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1. Introduction

The topics of this thesis are perhaps approached best by the following model problem.
Signal propagation in a single-mode Kerr-nonlinear optical fiber cable operated at a single
carrier frequency is commonly modeled by the one-dimensional focusing cubic nonlinear
Schrodinger equation (NLS), i.e.

i0u = —Oppu — ]u\Q U x,t € R. (1.1)

In the equation above, physical constants have been eliminated by a change of coordinates;
u corresponds to the complex amplitude of the mode, x to the retarded time and ¢ to the
position along the fiber (the uncommon names of the variables are chosen such that the
above equation is easily recognized as the NLS). Of course, the above model is not complete
without prescribing an initial condition u(-,t = 0) = wp, i.e. the signal being fed into the
fiber at one of its ends. An initial condition corresponding to data transmission would have
the form

up(z) =Y falz—n) VzeR, (1.2)

neN

where, for n € N, f, is selected from a finite set of given functions and encodes the n-th
transmitted symbol. In applications, it is of interest to study solutions of with initial
conditions analytically or numerically to deduce their features. To that end, at least
local, but better global, well-posedness of this Cauchy problem needs to be established in a
suitable function space. Because functions in are, in non-trivial cases, neither decaying
nor periodic the well-developed theory in L?-based Sobolev spaces on the real line or on
the torus is not applicable to them. However, some modulation spaces seem to be good
candidates for the well-posedness theory, because they include functions as in and
the Schrodinger propagator is a strongly continuous group on them, i.e. at least the linear
problem is already solved. Today, global well-posedness of the NLS in modulation spaces
has been shown only in a few cases and none of them covers the situation described above.
In other words, the problem is interesting not only from a physics point of view, but also
for a mathematician.

Studying the model problem described above, it makes sense to allow for more general
nonlinearities F' and arbitrary dimensions d, i.e. to consider

{iut(x,t) = —Au+ F(u), reRLteR (13)



Literature survey

The body of literature covering the mentioned topics is of course huge. Hence the selection
given below is far from exhaustive and is mainly based on the author’s taste (at least for
textbooks, overview publications and other well-known results).

Communication over optical glass fibers is treated in [Sch04]. This and other applications
of the NLS are presented in [SS99|, whereas [Tao06] has a purely mathematical perspective.
Global well-posedness of the NLS is the subject of [Bou99]. Modern textbooks covering the
NLS are [LP09] and [ETT16].

Modulation spaces were introduced in [Fei83], which is still a good reference. For its read-
ing, one probably should have [Fei80| at hand. Historical notes [Fei06] by the inventor
of modulation spaces contain many references to recent literature. A modern textbook is

[Gro01].

A book covering both modulation spaces and NLS is [WHHG11], but see also the overview
article [RSW12].

Known results touching the model problem described above are as follows. In [WZGO06] local
well-posedness for the Cauchy problem for the NLS with a power nonlinearity on a certain
modulation space is shown for arbitrary dimensions. This space does not include initial
values of the form (1.2). More modulation spaces and general algebraic nonlinearites are
covered in [BOQ9]. In fact, the latter result is applicable to the model problem. Moreover,
in the article [Guol7| the cubic nonlinearity in one dimension is considered for different
modulation spaces. Again, initial values of the form are not covered. The same
is true for the publications [Patl8] and [CHKPIS§| (the latter is co-authored by the PhD
candidate).

In [WHO7| some theorems concerning global well-posedness of the Cauchy problem for the
NLS are derived. These results assume smallness of the initial data and neither include
the cubic nonlinearity in one dimension nor initial values of the form . The same is
true for their generalization in [Katl4]. In [CHKP17| (co-authored by the PhD candidate),
cubic nonlinearity in one dimension is treated and a global well-posedness result is obtained.
However, it is not applicable to initial values of the form (1.2)).

Further literature is cited later, when the specific topic is touched. Also, more remarks on
the already mentioned literature are made then.

Results obtained in this thesis and a conclusion

The contribution of the work at hand is as follows.



The well-posedness result from [BOQ09]| is generalized to cover certain intersections of mod-
ulation spaces. The proof of the original theorem relies on the fact that certain modulation
spaces are Banach *-algebras. As this is also true for the intersections considered here,
the result follows immediately. The algebra property for the intersections is apparent from
the proof of [STWI1I Proposition 3.2]. However, to the best of the author’s knowledge,
neither the algebra property for the intersections nor the corresponding improved local
well-posedness theorem has been published elsewhere.

A new Hoélder-like inequality is obtained. Also, a characterization of modulation spaces via
the Littlewood-Paley decomposition, which was not observed previously, is shown. With
its help, a sufficient condition for some series to converge in certain modulation spaces is
proven.

The main contribution is the extension of the global well-posedness result from [CHKP17]
to cover a larger range of nonlinearities, more modulation spaces and arbitrary dimensions.
Also, the proof is considerably simplified and the notion of a solution is made more precise.
Finally, the underlying local well-posedness holds for a larger range of modulation spaces.

Initial values of the form are not covered by the improved result. This was also not to be
expected, as the proof is via a nonlinear interpolation argument and the required space is an
endpoint of the scale. The classical approach of upgrading a local well-posedness to a global
one is via a conserved quantity. However, it is not clear whether a suitable conservation
law exists and how it could be connected to the modulation space norm. Hence, the global
well-posedness for the model problem remains open.

Organization of this thesis

The remainder of the text at hand is structured as follows. The introductory chapter con-
cludes with the explanation of the used notation. In the subsequent Chapter [2] modulation
spaces are defined, their basic properties are presented and some embeddings needed later
are shown. It also contains the aforementioned characterization of modulation spaces via
the Littlewood-Paley decomposition and the resulting sufficient condition. Chapter [3] lays
further the necessary ground for the well-posedness results. There, the Schrédinger group is
shown to be strongly continuous on most of the modulation spaces, the classical Strichartz
estimates are quoted and a nonlinear Strichartz estimate is derived from the sketched proof
of the well-known global well-posedness of the mass-subcritical NLS in L?. Chapter 4| con-
tains the improved local well-posedness result and the algebra property it is based on. Also,
the Holder-like inequality is proven there. In the final Chapter [5 the improved global
well-posedness result is stated and proven.



