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Abstract: A new technique is presented to overcome beam size limitation in full field 
imaging at high brilliance synchrotron sources using specially designed refractive X-ray 
optics. These optics defocus the incoming beam in vertical direction and reshape the 
intensity distribution from a Gaussian to a more desirable top-hat-shaped profile at the 
same time. With these optics X-ray full-field imaging of extended objects becomes possi-
ble without having to stack several scans or applying a cone beam geometry in order to 
image the entire specimen. For in situ experiments in general and for diffraction limited 
sources in particular this gain in field of view and the optimization of the intensity distri-
bution is going to be very beneficial. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

X-ray imaging techniques like tomography are commonly used at lab and at synchrotron 
sources for example in the fields of material science, medicine or biology [1–7]. Whereas 
synchrotron sources offer high brilliance, the beam size in particular in vertical direction 
is often strongly limited. In addition, the intensity profile of such an undulator source is 
approximately Gaussian shaped in vertical direction with a FWHM in the range of a few 
millimeters only [8]. This is a strong limitation for many experiments, in particular full 
field imaging techniques at 3rd generation synchrotron sources [9,10]. Objects larger than 
the illuminated field cannot be imaged directly: Image stitching [10] or enlarged cone 
beam projection [11] have to be applied to overcome this limitation often leading to arte-
facts in the final reconstructed volume. Time consuming acquisition of several height 
scans and a more complex image reconstruction are the drawbacks for such full field 
imaging approaches. In biological studies the additional dose load due to necessarily 
overlapping fields of view generates problems and often filters are used to reduce the flux 
at the sample. In particular for in situ and time resolved experiments a stitching of differ-
ent height step scans is often not possible. One way of overcoming this limitation is to 
use enlarged cone beam projection. Here, however, a virtual source has to be formed by 
additional X-ray optics. The alignment is often very time consuming and the reconstruc-
tion cannot be performed using the parallel beam geometry approach. Another drawback 
of a 3rd generation X-ray beam is the typical Gaussian intensity profile, leading to differ-
ences in the signal to noise ratio between the high-illumination center region and those 
regions illuminated by the low-intensity tails. A top-hat like beam profile would therefore 
be very beneficial for full field imaging techniques in general. 

There are plenty of examples of how to adjust the beam profile for a certain purpose 
in visible light optics [12], nevertheless so far mainly focusing concepts have been trans-
ferred to the hard X ray regime. For focusing X-rays at energies above approximately 10 
keV refractive X ray optics are used, as for these energies the absorption of the lens mate-
rials decreases [13–17]. Using a refractive line focus lens to get an enlarged beam after 
the focal plane is not a suitable way to enlarge the vertical beam size, as in this case the 
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Assuming the width of the requested top-hat distribution is B. In the case of a loss-free, 
perfect optics, the total intensity Itotal will stay constant and the top-hat-intensity Itop is 
calculated to be 

 total 0
top .

2

I I D
I erf k

B B k

π  = =  
 

 (4) 

The local focal length f(d) for a ray hitting the entrance aperture in a distance d from the 
optical axis, is calculated from the intensity distribution of the incoming beam I(d). The 
ray has to be redirected to a point in the distance a from the optical axis, so the integrated 
intensities under the Gaussian Itotal and under the top-hat function Itop are equal for all d: 

 ( )0
top0

( ) .
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d I
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The distance a is calculated by including (4) in (5): 
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 (6) 

Let us assume a distance L of the imaging plane from the optics and the incoming rays 
to be parallel to the optical axis and the length of the optics itself is negligible compared 
to its distance to the sample plane. Considering the theorem of intersecting lines the local 
focal length f(d) is given by 

 ( ) .
( )

Ld
f d

a d d
=

−
 (7) 

In Fig. 2 the resulting local focal length f is plotted over the distance d of the incoming 
ray from the optical axis. 

 

Fig. 2. Example of the local focal length f across the lens’ aperture (D = 0.8 mm, L = 30 
m) 

Based on these findings, the shape of the required refracting surface of the optics is 
calculated. For compound refractive lenses (CRLs) with biconcave parabolic lens surfac-
es the lens geometry can be described by 

 2R f Nδ=  (8) 

with the minimum radius R of curvature of the parabola, the photon energy dependent 
decrement of the refractive index δ of the lens material and the focal length f [13]. Eq. (8) 
is a good approximation for a focal lengths which is large compared to the physical 
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sulting in smaller Fresnel-structures. This solution is currently not possible due to manu-
facturing constraints. 

This limitation however can be overcome by forming K blocks (the three slices in Fig. 
4(b)-4(d) form such a block) of a number of P = N/K different lens elements sliced in 
different ways instead of using N equal Fresnel-lens elements. In Fig. 3 the Fresnel-
elements (b) to (d) form such a block. The P different slices in such a block differ by the 
thickness of their innermost zone. The thickness v of the innermost zone of the original 
Fresnel-element is divided by the number P of different slices in one block. The thickness 
of the innermost structures of the P different lens elements is m·v/P with m∈ ∩ m≤P. 

