =− h̄∆

2
.

(2.30)
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2 Circuit QED

and correspond dressed states

|+, n〉 = cos θ|e, n〉+ sin θ|g, n + 1〉,
|−, n〉 =− sin θ|e, n〉+ cos θ|g, n + 1〉,

ground state = |g, 0〉,
(2.31)

where

θ =
1
2

arctan(
2g0
√

n + 1
∆

) (2.32)

Two important opposite conditions of the coupled system are discussed in the
following subsections: zero detuning and dispersive limit. At zero detuning the
system gets to an maximally entangled state, and dispersive limit is very useful for
qubit measurement.

2.4.2 Zero detuning

In Circuit QED, the atom is represented by the superconducting qubit, and the cavity
by a on-chip distributed elements resonator (in our case, a λ/2 CPW resonator).
However, the Hamiltonian remains similar to Eq. 2.29. In the zero detuning case, i.e.
the detuning between the qubit and the resonator ∆ = 0 (from now on, the frequency
ωa and ωc are replaced by ωq and ωr respectively). The energy-level scheme of the
uncoupled system is depicted in Fig. 2.5 by the colorized lines on the two sides,
and the eigenenergies of the dressed states are represented by the black line in the
middle. The eigenenergies of Eq. 2.30 are reduced to

E±,n =(n + 1)h̄ωr ± h̄g0

√
(n + 1),

Eg,0 =0.
(2.33)

The vacuum Rabi splitting for a pair of dressed states |±, n〉 reaches its minimum
value

∆En = 2h̄g0
√

n + 1. (2.34)

The angel θ defined by Eq. 2.32 is equal to π/2. Thus, the eigenstates reduce to the
maximally entangled states (except for the ground state)

|+, n〉 = 1√
2
|e, n〉+ 1√

2
|g, n + 1〉,

|−, n〉 =− 1√
2
|e, n〉+ 1√

2
|g, n + 1〉.

(2.35)
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2.4 Theoretical model of qubits coupling to a harmonic oscillator

Figure 2.5: (Color online)Energy level scheme of single 2-level qubit interacting with a resonator in the
zero detuning case. The energy levels of the uncoupled system is depicted by the colorized lines on the
two sides, and the eigenenergies of the dressed states are represented by the black line in the middle.
For dressed states, the energy level difference (vacuum Rabi splitting) between a pair of the dressed
states scales up with

√
n.

2.4.3 Dispersive limit

The goal of Circuit QED is to coherently control and readout the superconducting
qubit. It has been illustrated that in the dispersive limit, it is probable to operate
and readout a transmon qubit through the coupled resonator [Koc+07]. Operating
the qubit is simply done by sending a microwave pulse through, while readout is
realized by measuring the shift of the phase or amplitude of the microwave field
transmitted (or reflected) by the resonator.

The dispersive limit means the detuning between the qubit and the resonator ∆ is
very large compared to the corresponding coupling strength, namely g0/|∆| � 1.
Employing a unitary operator

Û = exp
[

β0(aσ+ − a†σ−)
]

, (2.36)

where β0 = g0/∆. And making the canonical transform ÛĤÛ† on the Hamiltonian
of Eq. 2.29. The interaction term is eliminated to the lowest order in β0, so that the
following effective Hamiltonian is obtained:

Ĥe f f = h̄(ωr +
g2

0
∆

σ̂z)â† â +
h̄
2
(ωq +

g2
0

∆
)σ̂z. (2.37)

By defining the dispersive shift

χ0 =
g2

0
∆

, (2.38)
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2 Circuit QED

Figure 2.6: (Color online)Energy levels of Jaynes-Cummings model under dispersive limit. The qubit
frequency is renormalized by the dispersive shift. The resonator transition frequency depends on the
state of the qubit.

the effective Hamiltonian is rewritten as

Ĥe = h̄(ωr + χ0σ̂z)â† â +
h̄
2
(ωq + χ0)σ̂z. (2.39)

One notices that the transition frequency of the qubit is shifted by χ0 because of the
interaction. More interestingly, the frequency of the resonator now depends on the
state of the qubit. If the qubit is at the ground state, the resonator is shifted down to
ωr − χ0, to the contrary, the resonator shifts up in frequency to ωr + χ0. Thus, by
measuring the shift of the resonator, the state of the qubit could be deduced. The
energy-level scheme in dispersive limit is shown in Fig. 2.6.

2.4.4 Jaynes-Cummings model for Transmon qubit

The difference between natural atom and the transmon qubit which is used in our
work is that the anharmonicity of the atom is much larger, so that the higher energy
levels are ignored, only the first two states work. To the contrary, due to relatively
small anharmonicity, higher levels of transmons should also be taken into account
in the theoretical model for transmon qubit coupled to resonator. The energy ladder
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2.4 Theoretical model of qubits coupling to a harmonic oscillator

scheme of a transmon coupled to a resonator is shown in Fig. 2.7. Thus, in the basis
of the non-coupled transmon states |i〉, by generalizing Eq. 2.29,Jaynes-Cummings
Hamiltonian of the system consists of one transmon qubit and one resonator is
obtained [Koc+07]

Ĥ = h̄ωr â† â + h̄ ∑
i

ωi|i〉〈i|+ h̄ ∑
i,j

gi,j|i〉〈j|(â + â†). (2.40)

The coupling energy
gi,j = 2βeV0

rms〈i|n̂|j〉/h̄, (2.41)

where V0
rms =

√
h̄ωr
2Cr

, β = Cg/Ctotal , and n̂ denotes the Cooper pair number operator
of the transmon, and has the following form

n̂ = −i 4

√
EJ

32EC
(b̂− b̂†). (2.42)

Under the condition EJ � EC, the term 〈j + k|n̂|j〉 (|k| > 1) tends to zero. This
means only the coupling between adjacent energy levels of the transmon play the
dominating role. Getting rid of the nonadjacent-level coupling terms and apply the
rotating wave approximation likewise, one derives the effective Jaynes-Cummings
Hamiltonian for transmon interacting with a harmonic oscillator

Ĥe f f = h̄ωr â† â + h̄ ∑
j

ωj|j〉〈j|+ h̄ ∑
j
(gj,j+1|j〉〈j + 1|â† + H.c.). (2.43)

This Hamiltonian is block-diagonal and does not have an analytical solution. In spite
of this, under the dispersive condition (discussed below), the according Hamiltonian
could be solved analytically.

To readout the transmon qubit, as discussed in the last section, the coupled system
should work in the dispersive limit. Defining the detuning between the transmon and
resonator as ∆ i,i+1 = ωi,i+1 −ωr, dispersive limits means ∆ i,i+1 � gi,i+1, especially
∆0,1 � g0,1. Employing a unitary operator

Û = exp

[
∑

i
βi,i+1(â|i + 1〉〈i| − â†|i〉〈i + 1|)

]
, (2.44)

where βi,i+1 = gi,i+1/∆ i,i+1. And making the canonical transform ÛĤÛ† on the
Hamiltonian of Eq. 2.40, the interaction term is eliminated to the lowest order in
βi,i+1. Keeping in mind that the virtual transitions by the excited states is allowed
due to the relatively small anharmonicity, and restricting the Hilbert space to the
first 2 states of the transmon, the following effective Hamiltonian is obtained:

Ĥe f f =
h̄
2
(ω01 + χ)σ̂z + h̄(ωr −

χ12

2
+ χσ̂z)â† â. (2.45)
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2 Circuit QED

Figure 2.7: (Color online)Energy level scheme of a transmon qubit coupled to a resonator [Koc+07].
States |g〉, |e〉, | f 〉 denote the ground state, first excited state and the second excited state of the transmon
respectively. The number in the coupled sates (for example |0, g〉) stands for the photon number of the
resonator. ∆0,1 is the detuning between the frequency of the resonator and the transition frequency of
the qubit.

The dispersive shift χ = χ01 − χ12
2 , where

χij = g2
ij/(ωij −ωr). (2.46)

One notices that not only the transition frequency of the qubit is shifted because of
the interaction. More importantly, the frequency of the resonator is renormalized
based on the qubit state. If the qubit is on the ground state, the renormalized
resonator frequency ω−r = ωr − χ01, while on the contrary, ω+

r = ωr + χ01 − χ12.
Thus, by measuring the frequency of the resonator, the state of the qubit is deduced
(shown in Fig. 2.8). Moreover, higher level transition of the qubit is also observed
and distinguishable by spectroscopically measure the shift of resonance frequency of
the resonator, as the higher the transition level is, the more the resonator is shifted.

2.4.5 Tavis-Cummings model

The Tavis-Cummings model was introduced 5 years later than the Jaynes-Cummings
model, by M. Tavis and F. W. Cummings to describe multiple two-level system
coupled to a single resonator [TC68]. It is of more interest, because single qubit is not
enough to build a system that is able to perform quantum computing or quantum
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2.4 Theoretical model of qubits coupling to a harmonic oscillator

Figure 2.8: (Color online)Dispersive readout scheme of the transmon qubit. The transmission frequency
of the resonator depends on the coupled transmon qubit state. To measure the qubit state, one point on
the frequency that is sensitive to the resonator shift is picked out. By observing the change on the
amplitude of this point, one deduces the state of the qubit.

simulation. For multiple atoms coupled to a cavity, analogous to Eq. 2.29, neglect
the interaction between the atoms, the Hamiltonian of Tavis-Cummings model is

Ĥ = h̄ωc â† â + h̄
N

∑
i=1

(ωi
2

σ̂z
i + gi(âσ+

i + â†σ−i )
)

, (2.47)

where i denote the ith qubit, and N is the total number of the qubits.

Converting it into the system I study, based on Eq.2.43, I obtain the effective
Hamiltonian:

Ĥ = h̄ωr â† â + h̄
N

∑
i=1

∑
j

(
ωij |j〉〈j|+ (gij,j+1 |j〉〈j + 1|â† + H.c.)

)
, (2.48)

where i denotes the ith qubit and j denotes the jth level of that qubit. In the later
chapters about the experiment, one notices that when the power of the driving field
for the transmon qubits are small enough, only the transition between the lowest 2
levels are excited, the higher the power, the more higher levels are visible.
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3 Sample design and fabrication

The pattern of our sample is designed employing one of the Tanner softwares
called L-Edit, which is very convenient to build models (named T-cell) of different
components, and adjust the geometry automatically. Fig. 3.1 shows the window
of 1-qubit-chip designing. The multicolored structure is because that the design is
covered by multiple layers. The final pattern (see Fig. 3.2) is generated in the form of
GDS file by boolean derivation of the layers. Thus, for different fabrication procedure,
the corresponding layout could be generated separately applying different algorithm.

The complete layout of the Circuit QED system studied in this work is illustrated in
Fig. 3.2. The single-transmon chip depicted in figure (a) is designed to do the test on
the quality of the Josephson junction, transmon qubit and the resonator. The big
pink meander structure is the CPW resonator. The transmon qubit is the small block
at the left end of the resonator with violet color. The long "U-shape" pink structure
on top of the qubit is the flux bias line that connected to DC current source. The nine
large violet structure with 4 square paddle for each are the test Josephson junctions
which could be measured by the 4-point probe station. The most interesting 8-qubit
sample is shown by figure (b), which has the same design as figure (a), only with
more qubits and flux bias lines, and fabricated at the same time with the single-qubit
chip.

In this chapter I talk about how the CPW resonator and the transmon qubit are
designed and fabricated. The layout is printed onto a intrinsic silicon substrate
which has large internal quality factor. The material of superconductor is chosen to
be aluminum due to its high performance for high Q resonator and well-established
fabrication process for Josephson junction.

3.1 Design of the CPW resonator

3.1.1 Geometry of the resonator

Fig. 3.2 (c) shows the layout of our meandered λ/2 CPW resonator. The three insets
show the zoom-in of the coupling gap to input/output ports(blue), the meandered
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3 Sample design and fabrication

Figure 3.1: (Color online)Design of the sample employing L-Edit. Different layers are indicated by
different colors. The final pattern is generated in the form of GDS file by boolean derivation of the
layers. Thus, for different fabrication procedure, the corresponding layout could be generated separately
applying different algorithm.

structure (green) which reduce the size of the chip, and the slots for transmon
qubits (black). Corresponding to Fig. 2.1, the center conductor width w = 10µm
is chosen. The thickness of intrinsic silicon substrate is h2 = 300µm with relative
permittivity εr = 11.6. According to Eq. 2.1, the effective permittivity is calculated
to be εr ≈ 6.6. As discussed in the last chapter, the ratio k0 = w/(w + 2s) defines
the capacitance and inductance per unit length Cl and Ll , which in turn determines
the characteristic impedance Z0. The gap s between the center conductor is not
chosen randomly, it should meet Z0 ≈ 50Ω, which matches the industrial standard
for all equipment and the coaxial cables. As a result, the gap of 6.0 µm is chosen.
The characteristic parameters of the resonator are calculated to be Cl = 159.9 pF
(Eq. 2.5), Ll = 438.5 nH (Eq. 2.6) and Z0 = 50.6 Ω (Eq. 2.9).

Considering the technical limitation of the measurement setup which I discuss later
and the transition frequency of qubits I want to measure, the fundamental frequency
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3.1 Design of the CPW resonator

Figure 3.2: (Color online)Layout of the sample. (a) The sample with only 1 qubit coupled to the CPW
resonator. The big pink meander structure is the CPW resonator. The transmon qubit is the small
"I-shape" component at the left end of the resonator with violet color. The long "U-shape" pink structure
on top of the qubit is the flux bias line that connected to DC current source. The nine large violet
structure with 4 square paddle for each are the test Josephson junctions which could be measured by
the 4-point probe station. (b) The same design as illustrated in figure a, only with more qubits and flux
bias lines. (c) Layout of the CPW resonator only. The three insets show the zoom-in of the coupling gap
to input/output ports (blue), the meander structure (green) which reduce the size of the chip, and the
slots for transmon qubits (black).

of resonator at 7.0 GHz is targeted. The corresponding length of the resonator could
be calculated [Göp+08]

l =
υph

2 f0
=

c√
εe

1
2 f0

. (3.1)

Plugging in the numbers into this equation, the length of 8.349 mm of the fundamental
mode is obtained. It is worth noticing that, the angular frequency of the resonator
is not exactly 7 GHz, but shifted downwards due to the coupling to the readout
components. A more accurate frequency could be calculated by Eq. 2.20, which
considers not only the resonator’s capacitance, but also the effective capacitance of
coupling to readout ports.
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3 Sample design and fabrication

3.1.2 Coupling to the readout ports and quality factor
determination

The coupling capacitance

The capacitor Cκ created by the gap at both ends of the resonator to the input and
output ports is a crucial parameter of the resonator. It determines the coupling
strength of the resonator to its readout ports, thus decides the coupling quality factor
and the loaded quality factor as well. By adjusting the coupling finger length (or the
gap) shown in the inset with blue frame in Fig. 3.2 (c), Cκ could be varied. A targeted
loaded quality factor QL = 5000 is suitable, as it is neither too low which makes the
resonator very lossy, nor too high which results in a too small bandwidth of the
resonator, making it inappropriate for qubit-readout. According to our design, Cκ

should be around 5.6 f F. Based on this value, the loaded quality factor is calculated
to be Q = 4945 according to Eq. 2.19.

How to get the value of the coupling capacitor of the designed geometry? A
convenient software named Sonnet is employed (see Fig. 3.3). The box wall is
acquiescently grounded (black frame shown in Fig. 3.3 (a). Two ports are placed
on the wall and linked to the 2 coupling fingers. Running the simulation within a
self-defined broad frequency range, one is able to view the result by the response
viewer. Adding the equation curve to the graph named "Capacitance2" which gives
the capacitance between any pair of ports, the capacitance is obtained (shown in
Fig. 3.3 (b)-(d). Although it looks undulant, actually the range is rather tiny (within
the range of ±0.002 f F). The longer the fingers, the larger the coupling to the
input/output ports. The finger length in (b), (c) and (d) are 60 µm, 70 µm and 80 µm
respectively. According to the result, a length of 70 µm suits the target the best.

Scattering matrix of 2-port network

As long as the length of coupling finger is decided, the next step is to study the
propagation behavior of the coupled resonator before fabrication. To determine the
scattering character of the resonator, a commonly-used presentation named two-port
network [Poz09] (see Fig. 3.4) is employed and could be measured experimentally
by a vector network analyzer (VNA) and simulatively by a Sonnet project including
the whole geometry of the CPW resonator. The characterization is given by the
scattering matrix, where one considers the voltages and currents for the 2 ports. The
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3.1 Design of the CPW resonator

Figure 3.3: (Color online)The Sonnet project which simulates the capacitance Cκ . (a) The project that 2
ports are placed on the wall and linked to the 2 coupling fingers.(b)-(d) give the result of coupling
finger length of 60 µm, 70 µm and 80 µm respectively. In the response viewer, adding the equation
curve to the graph named "Capacitance2" which gives the capacitance between any pair of ports, the
capacitance is obtained. Although the curve looks undulant, actually the range is rather tiny (within
the range of ±0.002 f F). The longer the fingers, the larger the coupling to the input/output ports.
According to the result, finger length of 70 µm suits the target the best.

incident and reflected waves of voltage of the network is related by the scattering
matrix (

V−1
V−2

)
=

(
S11 S12
S21 S22

)(
V+

1
V+

2

)
, (3.2)

where V+
1 is the incident voltage wave into port 1 of the network, while V−1 is

the reflected voltage wave. S12 is the wave generated by port 1 of the VNA which
received by port 2 of the VNA, S11 is the wave generated by port 1 of the VNA which
received by itself.
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3 Sample design and fabrication

Figure 3.4: (Color online)Two-port network measured by a vector network analyzer (VNA). Microwave
signal is usually generated by port 1 of the VNA. the incident and reflected voltage wave of both ports
of the 2-port network is measured. The scattering characters are illustrated by the scattering matrix.

For a usual measurement, microwave generated from one port of the VNA is enough,
normally port 1 is chosen. So that the scattering matrix in Eq. 3.2 reduces to(

V−1
V−2

)
=

(
S11V+

1
S21V+

1

)
. (3.3)

Q factor

By observing S21 (or S11), one obtains the transmitted (or reflected) signal by the
2-port network (namely the resonator). The transmission amplitude spectrum |S21|
of CPW resonator is typically a peak occurring at its resonant frequency f0, because
only around the resonance of the resonator, the microwave signal coming in form
one port is permitted to transmit to the other side.