Notation

Only potentially uncommon notational choices are mentioned here, all others are docu-
mented in the appendix.

The duality pairing (u, f) = u(f) extends the L2-duality and is linear in the second variable,
Le. (u, f) = [ufda.

For two quantities A, B, the notation A <; B shall mean, that there is a constant C' > 0
independent of A and B, but depending on another quantity d, such that A < C'B. Another
notation for such dependence shall be C = C(d). Of course, A ~4 B shall mean that A <; B
and B <4 A.

For Bessel potential spaces Hy, s shall be the regularity and p the integrability indices. The
space of bounded continuous functions shall be denoted by C}, and the space of infinitely
often differentiable functions with compact support by D. The space of infinitely often
differentiable functions such that each of its derivatives is bounded by a polynomial shall
be denoted by C7). Whether the continuous or the discrete norm is meant by ||-[|, shall be
apparent from its argument.

The Japanese bracket shall be defined by (-) = /1 + |-|*. For a countable index set I and

a Banach space X, the space of (-)*-weighted sequences in X shall be denoted by (I, X),
where s is the regularity and ¢ the summability index. More precisely, one has

L .
l(ar)|le = {(Zkel(@qs ||ak||c)1() a, if g < o0,

suprer(k)* lak x , if ¢ = oo.
The space of (-)*-weighted sequences converging to zero shall be denoted by ¢ C I%°.

The constants of the Fourier transform and its inverse are chosen symmetrically, i.e.

f = 1 e 87 £(2)dx
flor = Fn© =g [ i
~ — 1 1$°T

0 = ()= gl [ v

The operation of dilation shall be defined as (6°f)(y) = f(ay), right-shift by S, f(y) =
f(y — x) and modulation by (Myf) (y) = e *¥ f(y).



2. Modulation spaces

Main purpose of this chapter is to introduce modulation spaces and their basic properties
in a form suitable for the remainder of this thesis. Additionally, a characterization of
modulation spaces via the Littlewood-Paley decomposition is proven. To the best of the
author’s knowledge, this characterization is new.

Modulation spaces were pioneered by Feichtinger in 1983 in his technical report [Fei83].
There, modulation spaces were defined in a quite abstract setting of locally compact Abelian
groups. A modern textbook on modulation spaces on R? is [Gr601], where they are intro-
duced via the short-time Fourier transform. Another (equivalent) approach to modulation
spaces, which is presented in [WHO7, Section 2, 3] and [WHHGII, Section 6.2], is via the
isometric decomposition operators. It clearly shows the similarity of Besov and modulation
spaces — the former correspond to dyadic decomposition operators. For a general discussion
of Banach spaces arising from decompositions see [FG85| and |[Fei87]. Another example of
such spaces are the Wiener amalgam spaces (see [Fei80]), which are closely connected to
modulation spaces via the Fourier transform. For embeddings between modulation spaces
and some more “classical” Banach spaces see [Gro92, Section GJ, [Oko04], [Tof04a] and
[Tof04b], [WHO7, Section 2| and [WHHGII) Section 6.3|. Of course, the compilation of the
literature above is far from being exhaustive.

This chapter is structured as follows. In Section modulation spaces are defined in terms
of the isometric decomposition operators and their basic properties are proven, i.e. that
they are Banach spaces not depending on the particular choice of the partition of unity.
Also, most of their dual spaces and complex interpolation spaces are identified and some
embeddings of modulation spaces into each other are proven. In Section the short-time
Fourier transform is introduced and modulation spaces are characterized in terms of it.
Also, the modulation space norm of a complex Gaussian is calculated. Subsequently, in
Section the aforementioned characterization of modulation spaces via the Littlewood-
Paley decomposition is presented. Also, a certain sufficient condition for a series to converge
in a modulation space is shown. Finally, some embeddings for modulation spaces, needed
in later chapters, are presented and proven in Section

2.1. Definition via the isometric decomposition operators

Definition 2.1 (Isometric decomposition operators). Let d € N. Put Qg := [—%, %)d and

Qr = Qo + k for all k € Z% Assume that the sequence of functions (called symbols)



(0k)peze € C (Rd)zd satisfies the following conditions
(i) Je>0:VkecZ: VneQy: |ox(n)| > ¢,
(ii) Yk € Z% : supp(ox) C B 5 (k),

(iv) ¥m € Ng: 3Cy, > 0: Vk € Z4: Ya € N& : |a| < m = [|0%%| o < Cmi.

Then the sequence of operators ((g)eze on S'(R?), which is defined by
Oy = F Ve, F o VEk ez,

is said to be a family of isometric decomposition operators (IDOs). Define also the formally

adjoint IDOs (O )keZd = (f(_l)@f)kezd'

Let (Ok)geze be a families of IDOs. Observe, that for any u € S'(R%) and any f € S(R?)
one has

(O, f) = <f<*1>akfu,f> - <u F= ak]-“f> (u,00,f)  Vke 2z

(operations on S are given by Definition [A.40). Because ((J}),cza is a family of IDOs in
its own right ((0%),eza satisfies the conditions of Definition , one also has

(Oju, ) = (w,0xf) Yk eZ%

Let (Dk)kezd be another family of IDOs. For any k € Z? let o} and &}, denote the symbol of
O, and Oy, respectlvely Observe, that unless |k — I| < 2v/d one has supp(oy) Nsupp(&;) = 0

by Property (i) in Deﬁmtlon For the rest of this section let A(d) := {l cZ4 || < 2[}
be the set of close indices. By the above, one has

1 ¢ Ad) = 004y =0 Vk,1ezd (2.1)

Finally, remark that for any & € R? there is exactly one k(¢) € Z¢ such that ¢ € Qr(e)-
Unless |k — 1| < 3v/d one has Q; Nsupp(o;) € Bz (k) N B /(1) = 0, again by Property
in Definition For the rest of this Chaptei define the set of relevant indices by
N(d) = {l e 74| < %ﬂ} By the above, one has

¢ N'(d) = € ¢ supp(opeyr)  VEERIVI € Z (2.2)
Ezxample 2.2 (Construction of the IDOs). Consider a p € D(R) satisfying p(z) = 1, if
2] < § and p(x) = 0, if Jo] > 1. Put po(&) = p (5L) and py(€) == po(& — k) for any ¢ € R4
and any k € Z¢. Finally, set

pe(&) P ()
Zlezd pi(&) Zle/\/(d) Pm(&)+1 €3

or(§) = Ve € R4VE € 72



(the fact that for a fixed ¢ € R? the series above is just a finite sum is due to Implication
(2.2)). Then (O;) = (F(-YoF) is a family of isometric decomposition operators. Observe,
that oy, = Spoq for any k € Z4.

