KIT | KIT-Bibliothek | Impressum | Datenschutz

Uniformly accurate oscillatory integrators for the Klein–Gordon–Zakharov system from low- to high-plasma frequency regimes

Baumstark, Simon; Schratz, Katharina


We present a novel class of oscillatory integrators for the Klein-Gordon-Zakharov system which are uniformly accurate with respect to the plasma frequency c. Convergence holds from the slowly-varying low-plasma up to the highly oscillatory high-plasma frequency regimes without any step size restriction and, especially, uniformly in c. The introduced schemes are moreover asymptotic consistent and approximates the solutions of the corresponding Zakharov limit system in the high-plasma frequency limit (c $\rightarrow$ $\infty$). We in particular present the construction of the first- and second-order uniformly accurate oscillatory integrators and establish rigorous, uniform error estimates. Numerical experiments underline our theoretical convergence results.

Volltext §
DOI: 10.5445/IR/1000088065
Veröffentlicht am 29.11.2018
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2018
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000088065
Auflage 64
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 27 S.
Serie CRC 1173 ; 2018/38
Schlagwörter oscillatory integrator, Klein-Gordon-Zakharov, uniformly accurate, asymptotic preserving
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page