The bandwidth of the peak is decided by the quality factor of the resonator. As
shown in Fig. 3.5) the bandwidth bL which corresponds to the loaded quality factor
QL could be measured at

√
2 times (or 3 dB when converting the linear scale to dB

scale which is used in Fig. 3.5) above the baseline of the transmitted amplitude,
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3.1 Design of the CPW resonator

Figure 3.5: (Color online) Typical transmitted amplitude |S21| of CPW resonator. a peak occurs at
its resonant frequency f0, because only around the resonance of the resonator, the microwave signal
coming in form one port is permitted to transmit to the other side. The loaded quality factor QL could
be measured at 3 dB above the baseline of the transmitted amplitude, while the internal quality factor
Qi could be measured at 3 dB below the maximum of |S21|. bL and bi are the bandwidths corresponding
to QL and Qi respectively.

while bi could be measured at
√

2 times (3 dB) below the maximum of |S21| [Poz09].
Thus, the quality factors are calculated by

QL =
f0

bL
,

Qi =
f0

bi
.

(3.4)

In simulation, the ideal transmitted amplitude of a CPW resonator can be obtained
by a Sonnet project shown in Fig. 3.6(a). Two ports on the box wall are attached
through the coupling fingers to both ends of the CPW resonator to perform the
network analysis. The |S21| spectrum could be seen in the response viewer shown in
Fig. 3.6(b) by adding the "DB[S21]" curve. Actually, our design of the resonator is
symmetrical, |S21| is identical to |S12|. The type of metal material is chosen to be
lossless, so that Qi is infinite large, according to Eq. 2.18, one derives

Qc = QL. (3.5)

So that the coupling quality factor could be calculated by measuring the bandwidth
3 dB above the baseline of the transmission.
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3 Sample design and fabrication

Figure 3.6: (Color online) Simulation about the quality factor of the CPW resonator. (a) The Sonnet
project with two ports on the box wall attached through the coupling fingers to both ends of the CPW
resonator to perform the network analysis. (b) The |S21| spectrum in the response viewer. The type
of metal material is chosen to be lossless, namely Qi is infinite large. Thus Qc = QL is obtained by
measuring the bandwidth 3 dB above the baseline of the transmission.

3.2 Design of the transmon qubit

Although the theoretical model of the transmon qubit is clearly discussed in
chapter 2.3, designing such a qubit is still not as straightforward as designing the
CPW resonator. Not only because it has more parameters which relate to each other,
but also the coupling to the read-out resonator and the flux bias loop should be
taken into account. In this section, I discuss about how the parameters are calculated
and how to make good compromise to obtain the desired values.

3.2.1 Characteristic parameters of the transmon

The major specialty of the transmon qubit is its relatively high EJ/EC ratio compared
to charge qubit. A target value between 50-100 is appropriate to ensure a good
insensitivity to charge noise while maintaining a sufficient anharmonicity of the
energy level. The Josephson energy and charging energy are defined by

EJ =
Φ0

2π
2Ic cos(

Φ

Φ0
), (3.6)

EC =
e2

2CΣ
. (3.7)
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3.2 Design of the transmon qubit

Here Ic is the critical current of the Josephson junction, it is doubled because the
SQUID loop employed in this work contains a pair of identical Josephson junctions.
Φ is the external flux which is assumed to be zero in the calculation, so that EJ
reaches its maximum. CΣ is the total capacitance of the transmon. Obviously, to
manipulate the EJ/EC ratio, the key parameters are Ic and CΣ.

The critical current

Ic could be simply independently varied by the fabrication procedure. According to
Ref. [KMM95], the product of the room-temperature resistance Rn and area A of
a tunnel junction is a constant decided by the oxidation pressure and time of the
tunnel barrier

Rn A = F(pressure× time)0.9, (3.8)

with F, a constant factor differs for individual equipment, and calculated to be 346 in
our case. For a junction oxidized for 25 minutes at 0.0148 mbar, Rn A = 141.7 Ωµm2

Given the junction area of 100 nm × 100 nm, the resistance of the junction at
room temperature should be Rn = 14.17 kΩ. According to Ambegaokar-Baratoff
formula,the critical current IC is related to Rn in the form of

Ic =
π∆

2e
tanh(

∆

2kBT
)

1
Rn

, (3.9)

where ∆ is the superconducting gap of aluminum, and T is the temperature estimated
to be 15 mK at which the sample is measured. As a result, the target critical current
should be Ic = 25 nA. Plugging in the numbers in Eq. 3.6, I get

EJ

h
= 24.8 GHz, (3.10)

The geometric capacitance

On the other hand, CΣ is a crucial parameter decided by the geometry of the transmon
and the surrounding structures (the resonator, the ground panel, the substrate and
etc.). It restricts not only EC, but also the coupling strength between the resonator
and the transmon.

The layout of the transmon qubit is illustrated in Fig. 3.7 by the violet structures.
In the middle, there is a symmetric SQUID loop with 2 Josephson junctions. The
interdigital fingers parallel to the junctions are the inter digital capacitors between
the two arms of the transmon which crate the large shutting capacitance as discussed
in Sec. 2.2. The long arms close to the center conductor of the resonator and the
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Figure 3.7: (Color online) Layout of the transmon qubit. (a) The geometry of the transmon (violet)
and the surrounding structures. The interdigital fingers parallel to the junctions are the inter digital
capacitors between the two arms of the transmon which crate the large shutting capacitance as discussed
in chapter 2. The long arms close to the center conductor of the resonator and the ground are used to
increase the coupling strength. (b) Zoom in of the design of Josephson junction.

ground are used to increase the coupling strength. The design of the junction will be
discussed separately in the section of fabrication.

There is capacitance among the center conductor, upper and lower arms of the
transmon qubit and the ground plate. As labeled by the number 1-4 in Fig. 3.7 (a),
the equivalent circuit is represented in Fig. 3.8 (a). C23 is the inter digital capacitance
of the transmon itself (i.e. the shunting capacitance). This circuit is complicated, it is
much straight forward and more physical to simplify the circuit to the one shown in
figure (d). C23 stays unchanged for the transmon, and all the other capacitances are
equivalent to a coupling capacitor Cg.

To achieve the transformation, the voltage drop Uab between point ’a’ and ’b’ needs
to be calculated, and the circuit should be simplified. The first step is to transform
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3.2 Design of the transmon qubit

the "4− shape" network of capacitors between point ’a’, ’b’ and ’d’ into a "Y− shape"
network of impedance shown by Fig. 3.8 (b). According to the transformation law,

Za =
Z34Z23

Z34 + Z23 + Z24
,

Zb =
Z23Z24

Z34 + Z23 + Z24
,

Zd =
Z34Z24

Z34 + Z23 + Z24
,

(3.11)

with
Zij =

1
iωCij

. (3.12)

plug the new network in and change all element to their impedance, one derives the
circuit in Fig. 3.8 (c). With this circuit, it is easy to deduce the voltage Uab.

Uac =
Z13

Z13 + Za
Umc

=
Z13

Z13 + Za

Zmc

Zmc + Zd
V.

(3.13)

Ubc =
Z12

Z12 + Zb
Umc

=
Z12

Z12 + Zb

Zmc

Zmc + Zd
V,

(3.14)

where

Zmc =

(
1

Za + Z13
+

1
Zb + Z12

)−1
. (3.15)

Thus,
Uab =Uac −Ubc

=

(
Z13

Z13 + Za
− Z12

Z12 + Zb

)
Umc

=

(
Z13

Z13 + Za
− Z12

Z12 + Zb

)
Zmc

Zmc + Zd
V.

(3.16)

With the result of Eq. 3.16, the voltage applied on the equivalent coupling capacitor
in Fig. 3.8 (d) is simply

Ug =V −Uab

=

[
1−

(
Z13

Z13 + Za
− Z12

Z12 + Zb

)
Zmc

Zmc + Zd

]
V.

(3.17)
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The last step is to calculate Cg based on the interdigital capacitor C23 of the transmon
qubit directly by this relation

Cg =
Uab
Ug

C23

=C23

(
Z13

Z13+Za
− Z12

Z12+Zb

)
Zmc

Zmc+Zd

1−
(

Z13
Z13+Za

− Z12
Z12+Zb

)
Zmc

Zmc+Zd

.
(3.18)

The total capacitance CΣ is therefore

CΣ = Cg + C23. (3.19)

The targeted C23 is 38 f F. To simulate the capacitance of the designed paten is the
same as what is done for Cκ of the resonator. In the same way, I get all the geometric
capacitances listed in Table. 3.1. By submitting all the numbers to Eq. 3.18,one gets
Cg = 4.67 f F, and as a result,

EC
h

= 461.5 MHz. (3.20)

Together with Eq. 3.10, one obtains

EJ

EC
= 53.8. (3.21)

capacitor C12 C13 C24 C34 C23
value ( f F) 17.0 7.4 3.8 15.4 37.3

Table 3.1: The geometric capacitances of the transmon qubit and its surrounding environment obtained
from the simulation done by Sonnet project. The subscript numbers correspond to the labeling in
Fig. 3.7 (a).

Substituting the numbers in Eq. 2.27, and Eq. 2.28, the transition frequencies from
the ground state to the first excited state and from the first excited state to the second
excited state of the transmon should be

f01 =9.11 GHz

f21 =8.65 GHz.
(3.22)
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3.2 Design of the transmon qubit

Figure 3.8: (Color online) Circuit of the geometric capacitance. (a) The full circuit of the capacitance
among the center conductor, upper and lower arms of the transmon qubit and the ground. The numbers
1-4 correspond to the labeling in Fig. 3.7 (a). (b) The transformation of the "4-shape" network of
capacitors between point ’a’, ’b’ and ’d’ into a "Y-shape" network of impedance. (c) The simplified
circuit after the transformation. (d) The final equivalent circuit in which C23 stays unchanged for the
transmon, and all the other capacitances are equivalent to a coupling capacitor Cg .
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3.2.2 Coupling to the resonator

As discussed above, the transmon qubit is coupled capacitively to the resonator and
the ground (through the upper and lower arms as shown in Fig. 3.7). And it can be
read out by the dispersive shift of coupled CPW resonator. The coupling strength
between the qubit and the resonator is the most important parameter, which should
approximate 100 MHz in our design, so that the coupling is neither too small which
makes the dispersive shift invisible, nor too large which makes the qubit decaying
fast. As defined by Eq. 2.41, the coupling between the resonator and basic transition
of the transmon from ground state to the first excited state [Koc+07] is

g01 =
2eV0

rms
h̄

β〈1|n̂|0〉

=
eV0

rms
2h̄

β

(
EJ

8EC

)1/4
.

(3.23)

Because both β = Cg/CΣ and EC are decided by the geometric capacitance, one is able
to control the coupling strength by varying Cg. However, it is not straightforward,
the coupling strength is related to all the relevant capacitance defined in Eq. 3.18.
But eventually, by increasing the capacitance C12 and C34, which means making
the 2 horizontal arms longer, the coupling capacitor could be increased distinctly.
substitute all the value of capacitors listed in Table. 3.1 and parameter calculated
before, one obtains the coupling strength of the resonator for the basic transition
frequency of the qubit:

g01 = 113.0 MHz. (3.24)

The dispersive shift of the resonator is used to readout the status of the qubit.
Deducing from Eq. 2.46, the shift of the resonator corresponding to the fundamental
transition of the qubit is

χ01 =
g2

01
ω01 −ωr

= −1.7 MHz (3.25)

3.2.3 Coupling to the flux bias loop

As illustrated in Eq. 3.6, the Josephson energy of the SQUID is tunable by changing
the external flux trapped in the loop, which enables the tunability of the transition
frequency of the transmon qubit. To change the external flux threading the SQUID
loop, a "U-shape" wire is placed close enough to it (see Fig. 3.9). With a DC current
IDC running in the wire, through the mutual inductance Mbias between them, an
external flux is trapped in the SQUID loop. The dimensions are annotated in Fig. 3.9
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3.3 Fabrication of the sample

and the origin of coordinates is chosen to calculate the mutual inductance. The
mutual inductance created by the left and right vertical parts of the flux bias wire
cancel with each other due to the symmetry. Thus only the horizontal part of the flux
bias is taken into account to the total mutual inductance. Performing the integration
around the full loop of the SQUID, one obtains the mutual inductance

Mbias =
µ0

4π

∫ 2l

0
dx1

∫ l+ a
2

l− a
2

1√
(x1 − x2)2 + h2

dx2

− µ0

4π

∫ 2l

0
dx1

∫ l+ a
2

l− a
2

1√
(x1 − x2)2 + (h + b)2

dx2

=
µ0

4π

∫ 2l

0
dx1 ln

[x1 − (l + a
2 )]

2 +
√

h2 + [x1 − (l + a
2 )]

2

[x1 − (l − a
2 )]

2 +
√

h2 + [x1 − (l − a
2 )]

2

− µ0

4π

∫ 2l

0
dx1 ln

[x1 − (l + a
2 )]

2 +
√
(h + b)2 + [x1 − (l + a

2 )]
2

[x1 − (l − a
2 )]

2 +
√
(h + b)2 + [x1 − (l − a

2 )]
2

.

(3.26)

Substituting the designed dimensions (l = 60 µm, h = 65 µm, a = 16 µm, and
b = 50 µm) into Eq. 3.26, the mutual inductance Mbias is calculated, thus, the DC
current needed for one flux quanta is

Ibias =
Φ0

Mbias

=1.99 mA.
(3.27)

3.3 Fabrication of the sample

The samples correlated to this work are all produced by ourselves at KIT (Karl-
sruhe Institute of Technology), in the clean room of CFN (Center for Functional
Nanostructures), and we also fabricate superconducting qubits for our collaborators
(for example the sample measured in the work Ref. [Shu+17]). Generally, there are
two ways of lithography for this type of sample: optical lithography [WDR97] and
electron-beam lithography [Vie+00]. Optical lithography is proper for structures
larger than 1 µm (such as the CPW resonator, the flux bias lines, the ground plate
and etc.) with simple processing steps which is straightforward and easily done
by ourselves. The electron-beam lithography is employed for fine structures (for
example the Josephson junctions) with more accuracy, and is more complicated
naturally.
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3 Sample design and fabrication

Figure 3.9: (Color online) Schematic diagram of the SQUID loop (violet) and its flux bias line (pink).
A DC current is applied to the "U-shape" wire, and through the mutual inductance Mbias between
them, an external flux is trapped in the SQUID loop. The dimensions are annotate and the origin of
coordinates is chosen to calculate the mutual inductance.
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3.3 Fabrication of the sample

Thanks to the teamwork in our group, the technique of fabrication is developing and
several standard recipes are built. Usually, the recipe which combines the optical
lithography and electron-beam lithography is chosen for such resonator-qubit
sample. This strategy separates the fabrication of the qubits from all the other
structures, which allows one to print large ground panel that makes the grounding
of the resonator better, and makes it easy to change or test the resonator individually.
But I give up these advantages, and decide to produce all structures by one turn
of electron-beam lithography. The reason is that, with this simplified strategy,
the misalignment between the two lithography is avoided. More importantly, this
strategy avoids unevenness on top of the substrate surface caused by residual
chemicals and deposited aluminum. It makes the Josephson junctions more reliable
and reproducible, which in turn insures the property of the transmon qubits.

In this section I talk about the procedure of the electron-beam lithography employed
for our fabrication. The Josephson junctions are the most subtle and crucial compo-
nents, the fabrication technique employed in our work for the junctions is called
Niemeyer–Dolan technique [Nie74; NK76; Dol77].

3.3.1 Resist coating and pattern writing

The material of the substrate is ultra-pure intrinsic silicon with the thickness of 350
µm. With a surface size of 2 cm× 2 cm. The dimension of each chip is 0.5 cm× 0.5 cm,
which allows us to fabricate 9 chips on one piece of substrate at the same time. The
substrate is cleaned with the stripper named NMP at the beginning to remove the
protecting photoresist.

Resist coating

To finally produce the elements shown in Fig. 3.2 with aluminum film, the first
step is to make a mask out of photoresist on the surface of the substrate with the
designed pattern. To apply the resist, the equipment called spin-coater is employed
(Fig. 3.10 a) using a 2-step program. The first step is with low spinning speed (300
round/minute) for 10 seconds, to make sure the drops of resist cover the complete
substrate homogenously. In the second step, the spin-coater rotates with a high
spinning speed (3000-6000 round/minute) for 60 seconds, in this way to get the
desired thickness of the resist. As shown in Fig. 3.10 (b), the first layer is LOR (lift off
resist) with thickness of 500 nm, and the second one is PMMA with thickness of 100
nm. At the end of the coating of each layer, it is important to let the resist reflow by
itself for 30 seconds and get baked, in order to make sure each layer of the resists is
flat and robust.
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3 Sample design and fabrication

Figure 3.10: (Color online)Spin-coating of the resist. (a) The spin-coater that is employed using a 2-step
program. The first step is with low spinning speed (300 round/minute) for 10 seconds, to make sure
the drops of resist cover the complete substrate homogenously. In the second step, the spin-coater
rotates with a high spinning speed (3000-6000 round/minute) for 60 seconds, in this way to get the
desired thickness of the resist. (b) The cross-section of the sample. The first layer of the resists is LOR
(lift off resist) with thickness of 500 nm, and the second one is PMMA with thickness of 100 nm. The
thickness of the silicon substrate is 350 µm.

Electron beam exposure

The procedure of electron-beam exposure according to the pattern of the design is
done by the e-beam writer JEOL JBX-5500FS/50 keV (shown in Fig. 3.11 a). In this
step, electron beam is perpendicularly shot on the chip line by line at the targeted
area (Fig. 3.11 b). The higher the current, the faster the writing speed, but the less
the accuracy. The maximum of the current (6 nA) is used to write the µm-scale
structures, a much lower current (100 pA) is chosen for the transmon geometry as
well as the junction area. The base dose of the exposure is 300 µC/cm2, all structures
is written with 100% of this dose. Except for the bridge, which is written by only 20%
of the base dose. With this low value, only the LOR gets exposed. On this account, it
is clean under the bridge after the development. Due to the difference in sensitivity
to the exposure and reflection by the substrate, the layer of LOR gets more exposed
by the e-beam compared with PMMA.
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3.3 Fabrication of the sample

Figure 3.11: (Color online)Electron-beam exposure of the resist. (a) The e-beam writer: JEOL JBX-
5500FS/50 keV. (b) The illustration of the writing process that the electron beam is perpendicularly shot
on the chip line by line at the targeted area. The higher the current, the faster the writing speed, but the
less the accuracy.