Definition 2.3 (Modulation space). (Cf. [WHOQT, Proposition 2.1]). Let d € N, p,q €
[1,00], s € R and (Og)peza a family of IDOs. Define the modulation space norm (w.r.t. the
family of IDOs (O )pecz4¢) by

Vu € S'(RY). (2.3)

el ey = || (¢8)* 1Ol o)

kezdllja(zd)

Observe, that for every k € Z? there exists a unique f € C(R?) such that yu = ®fy,

pol
(as in Equation (A.24))) by Proposition This justifies taking the LP-norm above (i.e.
[Okull, = [l f&ll,). The seminormed vector space
M3 (R = {u € S®RY| ullyy, oy < 0} (2.4)

shall be called modulation space (w.r.t. the family of IDOs (Oy),eza) with reqularity index
s, space index p and Fourier index q.

One often shortens the notation to M, , == M;Q(Rd) and M, , =: Mg’q. Finally, set

M o (RY) = {u c s'@gd)] Jm (k) O, = 0} C M3 (RY),

Shortly, it will be shown that the seminorm ||'HM§7q(Rd) is a norm on M, , (RY) (Proposition

2.4), that the modulation spaces are Banach spaces (Proposition 2.11)) and that different
families of IDOs yield equivalent norms (Proposition . For the moment, consider a fixed
family of IDOs (Og)eza.

Proposition 2.4 (Modulation spaces are normed spaces). Let d € N, s € R, p,q € [1, 0]
and (Og)peza be a family of IDOs. Then (ng(Rd), IRIFYE (Rd)) is a normed vector space.
’ p,q

For the proof of the last proposition consider first the following

Lemma 2.5 (> [ converges strongly unconditionally to id in S and §’). Let d € N,
f € SRY) and u € S'(R?). Then the series Y cza O f converges unconditionally to f in
S(RY) and Y- ;cz0 Opu converges unconditionally to u in S'(RY).

Recall, that unconditional convergence of a series » -, ;a ax in a Hausdorff topological vec-
tor space X means that for any ordering (ky)nen of Z¢ (called order of summation) the
series »_° ;ay, converges in X to a value s € X and s does not depend on the order of
summation.

Proof of Lemma[2.5. First, consider the case of convergence in S(R?). The Fourier trans-
form and its inverse are continuous on S(R?) by Proposition Hence, by definition of



O, = FCYo,F, it is enough to show that chézd 0rg unconditionally converges to g for
any g € S(R?). To that end consider any fixed order of summation (k,)nen. For every
N € N define Iy = {k1,...,kn},

M(N) = { € eRI| 3 au(€) #1
keln

and let o, B € Nd. As M(N)¢ is open and Zi\f:l 0k, (§) =1 for any £ € M(N)® one has

pap | 9= D Okg

sup (€207 | g = > owg | (&)

EEM(N)

keln keln
< | sup [©%°0%| + sup 37 [(©%€° (qrg)(©)] | (25)
£cRe gedeezd

1
(@)

Clearly, as N grows, the second factor above converges to zero. Hence, it suffices to show
that the first factor is finite. The first supremum is indeed finite, as it is bounded above by
a sum of seminorms of g.

For the second supremum, consider any fixed ¢ € R%. By the Leibnitz’s rule (A.20)), one

has
CERACHIGIED 3 (@ [ NGRSOl

kezd kezdv<pB
In the summation over k almost all summands vanish by the Implication (2.2)). Hence, it
may be replaced by the finite sum

> ¥ (O gl oo a0

leN (d)v<B
< >N ( )qg (<£>2€“(8ﬂ‘79)(§)’,
leN (d)v<pB

where additionally Property in Definition has been used. The right-hand side of
the last inequality is bounded independently of £ by a multiple of a finite sum of seminorms
of g. This shows that the second supremum in is finite and concludes the proof of
convergence in S(RY).

For the convergence in &’ (R%) consider again an arbitrary order of summation (ky)nen. One

has
<U—ZDan g> (u,g) — Z(Dknug <U9 ZD,n >

n=1

for every N € N and g € S(R?). As (O} )4eze is a family of IDOs in its own right, the
already proven unconditional convergence in S(R?) ensures that ZN 0, 9—ginS (R)

10



as N — oo independently of the order of summation (k,)n.n. Recalling the definition of
convergence in S’(R%) finishes the proof. O]

Proof of Proposition [2.4 The only non-trivial property is the positive definiteness of ||-|| ;= -

p,q

Consider au € M (R?) with [ull ;. =0, i.e. Opu = 0forall k € Z. But then, by Lemma
’ p,q

U= pega Opu=0. O

How modulation spaces with different indices embed into one another is clarified in the
following

Proposition 2.6 (Embeddings of modulation spaces into each other). (Cf. [WHO0, Propo-
sition 2.5]). Let d € N, s1,s9 € R and p1,p2,q1,q2 € [1,00] satisfy

81 > 83, p1 < po, q1 < qo.
Then
Mt (RT) — M2 (RY). (2.6)

Furthermore, if ga < 0o, then

M2 (RY) C M

o2 p%o(Rd). (2.7)

For the proof consider first the following

Lemma 2.7 (IDOs on Lebesgue spaces). Let d € N, (Og)peza a family of IDOs and
p1,p2 € [1,00] satisfy p1 < pa. Then the family (Ok)eza is bounded in £ (LP(RY), LP2(RY))
and this bound is independent of p1 and po.

