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Two-Higgs-Doublet-Models (THDMs) are among the simplest extensions of the standard model and are 
intensively studied in the literature. Using on-shell parameters such as the masses of the additional 
scalars as input, corresponds often to large quartic couplings in the underlying Lagrangian. Therefore, 
it is important to check if these couplings are for instance in agreement with perturbative unitarity. 
The common approach for doing this check is to consider the two-particle scattering matrix of scalars 
in the large centre-of-mass energy limit where only point interactions contribute. We show that this 
is not always a valid approximation: the full calculation including all tree-level contributions at finite 
energy can lead to much more stringent constraints. We show how the allowed regions in the parameter 
space are affected. In particular, the light Higgs window with a second Higgs below 125 GeV completely 
closes for large values of the Z2 breaking parameter M12. We also compare against the loop corrected 
constraints, which use also the large 

√
s approximation, and find that (effective) cubic couplings are often 

more important than radiative corrections.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The discovery of a scalar boson at the Large Hadron Collider 
with a mass of around 125 GeV was a milestone for particle 
physics [1,2]. This state has all expected properties of the long 
searched-for Higgs boson, and all particles predicted by the stan-
dard model of particle physics (SM) have finally been found. Even 
if no additional, fundamental scalar has been observed so far at 
the LHC, it is much too early to give up the possibility that more 
Higgs-bosons exist which are involved in electroweak symmetry 
breaking (EWSB). There are several possibilities what the origin 
and the properties of such states could be. A very attractive and 
well studied scenario is that a second Higgs doublet exists. Af-
ter EWSB, the two Higgs doublets yield one particle which has all 
the properties of the discovered state, but they also predict the 
presence of one charged and two neutral additional bosons. There 
exist several constraints on this kind of models: the LHC measure-
ments must be reproduced, the absence of any other signal must 
be explained, including modifications to rare decay processes. From 
the theoretical point of view, these models are usually confronted 
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with two conditions: (i) the electroweak vacuum must be stable 
or at least sufficiently long-lived [3–12], (ii) unitarity should not 
be violated [13–19]. In order to probe unitarity in BSM models, 
the standard procedure in the literature is to calculate the scat-
tering matrix for 2 → 2 processes involving scalars. Usually, only 
point interactions are included, which do not vanish for very large 
scattering energies

√
s. For extensions of the Standard Model, the 

contributions from scalar trilinear couplings have been considered 
for singlet extensions and a very small number of studies of the 
(next-to) minimal supersymmetric standard model [20–26]. There-
fore, it is time to check if the large 

√
s approximation in THDMs 

is valid or under which circumstances it might give misleading re-
sults.

This letter is organised as follows: we show our conventions for 
THDMs in sec. 2, before we briefly summarise our approach to cal-
culate the tree-level unitarity constraints in sec. 3. The impact on 
the parameter space is discussed in sec. 4. In sec. 5, we compare 
against previously derived one-loop results; and rederive the con-
straints for different unitarity conditions. We conclude in sec. 6.

2. Model

The scalar potential of a CP conserving THDM with softly bro-
ken Z2 symmetry reads
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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V Tree =λ1|H1|4 + λ2|H2|4 + λ3|H1|2|H2|2 + λ4|H†
2 H1|2

+ m2
1|H1|2 + m2

2|H2|2 +
(

−M2
12 H†

1 H2 + 1

2
λ5(H†

2 H1)
2 + h.c.

)
(1)

It is common to define the terms for λ1,2 with an additional fac-
tor of 1/2; here we use the conventions as defined in the public
SARAH model file. After EWSB, the neutral components of the two 
Higgs states receive vacuum expectation values (VEVs) of

Hi =
(

H+
i

1√
2
(φi + iσi + vi)

)
i = 1,2 (2)

with 
√

v2
1 + v2

2 = v � 246 GeV and tan β = v2
v1

. The mass spectrum 
consists of superposition of these gauge eigenstates, i.e. (φ1, φ2) →
(h, H), (σ1, σ2) → (G, A) and (H+

1 , H+
2 ) → (G+, H+). Here, G and 

G+ are the Goldstone modes of the Z and W boson. The mixing 
in these sectors is fixed by tan β , while in the CP-even sector a 
rotation angle α defines the transition from gauge to mass eigen-
states. In practical applications, one can trade the physical masses 
mh , mH , mA and mH+ as well as tan β and tanα for the quartic 
couplings. The necessary relations are (see e.g. [27])

λ1 = 1 + t2
β

2(1 + t2
α)v2

(
m2

H − M2
12tβ + t2

α(m2
h − M2

12tβ)
)

(3)

λ2 = 1 + t2
β

2(1 + t2
α)t3

β v2

(
−M2

12 − M2
12t2

α + tβ(m2
h + m2

Ht2
α)

)
(4)

λ3 = 1

(1 + t2
α)tβ v2

[
m2

htα + 2m2
H+(1 + t2

α)tβ

+ m2
htαt2

β − m2
Htα(1 + t2

β) − M2
12(1 + t2

α)(1 + t2
β)

]
(5)

λ4 = 1

tβ v2

(
M2

12 + m2
Atβ − 2m2

H+tβ + M2
12t2

β

)
(6)

λ5 = 1

tβ v2

(
M2

12 − m2
Atβ + M2

12t2
β

)
(7)

with tβ = tan β and tα = tanα. This has the advantage that physi-
cal observables instead of Lagrangian parameters can be chosen as 
input. However, one needs to be careful since a randomly chosen 
set of masses could easily correspond to a problematic set of quar-
tic couplings: for very large couplings perturbativity will be spoilt 
and also unitarity can be violated.