Development of the resists

After exposure, the resists are ready to be developed. The first step is to develop the
PMMA (Fig. 3.12 a) using the mixture of MIBK and isopropanol with the ration of
1:3 for 65 seconds. One could see the exact pattern under the microscope already
after that. The next is to develop the LOR which is a particularly crucial step, as
it forms the Niemeyer–Dolan bridge [Nie74; Dol77] for producing the Josephson
junction. Since LOR is exposed more than the PMMA, during raising the chip in
the developer made by MIF726 and water (with the ratio 3:2) for 120 seconds, more
LOR is dissolved in the developer. Thus a undercut is formed by the LOR under
the PMMA layer (Fig. 3.12 b). With this undercut, the Niemeyer–Dolan bridge (3D
illustration in Fig. 3.12 c)is built for the Josephson junction area, which enables one
to perform the shadow-evaporation in the next step. It is very important to stick to
the development time in the recipe. One second less will leave residue under the
bridge, on the other hand, one second more makes the undercut over-sized which
makes the bridge fragile and easy to fall apart.
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3 Sample design and fabrication

Figure 3.12: (Color online)Development of the resist. (a) The result of developing PMMA. (b) The
illustration after development of LOR. Since LOR is exposed more than the PMMA, during raising
the chip in the developer, more LOR is dissolved in the developer. Thus a undercut is formed by the
LOR under the PMMA layer. (c) 3D illustration of the Niemeyer–Dolan bridge [Nie74; Dol77], which is
formed by the undercut of LOR, and enables one to perform the shadow-evaporation for the Josephson
junction. The figures beneath and on the right are the cross-sections corresponding to the red dashed
lines.
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3.3 Fabrication of the sample

3.3.2 Josephson junction fabrication with shadow-evaporation
technique

The Josephson junctions as well as all other elements are deposited by a sputtering
equipment (Fig. 3.13 a) provided by the company PLASSYS. All parameters can be
seen and controlled by the computer, all of the fabricating projects can be stored and
executed by the computer as well. The schemata of the sputtering machine is shown
in Fig. 3.13 (b). The substrate is mounted to the sample holder in the load lock. the
holder could be rotated horizontally and turned vertically by any degree. The box of
high purity aluminum is placed at the bottom of the main chamber, with a proper
magnetic field, an electron beam is shot at the aluminum target, and the aluminum
is sputtered uniformly in the hermetic space.

The substrate with developed resists is installed to the sample holder upturned.
First, the load lock as well as the main chamber are pumped over a weekend to
reach a vacuum environment. After that, titanium is sputtered for a few seconds
with the shutter between the load lock and the main chamber closed, so that the
pressure is further reduced, and one reaches 1.7× 10−8 mbar of the main chamber
and 2.4× 10−8 mbar of the load lock.

Performing argon cleaning is helpful before sputtering the aluminum on chip,
because it improves the quality of the Josephson junction if the junction lies on a
clean substrate. As shown in Fig. 3.13 (b), the sample is turned to the left, thereby, the
gas of argon ions with a flow rate of 4 standard cubic centimeter per minute(sccm)
accompanied with 0.5 sccm of O2 gas is shot onto the sample and takes away the
organic residual.

Only after cleaning, the shadow-evaporation (illustrated in Fig. 3.14) starts. There
are 3 steps in this procedure. First of all, the sample is turned downwards, but with
a 8 degree angle to the left of the horizontal position. The shutter between the load
lock and the main chamber is open. And the aluminum is sputtered with a rate of 0.2
nm/s on-chip and stopped at the thickness of 30 nm. The next step is to oxidize the
surface of the aluminum film. For that, the shutter is closed, and dynamic oxidation
is employed for 25 minutes, which means the oxygen gas is flowing through the
load lock with a half-closed butterfly valve. The last step is tuning the sample to 8
degree angle to the right of the horizontal position, and perform a deposition of
the second layer of aluminum film with the rate of 0.2 nm/s, and finally reaches the
thickness of 50 nm. With these 3 steps, a superconductor-insulator-superconductor
structure is formed under the Niemeyer–Dolan bridge, and the Josephson junction
with targeted parameters is obtained.
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3 Sample design and fabrication

Figure 3.13: (Color online)The Shadow-evaporation equipment PLASSYS. (a) A picture taken in the
clean room of CFN. On the left side is the load lock with the main chamber under it. On the right side
is the controlling system. (b) The schematic of the metal deposition and oxidation.
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Figure 3.14: (Color online)Illustration of shadow-evaporation technique of the Josephson junction. (a)
The first step of the shadow-evaporation. The sample is turned downwards, but with a 8 degree angle
to the left of the horizontal position. The shutter between the load lock and the main chamber is open.
And the aluminum is sputtered with a rate of 0.2 nm/s on-chip and stopped at 30 nm thick. (b) The
oxidation of the surface of the aluminum film which forms the insulator for the Josephson junction. For
that, the shutter is closed, and dynamic oxidation is employed for 25 minutes, which means the oxygen
gas is flowing (with a rate of 12 sccm)through the load lock with a half-closed butterfly valve. (c) The
deposition of the second layer of aluminum, with the rate of 0.2 nm/s, and finally reaches the thickness
of 50 nm.

There are two crucial challenges in the fabrication process. The first one is to build
the Niemeyer–Dolan bridge as explained above. The second one is the dynamic
oxidation process which forms the insulating barrier for the junction. On the basis
of Eq. 3.8 and Eq. 3.9, the critical current of a Josephson junction is determined by
the oxidation pressure and time. It is easy to control the time, but, the pressure is
decided by the flow rate of the oxygen gas, and follows a linear relation

p( f low) = A
mbar
sccm

· f low− B mbar, (3.28)

here A and B are ideally two constants, however, they drift after several weeks or
so. What’s more, the pre-factor F in Eq. 3.8 is also a constant, but may deviate after
several weeks.
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Figure 3.15: (Color online)Linear data fit for Table 3.2. High flow rate bigger than 12.5 sccm does not
obey the linear relation. Even though the targeted flow is 12.8 sccm, a flow of 12.0 sccm is chosen.

Thus, it is important to test the relation between oxygen flow and pressure, before
mounting the sample in. The test result is listed in Table 3.2. By Running a linear fit,
the constants in Eq. 3.29 should be

A = 0.00148432, B = −9.87× 10−16. (3.29)

The data and linear fit are shown in Fig. 3.15. According to the test, although the
targeted flow is 12.8 sccm, a flow rate of 12 sccm of oxygen in the dynamic oxidation
procedure is chosen. Because 12.8 is close to the upper limit of the flow rate, and the
real pressure is not predictable.

flow rate 10 sccm 11 sccm 12 sccm 12.3 sccm 12.9 sccm
start

pressure
(mbar)

0.0153 0.0166 0.0181 0.0186 0.0246

stable
pressure
(mbar)

0.0149 0.0162 0.0178 0.0183 0.0242

Table 3.2: The oxygen pressure test using different flow rate before mounting the sample into the
PLASSYS.

The last procedure of fabrication is to strip off all the resist along with the aluminum
deposited on top of them. The sample is dipped in NEP in a small beaker which
allows the chip to lean on the cup wall with face down. Only in this way, the
aluminum deposited on the resist will not fall down to the substrate when removing
the resist. The remover is heated to 80 degree for a few minutes, and then the beaker
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is put in an ultrasonic bath with power level 1 for 10 seconds to shake off the solved
pieces. These two steps need to be alternated with patience, the whole procedure
takes hours.

The pictures of the finished sample is shown in Fig. 3.16. Figure a) shows the whole
chip pictured by a combination of digital camera and microscope in the clean room
which has yellow light. The zoomed-in view of a qubit and its bias "U" noted by
the green frame in Fig. 3.16 a) is shown in figure b). Figure c) is a picture of one
Josephson junction of the test junctions after the property testing. It is not achievable
to take a picture of the transmon qubits that I want to measure, because the Scanning
Electron Microscope destroys the junctions during scanning.

3.3.3 Junction property testing

It is easy to tell the quality of the structure of the fabricated sample by observing the
elements under the microscope. But only a clear and clean structure does not mean
it is a successful sample. The most crucial and fragile elements are the nano-scale
Josephson junctions of the transmon qubits, which could not be tested directly. They
are evaluated by the testing junctions depicted in Fig. 3.2 (a). The test junctions are
designed to have the same length and different width to test how the oxidation
process works.

A Four-point probe station is required to measure the room-temperature resistance
of the test junctions. The scheme is illustrated by Fig. 3.17. A current source is
attached to two metal pads for the junction. In parallel to the junction, a variable
resistor is employed to protect the junction. A current source is used to apply the
DC current on the junction. In order to obtain the I-V curve, the voltage drop across
the junction is monitored together with the voltage corresponding to the DC current
by the XY-mode of an oscilloscope. It is easy to make contact to the pads of the test
junction with 4 probing needles of the station. However, one has to pay attention to
setting the variable resistance to a small value before operating, such that accidental
destroy of the junction by a high current is avoided. The result of the measurement
is list in Table 3.3 for 3 different junction sizes. According to the result, the prefactor
F in Eq. 3.8 should be 225.
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Figure 3.16: (Color online)The picture of the fabricated 8-qubit sample. (a) The whole chip pictured by a
combination of digital camera and microscope in the clean room which has yellow light. (b) Zoomed-in
view of a qubit and its bias "U". (c) A picture of one Josephson junction of the test junctions after the
property testing. Because the Scanning Electron Microscope destroys the junction during viewing the
junction with electron beam.

junction
area A

(nm× nm)
measured resistance (kΩ)

R̄
(kΩ)

R̄× A
(Ω · µm2)

150× 100 7.0/7.0/6.8/6.4/7.0/7.4/7.6/6.8/6.6/7.4/6.8 7.0 104.7
200× 100 5.4/5.6/5.0/6.0/5.6/5.8/5.6/6.2/5.8/5.0/5.4/5.4/5.6 5.6 111.4
300× 100 3.8/3.5/3.3/3.2/4.1/3.7/3.4/3.8/4.0/3.4/3.7/3.0 3.6 107.3

Table 3.3: Measured data of the room-temperature resistance of the testing junctions. The 4-point probe
station and a oscilloscope is employed to obtain the I-V curve.
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Figure 3.17: (Color online) Illustration of the measurement of the room-temperature resistance for the
testing junctions. A current source is attached to two meal pads for the junction. In parallel to the
junction, a variable resistor is employed to protect the junctions from damage due to high current. In
order to obtain the I-V curve, the voltage across the junction is monitored together with the voltage
corresponding to the driving current by the XY-mode of an oscilloscope.
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4 Experimental result of the
single-qubit chip and 8-qubit chip

In this chapter, I explain the experimental setup for cryogenic measurement, show
the data of the single-qubit measurement, and explain the result of experiment on
multi-qubit chips. Performing a measurement on the single-qubit chip is necessary
for examination of the resonator and qubit properties. The result I obtained shows
good agreement between experimental data and the designed values.

Of course, the system formed by multiple qubits coupling to a mutual cavity bus is
more attractive not only as a toy model for quantum many-body physics but also for
computational applications. It moves from the well-known Jaynes-Cummings [JC63]
to the intriguing complicated Tavis-Cummings [TC68] model.

In our experiments on the 8-qubit chip, the microwave transmitted through a
superconducting CPW resonator coupled to multiple superconducting transmon
qubits shows a Fano resonance whose hallmark is the asymmetric line-shape caused
by the interference between the resonator and the background [Fan61]. The spectra is
explained by considering an effective microwave background which has dissipative
and reactive elements that can depict the energy levels of the Tavis-Cummings
model [Lep+]. For N qubits degenerated with a mutual harmonic oscillator, the
total effective coupling strength for the ensemble scales with

√
N, which leads to an

expected level crossing of 2g
√

N in experimental data [Fin+09].

Obviously, adding more qubits increases the complexity of circuit control. Although
I have 8 fully tunable qubits, I finally achieved 6 fully-controllable transmon qubits
which could be tuned individually in resonance with the resonator.
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4.1 Experimental setup

4.1.1 Cryogenic environment for experiments

Cryogenic environment is required for the experiments because of two reasons. On
one hand, the principle of the Josephson junction which is the critical element of the
transmon qubit is based on superconducting material. The superconductor employed
in our work is aluminium with high purity of which the critical temperature is
roughly 1.2 K [MGC63]. On the other hand, a much lower temperature than the
critical temperature is needed to reduce the effect induced by quasi particles and
thermal excitation of the resonator and the qubits.

The dilution refrigerator [DOT65] showed in Fig. 4.2 is a commonly used equipment
to reach mK temperature. The working principle of dilution refrigerator is illustrated
in Fig. 4.1. The main idea is to generate the cooling power from the energy needed
to break the attractive force when helium-3 dilutes into super-fluid helium-4. The
liquids depicted in yellow, green and blue are liquid helium-4, liquid helium-3,
and their mixture respectively. The base temperature of the dilution refrigerator is
around 10 mK at the stage called mixing chamber, where the samples are mounted
to. There are several stages with different temperatures which realize the circulation
of the mixture in a sealed loop. At the top is the room-temperature stages where
all microwave cables and control-unit are connected to the fridge. There is 77 K
stage (not shown) that attached to the liquid nitrogen bath, and 4 K stage which is
contacted to the liquid helium bath. The 1.5 K stage is where the 1 K pot is placed. The
1 K pot sucks liquid helium form the helium bath, and generates cooling power with
evaporating the liquid helium. It is winded by the thin capillary of the condenser
which condenses the helium-3 gas into liquid. The temperature of the stage where
the still sits is around 600 mK. It is heated with external heater and pumps pure
He-3 gas form the liquid mixture, because He-3 and He-4 has different evaporating
pressure. Between the stages of the still and the mixing chamber there is 2 more
stage with temperature around 50 mK, where the heat exchangers are installed to
further cool down the mixture. The mixing chamber is placed on the lowest stage
and reaches the base temperature because of He-3 diluting in super-fluid He-4.

As shown in Fig. 4.2, the dilution refrigerator used in this work has a large operation
space. With a 2-port switch and a 4-port switch, it enables us to measure 9 samples
in one run. However, cooling down such a giant refrigerator is not as simple as the
small ones, that’s why the pre-cooler is installed to pre-cool the setup with liquid
nitrogen and liquid He-4. The time needed for cooling down the refrigerator is three
and half days.
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Figure 4.1: (Color online) The working principle of dilution refrigerator. There are several stages with
different temperatures which realize the circulation of the mixture in a sealed loop. At the top is the
room-temperature stages where all microwave cables and control-unit are connected to the fridge. There
is 77 K stage (not shown) that attached to the liquid nitrogen bath, and 4 K stage which is contacted to
the liquid helium bath. The 1.5 K stage is where the 1 K pot is placed. The 1 K pot sucks liquid helium
form the helium bath, and generates cooling power with evaporating the liquid helium. It is winded by
the thin capillary of the condenser which condenses the helium-3 gas into liquid. The temperature of
the stage where the still sits is around 600 mK. It is heated with external heater and pumps pure He-3
gas form the liquid mixture, because He-3 and He-4 has different evaporating pressure. Between the
stages of the still and the mixing chamber there is 2 more stage with temperature around 50 mK, where
the heat exchangers are installed to further cool down the mixture. The mixing chamber is placed on
the lowest stage and reaches the base temperature because of He-3 diluting in super-fluid He-4.
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Figure 4.2: (Color online) The dilution refrigerator used in this work. It supplies enough space to
measure 6 qubit-samples in one run, plus additional 3 resonator-samples. Cooling down such a giant
refrigerator is not as simple as the small ones, that’s why the pre-cooler is installed to pre-cool the
setup with liquid nitrogen and liquid He-4 in order to reduce the time for cooling down to three and
half days.
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4.1.2 Equipment for measurement

Wiring inside the refrigerator

The wiring inside the dilution refrigerator is illustrated in Fig. 4.3. There are 3
attenuators in every incoming lines (with -20 dB attenuation each), in order to
insure single-photon level of power on the chip. They are mounted on the 4-K
plate, 0.6-K plate and the base plate respectively. The sample is attached to one
brunch of the 2-port switch. Because of the circulator after the sample, one is
able to perform measurement on both transmission (switch at position SW1) and
reflection (switch at position SW2). The second circulator is employed to reduce the
noise from the outgoing line to the sample. The signal is amplified by a cryogenic
high-electron-mobility transistor (HEMT), which is mounted to the 4 K stage and
supplies about +40 dB amplification.

Equipment at room temperature

The equipment used to spectroscopically measure the sample is shown in Fig. 4.5
a). The VNA (vector network analyzer) is the device to do the 2-port network
measurement. The microwave coming out of the VNA is attenuated by an adjustable
attenuator, and then combined with the signal from the microwave generator with
a directional coupler. The coupler gives an additional −20 dB attenuation for the
signal form the VNA, but no attenuation for the microwave generator. And the
mixed microwave is sent from port 1 into the dilution refrigerator as shown in
Fig. 4.3. The signal coming out of the fridge is sent into port 2 of the VNA through
2 room-temperature amplifiers which should have +20 dB amplifying factor. The
microwave generator is switched off during the measurement on the resonator, it is
used to drive the qubits.

The current sent through the "U"-shape bias lines on the chip is generated by the
current source made by the workshop of our institute. The current source is powered
by the voltage from a digital-to-analog converter (DAC) which is controlled by the
measurement computer. Before going to the sample, the current generated from
the current source goes through a current divider which is illustrated in Fig. 4.4.
Rsam ≈ 500 Ω is the resistance of the wire from 4 K stage till the grounding of the
sample. Rdiv = 50 Ω is the resistor of the current divider which is installed and
grounded on the 4 K stage. As a result, the DC current Isou generated form the
current source mainly goes through the current divider and is roughly 10 time
reduced when Isam gets to the sample. It benefits the experiment because the noise
from the current source is also reduced by a factor of 10.
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4 Experimental result of the single-qubit chip and 8-qubit chip

Figure 4.3: (Color online) The wiring inside the dilution refrigerator. 3 attenuators are installed in each
of the incoming lines, with -20 dB attenuation each. They are placed on the 4-K plate, 0.6-K plate and the
base plate respectively. The sample is attached to one brunch of the 2-port switch. Due to the circulator
after the sample, one is able to perform measurement on both on transmission (switch at position SW1)
and reflection (switch at position SW2). The second circulator is employed to reduce the noise from the
outgoing line to the sample. The signal is amplified by a cryogenic high-electron-mobility transistor
(HEMT), which is mounted to the 4 K stage and supplies about +40 dB amplification.
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4.2 Single qubit measurement

Figure 4.4: (Color online) The circuit of the current divider. Rsam ≈ 500 Ω is the resistance of the wire
from 4 K stage till the grounding of the sample. Rdiv = 50 Ω is the resistance of the current divider
which installed and grounded on the 4 K stage.As a result, the DC current Isou generated form the
current source mainly goes through the current divider and is roughly 10 time reduced when Isam gets
to the sample. As a result, it benefits the experiment, because the noise from the current source is also
reduced by a factor of 10 too.