Putting p; = p2 = p in the above lemma immediately yields the useful

Corollary 2.8 (IDOs on a Lebesgue space). Let d € N. Then for any family of IDOs
(Ok)peza there exists a C = C(d) > 0 such that for any p € [1,00] one has

IOk 2 (tr@ay <C Yk eZ2

Proof of Lemma[2.7] By the Bernstein multiplier estimate from Corollary one imme-
diately has

d
186l g1 1) < €L+ Isuppiow)]) | Nowllo + D [0%0n| (2:8)
j=1
for any k € Z%. As, by Property in Definition one has

lsupp(o)| < ‘Bﬂ(k)’ <41 Vkezd

11



and, by Property (with Cy as there),
d
lowloe + Do ||o"en|_ | Saca wheZ,
o0
j=1

the right-hand side of (2.8]) is bounded above independently of k. The proof is thus complete.
O

Proof of Proposition[2.6. To prove the embedding ([2.6) one may consider different indices
separately, i.e. show
Mpiqy = Mplgy = Mylgy = My g, (2.9)

As (€) > 1 one also has (€)% < (€)% for any ¢ € RY, which together with the definition of
the modulation space norm in Equation (2.3)) implies the first embedding.

The second embedding follows from the well-known embedding of the sequence spaces
199 (Z4) < 192(Z%) and the definition of the modulation space norm in Equation (2.3).

For the last embedding in (2.9) consider the identity (in S’(R9))

O = Z ;0 = Z Dk+l|:|k vk € Zd,
lezd leA(d

where Lemmavvas used in the first equality and Implication ([2.1)) in the second. Hence,
for any u € S’(R?) one has

Tkl = | Y DenDeu| < >0 (1DeriTrull,, Sa lTkull,, ke Z9

1EA(d) vy 1€M@

Here, Lemma was used in the last estimate. Recalling the definition of the modulation
space norm (Equatlon ) shows the last embedding.

To show the Inclusion (2.7)), assume go < oo and consider any u € M2 . Then

q2 _ S2q q2
ol = 5 Gk Dl < oo
kezd
and hence limg| 00 (k)*? [[Cgull,,, = 0, i.e. u € M;?,. This finishes the proof. O

Techniques used for the last proof can also be applied to show that different families of
IDOs yield the same modulation spaces M, ,. More precisely one has the following

Proposition 2.9 (Mliq is independent of the family of IDOs). Let d € N, s € R and

p,q € [1,00]. Furthermore, let (Og) ez and (E]k-)]iezd be two families of IDOs. Then there
is a constant C' > 0 depending on (O )peza and (Ok)peza such that

c H( }Dk H )keZd H( "Bkl )keZd CH( |Dku” >kezd q

(2.10)

12



for all u € S'(RY). In particular, the modulation space M;vq(]Rd) as a set does not depend
on the choice of the family of IDOs and any two modulation space norms on Mg’q(Rd) are
equivalent.

Proof. Tt suffices to show only the first inequality in (2.10)), as the second one follows by
interchanging the roles of (C;) and (Ug). To that end, let k € Z% and denote by oy the
symbol of O and by &}, the symbol of (. Consider any u € S’(R?). One has

|jk = |jk Z 0; = Z DkaJrl Vk € Zd

leza leA(d)
by Lemma and Implication . Hence,
HﬂkuH Z Hl:lkl:‘k-Jrlqu Sd Z ”DkJrluH Vk‘EZd
leA(d lEA(d)

by Corollary 2.8, Peetre’s inequality (Lemma [A.31)) now implies

(et ), [ = 32 (60 1Bcal)
<§jﬂ"‘ (697 10, ) | -

leA(d
This concludes the proof. ]

(k+UHDHWM%m§m

Proposition 2.10. Letd € N, s € R, p € [1,00] and g € {0} U[1,00]. Then

S(RY) — M (RY) — S'(RY).

Proof. Consider the first embedding. By Proposition it is enough to show & — M7 ;.
To that end, consider u € § and observe that by Lemma [A.5T] one has

10kully = lloktll £ Sa llowtll ga Vk € Z°.

(Above, any integer greater than % could be used as the regularity index of the Bessel

potential space instead of d.) Proposition together with the Leibniz’ rule, further
estimates

lowillys Sa - 1@, < 32 D2 ||(090) (0%0) |, wkez

la|<d la|<d f<La

Because of the compact support of o) (Property in Definition , one may estimate
the L?-norm by the L>®-norm. Additionally using Property yields

> H(aa BUk) (36 )H Ndl sup )86 ‘ Vk € 2%

laJ<d B<a al<d B<a fer k)
By Peetre’s inequality (see Lemma [A.31]) one has
(7 <2 k) (k)" Sap ()" VE € ZIVE € B (k)

13



for any ¢t > 0 (to be fixed later) and hence

sup ’aﬁ ) <ar (B) ! sup (€)! ’8%(5)‘ vk € Z°.
§€B (k) ¢eRd
Recalling the definition of the modulation space norm (Equation ({2.3])) shows
_ t |98 s—t
lullagg, = D ) Okl Sae Y- Y- sup [0 0%a(e)|] 3 k).
kezd la|<d B<a tER kezd

Taking a large enough ¢ (say t > d + s) makes the series above convergent, whereas the
supremum is controllable by a finite sum of semi-norms of u due to the continuity of the
Fourier transform on S (Proposition [A.34). This shows the first embedding.

Consider the second embedding. By Proposition it suffices to show M§, . — &'. To
that end, consider u € 8’ and f € S. One has

[ < D0 D kOl = D0 Y KODhu, f)| = Z (O, Og )]

kezd lczd kezd lezd kezdleA(d
< DD Tkl 1Tkt flly Sas D, D> (R HDkuHoo<k+l>‘5\|mk+zf||1
leA(d) kezd leA(d) kezd

<o Nollarg, 17 arss

where Lemma was used for the first estimate, Implication (2.1)) for the second equality,

Holder’s inequality for the second and last estimate and Peetre’s inequality (see Lemma
D for the third estimate. As ||f]] Mos IS finite by the first embedding, the proof is

complete. O

Proposition 2.11 (Modulation spaces are Banach spaces). Let d € R?, p,q € [1,00]. Then
(M;jq(Rd), ”'HMg,q(Rd)> is a Banach space. Moreover, M;O(Rd) is a closed linear subspace

of M;,,OO(]R“Z).