As a consequence, the position of the points where the Fresnel-elements are very thin 
varies within each block. This leads to a much more homogeneous intensity distribution 
in the detector plane. 

3. Lens layout parameters and fabrication 

The optics are produced via deep X-ray lithography [19,20] at the KIT synchrotron 
source. The lens material was chosen to be SU-8 [21], an epoxy based negative resist 
(type mr-X-50 from mrt, Berlin), processed on a silicon wafer of 525 µm thickness. This 
lens material has proven to possess a long-term radiation stability at different synchrotron 
radiation applications up to a deposited dose of 2 MJ/cm3 [22] and likely above. 

The first layout (see Fig. 4) of this type of beam shaping optics was designed and real-
ized for the P05 imaging beamline operated by HZG at the storage ring at PETRA III 
(DESY, Hamburg Germany) [23,24]. The instrument is optimized for in situ experiments 
in particular to allow for extended sample environments. The field of view (FoV) howev-
er is limited due to the nature of the undulator source: The beam height in vertical direc-
tion lies in the range of 1.6 mm to 2 mm FWHM at the sample position while the hori-
zontal beam size is around 7 mm. This is an inherent property of undulator sources and 
not ideal for full field imaging like radiography and tomography since for many sample 
systems a larger FoV would be beneficial [23]. Until now computed tomography (CT) 
images of large samples are scanned with several height steps and the tomograms are 
stacked afterwards. This is very time consuming when it comes to scan time and data 
processing time and often leads to artefacts in the reconstructed, stitched volume. In par-
ticular for in situ experiments stacking is of course not an option. 

To overcome this limitation and allow for scanning larger sample volumes by in situ 
experiments a novel type of beam enlarging optics was developed. The optics was de-
signed to operate at a photon energy of 24 keV, a source distance of 60 m, and a working 
distance of 30 m. As the FWHM of the incoming beam was 1.6 mm, a physical entrance 
aperture of 1.4 mm was chosen. The resulting layout (see Fig. 4) had N = 20 elements in 
blocks of P = 5 different slices, each with M-1 = 15 segments. The air gap between 
neighbor elements was chosen to be 150 µm, the minimum thickness of the elements was 
w = 6 µm, the minimum technically achievable edge rounding radius was 0.5 µm. 
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Fig. 4. SEM image of a part of an intermediate X ray absorber mask for beam shaper op-
tics fabrication. 

A proof-of-concept experiment was performed with lens structures of 0.8 mm height. 
The structures’ height was limited to 800 µm by the LIGA fabrication process. For this 
experiment, two structures were aligned face to face to reach 1.6 mm working width. To 
cover the full beam width, the structures presented here are going to be stacked and pre-
aligned in the laboratory to cover the full beam width. 

4. Experimental results 

A first optical characterization of the optics at the imaging beamline P05 at the storage 
ring PETRA III, aimed to measure the beam enlargement, the intensity distribution at the 
detector position as well as the suitability for computed tomography. 

Figure 5 shows a projection image of the beam with the beam shaping optics installed 
in the center. The original beam profile (white areas in Fig. 5(a)) is widened to a vertical 
size of 5.6 mm (grey area in the center part of Fig. 5(a)) by the beam shaping optics as 
revealed by the intensity profiles (Fig. 5(b)). For these first tests the optics was placed at a 
distance of 20 m with respect to the sample. Therefore, the expected widening up to 7 
mm could not be realized. The sample to detector distance was 15 mm. In this setup the 
beam hitting the sample can be assumed to be nearly parallel due to the large optics to 
sample distance of 20 m. So standard filtered back projection was used for tomographic 
reconstruction. The horizontal width of the enlarged beam area is 1.6 mm, which results 
from two beam shaping elements stacked together. Left and right to the enlarged beam 
one can still recognize the original Gaussian beam with 1.35 mm FWHM. The black 
stripes in between are due to the two absorbing substrates. In Fig. 5(b) the intensity pro-
file of the enlarged beam (red) is shown in comparison to the nearly Gaussian beam pro-
file (blue). Although the intensity profile is still not perfectly flat, the enlargement of the 
beam can be seen clearly. The standard deviation of the intensity of the shaped beam 
profile was about 17 percent of the average intensity. The slight asymmetry of the shaped 
beam most probably results from the not perfectly Gaussian-shaped incoming beam. The 
calculated efficiency of the optics was 83%, being the ratio of the integrated intensity of 
the enlarged beam profile with respect to the integrated intensity of the original Gaussian 
beam profile. The measured efficiency is 63%. The difference might result from a non-
perfect alignment of the micro prisms with respect to the incoming beam. 
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