3. Unitarity constraints

Perturbative unitarity constraints come from applying the uni-
tarity of the S-matrix for 2 → 2 scalar field scattering amplitudes. 
We calculate a matrix aba

0 given by

aba
0 ≡ 1

32π

√
4|pb||pa|
2δ12 2δ34 s

1∫
−1

d(cos θ)Mba(cos θ), (8)

which is derived proportional to the zeroth partial wave of scatter-
ing pairs of scalars a to pairs b having matrix element M(cos θ), 
where θ is the angle between the incoming and outgoing three-
momenta (pa, pb respectively) in the centre-of-mass frame. The 
factor δ12(δ34) is 1 if particles {1, 2}({3, 4}) are identical, and zero 
otherwise. We then find the eigenvalues of this matrix, which we 
denote ai , and insist that they must satisfy
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ig. 1. s-dependence of the maximal scattering eigenvalue. The black lines indicate 
he kinematic thresholds while the red region is cut about because of s-channel 
esonance with heavy charged and pseudo-scalar Higgs.

Re(ai
0)| ≤

1

2
. (9)

Classic unitarity constraints for the THDM have been calculated 
n the limit of large scattering energies, in which case only the 
uartic couplings contribute to scattering and the momentum de-
endence of the prefactor of the integrand in (8) disappears; more-
ver all diagrams with propagators are suppressed by the collision 
nergy squared and can be neglected, so the final result appears 
uperficially independent of the scattering energy. This has been 
pplied at tree (see e.g. [13–16,18,19,28]) and one-loop [29–31]
evel. The limits on the quartic couplings at tree level in this ap-
roximation are

ax
{

|λ3 ± λ4| ,
∣∣∣∣λ1 + λ2 ±

√
(λ1 − λ2)2 + λ2

4

∣∣∣∣ , |λ3 ± λ5| ,∣∣∣3(λ1 + λ2) ±
√

9(λ1 − λ2)2 + (2λ3 + λ4)2
∣∣∣ ,

|λ3 + 2λ4 ± 3λ5| ,
∣∣∣∣λ1 + λ2 ±

√
(λ1 − λ2)2 + λ2

5

∣∣∣∣ } < 8π. (10)

owever, it has not been tested if the large s approximation is 
alid in all BSM models in which it is applied. It could be that 
arge contributions are present at smaller s which then rule out 
iven parameter regions in the considered model. The theory could 
evelop a Landau pole before s is sufficiently large to neglect the 
asses, or could be defined with a low cutoff. And at large val-

es of the couplings, their running is usually sufficiently fast so 
hat the values of the couplings at an energy scale 

√
s are vastly 

ifferent from those at lower energies. So in order to be able to 
est unitarity at finite s, the Mathematica package SARAH has 
ow been extended. The salient features are: (i) all tree-level dia-
rams with internal and external scalars are included to calculate 
he full scattering matrix; (ii) We neglect all gauge couplings, and 
reat Goldstone bosons as physical particles with mass equal to 
he gauge boson; (iii) the calculation is done in terms of mass 
igenstates, i.e. the full VEV-dependence is kept; (iv) the numerical 
valuation is done with the Fortran code SPheno [32,33]; (v) large 
nhancements close to poles are cut in order not to overestimate 
he limits. This is demonstrated at one-example in Fig. 1. More 
etails and derivations of our full procedure are given in the ac-
ompanying paper [34].

. Results

In this section we shall study the impact of the improved uni-
arity constraints on the two Higgs doublet model at tree level. We 
ave chosen for our discussion type–I, but the results hold also 
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Fig. 2. Comparison between the old and new unitarity constraints for a second light CP even scalar for three different values of M12. The figures in the first row show 
the ratio of points which pass the old unitarity constraints but are ruled out by the new ones. The second row shows the average enhancement in the maximal scattering 
element. The other parameters were varied in the ranges mH ∈ [60, 120] GeV, mA ∈ [30, 1000] GeV, mH+ ∈ [250, 1000] GeV, tanα ∈ [−0.25, −1.5], tanβ ∈ [1, 2].
for other models, because our we omit fermions from our scatter-
ing processes. Hence there is only an indirect difference between 
the constraints for type–I and type–II: the limits from flavour ob-
servables are stronger for light charged Higgs masses for type–II. 
Hence, the mH+ must be larger in general for type–II [35]. On 
the other hand, we include the constraints from Higgs searches 
via HiggsBounds [36–38], which can vary to a lesser extent be-
tween type I and II models.