The time-domain setup shown in Fig. 4.5 b) is more complicated than the spectroscopy
setup. But the main idea is to drive and measure the qubit with a single pulse rather
than a continuous microwave that used in the spectroscopical measurement. Instead
of the VNA, the readout devices are two I-Q mixers having a mutual local oscillator
and connected to a pair of DACs and ADCs separately.

4.2 Single qubit measurement

Of course, as discussed before, the 8-qubit is the most attractive and I indeed devote
more effort to it. However, performing the measurement on the single-qubit chip
is a necessary step. Due to its simplicity, it is completely predicable and explained
very well by the Jaynes-Cummings model. Thus, I am able to exam the quality of the
resonator, and all parameters of the qubit. Since the single-qubit chip has identical
resonator and qubit design with the 8-qubit chip, and they are fabricated at the same
time, the result of the measured single-qubit chip provides trustworthy reference
to the experiments on 8-qubit chip. In our experiment, single-tone measurement is
performed to identify the resonator, while the two-tone measurement identifies the
property of the qubit. Time-domain measurement is done on this sample too.
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4 Experimental result of the single-qubit chip and 8-qubit chip

Figure 4.5: (Color online) Wiring and equipment employed in the measurement at room-temperature.
(a) The spectroscopical setup. The VNA is used to do the 2-port network measurement. The microwave
coming out of the VNA is attenuated by a −10 dB attenuator, and then combined with the signal from
the microwave generator with a directional coupler. The coupler gives additional −20 dB attenuation
for the signal form the VNA. The signal coming out of the fridge is sent into port 2 of the VNA
through 2 room-temperature amplifiers which should have +20 dB magnifying factor. The microwave
generator is switched off during the measurement on the resonator, its function is to drive the qubit
when probing the transition frequency of the qubit. (b) The time-domain setup. The main idea is to
drive and measure the qubit with a single pulse rather than a continuous microwave that used in the
spectroscopical measurement. The scheme is explained in Fig. 4.5 b. Instead of the VNA, the readout
tool is now two mixers having a mutual local microwave reference and connected to a pair of DACs
and ADCs separately.
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4.2 Single qubit measurement

4.2.1 Single-tone experiment

The system of a resonator coupling to a single qubit is fully described by the
Jaynes-Cummings model with the Hamiltonian in Eq. 2.29. Consider the multiple
attenuations in the wiring showed in the previous section, the total attenuation is
-120 dB. The lowest power reaching the sample is reduced to -140 dBm. The equation
for calculating the average photon number is

〈n〉 = 4Pin
h̄ω2

r
·

Q2
L

Qc
. (4.1)

According to this equation, the average photon number is 0.2, namely only the single
excitation (n = 1) is considered for this system. Thus the eigen energy levels are
written as

E± = h̄ωr + h̄ω01 ±
h̄
2

√
4g2

01 + ∆2, (4.2)

where ∆ = ω01 −ωr, is the detuning between the first two levels of the qubit and the
resonator. The transition frequency of the first two levels of the transmon qubit is
calculated by Eq. 2.27. Consider the Josephson energy is controlled by the external
flux as EJ = EJmax | cos(πΦ/Φ0)|, the frequency of the qubit is in the following form:

f01(Φ) =

√
8EJmax | cos(πΦ/Φ0)|EC − EC

2πh̄
. (4.3)

The external phase Φ in our work is controlled by the biasing current, thus, replace
the phase terms with current items in Eq. 4.3 and substitute it into Eq. 4.2, one gets
the dependence of the frequencies of the dressed system on the bias current

f±(Ibias) = fr +
1

4πh̄

√√√√8EJmax Ec

∣∣∣∣∣cos

(
π

Ibias
Iperiod

− θo f f

)∣∣∣∣∣− Ec

2πh̄

±

√√√√√4g2
01 +

 1
4πh̄

√√√√8EJmax Ec

∣∣∣∣∣cos

(
π

Ibias
Iperiod

− θo f f

)∣∣∣∣∣− Ec

2πh̄
− fr

2

.

(4.4)
Here Iperiod is the period of the bias current corresponding to a flux quantum. θo f f
corresponds to the offset per period. Fig. 4.6 shows the plotting of the two eigen
frequencies of Eq. 4.4 based on the theoretical parameters in Table 4.1. The maximum
of f+ equals to the maximum frequency of the qubit f01max which is decided by
EJmax and EC. The minimum splitting between the two frequencies is decided by the
coupling strength by 2g01.

In order to observe the anti-crossing of the coupled system, a spectroscopic single-
tone experiment is done on this single-qubit chip employing the VNA as the driving
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4 Experimental result of the single-qubit chip and 8-qubit chip

Figure 4.6: (Color online)Plot of f± in Eq. 4.4. The maximum of f+ equals to the maximum frequency of
the qubit f01max which is decided by EJmax and EC . The minimum splitting between the two frequencies
is related to the coupling strength by 2g01.

and probing device. The measured data of observing the frequency window around
the basic model of the resonator while tuning the bias current is shown in Fig. 4.7 a.
The data is fitted by Eq. 4.4 with the colored lines as in Fig. 4.6, and the parameters
are presented in Table 4.1. In order to see more period within short measurement
time, frequency range of this figure is only 70 MHz, as a result the gradient lines
look like vertical. The anti-crossing is clearly measured in Fig. 4.7 b which zooms in
at the anti-crossing window while scans a wider frequency range of 250 MHz. The
other parameters extracted from the fitting are the same, except for that the offset is
a little bit different. It is reasonable because the mixture of the dilution union needs
to be recondensed about every 14 days during experiments. The offset may change
as the temperature increases and reduces during this procedure.

fr
(GHz)

f01max

(GHz)
g01

(GHz)
EJmax /2πh̄

(GHz)
EC/2πh̄
(GHz)

Iperiod
(µA)

θo f f

theory 6.600 10.031 0.300 34 0.4 2750 3.010
Fig. 4.7 a 6.629 10.031 0.115 34 0.4 2730 3.010
Fig. 4.7 b 6.629 10.031 0.115 34 0.4 2730 2.995

Table 4.1: Parameters of the single qubit chip .
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4.2 Single qubit measurement

Figure 4.7: (Color online) The measured data of observing the frequency window around the basic
model of the resonator while tuning the bias current. (a) The data with a frequency window of 70
MHz around the resonator frequency, to see more period with fewer data points. (b) The data of
measurement on one single anti-crossing with 250 MHz frequency window. The parameters extracted
from fitting of both pictures are listed in Table. 4.1

59



4 Experimental result of the single-qubit chip and 8-qubit chip

4.2.2 Two-tone experiment

Readout of the qubit is realized by working in the dispersive regime as discussed
in Sec. 2.4.3. In experiment, I tune the bias current to the value corresponding to
half a flux quantum, i.e. the sweet spot of the qubit. So that the qubit has the least
sensitivity to flux noise and is far detuned from the resonator. Thus the resonator is
employed as the readout tool of the qubit working in the dispersive regime.

The system is then probed by the VNA with a second tone (namely the microwave
generator shown in Fig. 4.5 a) driving the qubit. As discussed in Sec. 2.4.3, according
to the interaction of the resonator and the qubit in the dispersive limit, the resonator
has a frequency of ωr + χ01 − χ12 when the qubit is not excited. Once the driving
microwave hits the transition frequency of ground stat to the first excited state of the
qubit, the qubit gets excited, and the frequency of the resonator shifts to ωr − χ01.
Picking out the most sensitive point of the Lorentz-shaped resonator as the measure
point, and drive the qubit with proper power, the fundamental transition of the
qubit from ground state to the first excited state is detected.

Fig. 4.8 a) shows the curve of the fundamental transition frequency of the qubit
with respect to the current, employing the parameters obtained from the fitting
in Fig. 4.7 a) (only the offset is different). Fig. 4.8 b) shows a plot of the measured
qubit frequency for different bias current values within the measurement window
illustrated by the green frame in figure a). The red squares are the measured values.
The black dashed line is the same as in figure a. Here the power of the driving
microwave is set to low value to ensure the single-photon driving. The maximum of
f01 is measured to be 10.030 GHz when bias current is -150 µA.

According to Ref. [Bra+15], since the transmon qubit has limited anharmonicity, the
higher levels could also be excited by multiple photon transition. Fig. 4.9 b) illustrate
the process of multi-photon transition. 2 photons with the frequency of ω02/2 will
drive the qubit from ground state to the second excited state, and similarly the
higher levels are reached. Of course the higher the level, the larger the shift of the
resonator is. By keeping the qubit around its maximum frequency and scanning
over the driving microwave frequency of the qubit while increasing the power of the
microwave source, one observes the result shown in Fig. 4.9 a). Higher transitions
start to show up when the power goes up. It is worth noticing that the value of
the power here is the power of the microwave source. The power reaches the chip
is much lower because of the attenuation (-105 dB) of the wiring showed in the
measurement setup. This measurement is important. It tells us up to which driving
power only the basic transition is excited, i.e. the qubit is treated as a 2-level system.
What’s more, the anharmonicity of the transmon qubit could be calculated based on
the high power measurement.
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4.2 Single qubit measurement

Figure 4.8: (Color online) Qubit frequency predication and measurement. (a) The curve of the
fundamental transition frequency of the qubit with respect to the current employing the parameters
obtained from the fitting in Fig. 4.7. Only the offset is changed to 2.98. (b) A plot of experiment of the
qubit frequency for different bias current values within the measurement window illustrated by the
green frame in figure a. The red squares are the measured qubit frequencies. The black dashed line is
the same as in figure a. Here the power of the driving microwave is set to low value to ensure the
single-photon driving. The maximum of f01 is measured to be 10.030 GHz when bias current is -150 µA.
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4 Experimental result of the single-qubit chip and 8-qubit chip

Figure 4.9: (Color online) Multiple photon transition. (a) Keeping the qubit around its maximum
frequency and scanning over the driving microwave frequency of the qubit while increasing the power
of the microwave source, one observes multi-photon transition experimentally. (b) The process of
multi-photon transition on the level-ladder of transmon qubit.
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4.2 Single qubit measurement

Figure 4.10: (Color online) Measurement on the qubit frequency with high microwave source power. 5
transitions are visible. The transition frequencies of each neighboring levels are calculated. The mean
anharmonicity is 386 MHz.

Fig. 4.10 is the measurement of qubit transition frequencies done with the power
of the microwave source at -10 dBm. Since it is only a single trace, taking smaller
step-length of the microwave frequencies for a better resolution is achievable. The
transition frequencies obtained from this measurement are listed in Table 4.2.
The transition frequencies of each neighboring levels are calculated. The mean
anharmonicity is 386 MHz.

f01 (GHz) f02 (GHz) f03 (GHz) f04 (GHz) f05 (GHz)
9.948 19.514 28.653 37.436 45.84

f12 (GHz) f23 (GHz) f34 (GHz) f45 (GHz)
9.566 9.139 8.783 8.404

Table 4.2: Parameters of the single qubit chip .

4.2.3 Time-domain measurement

In order to measure the life time (T1) of the qubit, the time-domain setup shown
in Fig. 4.5 b is employed. The first thing to do is to find the correct microwave
pulse corresponding to a π pulse which rotates the qubit from stat |0〉 to |1〉 on
the Bloch sphere. Fig. 4.11 (a) shows this process. A sequence of microwave pulses
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4 Experimental result of the single-qubit chip and 8-qubit chip

Figure 4.11: (Color online) Illustration of time-domain measurement. (a) How the π pulse is defined. A
sequence of microwave pulses with different durations is applied on the qubit, right after each pulse
the qubit is measured and has enough relaxing time before the next pulse. A damped Rabi oscillation
between the ground state and the first excited state is observed. From the period of the oscillation, the π

pulse is determined to be 155.7 ns. (b) The measurement of the life time of the qubit. π pulse is applied
to the qubit, and the waiting time before measurement ∆τ is extended for each measuring sequence, an
exponential decay is observed. From this result, the life time of the qubit is obtained to be 577 ns.

with different durations is applied on the qubit, right after each pulse the qubit
is measured and has enough relaxing time before the next pulse. A damped Rabi
oscillation between the ground state and the first excited state is observed. From the
period of the oscillation, the π pulse is determined to be 155.7 ns.

When the qubit is at the ground state, apply the π pulse on it, and measure directly
after the pulse, the qubit is found to be at the excited. Give it enough time to relax
to the ground state and extend the waiting time ∆τ before measurement for each
measuring sequence, the exponential decay is observed. From this result, the life
time of the qubit is obtained to be 577 ns.
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4.3 Fano-shaped resonator

Figure 4.12: (Color online) Bandwidth of the dip for the qubit transition frequency, which is extracted
by fitting the dip with Lorentz function. The data points are fitted to a linear function. T2 is calculated
according to the bandwidth at zero power.

As shown in Fig. 4.10, the measured qubit frequency shows a Lorentz-shaped dip,
which broadens if the driving power Pqubit of the qubit is increased [Lis08]. According

to Ref. [Abr61], the bandwidth σ depends linearly on
√

Pqubit. The data of f01 for

different driving power shown in Fig. 4.9 a) is fitted with a linear function, and the
result is shown in Fig. 4.12.

According to the linear fitting, the bandwidth at zero power is obtained σ0 = 1.450
MHz. It corresponds to the dephasing time of the qubit

T2 =
1

πσ0
= 220ns. (4.5)

4.3 Fano-shaped resonator

The microwave resonator is very important, since it is commonly used to probe
and readout the superconducting qubits dispersively coupled to it. Based on the
wiring of our measurement setup, transmission and reflection data could be taken
during the same cooldown of the dilution refrigerator. Theoretically, through such
an in-line CPW resonator, the transmission is supposed to be peaked in the vicinity
of the resonance [Göp+08] for any photon numbers. However, in our experiments
I experimentally observe an arbitrary Fano-shaped resonance in the transmitted
amplitude of the resonator as a function of frequency. The shape of the Fano
resonance can be tuned substantially with DC biasing of control lines, and shows a
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4 Experimental result of the single-qubit chip and 8-qubit chip

smooth transition between peak and dip while scanning over the current. In most
cases, a dip is observed, rather than a peak.

For the purpose of understanding the observed effects physically, with the help
of Dr. Juha Leppäkangas, a theoretical model [Lep+] is established on the basis
of microwave propagation in open transmission lines with boundary conditions
which represent the microwave resonator and its coupling to the background. Within
this model, an interference effect is explained with a transmission of microwave in
parallel and the dynamics of the multiple qubits.

The benefit of simplified feature is that the complete system of the resonator and
multiple qubits has a changeless equation of motion, so that the Fano interference
could be solved straightforwardly employing a solution for the cavity obtained
beforehand. Such as the solution based on the simulation of the master equation
and an additional linear boundary conditions accounting for the presence of the
background. I study further in details the form of the Fano resonance and the
information it can carry in several considerations, such as dissipation, heating, and
system nonlinearity.

A drastic variation of the shape for the transmission spectra is observed when the
decoherence of the qubits is enhanced because of the incoherent hopping of the qubit
states or decay of the cavity. Such kind of decoherence in our system is caused by the
local heating originating from the DC current running through the bias lines next to
the qubits. Due to the design, the coupling strength between the bias line and the
center conductor of the resonator is not negligible, because it needs to be so close to
the qubit, so that to realize effective control of the qubit with small current, which in
turn reduces the heating effect. As a result, the feeble background dissipation of the
resonator transmits through the bias lines due to the cross talk. However, even with a
strong noise which comparable with the bandwidth of the resonator, the microwave
CPW resonator is still able work as the readout tool. No matter the shape of the
resonator is a peak or a dip, the Jaynes-Cummings energy levels can be detected
from its position, despite the Fano resonance [Lep+] changes with temperature and
the decoherence strength. The results basically show it is important to consider the
cross talk in such kind of superconducting microwave circuit and the Fano resonance
can be employed to probe the system.

4.3.1 Theoretical model of the system

In this part I introduce the classical and the quantum models respectively for the
system for multiple qubit coupled to a mutual cavity bus. For starters, I introduce a
classical model in which the microwave scatters in a parallel channel (background).
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4.3 Fano-shaped resonator

Secondly, the model is quantized without the parallel transport. I demonstrate
afterwards how to include the parallel transmission in the quantized model, i.e. by
adding corresponding terms in the boundary conditions of the microwave.

Model of linear scattering

For the classical model of microwave scattering, microwave radiation in a pair of
semi-infinite transmission lines connected by the same boundary is considered. It
can be described by lumped circuit elements. The equivalent circuit is shown in
Fig. 4.13. This model could include the superconducting qubits, under the condition
that they interact with the resonator only linearly, so that they could be treated as
classic harmonic oscillators. The superiority of this strategy is all elements of the
circuit could be represented by impedance. This means once the general solution is
obtained, the investigation of different type of effective lumped-element circuit is
straightforward. This strategy is also used to exam the reduced model later, which
considers non-linear qubits, and shows correct results in the linear limit.

The scattering properties are derived by requiring that at the end of the transmission
lines, the voltages and currents match the relation between them which is implied
by the impedances of the system. The first thing to do is to identify the total voltage
and current considering the in and out propagating fields at the both ends of the
cavity as shown in Fig. 4.13. For the voltage and current, according to Ref. [Poz09],
one obtains 

VL =VL
in + VL

out,

VR =VR
in + VR

out,

IL =
VL

in −VL
out

Z0
,

IR =−
VR

in −VR
out

Z0
.

(4.6)

The variables here are the Fourier components of the total propagating field (for
example, VL = VL(ω) ). The opposite sing of the two equations for current is due to
the difference in definition of propagating direction on the two sides. The out-fields
can then be solved as a function of in-fields by using Kirchhoff rules of the cavity
with two sides.