For the proof of this proposition several provisions will be made.

Lemma 2.12 (Analysis operators). Let d € N, p,q € [1,00] and s € R. Then the analysis
operator Aj M;q(Rd) — 14(Z4, LP(RY)), defined by

AS u=(Opuw)r  Vue M (R, (2.11)
s a linear isometry.

Lemma 2.13 (Synthesis operators). Letd € N, p,q € [1,00] and s € R. Then the synthesis
operator Sy 14z, LP(RY)) — M;q(Rd), defined through

Soolur) =D > Dhpue  V(ug) € 14(Z%, LP(RY), (2.12)
kezZd leA(d)

is linear and continuous. More precisely, u, € S'(RY) in the sense of equation (A.24)), the
series above converges unconditionally in S'(R%) to an element of M;q(Rd) and its norm is
controlled by the norm of the sequence (uy).

14



Proof. Consider an f € § and observe

Do Ok A = D> [ T < D luklly, D 1T f 1L

kezd leA kezd leA kezd leA
p/) k

| (k3 el ) HZ (Cpd=;
leA

St 1@ligr 1l
prHq

IN

!

q

where Holder’s inequality, first for the continuous and then for the discrete variable, was used
for the first two estimates. Subsequently, Peetre’s inequality (Lemma and equivalence
of norms stemming from different families of IDOs (Proposition were applied to obtain
the last inequality. Proposition [2.10] shows that the last factor is bounded by a finite sum
of seminorms of f and is hence finite. So the series defining (S(uy), f) converges absolutely
for any f € S. A fortiori, the series defining S, ,(u) converges unconditionally in S'.

Furthermore, for every n € Z% one has
D”S;,q(uk) = U Z Z Uiy = Z Z U Ukup1 = Z Z UnDnktng ka1
kezd leA leA kezd leA keA

Interchanging [J,, with the summation in the second equality is justified by [, being a
continuous map on &" and the series being unconditionally convergent due to the argument
above. For the last equality, Implication and an index shift were used. Now, Corollary
and Peetre’s inequality (Lemma [A.31]) imply

11554 (ur) HM;}q = <<“>S Z Z HDnDnJrkunJrkHHp)

leA keA

q

Sds <<n>SZZHun+k+sz> Sas [ (un)llgs -
n

leA keA
€ € q

As the linearity of S , is obvious, the proof is concluded. O

Lemma 2.14 (A7 is a right inverse of S; ). Let d € N, p,q € [1,00] and s € R. Then

S S — 1 S S y Y y ; S
SpqaAp, = ldM;,q(Rd) and Aj oSy, is a continuous projection onto Im(A; ).

Proof. In fact,

(S50 )W) =YY DeuTru= > Y O0w= Y Dwu=u Yue M,

kezd leA kezd ezl kezd

where the second equality is true by Implication (2.1)) and the next two by Lemma In
other words one indeed has S, ;0 A7 = id My,

In particular, S , is surjective and hence Im(A; 0 S, ) = Im(4; ). By the above, one has

S S S S _ S : S _ S S
Ap g ©5pq0Apg0 Sy =Apgoidng oSy =Ap,05,,

15



Le. A oSy, is a projection. Its continuity follows immediately from Lemmas and

[2.13] and finishes the proof.

Proof of Proposition[2.11 By Lemma M, is isometrically isomorphic to Im(A; ).
Hence, to prove that M7  is a Banach space, 1t sufﬁces to show that Im(Aj} ) is closed in
I{(LP). By Lemma . A q ©Sp,q 18 a continuous projection with

m(A4j,,) = In(A5, 0 85,) = ker (idgzr) =450 S5 ) -
As idjs(pp) — A} 4 © Sp 4 1s continuous, its kernel is indeed closed.

It remains to show that M is a closed subspace of M, .. By Lemma and Definition
2.3 My, is isometrically 1somorphlc to

m(A} o) N (27, LP) CI(27, LP).

By the above and Proposition [A.18] this intersection is a closed in 3°. This finishes the
proof. O

Proposition 2.15 (S is dense in M, for finite p,q). Let d € N, s € R, p € [1,00) and
g€ {0} Ull,00). Then

d
My 4 (RY)

S(RY) = M3 (RY).

For the proof of Proposition 2.15] the following lemma will be used.

Lemma 2.16 () U converges strongly unconditionally to id in Mj ). Let d € N, p €
[1,00], ¢ € {0} U[l,00), s € R and u € M (R?). Then the series Y ;e Ogu converges
unconditionally to u in M;’q(Rd).

Proof. Consider any fixed order of summation (k;,),en and set I(M) = {knr, kar1,---}
for every M &€ N. The sequence of partial sums <Z£{:1 Dknu>N , converges to w in
€
S’ by Lemma As M, , is a Banach space by Proposition m it suffices to show that
(Zﬁ;l Uk, u> Nen is a Cauchy sequence. To that end, consider any M, N € Nwith M < N.
€

Then, for any [ € Z%, one has
N
O > O, u
n=M

Above, Implication (2.1)) was used in both cases and Corollary in the first case.

< Z B0k, ull,, Sa

o =M otherwise.

{HDZUH if 1 € I(M) + A(d),

Assume ¢ € [1,00) for now. By the above, one has

N q
> O, u = (™ DIZD,CU
n=M

d
M; leZ

quZﬂf a0 102
p lezd
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The right-hand side above converges to zero as M — oo by the dominated convergence
theorem, which is applicable due to the assumption u € M, , and the fact that [ & I (M) +
A(d) if I € Z% is fixed and M is large enough.