Our numerical analysis is based on the SPheno [32,33] inter-
face of SARAH [39–43]. By default, SPheno calculates the mass 
spectrum at the full one-loop level and includes all important 
two-loop corrections to the neutral scalar masses [44–46]. How-
ever, we shall not make use of these routines in the following but 
work at tree-level, or equivalently under the assumption that an 
OS calculation works in principle (with all the caveats discussed in 
Ref. [47]). This is because we cannot (yet) calculate quantum cor-
rections to unitarity at finite s, and when the couplings are large 
in almost all cases the quantum corrections to masses/couplings 
become very large: this gives further motivation for including only 
constraints at finite s!

In examples in the following we shall often take tβ =
−1/tα = 1, mA = mH+ (and we always take tan β > 0), which lead 
to λ1 = λ2 and λ4 = λ5, and the Lagrangian contains the cubic and 
quartic couplings of neutral fields, defining λ345 ≡ λ3 + λ4 + λ5, of

L ⊃
(
[λ345 − 6λ1]H2 − [λ345 − 4λ5 + 2λ1]A2

)
(vh + 1

2
h2)

= − 2

v
[4m2

12 + 2m2
H + m2

h](h + h2

2v
)H2

− 2 [4m2
12 + 2m2

A + m2
h](h + h2

)A2, (11)

v 2v
while the other quartic terms are just − m2
h

4v2 (h4 + H4 + A4 +2H2 A2)

and so are always small; there is also no cubic coupling H A A.

4.1. The light Higgs window

We start with a discussion of the effects in the case that both 
CP even Higgs states have masses of 125 GeV or below. A compar-
ison between the ‘classic’ – equation (10) – and new constraints 
is given in Fig. 2. Obviously, one finds much stronger constraints 
in two different cases once finite s is considered: (i) for small-
ish M12 the wedge mA = mH+ 
 mH disappears; (ii) for larger 
M12 the scattering amplitude in the overall (mA , mH+ grows sig-
nificantly. The responsible channels and best scattering energies 
causing these effects are quite different:

• Small M12: consider the following simplified hierarchy,

mH = mh = |M12| � mA = mH+ ∼ √
s (12)

together with tan β = −1/(tanα) = 1. This leads to large 
λ3, λ4, λ5 and we see from (11) that the hH2 vertex is small 
while the h A2 vertex is large, proportional to m2

A/v2. Then the 
dominant channels are those with heavy external states and a 
light Higgs exchange. For instance, the amplitude A A → A A
can be approximated as

a0(A A → A A) =
m4

A

(
−2s log

(
m2

h

−4m2
A+m2

h+s

))

8π sv2
√

s
(
s − 4m2

A

) (13)

From that, we get that the ratio compared to the old con-
straints
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amax
0

as→∞
0

= −
4m2

A log

(
m2

h

−4m2
A+m2

h+s

)

3
√

s
(
s − 4m2

A

) (14)

This ratio becomes maximal slightly above the kinematic 
threshold sThreshold = 4m2

A and an enhancement of 2–3 is pos-
sible. Thus, the best scattering energy 

√
s is around 1–2 TeV.

• Large M12: in this case we can consider the following, simpli-
fied hierarchy

mH = mh ∼ √
s � mA = mH+ = |M12| (15)

Now we have all quartics λi large except λ3 = 0. Now, the 
dominant scattering processes are those with light external 
scalars only. The maximal eigenvalue of the full scattering ma-
trix is roughly given by diagonalising the submatrix with CP-
even states only⎛
⎝hh → hh hh → H H hh → hH

H H → H H H H → hH
hH → hH

⎞
⎠ (16)

From (11) we that the hH2 coupling is proportional to M2
12/v; 

we find that the ratio between the old and new results scales 
as

amax
0

as→∞
0

=
−2M2

12 log

(
m2

h

s−3m2
h

)
√

s
(
s − 4m2

h

) ∼ 1

2

m2
A

m2
h

(17)

Thus, this ratio grows very quickly with increasing M12 and 
one finds very strong unitarity constraints already at scattering 
energies 

√
s of a few hundred GeV.

4.2. Heavier scalar

a. Stronger constraints We turn now to the case that all new 
scalars are heavier than the SM-like Higgs. We start with a short 
analytical estimate for parameter regions in which difference be-
tween our calculation and previous results show up. This is, for 
instance, the case for the configuration

mA ∼ mH ∼ mH+ 
 |M12| (18)

Assuming again the tan β = −1/ tanα = 1 for the moment, we find 
all of the quartics λi are large, proportional to m2

A/v2; and the 
maximal eigenvalue for the scattering matrix in the large s limit is

amax,s→∞
0 = 1

16π v2
(−8M2

12 + 4m2
A + 5m2

h) � 1

4π v2
m2

A (19)

From (11) we see that among the neutral states only the quar-
tics h2 H2 and h2 A2 are large, and indeed this comes from the 
latter. However, considering finite s scattering, we shall compare 
this with the scattering process H A → H A, which includes dia-
grams with the SM-like Higgs in the propagator. We find

a0(H A → H A) � m2
h

16π v2
√

s
(
s − 4m2

A

) ×
[(

4m2
A − s

)