In order to illustrate our approach, a good start is to consider the case of bare
parallel impedance, i.e. Cc1 and Cc2 are both zero. Two boundary conditions must be
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4 Experimental result of the single-qubit chip and 8-qubit chip

Figure 4.13: (Color online) The equivalent circuit [Lep+]. (a) The incoming and outgoing microwave
fields propagating in the semi-infinite transmission lines (impedance Z0) on two sides of the resonator.
The propagating fields couple with the cavity field through capacitors Cc1, Cc2 and directly to each
other through impedance Zp . (b) The cavity is modeled as a parallel LC resonator [Göp+08] and its
internal dissipation can be included by resistor R. (c) The cavity is coupled through a capacitor Cg
to a superconducting qubit (crossed box), or similarly to a set of superconducting qubits (through
capacitances Cgi).

satisfied [Lep+], which means the current conserves and the voltage drops across
the impedance Zp, 

VL
in −VL

out
Z0

=−
VR

in −VR
out

Z0
,

Zp
VL

in −VL
out

Z0
=(VL

in + VL
out)− (VR

in + VR
out).

(4.7)

It simplifies the equations to assign VR
in = 0, because in real experiment there is

microwave input into one end (the left side in our case) of the resonator, no matter it
is transmission or reflection measurement. Thus the solution is derived to be [Lep+]

VL
out =

1
1 + 2Z0/Zp

Vin,

VR
out =

2Z0/Zp

1 + 2Z0/Zp
VL

in.
(4.8)
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4.3 Fano-shaped resonator

Analogously, under the condition that Zc1 and Zc2 are not zero but arbitrary
impedances with the form Zc1 = (iωCc1)

−1 and Zc2 = (iωCc2)
−1, the boundary

conditions could be constructed. Considering the Kirchhoff equations for the
input and output fields and the voltage on the island between Cc1 and Cc2, it is
straightforward to calculate the solution. With the same assumption that VR

in = 0,
the equation set is

1
Z0

+ 1
Zc1(ω)

+ 1
Zp(ω)

− 1
Zc1(ω)

− 1
Zp(ω)

− 1
Zc1(ω)

1
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+ 1
Zc1(ω)

+ 1
Zc2(ω)

− 1
Zc2(ω)

1
Zp(ω)

1
Zc2(ω)

− 1
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− 1

Zc2(ω)
− 1

Zp(ω)


(

VL
out

VR
out

)
=


1

Z0
− 1

Zc1(ω)
− 1

Zp(ω)
1

Zc1(ω)

− 1
Zp(ω)

VL
in.

(4.9)
The output fields and the voltage on the island between Cc1 and Cc2, as a function
of the input( VL

in), could easily be calculated by inverting the matrix. Assuming the
coupling on the ends of the resonator is symmetric, i.e. Cc1 = Cc2 = Cc, one obtains
the analytical solution [Lep+]

VL
out

VL
in

=
2Z0[Z2

c + Z(2Zc + Zp)]

(2Z + Z0 + Zc)[Z0(2Zc + Zp) + ZcZp]
,

VR
out

VL
in

=
ZcZp(2Z + Zc)− Z2

0(2Zc + Zp)

(2Z + Z0 + Zc)[Z0(2Zc + Zp) + ZcZp]
.

(4.10)

As defined in the 2-port network analyze, the reflection (S11) and the transmission
(S21) are the ration between the output and input field, namely

S∗11 =
VL

out
VL

in
,

S∗21 =
VR

out
VL

in
,

(4.11)

I tacitly approve that there is no input from the right side of the resonator.

Quantization of the model

It is systematical to start with a Lagrangian approach when quantizing various open
microwave circuits. In this part, I summarize the results of the Lagrangian approach
applied to our system. To start with, I consider the case that the cavity is driven in the
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4 Experimental result of the single-qubit chip and 8-qubit chip

absence of parallel transmission (Zp → ∞). Different from the impedance approach
that is talked about above, the model discussed now also includes non-classical
interaction among the cavity and superconducting 2-level systems.

The basic idea is to deal with the coupled system( the resonator and the artificial
atoms coupled to it) and the transmission line separately, while consider their
interaction by adding linear boundary conditions. This approach is proved to be
valid for high quality-factor (high-Q) cavities and usual cavity-qubit coupling (below
ultra-strong coupling regime). Thus, the cavity is treated separately, and described
by the Hamiltonian of an harmonic oscillator,

Ĥ0 = h̄ω0 â† â, (4.12)

where â and â† are the annihilation and creation operators. The coupling normalized
resonance frequency is

ω0 =
1√

L(C + 2Cc)
, (4.13)

where Cc is the capacitance of each end of the symmetric resonator, namely
Cc1 = Cc2 = Cc.

Considering the boundary conditions at both sides of the resonator [WM08], the
interaction between the resonator and the semi-infinite transmission lines is obtained.
On the left side,

âout(t) =
√

γâ(t)− âin(t). (4.14)

And on the right side,
b̂out(t) =

√
γâ(t)− b̂in(t). (4.15)

The operators in these two equations are time-dependent because it is in the
Heisenberg picture. The operator âin(t) (âout(t)) annihilates an incoming (outgoing)
photon at the left side at time t. The definitions are similar for the operators âin(t) and
âout(t) of the right hand side. These four operators have the commutation relations[

âin(t), â†
in(t
′) = δ(t− t′)

]
,[

b̂in(t), b̂†
in(t
′) = δ(t− t′)

]
.

(4.16)

The same relations ought to be valid for the output field (which is solved as a function
of input field). According to Ref. [PS95], the decay rate is described by the following
equation

γ =

(
Cc

C + 2Cc

)2 Z0

ZLC
ω0, (4.17)
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4.3 Fano-shaped resonator

here ZLC =
√

L/(C + 2Cc) is the characteristic impedance of the resonator. For a
common condition that ZLC is comparable with Z0, aiming for a quality factor much
larger than 1 leads to C � Cc. Finally, the operators of the cavity field satisfy the
following Heisenberg equation of motion [WM08]

˙̂a(t) =
i
h̄
[
Ĥ0, â(t)

]
− γâ(t) +

√
γ
[

âin(t) + b̂in(t)
]

(4.18)

Under the similar assumption that there is a coherent input from the left side of
the resonator with frequency ω while there is no input at all from the right side,
the function of reflection and transmission having the following form should be
solved [Lep+]

S11 =
〈âL

out〉
〈âL

in〉
,

S21 =
〈b̂R

out〉
〈âL

in〉
.

(4.19)

The way to solve these equations is to solve the output field as a function of input
field under the boundary conditions described by Eq. 4.14 and Eq. 4.15, as well as the
Heisenberg equation of motion shown in Eq. 4.18. A straightforward comparison
between this approach and the impedance approach concerning the scattering
properties is shown in Fig a direct comparison to the scattering properties obtained
by the impedance approach can be done, and is shown in Fig 4.14

Employing the single-mode treatment, one is able to consider the interaction between
the microwave cavity and the qubits as well. The cavity interacts with the qubit
through Cgi as illustrated in Fig. 4.13 c. For an isolated cavity interacting with
n-qubits, the system is described by the Tavis-Cummings Hamiltonian discussed
before

Ĥ0 = h̄ω0 â† â +
n

∑
i=1

Ωi
2

σ̂i
z + gi

n

∑
i=1

(â†σ̂i
− + âσ̂i

+). (4.20)

And the boundary conditions and Heisenberg equations of motion have the same
form as before (under the assumption of gi � ωi). By representing the qubit a
parallel inductor Li and capacitor Ci, the strength of interaction is approximated to
be

gi =
√

ω0Ωi
Cg√
CCi

, (4.21)

where Ωi = 1/
√

Li(Ci + Cgi). Here it is assumed Cg, Cc � C, Ci. The energy of the

oscillator is renormalized to ω0 = 1/
√

L(C + 2Cc + ∑i Cgi).
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Figure 4.14: (Color online) S21 amplitude transmitted through a linear resonator [Lep+]. The results of
impedance approach (dashed lines) and the single-mode approach (solid lines) are compared. The
resonator is represented by a LC oscillator as shown in Fig. 4.13. (a) The transmission without the
background transmission, with Cc/C = 0.05, 0.2, 0.4 respectively for the impedance approach, namely
the off-resonance transport increases simultaneously. In the single-mode treatment it corresponds to
γ/ω0 × 103 = 0.5, 8, 32. The comparison proves that the single-mode treatment is a good approximation
and becomes more accurate if Cc gets much smaller than C. (b) The transmission amplitude with
increasing transmission through the background for Cc/C = 0.1. ε = 0.05, 0.2, 1.0 corresponds to
different off-resonance transmission. One notices that the single-mode treatment is a good approximation
for all cases. For both figures, it is assumed there is no dissipation in the system.

In the dispersive limit (g� |Ω−ω0|), the effective Hamiltonian is in the following
form

Ĥe f f = h̄
(

ω0 +
g2

∆
σ̂z

)
â† â +

h̄
2

(
Ω0 +

g2

∆

)
σ̂z, (4.22)

where ∆ = Ω−ω0 is the detuning between the resonator and the qubit. The system
now behaves as a harmonic oscillator, and the resonance frequency is decided by the
state of the qubit.

Consider the background

The model discussed above is generalized to the case considering a parallel transition
(explicitly a parallel inductor) in this part. The parallel capacitor is not important as
it only changes the sign of the obtained reactive term. By introducing an imaginary
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4.3 Fano-shaped resonator

part of this term, the corresponding boundary conditions shown in Eq. 4.14 and
Eq. 4.15 are generalized using a Lagrangian approach [Lep+]

âout(t) =
√

γâ(t)− 1
1 + 2iε

âin(t)−
2iε

1 + 2iε
b̂in(t),

b̂out(t) =
√

γâ(t)− 1
1 + 2iε

b̂in(t)−
2iε

1 + 2iε
âin(t),

(4.23)

where a parameter which describes the reactive response of the parallel channel is
introduced ε = Z0/ω0Lp = Z0/|Zp(ω0)|. In the limit of ε→ 0, one obtains the same
equations as Eq. 4.14 and Eq. 4.15. What’s more, a combination of γ→ 0 and b̂in = 0
gives the boundary conditions equivalent to Eq. 4.8. The Heisenberg equation of
motion stays the same and is valid for all ε and γ which is much smaller than ω0. The
interference of the output field is calculated using Eq. 4.23. The result proves that the
previous work for driven cavities [Bis+09] is achievable to be modified to describe
the case of parallel transportation by applying the modified boundary conditions.

For linear cavities, the output field could be solved as a function of the input field by
a Fourier transformation [WM08]. The solution is valid for a system consists of a
cavity and a qubit which works in the dispersive limit, i.e. there is no transition of
the qubit state, or the transition is so slow that can be represented by a statistical
average over the frequencies of the resonator. Employing the Fourier transformation
of the operator â(ω) ≡ (1/

√
2π)

∫
â(t)dt,(

âout(ω)

b̂out(ω)

)
=

1
(1 + 2iε)(1− 2i f )

(
4ε f − 1 −2i(ε + f )
−2i(ε + f ) 4ε f − 1

)(
âin(ω)

b̂in(ω)

)
, (4.24)

where f = f ω = γ/2(ω0 −ω). The amplitude of transmission and reflection are

S21 =
γ + 2ε(ω0 −ω)

(1 + 2iε)[γ + i(ω0 −ω)]
,

S11 =
2γε + ω−ω0)

(−i + 2ε)[γ + i(ω0 −ω)]
.

(4.25)

When ε = 0 (or γ = 0), it corresponds to the situation that the parallel transportation
(or the resonator) has no contribution [Lep+]. A comparison of this model and the
impedance approach is shown in Fig. 4.14 b. One notices that the reduced model
works for all strengths of parallel transportation.

Introducing dissipation and master equation

The next thing to do is to introduce the dissipation of the resonator, the qubit and
the parallel transmission lines, and the fluctuation caused by finite temperature. By
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4 Experimental result of the single-qubit chip and 8-qubit chip

adding a negative imaginary term to ε (i.e. iε changed into iε + εr), one introduces
phenomenologically a finite resistivity of the background. This approach is similar
to how to introduce the dissipation in the impedance approach: by changing Zp(ω)

from iωLpω to iωLpω + R p, where Rp is a series resistor larger than zero. In order
to add the dissipation of the resonator, it is similar that an imaginary term should be
added to the resonance frequency. On the contrary, to consider the effect of finite
temperature, formulate a master equation is more convenient. It is worth noticing
that the finite temperature affects the field averagely. It should be considered only in
nonlinear system (for example system that have qubits), because for linear system
(for example the harmonic oscillator) the contribution averages out. Analogously,
the thermal radiation emitted through the parallel transmission lines averages out
when only the average field amplitude is considered.

By the assumption of a coherent input from the transmission line on the left side,
our model can be described by a Lindblad master equation that includes the finite
temperature in the transition of the system [WM08],

˙̂ρ =
i
h̄
[ρ̂, Ĥ] + La[ρ̂] + Lb[ρ̂] + Lint[ρ̂] +

n

∑
i=1
Lqi[ρ̂], (4.26)

where ρ̂ is the reduced density matrix of the resonator-qubit system. The coherent
Hamiltonian of the coupled system is

Ĥ = Ĥ0 + Ĥd, (4.27)

where Ĥd = ih̄
√

γa A(t)â† + H.c. is the term for the incoming radiation from side
a. A(t) = 〈âin(t)〉 and 〈b̂in(t)〉 = 0. Consider the system in the rotating frame with
respect to the drive frequency ω, one gets a Hamiltonian for the dispersive limit,

Ĥ = h̄
(

ω0 −ω +
g2

∆
σ̂z

)
â† â +

h̄
2

(
Ω0 +

g2

∆

)
σ̂z +

α

2
(â† + â), (4.28)

where α = 2ih̄
√

γA(t)eiωt is a constant real number. The Lindblad super-operator
La describes cavity transitions due to interaction with the transmission line on the
left,

La[ρ̂] =
γ−a
2

(2âρâ† − â† âρ− ρâ† â) +
γ+

a
2

(2â†ρâ− ââ†ρ− ρââ†). (4.29)

Here the decay rate to the left side transmission line satisfies in thermal equilib-
rium [WM08] γ−a = γ× exp( h̄ω0

kBt )/[exp( h̄ω0
kBt )− 1], and the corresponding thermal

excitation rate γ+
a = γ/[exp( h̄ω0

kBt )− 1]. Similarly one gets Lb describing the interac-
tion with the transmission line b (γ±b = γ±a ). Lint describes the internal decoherence
of the resonator, and the decoherence of the ith qubit is described by

Lqi[ρ̂] =
γ−qi

2
(2σ̂i
−ρσ̂i

+− σ̂i
+σ̂i
−ρ− ρσ̂i

+σ̂i
−) +

γ+
qi

2
(2σ̂i

+ρσ̂i
−− σ̂i

−σ̂i
+ρ− ρσ̂i

−σ̂i
+). (4.30)
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4.3 Fano-shaped resonator

For the internal decoherence of the resonator and qubit decoherence, the excitation
and decay rates are in thermal equilibrium in the following form

γ± =
∓J(ω0)

1− exp(pm h̄ω0
kBt )

, (4.31)

with J(ω0) the spectral density of the relevant dissipative environment.

The output (and the possible interference) could be solved by calculating 〈â(t)〉,
employing the master equation, and then applying Eq. 4.23, with Eq. 4.23.

4.3.2 Fano resonance

In this part, different forms of Fano resonances [Fan61] for microwave transmission
are discussed theoretically considering a two-ended resonator with a parallel channel
and the decoherence of the system is also included. The spectral form of a resonant
system for a typical Fano resonance is asymmetric around the resonance frequency
because of the interference of two scattering amplitudes. One is through a resonant
system with a discrete energy-levels, the other one is through a background with a
constant density of states. It is possible to characterize the Fano interference by the
parameter q under the assumption that the scattering spectrum as a function of the
drive frequency is in the following form

|S| ∼ |q + η|√
1 + η2

, |s|2 ∼ (q + η)2

1 + η2 , (4.32)

where η = (ω0 −ω)/(γ/2) is the broadening-normalized frequency. The response,
(for example the amplitude of the transmitted microwave) is proportional to this (or
a similar) equation. There are two important limits in this description, one is q→ ∞
which gives a Lorentzian shaped peak, while the other on is q = 0 which gives a
Lorentzian shaped dip.

System without dissipation

For free resonator, which could be represented by a Jaynes- or Tavis-Cummings
oscillator in the dispersive limit, the solution of S21 in Eq. 4.25 is employed to study the
interference. The parameters ω0 and ε are assumed to be positive real numbers(i.e.
internal dissipation is not considered), so that the transmission probability is
obtained [Lep+]

|s21|2 =
1

q2 + 4
(q + η)2

1 + η2

4

∝
(q + η)2

1 + η2

4

(4.33)
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where q = 1/ε. For the limit that q → ∞ (i.e.|Zp(ω0)| → ∞), a Lorentzian shaped
peak for the transmission is observed, which means there is no interference. On
the other hand, for a finite q(i.e. finite parallel coupling), the interference plays a
role. When q = −ε, there is no transmission, because of perfect destruction. When q
reaches the other limit which goes to zero, the response changes to a Lorentzian
shaped dip. In the case of dissipation free system, a very strong parallel transportation
is needed for this form of peak. All these limits could be seen in Fig. 4.14 b.

The direction of the tilt (namely the minimum location of the resonance frequency)
in our case is always rightwards. And it depends generally on two elements. The
first is the change of the phase from the input to output through the resonator.
The second is the nature of the parallel coupling, whether it is coupled capacitively
or inductively. The practical example is the CPW λ/2-resonator employed in our
research, the phase of which at resonance is in the form of VR

out/VL
in = (−1)n+1 for

modes n = 1, 2, .... Which means the first mode keeps the sign while the second
mode switches the sign. What’s more, the model based on a parallel resonator (see
Fig. 4.13 b), inverts the sign at the resonance and equals to n = 2, 4, .... However, the
model based on a parallel resonator could describe odd modes as well, if inductive
and capacitive parallel coupling are switched.