For ¢ = 0 one has limy , (k)* [|[Ogul|,, = 0. Hence, similarly to the case ¢ € [1, 00),

N N
s s M—o0
S Oy —sup [T S Opul| | <o swp [<z> HDlqu] Moo,
n=M M lezd - » leI(M)+A(d)
p,o0
follows. This completes the proof. O

Proof of Proposition[2.15. By Proposition one has § € M, and so taking its closure

M5 .. <M3 ..
§ 7% in My makes sense and S 7* C M, . holds trivially.

To see the converse inclusion M, C SMM, consider any u € M, . By Lemma [2.16, one
may assume w.l.o.g. that u = Z\MSN Oru for some N > 0. But then Hélder’s inequality
implies

lull, < > (B> (8)* [Dhull, Sva lullag, < oo,
IkI<N

i.e. u € LP. Proposition [A:33] which is applicable due to the assumption p < oo, implies
that for any € > 0 there exists an f € S such that [ju — f|, <e. Put g =3 <y Ui f and
observe that g € S. In the case ¢ € [1,00) one has

q

=gty = S 0|00 Y Oulu—1)|| Sawasllu— 71, <e

l|<2v/d+ N k<N »

Above, Implication (2.1) was used for the equality and Corollary for the first inequality.
Similarly, for ¢ = 0, one has

lu =gl .= swp D0 Y Oplu—f)| Sans lu—fll, <e.
’ l|<2vVd+N k|<N »
As ¢ > 0 was arbitrary, the proof is complete. ]

Next, (Mg,q(Rd))* ~ M5 (RY) for finite p, ¢ will be shown. More precisely, one has the
following

Proposition 2.17 (Duals of modulation spaces). (Cf. [WHO7, Theorem 3.1]). Let d € N,
1; € [1,00), g € {0} U[1,00) and s € R. Then the map ® : M%, (RY) — (M ,(RY)* defined
Y
o = Orruyvd Yu € Mj (R? 2.13
@) = 3 3 [ Doneds Vo e M, (R (213)

leA(d) kezd
is antilinear, bijective and continuous (for ¢ = 0, set ¢’ == 1 in this proposition and its
proof).

17



The proof employs the following

Lemma 2.18 (Adjoints of the IDOs). Let d € N, p1,p2 € [1,00) satisfy p1 < p2 < 0o and
(Ok)reza be a family of IDOs. Then

O = Vk € 24

/
k |LPl2 (RY)

Above, the left-hand side is understood as LP2(R?) — LPy(R?) instead of (LP*(R%))*
(LP*(RY))* and the right-hand side involves the embedding ® : LP2(R%) — S'(RY) as in
Equation (A.24]).

Proof. The continuity of Oy, : LP* — LP? for all k € Z% was established in Lemma As
O, = F Yo F, one has Og € S for any g € S. By definition one has

<|:| f g>Lp1><Lp1 - <?7 Dkg>LP/2><Lp2 = <(I)f7 Dkg>$’x8 = <|:|§§¢f7g>51><$ Vg €S.

As S is dense in LP! by Proposition (p1 < 00), the claim follows. O

Proof of Proposition[2.17. One has for any u € M_*, and any v € My,

@)@ < > 3 [ [Faated] < 3 07 Bl (5wl

leA(d) kezd kezd
[(1Eeat), | - (1B,

by Hélder’s inequality. This shows that ® is well-defined. As antilinearity is obvious, it also
shows the continuity of ®. For the proof of the injectivity of ®, observe that

= > Beau)(Ow) = (Pu)(v) Vv eS (2.14)

leA kezd

IN

o = Tl ol

by Lemma [2.5]and Implication (2.1)). Hence, if ®(u)(v) = u(v) =0 for all v € S, then u = 0
in &’ and hence indeed u = 0 in M5 = S’ by Proposition .

To show surjectivity, consider any u € (M, ,)". By Lemma one has u =uo S, oA} .
Clearly, u o S5, € (I4(L”))" and hence, by Proposition there is a sequence (u;) €

l(i/s (L*") such that

Z /ulDlvdx Vv e M,,.

lezd

Clearly, u|ls € S’ by Proposition Moreover, restricting the above formula to v € S
and applying Lemma yields

uls(v Z /D*ulvdx = Z Oy | (v) Yv e S,

1ezd lezd

18



where the last series converges unconditionally in &’. It remains to show that u|s € M

By Implication ([2.1)) and Corollary E one has

Trulslly < > [|OkDhttet o d > llugnll,  VkeZl
leA(d) leA(d)

Taking the l(ils—norm in the k-variable and invoking Peetre’s inequality (Lemma i yields
s < o ,
Julsllay S 1)l gy < o0

i.e. indeed uls € M*,. Furthermore, ®(uls)(v) = uls(v) for any v € S by equation ([2.14).

As S is dense in M, , by Proposition one has ®(u|s) = w and the proof is complete. [

This section concludes with the following

Proposition 2.19 (Complex interpolation). (Cf. [Fei83, Theorem 6.1 (D)]). Let po,p1 €
[1,00], and qo,q1 € {0} U [1,00] such that qo # oo or q1 # oo. Furthermore, let s, s1 € R
and 6 € (0,1). Define s =(1—0)s1 +0s2 € R and p € [1, 0] via

1m0,
Do b1
Finally, define g € {0} U[1,00) via
1 1-6 6
i + =

q q0 q1

in the case qo # 0 and q1 # 0. For the other cases, set

12 for qo # o0 and q1 = 0,

1—
g =% forq =0 andq # oo,
0 otherwise.

Then
(M0 o (RY), M (RD)]g = M (RY),

Po»q0 p1,q91

where the equality above means the equality of sets and equivalence of norms.

Main idea of the proof is to reduce the interpolation problem to the well-known case of
(180 (LPo), 15 (LP1)]g = I2(LP), i.e. to recognize the analysis operator to be the coretraction
belonging to the synthesis operator (cf. [Tri78, Section 1.2.4]).