−
(
−4M2

12 + 2m2
A + m2

h

)2
log

(
m2

h

−4m2
A + m2

h + s

)]

�
m4

A log

(
m2

h

−4m2
A+s+m2

h

)

4π v2
√

s
(
s − 4m2

A

) (20)
Fig. 3. The maximal value of mH+ when using the large s approximation (first 
row) or the full calculation (second row). Here, we varied mH+ ∈ [250, 1000] GeV, 
M12 ∈ [100, 1000] GeV, tanα ∈ [−0.25, −1.5], tanβ ∈ [1, 2]. The range for tanα was 
chosen in order to stay close to the alignment limit −1/ tanβ .

Thus, for s = 5m2
A close to the kinematic threshold we find an en-

hancement of roughly | 2√
5

log mh
mA

| compared to the large s approx-

imation. For mA = 700 GeV this corresponds to nearly a factor of 2. 
We can confirm this by making use of the full numerical machin-
ery. In Fig. 3 we show the impact on the maximal allowed value for 
mH in the (mA, mH+) plane while scanning over all other param-
eters as indicated in the caption. We see that this value shrinks 
significantly and a large region of the plane which is allowed by 
the old constraints is no longer accessible.

b. Weaker constraints If we consider the scattering up to a fi-
nite 

√
s, we can find that the scatter eigenvalues become smaller 

compared to the limit 
√

s → ∞ for several reasons: (i) the dom-
inant channels can be kinematically forbidden; (ii) there can be 
a negative interference between the point interactions and the 
propagator diagrams; (iii) the dominant channels can be cut out 
because of possible resonances in order not to overestimate the 
unitarity constraints. Due to these effects, one needs to ask the 
question to which energy scale we have actually probed scatter-
ing processes of scalars at the LHC. Of course, the LHC is running 
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Fig. 4. s-dependence of the maximal scattering eigenvalue. Here, we have used two 
possibilities how to deal with the t- and u-channel poles. The black lines indicate 
the kinematic thresholds while the red region is cut about because of s-channel 
resonances. The vertical lines indicate limits at which t- and u-pole disappear. The 
two options for dealing with a t/u-channel poles are: (i) the poles are ignored and 
the full scattering-matrix is taken into account (option 0); (ii) the elements affected 
by the poles are dropped and a partial diagonalisation of the remaining matrix is 
performed (option 2).

with 
√

s = 14 TeV. However, it is unrealistic to assume that the full 
energy is available in the 2 → 2 scattering of scalars. Moreover, 
there are different options to handle the t- and u-channel poles, 
which can appear if internal states become on-shell, depending on 
how aggressive or conservative the limits should be: if we remove 
these poles either completely or only by a partial diagonalisation 
of the scattering matrix, large contributions to the scattering can 
be dropped at small s. We demonstrate via one example in Fig. 4
where the maximal eigenvalue as a function of 

√
s is shown. If we 

completely ignore the t- and u poles we see a huge enhancement 
close to some kinematic thresholds. In contrast, if we work with a 
partial diagonalisation as proposed in Ref. [23] we see that we find 
the eigenvalue of the large s approximation only for 

√
s > 10 TeV. 

This might be rather surprising since all involved masses are below 
1 TeV!

5. Comparison with loop corrections

Since one of our motivations for considering finite s scattering 
is that the quantum corrections to masses and couplings become 
large as we increase the scattering energy, it is also important to 
examine the effect of loop corrections to unitarity. Moreover, the 
boundary of unitarity may also coincide with a loss of perturba-
tivity. In general, loop corrections to unitarity have been very little 
studied in BSM models; however, in the context of the THDM, they 
were considered in Ref. [29–31] in the limit of 

√
s much larger 

than the masses in the theory. We can therefore make a direct 
comparison. In [29], general formulae for the loop corrections to 
a0 were presented in terms of the quartic couplings of the theory 
evaluated at the scale 

√
s, which are effectively independent of the 

particle masses. Results for two scenarios, one with an S O (3) sym-
metry and another with “MSSM-like” couplings, were presented.

We shall make our comparison with the “MSSM-like cou-
plings”; in SARAH conventions this means

λ1 = λ2, λ4 = −λ3 − 2λ1, λ5 = 0. (21)

With these restrictions the ‘classic’ tree-level constraints of equa-
tion (10) simplify to

|8λ1 − λ3| ≤ 8π, |2λ1 + 2λ3| ≤ 8π, (22)

which describe a rhombus including the origin. Requiring stability 
of the potential requires
λ1 > 0, λ3 > −2λ1, (23)

which, when we combine the two, leaves a portion of the param-
eter space where λ1 is at most 4

3 π , and λ3 < 4π.