Dissipation through the resonator and the background

Till now, I prove that for a dissipation-free system with a weak parallel transportation,
the transmission is always a tilted Lorentzian peak. Then I discuss about a resonator
having a finite internal quality factor with dissipation through the parallel channel,
which changes the form of the Fano resonance to a dip. Firstly, I study a linear
resonator with no qubit hopping (working in the dispersive limit). The solution of
Eq. 4.25 is valid. What’s more, a finite internal quality factor could be included by
adding a imaginary part to the frequency of the resonator ω0 → ω0 − iωr, a finite
resistivity in the parallel channel could also be added a imaginary part to ε as ε− iεr

For starters I add only the cavity dissipation. The result obtained from the solution
of Eq. 4.25 is shown in Fig. 4.15. As expected, the effect of the internal dissipation is
reducing the transmission and ’straightens’ the structure of the interference. The
reflection dip changes similarly as shown in Fig. 4.16 a. Obviously, due to the
radiation dissipated through the resonator, the reflection and transmission in total is
smaller than the input.

Afterwards, the dissipation through the parallel channel is added. One notes that it is
not achievable to obtain the asymmetric Fano shape without the reactive part in the
parallel channel. Also, the resistivity of the parallel channel decreases the resonant

76



4.3 Fano-shaped resonator

Figure 4.15: (Color online) Transmission through the resonator [Lep+]. (a) The effect of increasing
internal cavity dissipation without dissipation through the background (ε = 0.05). Only the linear cavity
is taken into consideration as the qubit is in the dispersive limit. γ = 2× 10−3 and an imaginary part
−2nγi is added to the cavity frequency, with n = 0, 1, 2, 3. The internal dissipation reduces transmission
and ’straightens’ the interference structure. (b) The same model as figure a, only with fixed dissipative
background (ε = 0.05 + 0.05i). In this case, the transmission changes to a dip, even though there is only
a weak parallel transportation.

transport. However, the two factors do not simply add up, on the contrary, under
the assumption that the parallel-coupling dissipation is fixed, and the dissipation
through the cavity is increased, I observe an interesting phenomenon that the
minimum value of the dip decreases (Fig. 4.15 b). One deduces from Eq. 4.25 a
zero point of the transmission under the condition Im[ω0] = γIm[ε]/2|ε|2. This
zero transmission is at ω−ω0 = Re[ε]Im[ω0]/Im[ε]. What’s more, when ε . εr, the
function of transmission is in the following form

|s21| ≈
εr

1 + 2εr

∣∣∣ ε
ε2

r
+ η

∣∣∣√(
1 + 1

2εr

)2
+ η2

4

(4.34)

For weak parallel transmission, ε and εr are much smaller than 1, compare with the
Fano function, q� 1 is obtained. Under this condition, the transmission amplitude is
an asymmetric dip even though the parallel transportation is rather weak. However,
the reflection is always a dip (Fig. 4.16).
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4 Experimental result of the single-qubit chip and 8-qubit chip

Figure 4.16: (Color online) Reflection by the resonator [Lep+]. (a) The effect of increasing cavity
dissipation on the reflection amplitude without dissipation through the background of Fig. 4.15 a. The
internal dissipation again ’straightens’ the interference structure. (b) Similar result as figure a, while
dissipation in the parallel channel is taken into account. The reflection shows a dip all the time, even
though the shape of transmission under the same condition is also a dip.

Oscillator in Jaynes-Cummings model

Now I introduce the qubits to the system which origins the non-linear phenomenon,
so that the complete system could not be presented as a linear resonator. The
hopping between the qubit states in the dispersive limit because of on-chip heating is
investigated. Afterwards, the heating effect on the resonator in the photon-blockade
limit (i.e. it is only allowed to populate two-photon state of the resonator) is studied.

The effective Hamiltonian of the Jaynes-Cummings model in the dispersive limit is
shown by Eq. 4.28. The steady state expectation value (i.e. 〈â〉) is solved numerically
for weak driving employing a Lindblad mater equation, under the assumption that
the qubit is at finite temperature with a dissipative environment. I find several
interesting limits: first of all, if the excitation rate and the decay rate are much smaller
than the dynamics of the resonator (rate γ), the solution is a classical average of
two results for the transmission, which correspond to the two dispersively shifted
resonance frequencies of the resonator; secondly, if the excitation rate and the
decay rate dominate γ and the dispersive shift, I see a dynamic averaging. But the
alternating is very fast, so that only a averaged value is detected as a peak in the
transmission spectrum. Plotting of the transmission under these two limits is shown
in Fig. 4.17 a. What’s more, if I consider a weak transportation with dissipation
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4.3 Fano-shaped resonator

Figure 4.17: (Color online) Transmission through the Jaynes-Cummings oscillator (with γ = 5×
10−4ω0) [Lep+]. The dispersive shift alternates between two values separated by g2/∆. The difference
between the two figures is that the left one includes a weak dissipative transportation through the
parallel channel, while the right one does not. The alternating between the two values is assumed to
be the same for both of the qubit excitation and relaxation, and the dispersive shift is assumed to be
much larger than the decay rate of the resonator (a factor of 40 is used). Thus, with a weak alternating
rate and no transportation through the parallel channel, a statistical averaging of transmission for
two possible cavity frequencies is observed. By increasing the alternating rate, the two peaks merge
into an averaged single resonance peak. By introducing the weak dissipative transportation through
the parallel channel (figure on the right), the transmission is Fano-shaped, evolving from two tilted
Lorentzian-peaks to dips, and finally to a single averaged dip. At very high switching rates a tilted
peak is recovered (not plotted).

through the parallel channel, a peak changing to a dip is observed in different limits
(shown in Fig. 4.17 b).

The third interesting limit is when there is a strong asymmetry between excitation
and decay rates and g2/∆ > γ−q (here γ−q is the zero-temperature qubit decay rate).
The qubit is normally at its ground state at cryogenic temperature, but incoherent
short-time hopping to its excited state is achievable because of thermal excitation,
but of course it decays fast. Such phenomenon is expected to result in dephasing
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Figure 4.18: (Color online) Transmission through the Jaynes-Cummings oscillator with γq− � γ+
q ,

γ = 1× 10−3ω0, and ε = 0.05 (i.e. dissipation-free background) [Lep+]. figure (b) zooms in at figure (a)
around the resonance frequency. Here the dispersive shift g2/∆ = 80γ and the decay rate γ−q = 5γ at
zero temperature. The excitation (as well as the equivalent induced relaxation) increases for different
curves by rates nγ (n = 1, 2, 3). The fit for linear model with growing internal dissipation (dashed lines)
is done with an imaginary part for the resonance frequency γdephasing = 1.2nγ (n = 1, 2, 3). While the
excitation rate is increased, a weak disturbance shows up at the position of the upper frequency of the
cavity, at ω = 1.04ω0.

of the cavity, because of the ’diagonal’ noise in its frequency. The transmission in
such limit is plotted in Fig. 4.18. Such kind of dephasing shows close likeness to
increasing resonator dissipation by a rate γdephasing ≈ γ+

q .

This can be explained by a single jump of the qubit which is enough to dephase the
system in this limit. Besides, the functions of dephasing or decay are similar for
superpositions of different photon number. The fit for linear model with growing
internal dissipation (dashed lines) is done with an imaginary part for the resonance
frequency γdephasing = 1.2nγ (n = 1, 2, 3). While the excitation rate is increased, a
weak disturbance shows up at the position of the upper frequency of the cavity, at
ω = 1.04ω0. However, the weak shift can still be distinguished experimentally.

Consider the case for multiple qubits, at least under the assumption γ−qi � γ+
qi ,

such phenomenon is expected to sum linearly, i.e. γdephasing ≈ ∑i γ+
qi . If the internal

dissipation of the resonator is considered, including the dissipation through the
parallel channel, the situation is achieved that the transmission shows only a dip
on resonance (see Fig. 4.15). It differs from the internal dissipation of the resonator
in dephasing, as the resonator dose not dissipate energy, only t〈a〉 averages out.
When the sources of dissipation match (γdephasing = γIm[ε]/2[ε]2), a temperature
induced total disappearance of the amplitude of the transmission is observed. It is a
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Figure 4.19: (Color online) Transmission through Jaynes-Cummings oscillator in the photon-blockaded
regime for γ = 5× 10−4ω0 [Lep+]. (a) The result of increasing the temperature for weak driving without
dissipation through the background. The temperature induced excitation rate is nγ/2 (n = 0, 1, 2, 3, 4) for
different curves. The Fano resonance ’straightens’ too, and is narrower than the case of increasing cavity
dissipation. (b) The result of increasing temperature with dissipative background in the same model.
The skewed Lorentzian evolves into a dip for transmission, while temperature-induced alternating
increases.

phenomenon that the dephasing of the resonator incudes signal reduction which
makes the total signal to create a perfect destructive interference of transmission.

The case of thermal distribution in the resonator is also considered. For simplicity,
the photon-blockaded resonator is investigated, i.e. the non-linearity is large enough
to forbid one-to-two photon transition. Only two states of the resonator are included
in simulation of the master equation for practical reason. The steady state expectation
value 〈â〉 is solved under the condition that the driving is weak while the transition
between the two states of the resonator increases because of finite temperature. The
result is shown in Fig. 4.19. The shape of the resonance ’straightens’ while increase
the incoherent hopping. The pure dip appears when including the dissipation
through the parallel channel. The shape of the peak of the transmission is narrower
compared to the dissipation of the resonator while increasing the temperature. And
it could not be fitted simply with an increasing of the resonator dissipation.

4.3.3 Experimental result compared with the theory

The spectroscopic feature of the readout resonator of the 8-qubit chip in transmission
is always tilted Fano-shape, with many different forms. With the theories discussed
above, it could be explained by the interplay between the decoherence of the coupled
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system and the propagation of the microwave field on the chip through mainly two
channels: the resonator and the background (probably the DC flux bias lines).

In our analysis, the shape of the Fano resonance is always under weak driving. A
general power dependence of the resonance frequency is also measured. For very high
powers, the qubits are decoupled to the resonator, so that only the linear resonator
contributes. For this sample, I observe all the time a Fano-shaped Lorentzian that is
slightly skewed for the resonator. It could be recovered at low powers with reduced
total quality factor compared to high-power case. It could be employed to fit the
properties of the resonator and the parallel coupling.

For the intermediate powers, a dip corresponding to the power-dependent Stark
shift is observed. This is in accordance with the theory, according to which in most
cases a dip is observed when the transportation is partly blockaded (see Fig. 4.17 for
example).

The Fano-shape could be removed from the experimental data using a background
substraction method. Under the boundary conditions defined by Eq. 4.23, with the
consideration of a week background coupling (i.e. |ε| � 1) and no input from side
b, the parameter ε is known. The field of the cavity is obtained

√
γ〈â(t)〉 = 〈b̂out(t)〉+

2iε
1 + 2iε

〈âin(t)〉. (4.35)

The equation of motion of the resonator depends now only weakly on ε [Lep+]. It
follows that this solution is (up to a constant front factor) also the solution for an output
without considering the background. The the amplitude of transmission before and
after background removing is shown in Fig. 4.20. The resonator frequency shifts
when a qubit goes across the resonance area while tuning the bias current.Fig. 4.20 a)
shows the original data before background removing. A smooth transition between
Fano-peak and dip is observed throughout the full range of the scanned coil current.
While figure (b) is the result after background extraction. The Fano resonance is
gone and a peak is observed all the time.

Fitting with the linear model

Our experiment is done for the ground mode of the CPW λ/2 resonator. In order to
understand the subtle behavior of the scattered amplitude, the system is modeled as
a continuous transmission line which is interrupted by two coupling capacitors Cc1
and Cc2 and accompanied by a parallel inductor Lp or equivalently a capacitor (see
Fig. 4.13).
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Figure 4.20: (Color online) Measured transmission amplitude as a function of the coil current. The
resonator frequency shifts when a qubit goes across the resonance area. (a) The original data before
background removing. A smooth transition between Fano-peak and dip is observed throughout the full
range of the scanned coil current. The two insets show the shape of the resonator when the current is 1
mA and 6 mA respectively. (b) The data after background removing using the original data shown
in figure a). The two insets show the shape of the resonator when the current is 1 mA and 6 mA
respectively.

By employing the parallel inductor, a similar Fano shape is recovered as observed in
the high-power and low-power ranges. As discussed above, the parallel inductor in
the theoretical model equals to a parallel capacitor experimentally (the real system).
It is also found that only a pure reactive response of the background is not enough to
quantitatively explain the observation in the experiment, but the dissipation through
the parallel coupling also needs to be taken into account.

The fittings to the linear model of the measured data of Fig. 4.20 are shown in Fig. 4.21
b and d. The following impedances is employed to describe the CPW resonator and
the parallel environment (background) [Lep+]

Zp(ω) = iωLp + Rp,

Zc1(ω) = Zc2 =
1

iωCc
,

Z−1(ω) =
1

iωC + 1
iωL + R

.

(4.36)

The optimal values for the fitting are Lp = 1.6 nH (equivalents experimentally to
Cp = 33 f F), Rp = 400 Ω, Cc = 4 f F, and for the resonator C = 262 f F, L = 2.12 nH.
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Figure 4.21: (Color online) The analysis [Lep+] of Fig. 4.20. Figures a and b shows the transition
between peak and dip for different current values. (a) The maximum and minimum of the peak goes
down. (b) The dip starts to rise, and vanishes for large current value. (c) and (d) are the theoretical
fitting corresponding to a and b with decreasing the internal quality factor of the resonator.

In order to see the changing between the peak and dip, a change in the internal
property of the resonator is introduced: it goes down while more magnetic field is
applied (larger current). In fact, the influence due to other decoherence-channels
(for example, the thermalization ) is very analogous. The change of the Fano-shaped
resonance is fitted by changing the internal resistance R of the resonator (from 350
kΩ to 30 kΩ) which corresponds to the change of the internal quality factor (from
3.5× 103 to 0.3× 103).

Fitting with Stark shift

As shown in Fig. 4.22, along with decreasing the transportation, in most data, the
thermal excitation induced Stark shift duplicates and is accompanied by ’shadows’.
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Figure 4.22: (Color online) Change of the line shape of the resonator [Lep+]. (a) The measured data for
scanning over a single coil while the currents of other coils are zero. (b) The fitting for the resonance
line shape using a cavity shifted dispersively and model described above. The x-axis is the temperature
induced excitation rate γ+

q , while the y-axis is the frequency of the driving, both of which are normalized
by the dispersive shift. The zero-temperature decay rate of the qubit is picked to be γ−q = 2γ and the
dispersive shift g2/∆ = 40γ. The line shape evolves to a dip roughly when γ+

q = 2γ−q . The parallel
coupling is modeled by an environment with dissipation for ε = 0.05− 0.05i.

This is an evidence of local heating due to the current running through the flux
bias lines. The qubit which gets excited is not the reason for the avoided crossing,
because the distance between the dominating signal and the shadow is a constant.
Such an additional peak in our theoretical model is visible only under the condition
that the decay rate of the excited state of the qubit is on the order of the bandwidth
of the resonator. In the fitting result shown in Fig. 4.22 b, the decay rate is chosen to
be twice of the bandwidth. I observe that the peak changes into a dip roughly when
γ−q = 2γ for zero temperature. For the qubit having the frequency of the order or the
frequency of the resonator, it requires T = 0.8 K. According to the property of dilution
refrigerator, such a high temperature is unreasonable, unless the random alternating
of the other 7 qubits are also taken account. Assuming all qubits contribute the
same, then a rising of 200 mK of the temperature is necessary. However, for those
qubits whose decay rates are much higher than the bandwidth of the resonator, the
additional shadows are much less visible. What’s more, correspondingly, a much
lower effective temperature is required to change the peak into a dip.

Regardless of the Fano shape of the resonator, it still works perfectly as the read-out
tool of all the qubits no matter it is a dip or a peak. In the next section I will discuss
about the behavior of the qubits.
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4 Experimental result of the single-qubit chip and 8-qubit chip

4.4 8 qubit measurement

Properties of the single-qubit chip are clear observed in experiments and straight-
forward to understand. However, when it comes to the 8-qubit sample, several
difficulties are encountered experimentally. Since the number of qubits increases,
the complexity of the whole coupled system increase exponentially. First of all, the
readout tool, i.e. the resonator shows an asymmetric Fano shape in most cases, which
is understood well in the last section. Secondly, although the design of the chip
ensures negligible direct coupling between the qubits, and tiny cross-talk between
qubit and non-adjacent bias lines, it is still very necessary to perform a calculation
before manipulating all the qubits. In this section, I report on the fast calibration
which isolates the qubits physically, so that precise single-qubit manipulation is
realized. What is also interesting is that, even though the system is measured with
single-photon-level power and only a single tone which probes the resonator (the
VNA), higher level transition of the qubit is still observed. This is due to thermal
population caused by the heating effect of the bias current running on the chip.

Because of the uncertainty in fabrication to some extent, and let alone the enormous
complexity of the 8 qubits themselves, it is not achievable to identify all the qubits
directly at the very beginning by 2-tone measurement on the qubits directly. Our
strategy is to perform single-tone measurement by the VNA, observing the vicinity
of the frequency of the ground mode for the resonator and record the amplitude
of the transmission while scanning over a large range of the current for each flux
bias line. With this fast and simple approach, one is able to evaluate the property
of each qubit. Afterwards, a calibration is employed experimentally to cancel out
the cross-talk between qubits and the uncorresponding flux bias lines, so that each
qubit is independently tunable. Only in this way, I am able to manipulate the qubits
precisely and bring them one by one into the resonance with the resonator.

4.4.1 Identification of each qubit

The principle of identification for each qubit on the 8-qubit chip is basically the same
as for the single-qubit chip as discussed before. The only difference is that for the
8-qubit chip, a rough, large-step scan over each coil is done before scanning them
with small steps. The reason is to find a rough range of sweet spot of each qubit,
and park all the qubits around their sweet spot. Only after that, the fine scans over
each coil are performed. In this case, even there is cross talks, it is not visible in the
result. Because the cross talk is designed to be tiny, and the qubits are at the most
insensitive position to the flux change.
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4.4 8 qubit measurement

The multiple anti-crossing scans for all individual qubits is shown in Fig. 4.23, in
which the label of the current a→ h corresponds to the flux control for qubit 1→ 8
respectively. All qubits are tuned to the vicinity of their sweet spots, and each qubit
is tuned through resonance with the resonator within a large bias current range.
First of all, reasonable periodical appearance of anti-crossings for all coils proves
that all qubits are alive and tunable. More over, a fitting with the energy-levels of
the coupled system like what is done in Fig. 4.7 a) gives a precise evaluation of
the transition frequencies of the qubits. The results of the fitting is not shown in
Fig. 4.23, but listed in Table. 4.3.

