

Karlsruhe Institute of Technology

Institute of Technical Thermodynamics and Refrigeration (ITTK) Engler-Bunte-Ring 21, 76131 Karlsruhe, Germany, ttk.kit.edu

Set-up of the cryogenic phase equilibria test stand CryoPHAEQTS

J Tamson^{1,*}, M Stamm², S Grohmann^{1,2}

¹Institute of Technical Thermodynamics and Refrigeration, ²Institute of Technical Physics, *jens.tamson@kit.edu Poster presented at ICEC27-ICMC 2018, Oxford, UK

Motivation

- HTS cooling with liquid N₂ limited by triple point at 63 K
- Cryogenic mixed refrigerants reach lower temperatures more efficiently than pure substances
- Physical property data unavailable today

Mole fraction nitroger Fig. 1: Solid-liquid equilibrium of the nitrogen-oxygen system (T-x) [1].

Experimental solidus

Liquidus line

Solidus line

Phase equilibria measurements of cryogenic fluid mixtures

Process parameters	
Temperature range	15 – 300 K
Pressure range	Up to 15 MPa
Fluids	Cryogenic mixtures, incl. flammable or oxidizing fluids (ATEX compliant)
Phase equilibria types	VLE (vapor-liquid equilibria),VLLE (vapor-liquid-liquid equilibria) SLE (solid-liquid equilibria)

Investigation of VLE, VLLE and SLE*

*For SLE, only the liquidus line can be obtained from liquid phase analysis

Source: Bronkhorst.

ITTK

Test stand features

Outlook

Test stand offers optical access to allow light scattering experiments

Future upgrade to measure **surface tension** and **transport properties** (diffusivity, viscosity, thermal conductivity) by *dynamic* light scattering (DLS) and surface light scattering (SLS)

References

www.kit.edu

[1] Ruhemann M, Lichter A and Komarow P 1935 Zustandsdiagramme niedrig schmelzender Gemische: 2. Das Schmelzdiagramm Sauerstoff Stickstoff und das Zustandsdiagramm Stickstoff-Kohlenoxyd. Physikalische Zeitschrift der Sowjetunion 8 326–36. [2] Tamson J, Kochenburger T M, Stamm M and Grohmann S 2017 CryoPHAEQTS : Cryogenic Phase Equilibria Test Stand Poster at the II. International Workshop on Cooling Systems for HTS Applications 2017 [3] Guilbot P, Valtz A, Legendre H and Richon D 2000 Rapid on-line sampler-injector: a reliable tool for HT-HP sampling and on-line GC analysis Analusis 28(5) 426-31 [4] Grohmann S 2014 A new method for flow measurement in cryogenic systems Cryogenics 60 9-18

KIT – The Research University in the Helmholtz Association