In the previous sections, we applied the unitarity constraint 
|Re(ai

0)| < 1/2, but in [29] they apply a different constraint, which 
we shall now examine. The starting point is the equation

Im(ai
0) ≤|ai

0|2, (24)

(for an elementary derivation see [34]). Naively this gives simply 
|ai

0| ≤ 1, which is a constraint sometimes applied, but with a little 
rearranging we have

Re(ai
0)

2 ≤ |Im(ai
0)|(1 − |Im(ai

0)|) (25)

which gives the classic limit (9). This limit makes no assumption 
of perturbativity, and indeed when Re(ai

0) obtains its maximum 
value then Im(ai

0) = |Re(ai
0)|. Since Im(ai

0) is only generated at first 
at one loop order, then saturating this bound would potentially 
require violating perturbativity. On the other hand, rearranging 
again, we can write the above as

|ai
0 − i

2
|2 ≤ 1

4
. (26)

If we have complete ignorance of Im(ai
0) then we just recover the 

same constraint as above. However, if we have calculated a0 at 
one loop and assume that perturbativity holds, then we can use 
our calculated values for the real and imaginary parts of ai

0 and 
use the above constraint. Focusing on one eigenvalue, let us write

ai
0 ≡a0

0 + bR + ibI (27)

and expand eq. (26) then we find

(a0
0)

2 + b2
R + 2a0

0bR − bI + b2
I ≤ 0. (28)

Now Ref. [29] then appeal to perturbation theory so that

bI = (a0
0)

2 + higher order terms (29)

and then obtain

2a0
0bR ≤ −b2

R + ... → |a0
0| ≥

1

2
|bR |. (30)

This can then be a very strong constraint. In Fig. 5 we show the 
constraints from applying eq. (26) as done by Ref. [29], with the 
constraints from our trilinear couplings and the tree-level con-
straints for comparison. The tree-level quartic-only and one-loop 
constraints are independent of tan β and all of the mass scales 
(except that they should be interpreted as couplings evaluated at 
a renormalisation scale 

√
s), whereas for our scan we choose two 

values of tan β (marked on the plot) and fix the tree-level lightest 
Higgs mass to be 125 GeV – this is enough to determine all of the 
remaining free parameters once λ1 and λ3 are specified.

We see from Fig. 5 that even though the loop-level constraints 
seem extremely severe, our tree-level trilinear constraint still re-
moves a significant chunk of the remaining parameter space.

However, these one-loop constraints have the curious feature of 
excluding couplings near the origin, which arises from the regions 
where one scattering eigenvalue vanishes at tree level. Indeed, from 
eq. (30) we see that if a0

0 = 0 (as can happen for linear combina-
tions of the couplings) then unitarity is apparently violated. In the 
notation of Ref. [29] the purple curve corresponds to the eigen-
value a110odd

0 , which derives from the scattering of

εαβ�α
1 τ 3�

β

2 → εαβ�α
1 τ 3�

β

2 (31)
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Fig. 5. Tree-level and one-loop constraints on λ1 and λ3 in the “MSSM-like” THDM. 
Quartic-only tree-level constraints are shown as black dot-dashed lines, the vacuum 
stability constraint λ3 ≥ −2λ1 is the red dashed line; our tree-level constraints in-
cluding trilinears are labelled with tanβ = 2 and tanβ = 30. The one-loop allowed 
region from [29] is the white region enclosed by the solid purple and orange curves. 
The second plot is a zoom into the first one.

where τ 3 = 1
2

(
1 0
0 −1

)
and gives the scattering eigenvalue at 

tree level of

a0
0 = 2λ1 + 2λ3.

The orange curve corresponds to a000even
0− from scattering

�
†
i �i → �

†
j� j, i = {1,2}, (32)

which give the scattering eigenvalues at tree level of

a0
0 = {−8λ1 + λ3,−4λ1 − λ3}.

We therefore see that the one-loop constraints arise starting 
from the lines λ1 + λ3 = 0 and 4λ1 + λ3 = 0. The reason for this 
is, however, assuming that the higher-order terms in eq. (29) are 
not important. Indeed, in the cases where a0

0 = 0 for λi �= 0 we 
would apparently badly violate perturbation theory – but this is 
just because we have only computed up to one loop, and have a 
tuned cancellation at tree level. Since eq. (30) compares a tree-
level and one-loop amplitude this seems particularly bad. Hence, 
if we examine the perturbation series more closely, specialising to 
the case of only quartic couplings for simplicity, and define λ to be 
a number of O(λi) as a perturbation series parameter, so that

bR ≡b1,Rλ2 + b2,Rλ3 + ...

bI ≡ (a0
0)

2λ2 + b2,Iλ
3 + ... (33)

We see that a2→n
0 is nonzero first for 2 → 4 processes at order λ2. 

Hence defining 
∑

n>2 |a2→n|2 ≡ |X |2λ4 we have, order by order in 
perturbation theory up to λ4:
Fig. 6. Tree-level and one-loop constraints on λ1 and λ3 in the “MSSM-like” THDM. 
Quartic-only tree-level constraints are shown as black dot-dashed lines, the vacuum 
stability constraint λ3 ≥ −2λ1 is the red dashed line; our tree-level constraints in-
cluding trilinears are labelled with tanβ = 2 and tanβ = 30. The one-loop allowed 
region applying the constraint |Re(a0)| ≤ 1

2 is the white region enclosed by the solid 
orange curve.