No. qubit Iperiod (mA) EJmax (GHz) EC (GHz) f01max (GHz)
qubit 1 25 21.5 0.4 7.895
qubit 2 23.8 19.8 0.4 7.560
qubit 3 23.8 20.8 0.4 7.758
qubit 4 24.8 43 0.4 11.330
qubit 5 22.3 34.8 0.4 10.153
qubit 6 22.5 30.5 0.4 9.479
qubit 7 23.5 35.1 0.4 10.198
qubit 8 23.5 42 0.48 12.220

Table 4.3: Parameters of the 8-qubit chip .

In the case of a single qubit interacts with the resonator, the system could be studied by
the J-C Hamiltonian (Eq. 2.29). The matrix for the Hamiltonian is diagonal-blocked,
with eigenenergies shown in Eq. 2.30 for each block [Chi+10]. Consider only the
basic transition from ground state to the first excited state of the qubit, and the
single-photon condition, when the qubit is tuned closer to the resonator and is
finally exactly in resonance with the resonator (∆ = 0), the energy difference ER is
given by the vacuum Rabi splitting E+ − E−, namely ER = 2g. Thus, the coupling
strength between each qubit and the resonator is obtained by fitting the split in the
single qubit tuning measurement. In order to get the coupling strength between
the qubits and the resonator, a fine scan is done around one anti-crossing area for
each qubit. The measured data and the corresponding fitting is plotted in Fig. 4.24
while the result of the fitting is listed in Table 4.4. Except for the ratio between EJ
and Ec , the coupling strength is determined by the capacitances on-chip which
depend on the geometry of the design. The good agreement between observed value
and designed values means the model used to simulate the geometric capacitance
on-chip is correct and the fabrication is accurate.
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4 Experimental result of the single-qubit chip and 8-qubit chip

Figure 4.23: (Color online) The multiple anti-crossing scans for all individual qubits. The labelling of
the current a→ h corresponding to the flux control for qubit 1→ 8 respectively.
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4.4 8 qubit measurement

Figure 4.24: (Color online) The measured coupling strength to the resonator of each qubit. The colored
stars are the extracted data points and the solid lines are the results of fitting.
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4 Experimental result of the single-qubit chip and 8-qubit chip

designed qubit 1 qubit 2 qubit 3
Coupling

(MHz)
113.0

114.8±
0.2

114.3±
0.4

113.4±
0.6

qubit 4 qubit 5 qubit 6 qubit 7 qubit 8

124± 4
107.5±

1.0
110.4±

1.2
114.4±

0.6
109.3±

3.7

Table 4.4: g1,0/h (MHz) between the resonator and each qubit. Qubit 1 to qubit 6 are used for
the multi-qubit in resonance experiments. Qubit 7 and 8 are used for the higher-level transition
measurement.

4.4.2 Calibration of crosstalk between coils

According to the explanation in Chap. 3.2.3, the flux bias control lines are expected
to have influence on the corresponding qubit locally, which means the cross-talk
between the flux control lines and non-corresponding qubits should be rather tiny.
However, the cross-talk is still not negligible according to the measurement about
qubit identification showed above. It is because of several practical reasons. First of
all, the distance between the elements on the chip is finite, there is supposed to be
small interference among them. Secondly, the sample is mounted to the dilution
refrigerator, the wiring for the DC currents which goes to the chip are carried by
different type of wires mounted between different stages of the fridge, let alone the
effect of the current divider for the DC current which grounds all DC wires to the
4K-plate. Last but not least, the current sources employed in our experiment are the
ones made by the workshop of our institute, there is cross-talk inside the equipment.

Thus, making calibration on the flux bias lines is a crucial step for later experi-
ments [Yan+18]. It benefits us with practically perfect isolation of all qubits. The
calibration is done according to the idea of automatic current-compensation strategy
and is reproducible, scalable, and fast. Just single-tone measurement like the one
shown in qubit-identification part is enough to build the 8× 8 matrix of mutual
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4.4 8 qubit measurement

inductance between all of the flux bias lines and the qubits. The change of magnetic
flux through each qubit is in the form of this equation:



∆Φ1
∆Φ2
∆Φ3
∆Φ4
∆Φ5
∆Φ6
∆Φ7
∆Φ8


=



M1a M1b · · · M1g M1h
M2a M2b · · · M2g M2h

...
...

. . .
...

...

M7a M7b · · · M7g M7h
M8a M8b · · · M8g M8h





∆Ia
∆Ib
∆Ic
∆Id
∆Ie
∆I f
∆Ig
∆Ih


. (4.37)

Here the qubits are labeled by numbers and the flux bias circuits are denoted by
letters. For instance, Φ3 is the flux through the 3rd qubit, ∆Id is the DC current running
through the 4th bias line, and M5 f is the mutual inductance between the 5th qubit and
the 6th flux bias line. With the measurement that scans the periodical anti-crossings,
a frequency point could be picked out to do the subsequent measurement for
calibration. The measure point should be close to anti-crossing area, so that it is very
sensitive to flux change. By recording the change in amplitude of this point while
sweeping the corresponding coil together with another coil, the influence on each
other of these two flux control coils is obtained (as shown in Fig. 4.25 a, b and c). In
principle, the two slops should be reciprocal to each other, thus the ratio between the
mutual inductances could be calculated. However, in real experiment, the 2 slops are
not necessarily reciprocal. Because there is difference of the resistors employed for
the current divider, and the wirings for each coil is not identical. As a result, both
slops need to be fitted to get an accurate matrix. In total of 28 measurements cover all
combinations of flux lines and build the full matrix of mutual inductance as follows:



1 M1b
M1a

M1c
M1a

M1d
M1a

M1e
M1a

M1 f
M1a

M1g
M1a

M1h
M1a

M2a
M2b

1 M2c
M2b

M2d
M2b

M2e
M2b

M2 f
M2b

M2g
M2b

M2h
M2b

M3a
M3c

M3b
M3c

1 M3d
M3c

M3e
M3c

M3 f
M3c

M3g
M3c

M3h
M3c

M4a
M4d

M4b
M4d

M4c
M4d

1 M4e
M4d

M4 f
M4d

M4g
M4d

M4h
M4d

M5a
M5e

M5b
M5e

M5c
M5e

M5d
M5e

1
M5 f
M5e

M5g
M5e

M5h
M5e

M6a
M6 f

M6b
M6 f

M6c
M6 f

M6d
M6 f

M6e
M6 f

1
M6g
M6 f

M6h
M6 f

M7a
M7g

M7b
M7g

M7c
M7g

M7d
M7g

M7e
M7g

M7 f
M7g

1 M7h
M7g

M8a
M8h

M8b
M8h

M8c
M8h

M8d
M8h

M8e
M8h

M8 f
M8h

M8g
M8h

1



. (4.38)

Here the self-inductance is not important, only the ratio matters. The final goal is to
tune only a single qubit particularly, meanwhile, keep the flux applied on the other
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4 Experimental result of the single-qubit chip and 8-qubit chip

qubits stable. This is realized by solving a 7-variable equation set. Take tuning of
qubit 1 as an instance, then the function set below should be solved, in which ∆Ib,
∆Ic, · · · , ∆Ig, ∆Ih are the 7 variables, and ∆Ia is treated as known parameter:

M2a

M2b
∆Ia+∆Ib +

M2c

M2b
∆Ic +

M2d
M2b

∆Id +
M2e

M2b
∆Ie +

M2 f

M2b
∆I f +

M2g

M2b
∆Ig +

M2h
M2b

∆Ih = 0

M3a

M3c
∆Ia+

M3b
M3c

∆Ib + ∆Ic +
M3d
M3c

∆Id +
M3e

M3c
∆Ie +

M3 f

M3c
∆I f +

M3g

M3c
∆Ig +

M3h
M3c

∆Ih = 0

M4a
M4d

∆Ia+
M4b
M4d

∆Ib +
M4c
M4d

∆Ic + ∆Id +
M4e
M4d

∆Ie +
M4 f

M4d
∆I f +

M4g

M4d
∆Ig +

M4h
M4d

∆Ih = 0

M5a

M5e
∆Ia+

M5b
M5e

∆Ib +
M5c

M5e
∆Ic +

M5d
M5e

∆Id + ∆Ie +
M5 f

M5e
∆I f +

M5g

M5e
∆Ig +

M5h
M5e

∆Ih = 0

M6a

M6 f
∆Ia+

M6b
M6 f

∆Ib +
M6c

M6 f
∆Ic +

M6d
M6 f

∆Id +
M6e

M6 f
∆Ie + ∆I f +

M6g

M6 f
∆Ig +

M6h
M6 f

∆Ih = 0

M7a

M7g
∆Ia+

M7b
M7g

∆Ib +
M7c

M7g
∆Ic +

M7d
M7g

∆Id +
M7e

M7g
∆Ie +

M7 f

M7g
∆I f + ∆Ig +

M7h
M7g

∆Ih = 0

M8a

M8h
∆Ia+

M8b
M8h

∆Ib +
M8c

M8h
∆Ic +

M8d
M8h

∆Id +
M8e

M8h
∆Ie +

M8 f

M8h
∆I f +

M8g

M8h
∆Ig + ∆Ih = 0

,

(4.39)
To solve this equation set means to obtain the dependance of change on the other
coils because of changing Ia, so that I know how much to compensate to the other
coils while tuning qubit 1. In other words, matrix 4.38 is very crucial for calibrating
out the cross-talk between all the coils. After the calibration, the variation in current
is used instead of absolute value of the current. Fig. 4.25 d), e), and f) show the result
after calibration for figure a), b), and c) correspondingly. The untitled lines prove
that the calibration works very well.

4.4.3 6-qubit in resonance

Based on the measurement on the identification of the 8 qubits and calibration
approach, I am now able to do the multi-qubit coupling experiments [Fin+09; Yan+18].
The photon number in the resonator is kept in the single-photon regime throughout
this experiment, and the qubits is brought on resonance with the resonator one by
one. I finally get a ensemble of 2-level system coupling to the first harmonic mode of
the resonator. In the case of N qubits coupled to the resonator, the measured vacuum
Rabi splitting is defined by [Chi+10]

ERN = h̄
√

∆2 + 4Ng2 (4.40)

where the coupling between the qubits and the resonator g is assumed to be identical.
When N qubits are exactly in resonance with the resonator, the splitting is simply
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4.4 8 qubit measurement

Figure 4.25: (Color online) Plot (a)-(c) show 3 examples for uncalibrated two-coil sweeps. The red solid
straight lines are the fitted slops which gives the ratio between 2 mutual inductance. Plot (d)-(f) are the
repeated measurement on the pair of coils of (a)-(c) after calibration. Almost no-tilt indicates good
isolation between the pair of flux lines.

h̄2g
√

N. If one considers that the coupling strength is different (even though the
difference is not much as shown in Table 4.4), the Rabi splitting is changed into the
following form:

ER = 2h̄
√

∑ g2
i (4.41)

To measure this enhanced splitting, firstly, I make one qubit resonant perfectly with
the ground mode of the resonator (i.e. ∆ = 0). Then the rest 7 qubits are tuned one by
one through the resonance with the resonator. The order of qubits does not matter, I
tune by the numeration just because it is easy to remember. It is supposed that all 8
qubits can be brought in resonance with the good calibration method. But in fact I am
limited up to 6 qubits in experiment, because some qubits have extreme sensitivity
to the fluctuation of the bias current. As shown in Table. 4.3, there are 4 qubits which
have a maximum frequency around 10 GHz, while the frequency of the resonator
is much lower (6.674 GHz). Thus the curve of qubit frequency is almost upright
in the resonant area, which means even a tiny change of the current changes the
frequency of the qubit dramatically. For example, a change of flux ∆Φ = 0.0045Φ0
(corresponding to 0.1004 mA) causes a shift of 130 MHz of qubit 5 in the resonant
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4 Experimental result of the single-qubit chip and 8-qubit chip

area. Thus, when I tune the 6th qubit into resonance, a much larger splitting than
expected is observed, and the signal gets weaker due to averaging of the fluctuation.

The experimental data is shown in Fig. 4.26. The center of the splitting (marked by
rosy star) drifts when adding more qubits, as shown in Fig. 4.27. The drift ∆ω of
the center of coupling more qubits compared to the center of coupling of one qubit
is shown in Fig. 4.27 with red triangles. For 6 qubits, the deviation is much larger,
because some qubits are not at the perfect resonance point, which result in a total
accumulation in deviation. The transition between the hight level of the coupled
system is surprisingly observed during these measurement, which is discussed in
details in the next part.

In order to define the coupling strength, the data of up to 6 qubits coupling is
fitted with theoretical curve. Consider the J-C model with one two-level qubit and
a resonator, the Hamiltonian is the same as Eq. 4.47, which is shown in the next
subsection. The eigenvalues of this Hamiltonian are

E±
h̄

=
ωr + ωe

2
± 1

2

√
4g2

ge + (ωr −ωe)2 (4.42)

In the range where the splitting shows up, the relation between qubit transition
frequency and the applied flux bias current could be described by a linear function
ωe(I) = 2π(aI + b). Substitute this linear function into Eq. 4.42, the fitting function
for one qubit is obtained:

f±(I) =
fr + aI + b

2
± 1

2

√
4(

gge

2π
)2 + ( fr − aI − b)2. (4.43)

For multi-qubit situation, viewing all the qubits as an ensemble, the function for the
fitting is the same. However, the effective coupling strength is larger compared to
the single-qubit case. In order to get the effective coupling strength for an ensemble,
the multiple-qubit anti-crossing is fitted with the following formula:

f (I)ens+ =
fr + aI + b

2
+

1
2

√
4(

gge

2π
)2 + ( fr − aI − b)2,

f (I)ens− =
fr + a(I + Ishi f t) + b

2
− fshi f t

− 1
2

√
4(

gge

2π
)2 + [ fr − a(I + Ishi f t)− b]2.

(4.44)

Eq. 4.44 is similar to Eq. 4.43. The only difference is that Eq. 4.44 has two more
degrees of freedom (Ishi f t, fshi f t) for the lower branch of the anti-crossing. Their
function is to shift its position both in x and y direction compared to the single qubit
anti-crossing. The effective coupling strength is extracted by the minimum distance
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4.4 8 qubit measurement

between these two branches, which means the ensemble and the resonator is on
exact resonance:

gens(I)
2π

=
f ( fr−b

a −
Ishi f t

2 )ens+ − f ( fr−b
a −

Ishi f t
2 )ens−

2
. (4.45)

The result of fitting is listed in Table 4.5 and shown in Fig. 4.26 with dashed white
lines.

1 qubit 2 qubit 3 qubit 4 qubit 5 qubit 6 qubit
coupling
(MHz)

114.8±
0.2

162.3±
10.7

205.3±
3.6

241.6±
5.3

269.5±
4.5

348.7±
2.5

Table 4.5: The coupling strength between the resonator and multiple qubits. The numbers are obtained
from the fitting of the measured data.

The comparison between theoretical model and the result in experiments for up
to 6 qubits resonate with the resonator is shown in Fig. 4.27. The corresponding
dispersive shift of the resonator is shown in Fig. 4.28, including the expected values
and measured values. The measurement signal strength (see Fig. 4.29) decreases
with increasing the number of qubits, indicating a collective loss mechanism of all
qubits.) The signal strength |S21| ∝ κc/(γe f f + κc) with ensemble γe f f and coupling
linewidth κc. This is an important factor which limits the number of qubits. Consider
that the qubits will decay to independent environments, the result is that half of
broadening is due to the resonator γr and the other half is an average over the
on-resonance qubits: γe f f = γr/2 + ∑N

i=1 κi
q/2N. The qubit linewidth κi

q depend on
the bias point and their electromagnetic environment at that frequency. As a result,
in the experiments, signal strength decreases for N > 4.

4.4.4 Higher level transition

One qubit resonant with the resonator

As explained in the part about transmon qubit, this type of qubit could be treated
as multi-level system [Bre+18] rather than two-level system due to its limited
anharmonicity. Since the higher level transition of the dressed system is observed in
the single-tone measurement while tuning multiple qubits in resonance. I now view
the transmon qubits as 3-level systems to study the transition in between the main
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Figure 4.26: (Color online)The result of multiple qubits in resonance with the resonator experiment.
Figure a)-f) present one to six qubits in resonance with the resonator respectively. The fitted data is
plotted by white-dashed lines, the resonator frequency is marked by a horizontal dashed black lines.
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Figure 4.27: (Color online) The red points are result of the experimental data with error message. The
blue open circles are the expected coupling strength calculated by the measured single-qubit coupling
strength. The blue dotted line is plotted with gmean , which is the mean value of the measured single-qubit
g. Up to N = 5 experiments agree well with the theory, the N = 6 data is from coil-uncalibrated
measurement.

Figure 4.28: (Color online) The orange rhombus correspond to measured collective dispersive shift of
the center frequencies ∆ f . Using the same reference, the purple open rhombus show the expected shift
of the center frequencies. The bare resonator frequency is at 0 MHz.

Figure 4.29: (Color online) The measurement signal strength decreases with increasing the number of
qubits, indicating a collective loss mechanism of all qubits. Signal strength decreases for N > 4
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features of the Rabi-splitting. For a single qubit interacting with the resonator, the
Hamiltonian of the system could be written as

H3L1Q = h̄ωra†a + ∑
j=g,e, f

ωj|j〉〈j|+ ∑
i,j=g,e, f

gij|i〉〈j|(a† + a), (4.46)

where |g〉, |e〉 and | f 〉 denote the first 3 levels of the uncoupled eigenstates of the
transmon, and the corresponding eigenenergies are ωg = 0, ωe and ω f . Here only
the next-neighbor coupling between the energy-levels of the qubit is taken into
consideration and the others are assumed to be zero acquiescently (see Ref. [Koc+07]).
Hamiltonian H3L is block diagonal, and each of the blocks is related to a fixed
conserved number of general excitation in the coupled system. In the case of zero
excitation, H3L = 0, with basis vector |g, 0〉. When the total excitation is 1,

H3L =

(
ωr gge
gge ωe

)
, (4.47)

with basis vectors {|e, 0〉, |g, 1〉}. Consider the total excitation of 2,

H3L =

 2ωr
√

2gge 0√
2gge ωr + ωe ge f
0 ge f ω f

 , (4.48)

with basis victors {| f , 0〉, |e, 1〉, |g, 2〉}.

By diagonalizing the Hamiltonians shown in Eq. 4.47 and Eq. 4.48, the eigenenergies
of the first two excitation manifolds of the system are deduced (indicated in Fig. 4.30
b).