Proof of Proposition[2.19. By Proposmon 1} Myi . are Banach spaces for i € {0,1}.
Furthermore, by Proposmon one has MSL g S forie{0,1}. As &' is a Hausdorff

vector space, {M;g w0 Mot o, is an interpolation couple and the notion of the complex

interpolation space [M20 51

o0 10 Mt 4, o makes sense.
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Define for the rest of this proof the Banach spaces

Appi= M2 0 M Ap =10 (LP) N 19 (LPY),

P0,90 P1,q17
XM MSS a0 T Myl g1 B = 15 (L) + I (L),

Ing =M, M5 g, and Iy = [l (L), 1T (LP")]p.

Po,q07 “ " P1,91

Observe, that by Example one has I = I{(LP). Moreover, by Proposition ANY;
is dense in Ip; and Ay, is dense in I7,.

The analysis operators A0  ~and AJ! =~ agree on Aps. Hence, they uniquely extend to the

continuous linear operator A : ¥3; — X given by

Afu) = A(v +w) = A2 (v) + A3l (w) = (Oru)y Yu € Y.

In the same way, the synthesis operators 539  and 53!

oo o o1.q. uniquely extend to the continuous

operator S : ¥, — X7 given by

S(we)r) = > Y Orpue Y(up)i € SL.

kezd leA

As Iy and Iy, are values of the same complex interpolation functor, one has A = Alj,, €

LIy, 1) and S == S|;, € ZL(IL, In) by Proposition

One has (S o A)|a,, = ida,, by definition. Due to Ay being dense in Ips, So A =1idy,
follows. But then Ao S € Z(Ir,Iy) is a continuous projection. One concludes, as in
Lemma that A : Iy — Im(A) is bijective and Im(A) is a closed subspace of I1(LP).
Hence, Ip; and Im(A) are isomorphic via A by the open mapping theorem (Proposition
A15).

Now one is in the position to compare the norms |||, ~and H‘HM;’Q on Ays. By the above,
one has

ey, ~ lAulliggrry = Qe g oy = lullary V€ Au.
It remains to show that Ay C ]\/[S and Ay is dense in ng, because then

_A ” HI]W :A H “ng _MS
psq

follows.

For the inclusion Apy C My ., consider any u € S'. Then

s s 1-0 s 0 d
B [Oxul, < [k 1Ckull,, | [0 I0Wull, | VEez

by the definition of s and Littlewood’s inequality (A.9)). Assume gy # 0 and ¢q; # 0 for
now. Then g € [1,00) and another application of Littlewood’s inequality with the exponents
=20 4L ¢ [1, 00| shows that

T-0)q’ 0q
[ (1), < ([0 100, ]~ [0 18, ) )

HUHMSO HuHM;ll o

HUHM;q ll,

IN
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holds. Recalling that for ¢ € {0,1} the space M;Z,O is just a closed subset of M7 (i.e. the
norm is the same), shows that the above inequality also holds in the case where gy = 0 or
g1 = 0. If g = 0 one has gy, q1 € {0,000} and ¢; = 0 for at least one ¢ € {0,1}. By the above,

0
] N—oo 0

1-6
sup (k)* [|[Opull,, < [SUP (k) HDWH,,O] lsup (k)" 1 Opull,
lilI=N l7I=N ljI=N

follows. All in all this shows that Ay C M, .

To show that Ajs is dense in My, assume first that p € [1,00) and recall that ¢ €
{0} U [1,00). Hence, in this case, S is dense in M, , by Proposition Moreover,
Proposition implies that S C M, . for i € {0,1}. Hence, one has

1l s -1l s
My, =850 € MR o MLy, MEe € My,
as claimed. In the other case p = 0o, one has that p = pg = p1 = co. Define
D = {u € L?| supp(Fu) is compact }

Then Corollary implies that D C My, for i € {0,1}. Moreover, D is dense in Mg, by
Lemma This concludes the proof. O

Observe, that the above proof relied only upon knowing the interpolation space I and
the fact that Aps is dense in M, . More interpolation spaces I, are mentioned after the
proof of Example . Also D C Ajy is dense in any modulation space Miifi with § < oo.
One obtains the following result, which is not covered by Proposition For p € [1, 0],
50,81 € R with sg # s; and 6 € (0,1) one has

(M (RY), Myl (RT)]g = M o(RY).

Of course, if s) = s1 = s € R, then
(Mo (RT), Mo (RD)]g = M o (R)

,O0

by Proposition [A.60]

2.2. Characterization via the Short-time Fourier-Transform

Suppose one is to study the “local” frequency distribution of a “nice” function f near a
point z € R One idea is to cut out a neighbourhood of = with a smooth window function
g € S(RY) and take the usual Fourier transform of the result, i.e. (see Figure [2.1)).

1

(2m)

i /Rd f)gly — z)e F¥dy vz, k € RY. (2.15)
2

21



To make sense of this formula in S’(R?), consider the (continuous) right-shift and modulation
operators on S(R?) defined via

(Sef)y) =fly—x) and  (Mpf)(y) = e ™ f(y)

respectively, where f € S(R?) and k,z,y € R?. Ignoring the constant (27r)_% and the lack
of complex conjugation on f, equation (2.15) leads to the following

Definition 2.20 (Short-time Fourier transform). (Cf. [Gro01l, Section 3.1]). Let d € N,

u € §'(RY) and g € S(RY)\ {0}. Define the short-time Fourier transform Vyu : RIxR? — C
of u w.r.t. the window function g through

Vou(z, k) = (u, MiSzg) v,k € RY. (2.16)

|

\j

0 T

Figure 2.1.: Localization of functions.