2a0
0b1,R − b2,I =0 (34)

(a0
0)

4 + b2
1,R + 2a0

0b2,R − b3,I + |X |2 =0. (35)

We see that the origin of eq. (30) depends on neglecting b2,I , but 
if we include the information from eq. (34) then we would have 
obtained instead of eq. (30):

b2
R + higher order terms of indeterminate sign = 0.

Furthermore, when a0
0 = 0 we simply recover b3,I ≥ 0 and b2,I = 0, 

which we could surmise from a0 being of O(λ2) and the standard 
unitarity relation. We do not obtain any new constraint beyond 
|Re(a0)| ≤ 1

2 ; this is also the conclusion reached in [31].
Hence in Fig. 6 we recompute the constraints at one-loop ap-

plying instead |Re(a0)| ≤ 1
2 for Re(a0) = a0

0 + b1,R for the same 
scattering processes listed above. We use the expressions in the 
appendix from Ref. [29] to obtain the one-loop scattering ampli-
tudes neglecting the wavefunction renormalisation contributions. 
These are mass-dependent and were found to be small in Ref. [29]. 
The reason is that, in the limit that 

√
s is much larger than all 

masses, only diagonal self-energies appear in the results which 
consist of expressions of the form

z1/2
ii ∼ (vλ)2 d

ds
(B0(s,m2,m2)) ∼ (vλ)2

s
→ 0. (36)

Due to the presence of the trilinear couplings in these terms they 
appear at the same order as box and triangle diagrams.

The one-loop constraint is then stronger than the “naive” tree-
level one in some cases, and weaker in others; but we find that our 
tree-level constraints including the effect of trilinears are stronger 
than both in almost all cases.

For comparison, one could also check the one-loop allowed re-
gion for the sometimes used criterion |a0| ≤ 1. These are almost 
universally weaker than the tree-level constraints, implying that 
they are not sufficiently conservative, as can be expected.

6. Conclusion

We have revised the tree-level perturbative constraints in 
THDMs by including the contributions from (effective) trilinear 
couplings, and provide an extension of the package SARAH which 
makes it possible to include these constraints in phenomenolog-
ical studies in THDMs and many other BSM models. We found 
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that the obtained limits can be significantly stronger than the ones 
usually applied in literature which are only correct in the limit 
of large scattering energies 

√
s. The importance of the improved 

constraints has been demonstrated by two chosen examples: (i) it 
was shown that the values of M12 are highly constrained in the 
light Higgs windows; (ii) one finds a stronger upper limit for the 
CP-even Higgs mass in scenarios with M12 < mA, mH+ . On the 
other side, we have also discussed that the restriction to max-
imal scattering energies of a few TeV can revive points which 
violated unitarity only at much higher energies. We also made 
comparison with previous constraints derived at one-loop level in 
the large s approximation. Our results indicate that the tree-level 
constraints including trilinear couplings are the most important 
for this class of models, and are not superseded by the one-loop 
large-momentum constraints; instead, it would be a very interest-
ing if rather complicated task to include the effects of the trilinear 
couplings at one-loop order, which could potentially strengthen 
constraints on these models further.

In other BSM models similar – or even larger – differences be-
tween the full calculation and the large s approximation can be 
seen. This is discussed for example in Ref. [48] for several triplet 
extensions.

Acknowledgements

We thank Marco Sekulla for helpful discussions. FS is sup-
ported by ERC Recognition Award ERC-RA-0008 of the Helmholtz 
Association. MDG acknowledges support from the Agence Na-
tionale de Recherche grant ANR-15-CE31-0002 “HiggsAutomator”, 
and the Labex “Institut Lagrange de Paris” (ANR-11-IDEX-0004-02, 
ANR-10-LABX-63). We would like to thank Sophie Williamson and 
Manuel Krauss for helpful discussions and collaboration on related 
topics.

References

[1] G. Aad, et al., ATLAS, Phys. Lett. B 716 (2012) 1, arXiv:1207.7214 [hep -ex].
[2] S. Chatrchyan, et al., CMS, Phys. Lett. B 716 (2012) 30, arXiv:1207.7235 [hep -

ex].
[3] K.G. Klimenko, Theor. Math. Phys. 62 (1985) 58, Theor. Math. Phys. 62 (1985) 

87.
[4] J. Velhinho, R. Santos, A. Barroso, Phys. Lett. B 322 (1994) 213.
[5] P.M. Ferreira, R. Santos, A. Barroso, Phys. Lett. B 603 (2004) 219, Erratum: Phys. 

Lett. B 629 (2005) 114, arXiv:hep -ph /0406231 [hep -ph].
[6] A. Barroso, P.M. Ferreira, R. Santos, Phys. Lett. B 632 (2006) 684, arXiv:hep -ph /

0507224 [hep -ph].
[7] M. Maniatis, A. von Manteuffel, O. Nachtmann, F. Nagel, Eur. Phys. J. C 48 

(2006) 805, arXiv:hep -ph /0605184 [hep -ph].
[8] I.P. Ivanov, Phys. Rev. D 75 (2007) 035001, Erratum: Phys. Rev. D 76 (2007) 

039902, arXiv:hep -ph /0609018 [hep -ph].
[9] I.P. Ivanov, Phys. Rev. D 77 (2008) 015017, arXiv:0710 .3490 [hep -ph].