Making measurement on a single qubit tuning through the resonance with the
resonator with more data points, while keeping the other qubits far away, Fig. 4.30
a is obtained. The dashed lines with different color correspond to different level-
transitions illustrated in figure c. The numerical simulation done by QuTiP [JNN12]
is shown in Fig. 4.30 b, which shows excellent agreement with the measured data. The
transitions are identified in our experiment. Surprisingly, the transitions are not the
expected two-photon transitions (as discussed in section about the single-qubit chip),
but rather single photon transitions which starts from the first excited manifold. This
means the first excited manifold is populated, most likely thermally by the heating
effect caused by the on-chip flux bias current elements. This is reasonable because
it affects the temperature-dependent Fano-shaped resonator as well. Meanwhile,
the 2-photon transition can not be seen in this measurement, because it requires
relatively high driving power on the qubit.
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Figure 4.30: (Color online) Comparison between experiments and simulating results of one qubit tuned
through the resonator frequency. (a) Experimental data of the anti-crossing where the colored lines
correspond to the identified higher level (single photon) transitions shown picture c. (b) Master equation
simulation by QuTiP [JNN12] for a three-level qubit interacting with a resonator which has an average
thermal photon population of 0.1 photons. (c) Energy-diagram of the first two manifolds of the dressed
system.

Two qubit resonant with the resonator

The model for a single qubit can be extended to the case for multiple qubits interacting
resonantly with the resonator (Tavis-Cummings model with the qubits treated as
3-level systems). The Hamiltonian for two qubits could be written in the following
form:

H3L2Q =h̄ωra†a + ∑
j=g,e, f

ωQ1
j |j〉〈j|+ ∑

j=g,e, f
ωQ2

j |j〉〈j|

+ ∑
i,j=g,e, f

gQ1
ij |i〉〈j|(a† + a) + ∑

i,j=g,e, f
gQ2

ij |i〉〈j|(a† + a),
(4.49)

with the basis {|g〉, |e〉, | f 〉}Q1 ⊗ {|g〉, |e〉, | f 〉}Q2 ⊗ {|0〉, |1〉, . . . , |n〉}. Similarly, this
Hamiltonian is also block-diagonal and each block associates with a fixed conserved
number N of the total excitations in the coupled system. In the case of zero excitation,
H3L2Q = 0, with basis vector |g, g, 0〉. When the total excitation is 1,

H3L2Q =

 2ωr
√

2gge 0√
2gge ωr + ωe ge f
0 ge f ω f

 , (4.50)
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with basisvectors {|g, g, 1〉, |g, e, 0〉, |e, g, 0〉}. When the total excitation is 2,

H3L2Q =



2ωr
√

2gge
√

2gge 0 0 0√
2gge ωr + ωQ2

e 0 gge 0 ge f√
2gge 0 ωr + ωQ1

e gge ge f 0
0 gge gge ωQ1

e + ωQ2
e 0 0

0 0 ge f 0 ωQ1
f 0

0 ge f 0 0 0 ωQ2
f


, (4.51)

with basisvectors {|g, g, 2〉, |g, e, 1〉, |e, g, 1〉 |e, e, 0〉 | f , g, 0〉 |g, f , 0〉}.

Diagonalization of the Hamiltonians in Eq. 4.50 and Eq. 4.51 yields the eigenenergies
of the first two excitation manifolds of the system. The level-scheme is shown in
Fig. 4.31 d). The experimental result of 2 qubit resonant with the resonator is shown
in Fig. 4.31 a). Fig. 4.31 b) shows the numerical simulation of the master equation by
QuTiP [JNN12] for two three-level qubits interacting with a resonator which has an
average thermal photon population of 0.1 photons.
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Figure 4.31: (Color online) Experimental data and fitting to the theoretical model of the second qubit
tuned through the resonator frequency. (a) Experimental data. (b) Master equation simulation by
QuTiP [JNN12] for two three-level qubits interacting with a resonator which has an average thermal
photon population of 0.1 photons. (c) Theoretical curves plotted together with the measured data. The
different color of the solid lines correspond to the color in figure d). (d) Energy-diagram of the first two
manifolds of the dressed system.
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5 Collective mode of an array of
transmon qubits

Except for the study on the individual-controllable qubits, I am also interested in
the collective behavior of multiple qubits. Precess control of each individual qubits
limits the number of qubits I could study (in my case 6 qubits), on the contrary,
globally controlled qubits allow me to study larger number of qubits. A large number
of artificial atoms can constitute quantum metamaterials because of controllable
quantum states and their coherent behavior.

In order to investigate the collective mode of multiple qubits, I collaborate with
Dr. Kirill. V. Shulga in such a way that I design and fabricate the sample with an
array of transmon qubits coupled to a mutual resonator with global control for the
qubit-array, and he measures the sample in Moscow.

In this chapter we discuss about the preparation and investigation of the system
consists of a λ/2 resonator and 20 transmon qubits that are capacitively coupled to
one end of the resonator. A similar work about such quantum metamaterials was
done by flux qubits that are magnetically coupled to the resonator [Mac+14]. In our
work we find that because of the relatively small anharmonicity of the transmon, the
transitions to higher qubit-levels of the collective multi-photon are excited. What’s
more, the transmon qubits show a more pronounced coherent property because they
are practically more identical due to smaller uncertainty during fabrication.

5.1 The sample

The sample is designed in Karlsruhe Institute of Technology, and fabricated in the
clean room of CFN (Center for Functional Nanostructures). The picture of the sample
is shown in Fig. 5.1. The transmission line (marked as feedline C) is used to transmit
the microwave signal. Two λ/2 CPW resonators having different fundamental
frequencies are capacitively coupled by one end to the feedline to readout and
manipulate the qubits. An array of 20 transmon qubits designed to be identical are
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resonator A transmon 
arraies

feedline C

resonator B

flux bias flux bias

Figure 5.1: (Color online) Optical photograph of the sample [Shu+17]. At the bottom is the feedline C
used to transport the microwave signal. λ/2 resonator A and B are capacitively coupled to the feedline
by one end. At the other end of each resonator, there is an array of 20 transmon qubits capacitively
coupled, who has a global flux bias control.

placed around the center conductor of each resonator on the other end and biased
by a mutual flux control element.

The fabrication of the sample is a two-step procedure employing both optical
lithography and electron-beam lithography which are discussed in Sec. 3.3. The
micron-sized elements (such as the resonator, the flux bias control elements and the
grounding panel) are fabricated firstly by optical lithography. The second step is to
produce the Josephson junctions by the standard shadow evaporation technique.
The material employed for this sample is also aluminum. Each of the qubit has a
SQUID with 2 junctions which makes it tunable. The designed Josephson energy
EJmax /2πh̄ = 19.86 GHz and charging energy EC/2πh̄ = 290 MHz. The designed
maximum transition frequencies between ground state and the first excited state is
f01 = 6.503 GHz. As discussed before, the anharmonicity is roughly EC/2πh̄.

The quality factor of the resonator is measured by sending a weak probing microwave
signal through the feedline and measure the dip formed by the resonator in the
amplitude of |S21|. The intrinsic quality factor is measured to be Q ' 5000.

5.2 Experimental result

The experiments are also done by a dilution refrigerator which cools down the sample
to about 20 mK [Shu+17]. A VNA (vector network analyzer) is employed to probe
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the amplitude of the transmitted microwave signalled through the feedline. The two
CPW resonators used for this sample are expected to form a Lorentzian-shaped dip
in the transmitted signal because of the absorbtion of the microwave which hits their
resonant frequencies. In order to apply a uniform static magnetic field to all the
qubits, the on-chip flux bias control element is not used, but a superconducting coil
is chosen instead. The coil is twined around the sample holder, to apply a magnetic
field perpendicular to the surface of the sample. The sample holder has a special
shape [Ave+14] in order to avoid the influence on the qubit signal caused by the
parasitic electromagnetic modes of the coil.

While sweeping the current of the coil, the frequencies of all the qubits are tuned.
One observes in the spectrum a large number of anti-crossings between a resonator
and the 20 qubits coupled to it. The qubits are designed to be identical, but in
practice, they are not perfectly the same. The parameters of the real qubits always
deviate from the desired value due to technical reason: the Josephson junctions have
tiny areas (100 nm× 100 nm), and could not be completely identically fabricated.
However, exactly these features give rise to the possibility to observe multitude of
anti-crossings in the spectrum. In other words, even though the qubits do not have
the same transition frequency, the synchronized collective modes are still expected
due to the interaction between the qubits through the electromagnetic filed of the
mutual resonator. Ref. [VF14] provides the theoretical model of such processes under
certain conditions.

Fig. 5.2 shows the experiment on the amplitude of the transmitted signal with
respect to the frequency and the change of the magnetic field which is represented
by the current sending through the coil. In Fig. 5.2 (a), the experiment is done
in the power of single-photon level as the total microwave power on-chip is less
than -130 dBm. A number of quasi-crossings between the resonator and the qubits
show up due to not only the qubit-resonator interaction but also the qubit-qubit
interactions. Most interestingly, when the current is about ±16 mA, large splitting
appears. In these two regions, the energies of the dressed states |+, n〉 and |−, n + 1〉
degenerate. It indicates the energy exchange between the resonator and a collective
mode of multiple qubits. Except for the individual behavior of the qubits, a common
resonance frequency of the entire qubit array also has the same periodic dependence
on the magnetic field as N individual qubits. The splitting scales up with

√
N

compared with the splitting of a single qubit. This result agrees with the observation
with flux qubit in Ref. [Mac+14] and in our experimental results with the 8-qubit
chip. The dephasing rate Γφ is expected to be much larger than the coupling strength
between a single qubit and the resonator (i.e. Γφ � g). This means the anti-crossings
of each qubit from the cluster could hardly be resolved against the background noise
and the line of the collective mode.
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5 Collective mode of an array of transmon qubits

When there is no magnetic field (i.e. the current is 0 mA), there is also an interesting
feature of the spectral lines: the resonator frequency becomes higher and two
additional resonances appear. It is because the transition frequencies of two qubits
happen to be lower and very close to the resonator frequency. And they push the
resonator up to higher frequency and get excited directly by the driving microwave
field.

Fig. 5.2 (b) shows a similar measurement as figure(a), but with higher driving
power (-100 dBm on-chip) which enables one to distinguish the two different types
of anti-crossings (individual and collective). The small splitting corresponds to
individual qubit-resonator interaction, and the large ones are generated by the
interaction between a qubit cluster and the resonator. By measuring the small
splitting, the coupling strength of a single qubit to the resonator is obtained to be
about 5 MHz. And the collective coupling strength for the large splitting at ±13 mA
is 10-13 MHz. Considering the coupling strength scales up with the square root of
the qubit number, One can estimate the number of qubits in this cluster is N ≈ 5− 7.
It is reasonable that this number is smaller than 20, on account of defect qubits and
non-identical qubit parameters.

However, a larger splitting of the collective mode indicates shorter coherence time
compared to a single qubit in the array. It is caused by a stronger dephasing because
of both the enhanced effective collective coupling strength and the uncertainty of the
photon numbers for the coherent state of the resonator at higher radiation power.

Fig. 5.3 show the experimental results on the collective behavior of the qubits as well
as the individual qubits of this metamaterial structure with two-tone measurement.
The |S21| amplitude is from the weak probing tone, while the y axis is the frequency of
the strong driving tone (-100 dBm). There are numbers of spectroscopic curves which
show the transition frequencies of not only the single qubit but also the cluster of
qubit (more intense lines). According to these results, the deviation of the maximum
frequencies of the qubits is larger than 2 GHz. Multi-photon transitions from the
ground state to higher levels of the qubit array are also observed in this experiment.
The principle is explained previously in Fig. 4.9. The observed transitions are marked
by the blue arrows in Fig. 5.3, where m is the photon number corresponding to the
transition 1

m (|0〉 → |m〉). It is worth noticing that a 6.0 GHz signal which is far from
the resonator frequency excites weakly the collective mode, which is an evidence for
qubit-qubit coupling through the resonator.

The two green rectangles in Fig. 5.3 indicate the anti-crossing formed by individual
qubits and the qubit cluster. The transition frequencies of the qubits have different
dependence on the global flux control. Thus a particular single qubit (label as "X")
could be picked out from the transmon array and interact with the common cluster
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Figure 5.2: (Color online) The experiment on the amplitude of the transmitted signal with respect to the
frequency and the change of the magnetic field which is represented by the current sending through
the coil. (a) Measurement on resonator A with low power (-130 dBm). A number of quasi-crossings
between the resonator and the qubits show up due to not only the qubit-resonator interaction but also
the qubit-qubit interactions. When the current is about ±16 mA, large splitting appear. In these two
regions, the energy exchange between the resonator and a collective mode of multiple qubits appears.
(b) Measurement on resonator B with high power (-100 dBm). The splitting corresponding to the qubit
cluster which are indicated by the yellow arrows can be separated from the splitting for a single qubit.

mode. The depth of the signal decreases while the detuning increases in the region
of the anti-crossing. It is another evidence for qubit-qubit coupling through the
resonator.

in summary, we study the coherence behavior of an transmon array coupled to a
mutual CPW resonator. Collective modes of multiple qubits are investigated and
are stable for multi-photon transition. The observed interaction between the qubit
cluster and a single qubit opens up the gate to making quantum memory with large
arrays of superconducting qubits.
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Figure 5.3: (Color online) Two-tone measurement on the qubits coupled to resonator A at high driving
power (-100 dBm) of the qubits. The horizontal line at about 6.8 GHz is due to another test resonator on
the sample. The blue arrows mark the multi-photon transitions from the ground state to higher levels
of the qubit array, with m which is the photon number for the transition 1

m (|0〉 → |m〉). The two green
rectangles indicate the anti-crossing formed by individual qubits and the qubit cluster.
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6 Conclusion and outlook

In this thesis multiple transmon qubits and their mutually coupled read-out
resonator are studied. The aim of this work is to build an array of fully controllable
superconducting qubits which are readout by a mutual CPW resonator.

The relevant principles in Circuit QED are introduced in Chapter 2, including how
the CPW resonator and the Transmon qubit work, the theoretical model to described
the coupled system, as well as how the resonators functions as the readout tool.

The design and fabrication are explained in Chapter 3. The samples are devised
and manufactured in Physics Institute of KIT (Karlsruhe Institute of Technology)
by ourselves. The design of the sampled is done by a combination of the softwares
L-Edit and Sonnet for layout generator and simulation. The pattern of the sample
with multiple layers for different elements is generated by L-Edit. The simulation on
the CPW resonator is done by Sonnet based on the real pattern employing lossless
metal. However, the qubits are simplified and replaced by harmonic oscillators with
ideal elements presenting their characteristic parameters, in order to investigate the
influence on the resonator.

The sample is fabricated by a standard one-step double-angle evaporation technique.
The accomplishment for the home-made samples is that the real parameters obtained
from measurements match very well with the targeted values, in particular the
coupling strength between the resonator and the qubits, which depends on the
ratio of EJ and EC and the geometric capacitances among the resonator, the qubits
and the ground. All of the Josephson junctions are alive since all the qubits are
tunable. What’s more, based on the experiments of tuning the qubits, the maximum
frequencies of the qubits stay in a reasonable range around the targeted value, this
means the junctions are not far different from the design.

With the single-qubit chip, I exam the properties of the resonator and qubit, and it
shows expected behavior and promising quality of the 8-qubit chip. How ever, for the
8 qubit-chip, unexpected dip-peak-dip change of the form of the resonator occurs.
It is well explained by Fano resonance. Theoretical model is built considering the
dissipation through a parallel channel of background and heating effect caused by
the flux bias lines which carries DC currents. Despite for the asymmetric line-shape
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of the resonator, the scattering phenomenon has no influence on the level-transition
in our Tavis-Cummings system, and the resonator works well as a readout tool.

The qubits are well isolated from the non-corresponding flux bias lines thanks to the
calibration of the bias lines. The idea of the calibration is to compensate the current
through the other bias lines while tuning a single qubit with its corresponding flux
bias, so that the flux applied on the rest of the qubits stay unchanged. The method I
used is simple, fast and reproducible. Because for the calibration, I do not measure
the qubits at all, but rather perform measurement only on the shift of the resonance
frequency of resonator by a single-tone measurement while tuning 2 coils. By fitting
the slops, the matrix of the mutual inductance is obtained, with which I build the
compensation routine.

I am able to manipulate the transition frequencies of the qubits very precisely.
Parking all 8 qubits at their maximum frequencies is simple because the qubits are
at their sweet spots. However, tuning the qubits into resonance with the resonator is
very difficult as they are much more sensitive to the flux change. I finally end up
with tuning 6 qubits into resonance with the resonator, and the data demonstrates
the coupling strength between the resonator and the ensemble scales up with the
square root of the number of qubits.

Transitions between the first manifold and the second manifold of the coupled
system is observed during tuning the qubits on resonance of the resonator. The
theoretical model is studied for single-qubit case and two-qubit case. The numerical
simulation done by QuTiP agrees well with the measured data. This phenomenon
proves again that there is probably heating effect caused by the flux bias currents,
which thermally populates the first excited manifold.

In conclusion, I have successfully fabricated the sample with aimed parameters for 8
superconducting transmon qubits coupled to a mutual resonator bus. The change
of the line-shape of the resonator is well understood. All the qubits are in practice
individually tunable, due to the isolation from the cross-talk to non-corresponding
flux bias lines to the first order. The calibration method is simple, fast, reproducible
and scalable. I have proved the coupling strength between the mutual readout
resonator and the qubits cluster scales up with the square root of the number of
qubits. Higher level transitions are studied for system including up to 2 qubits.

Our circuit is a perfect quantum simulator for Tavis-Cummings model. One could
fully control the number of qubits interacting with the mutual resonator bus, and
manipulates the transition frequencies of the qubits precisely.

Our approach could be in principle scaled up to an array of any number of qubits,
so that makes it possible to explore the physics beyond the strong coupling regime
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(where the rotating wave approximation is no longer valid). The scaled-up multiple
qubits could be treated as a macrospin which allows one to simulate the ultra-strong
coupling limit.

The present sample could also be employed to investigate the system of which the
coupling strength is comparable to the anharmonicity of the qubits, entanglement
generation of artificial atoms which have identical transition frequencies through
coupling to the mutual cavity bus, superradiance phenomenon of multiple excited
superconducting qubits, and many other interesting topics in quantum physics and
quantum simulation.
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