[10] I.P. Ivanov, Acta Phys. Pol. B 40 (2009) 2789, arXiv:0812 .4984 [hep -ph].
[11] I.F. Ginzburg, I.P. Ivanov, K.A. Kanishev, Phys. Rev. D 81 (2010) 085031, arXiv:

0911.2383 [hep -ph].
[12] F. Staub, arXiv:1705 .03677 [hep -ph], 2017.
[13] R. Casalbuoni, D. Dominici, R. Gatto, C. Giunti, 23RD international conference 

on high energy physics, Phys. Lett. B 178 (1986) 235.
[14] R. Casalbuoni, D. Dominici, F. Feruglio, R. Gatto, Phys. Lett. B 200 (1988) 495.
[15] J. Maalampi, J. Sirkka, I. Vilja, Phys. Lett. B 265 (1991) 371.
[16] S. Kanemura, T. Kubota, E. Takasugi, Phys. Lett. B 313 (1993) 155, arXiv:hep -

ph /9303263 [hep -ph].
[17] I.F. Ginzburg, I.P. Ivanov, arXiv:hep -ph /0312374 [hep -ph], 2003.
[18] A.G. Akeroyd, A. Arhrib, E.-M. Naimi, Phys. Lett. B 490 (2000) 119, arXiv:hep -

ph /0006035 [hep -ph].
[19] J. Horejsi, M. Kladiva, Eur. Phys. J. C 46 (2006) 81, arXiv:hep -ph /0510154 [hep -

ph].
[20] G. Veneziano, Nucl. Phys. B 44 (1972) 142.
[21] G. Cynolter, E. Lendvai, G. Pocsik, Acta Phys. Pol. B 36 (2005) 827, arXiv:hep -

ph /0410102 [hep -ph].
[22] S.K. Kang, J. Park, J. High Energy Phys. 04 (2015) 009, arXiv:1306 .6713 [hep -

ph].

[23] A. Schuessler, D. Zeppenfeld, in: SUSY 2007 Proceedings, 2007, pp. 236–239, 
arXiv:0710 .5175 [hep -ph].

[24] K. Betre, S. El Hedri, D.G.E. Walker, Phys. Dark Universe 19 (2018) 46, arXiv:
1410 .1534 [hep -ph].

[25] L. Di Luzio, J.F. Kamenik, M. Nardecchia, Eur. Phys. J. C 77 (2017) 30, arXiv:
1604 .05746 [hep -ph].

[26] L. Di Luzio, R. Gröber, M. Spannowsky, Eur. Phys. J. C 77 (2017) 788, arXiv:
1704 .02311 [hep -ph].

[27] J.F. Gunion, H.E. Haber, Phys. Rev. D 67 (2003) 075019, arXiv:hep -ph /0207010
[hep -ph].

[28] G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher, J.P. Silva, Phys. Rep. 
516 (2012) 1, arXiv:1106 .0034 [hep -ph].

[29] B. Grinstein, C.W. Murphy, P. Uttayarat, J. High Energy Phys. 06 (2016) 070, 
arXiv:1512 .04567 [hep -ph].

[30] V. Cacchio, D. Chowdhury, O. Eberhardt, C.W. Murphy, J. High Energy Phys. 11 
(2016) 026, arXiv:1609 .01290 [hep -ph].

[31] C.W. Murphy, Phys. Rev. D 96 (2017) 036006, arXiv:1702 .08511 [hep -ph].
[32] W. Porod, Comput. Phys. Commun. 153 (2003) 275, arXiv:hep -ph /0301101

[hep -ph].
[33] W. Porod, F. Staub, arXiv:1104 .1573 [hep -ph], 2011.
[34] M.D. Goodsell, F. Staub, Eur. Phys. J. C 78 (2018) 649, arXiv:1805 .07306 [hep -

ph].
[35] M. Misiak, M. Steinhauser, Eur. Phys. J. C 77 (2017) 201, arXiv:1702 .04571 [hep -

ph].
[36] P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams, Comput. Phys. 

Commun. 181 (2010) 138, arXiv:0811.4169 [hep -ph].
[37] P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams, Comput. Phys. 

Commun. 182 (2011) 2605, arXiv:1102 .1898 [hep -ph].
[38] P. Bechtle, O. Brein, S. Heinemeyer, O. Stal, T. Stefaniak, G. Weiglein, K.E. 

Williams, Eur. Phys. J. C 74 (2014) 2693, arXiv:1311.0055 [hep -ph].
[39] F. Staub, arXiv:0806 .0538 [hep -ph], 2008.
[40] F. Staub, Comput. Phys. Commun. 181 (2010) 1077, arXiv:0909 .2863 [hep -ph].
[41] F. Staub, Comput. Phys. Commun. 182 (2011) 808, arXiv:1002 .0840 [hep -ph].
[42] F. Staub, arXiv:1207.0906 [hep -ph], 2012.
[43] F. Staub, Comput. Phys. Commun. 185 (2014) 1773, arXiv:1309 .7223 [hep -ph].
[44] M.D. Goodsell, K. Nickel, F. Staub, Eur. Phys. J. C 75 (2015) 32, arXiv:1411.0675

[hep -ph].
[45] M. Goodsell, K. Nickel, F. Staub, Eur. Phys. J. C 75 (2015) 290, arXiv:1503 .03098

[hep -ph].
[46] J. Braathen, M.D. Goodsell, F. Staub, Eur. Phys. J. C 77 (2017) 757, arXiv:1706 .

05372 [hep -ph].
[47] M.E. Krauss, F. Staub, Eur. Phys. J. C 78 (2018) 185, arXiv:1709 .03501 [hep -ph].
[48] M.E. Krauss, F. Staub, Phys. Rev. D 98 (2018) 015041, arXiv:1805 .07309 [hep -

ph].

http://refhub.elsevier.com/S0370-2693(18)30871-2/bib4161643A32303132746661s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib4368617472636879616E3A3230313278646As1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib4368617472636879616E3A3230313278646As1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib4B6C696D656E6B6F3A313938347178s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib4B6C696D656E6B6F3A313938347178s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib56656C68696E686F3A313939346E70s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib46657272656972613A323030347964s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib46657272656972613A323030347964s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib426172726F736F3A32303035736Ds1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib426172726F736F3A32303035736Ds1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib4D616E69617469733A323030366673s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib4D616E69617469733A323030366673s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib4976616E6F763A323030367971s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib4976616E6F763A323030367971s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib4976616E6F763A323030376465s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib4976616E6F763A323030386572s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib47696E7A627572673A323030396470s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib47696E7A627572673A323030396470s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib53746175623A323031376B7463s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib436173616C62756F6E693A313938366879s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib436173616C62756F6E693A313938366879s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib436173616C62756F6E693A313938376567s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib4D61616C616D70693A313939316662s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib4B616E656D7572613A31393933686Ds1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib4B616E656D7572613A31393933686Ds1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib47696E7A627572673A323030336665s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib416B65726F79643A323030307763s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib416B65726F79643A323030307763s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib486F72656A73693A323030356461s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib486F72656A73693A323030356461s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib56656E657A69616E6F3A313937327273s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib43796E6F6C7465723A323030346371s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib43796E6F6C7465723A323030346371s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib4B616E673A323031337A6261s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib4B616E673A323031337A6261s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib536368756573736C65723A323030376176s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib536368756573736C65723A323030376176s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib42657472653A32303134667661s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib42657472653A32303134667661s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib44694C757A696F3A32303136737572s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib44694C757A696F3A32303136737572s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib44694C757A696F3A3230313774666Es1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib44694C757A696F3A3230313774666Es1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib47756E696F6E3A323030327A66s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib47756E696F6E3A323030327A66s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib4272616E636F3A323031316977s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib4272616E636F3A323031316977s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib4772696E737465696E3A3230313572746Cs1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib4772696E737465696E3A3230313572746Cs1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib4361636368696F3A32303136717968s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib4361636368696F3A32303136717968s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib4D75727068793A323031376F6A6Bs1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib506F726F643A32303033756Ds1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib506F726F643A32303033756Ds1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib506F726F643A323031316E66s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib476F6F6473656C6C3A32303138747469s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib476F6F6473656C6C3A32303138747469s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib4D697369616B3A32303137626767s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib4D697369616B3A32303137626767s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib42656368746C653A323030386A68s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib42656368746C653A323030386A68s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib42656368746C653A323031317362s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib42656368746C653A323031317362s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib42656368746C653A32303133776C61s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib42656368746C653A32303133776C61s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib53746175623A32303038757As1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib53746175623A323030396269s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib53746175623A323031306A68s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib53746175623A323031327062s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib53746175623A32303133747461s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib476F6F6473656C6C3A32303134626E61s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib476F6F6473656C6C3A32303134626E61s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib476F6F6473656C6C3A32303135697261s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib476F6F6473656C6C3A32303135697261s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib427261617468656E3A32303137697A6Es1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib427261617468656E3A32303137697A6Es1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib4B72617573733A3230313778706As1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib4B72617573733A323031386F7277s1
http://refhub.elsevier.com/S0370-2693(18)30871-2/bib4B72617573733A323031386F7277s1

	Improved unitarity constraints in Two-Higgs-Doublet-Models
	1 Introduction
	2 Model
	3 Unitarity constraints
	4 Results
	4.1 The light Higgs window
	4.2 Heavier scalar

	5 Comparison with loop corrections
	6 Conclusion
	Acknowledgements
	References