Ezxample 2.21 (STFT with a Gaussian window of a complex Gaussian). Let d € N. For any
a € C define the complex Gaussian f, : R — C by

falz) = e ™ Ve € R?
and put g == f; € S(R?). Then, if Re(a) > 0, f, € S(RY) and

2o
a+1

d
1 2 .« «a 2
(ng)(l" k;) = ( ) 67 2(a+1) ‘$| 7loc7+1k‘xi2(a+1) |k‘ Vk, = Rd (217)

22



Proof. Inserting f and g into the definition (2.16)) confirms
z2
H / (g i kon =7 gy,

2

d - 22
= H/OO 6_( S Y/ 2arn (@i ik )> + 3ty (2 —iks)° =5
jo1/ e
d

2 .
Vyfo) (k) = / L
Rd

dy;

1 2 i o g o 2 a+1 o
— D ¥ et kit 2(a+1)k]I _ C ik
jl;[le \ "o 2a + 1)(% ik;)

d

1 2 .«

- ( 21&1) ¢ T stk M vy e RY
«

where formula (A.3)) for Gaussian integrals was used in the last equality. O

Lemma 2.22 (Properties of Vyu). (See. [Gré01, Theorem 11.2.3]). Let d € N, u € S'(R?)
and g € S(RY) \ {0}. Then Vyu € C(RY x RY) and there are N € Ny and C > 0 such that

Vou(w, k) < C (1 + |2+ k)Y Va,keR?

Definition 2.23 (Modulation spaces via STFT). (See [Gro0l, Definition 11.3.1]). Let
deN, p,ge[l,00], s € Rand g € S(RY) \ {0}. Define the modulation space norm w.r.t.
the STFT with window g by

gy oy = || = &) IVyuC- )l H Vu e S'(RY).

Observe, that k — H]l[_ () Vgu(-, H are continuous and converge pointwise to k —

n,n]®
[Vgu(-, k)|, as n — oo. Hence, k — (k)* ||V u(-, k)|, is measureable and taking its L9-norm
is justified. Define the modulation space w.r.t. the STFT with window g through

M]f’q(Rd) = {u e S'(RY)| ||uHM5,q(Rd) < oo} ,

Note that the modulation spaces, which include the initial values of the model problem
from the introduction (see ([1.2))) are those with p = co.

Proposition 2.24 (M s (R%) is independent of the window function). (Cf. [Gré01, Propo-
sition 11.3.2 (c), Theorem 11.8.5(a)]). Let d € N, p,q € [1,00], s € R and g1,92 €

SR\ {0}. Denote, for j € {1,2}, by X, the modulation space w.r.t. the STFT with
window g; and by ||-||; its norm. Then X1 = Xy as sets and the norms ||-||; and ||-||, are
equivalent. More precisely, one has

9ls|

lully < 75— lull, — Yu € M, (RY. (2.18)
||92||L2(Rd)

(@, k) = W (Vi g) )|

R2d

Finally, Mg’q(Rd) (equipped with any of the aforementioned norms) is a Banach space.
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Ezample 2.25 (Gaussians). Let d € N, p,q € [1,00] and s € R. Furthermore, let o € C such
that Re(«) > 0 and the complex Gaussian f, be as in Example Then f, € M3 (RY)
and

__Re(w) |I?
<> e Re(a)+1 2

d d<l_l> _d
HfaHM;q(Rd) ~g a2 a4+ 1|"\P72) Re(a 4+ 1) 2» (2.19)

q

Proof. By Proposition one may assume w.l.o.g. that g = fi. For this case Vj f, has
been already calculated in example [2.21} To obtain |V, f,(z, k)| for , k € R?, one needs to
figure out the real part of the exponent in equation [2.17] One has

2, . O
Re {2(04—#1) T +1) W]
d a)+1 . Tm(a) > + Re(a)
Z s kit 5 k;
ot 2|a+1\ la + 1] 2|+ 1]

for any x,k € R?. For the subsequent calculation of the LP-norm in the variable z it is
appropriate to complete the squares w.r.t. x; which yields

: m@k \ (o m(@)? \ ,
Zz|a+1| ( Re(a) + lz; — Re(a)+1> +(ya\ +Re(a)—Re(a)+1>kj

7=1
The last summand above can be further simplified to

af? + Re(a) — (@) _ \a+1\2—<Re(a)+1+

Im(cr)?
Re(a) +1 )

Re(a) +1

la+1)* (1 !

= |a - .
Re(a) +1

Inserting this into (2.17)) yields

4 d 1 ( Im(a) )2 Re(a) kJQ
« 2 ————= | v/Re(a)+1x,;— ki) —Rerad o
Vg falz. k)| = (27T ’a +1 D H g 2o+ 7 V/Re(a)+1 Re(a)+1 2

for all z, k € R%. Hence, for p = oo, one has

d
a 2 Re(a) [k
e Re(a)+1 2 ,
a+1

n%muwu=<%

whereas for p < co one has

‘/ 2
— ‘2 R Im(a) )
H gfa(,k)” || fa , | | / 2|o¢-§-1|2 e O{ 11’] \/71 J)

L

for any k& € RY. The integral above is a Gaussian integral (see example |[A.3) and has the
value

2
__pr _ __Im(e) .
/oo . 2|ail|2< Re(a)+1z; v/Re(a)+1 k]) d.’IZ‘J _ |Oé + 1| 2—7T
. p(Re(a) +1)
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Reinserting this number into the formula for [[Vyfa(:, k)|, and subsequently taking the
weighted L?-norm yields

Re(a) |2

<> e Re(@)+1 2

d 1)y _d d 1_1 _4d
ol @ty = @4 52Dy 0l o+ 1°G74) Re(a 4 1)75
p,q

q

Observing that the first two factors can be controlled independently of p finishes the proof.

O
Observe the fundamental identity of time-frequency analysis
V,f(x, k) = ¥V, f(k, —2), (2.20)
where k,z € R? and the identity,
(Vof) (2, k) = (FSkaf)(k)  Va,k € RY, (2.21)

which is understood in the sense that for every fixed z € R? the tempered distribution on
the right-hand side can be represented as a function given by the left-hand side.

Proposition 2.26 (M, , = M;,q)' (Cf. [WHO, Proposition 2.1]). Letd € N, p,q € [1, o0],
s€R and g € S(RY)\ {0}. Then

HUHM;q(Rd) ~ Hu”]\Z;’Q(Rd) Vu e S'(RY) (2.22)

and hence M, , = My , as Banach spaces.
b K

Proof. Let v € &', g denote the window function for ]\04;7(1 and (o,,) the family of IDOs

for M ,. By Propositions and Example one may assume w.l.o.g. that g has
compact support, §(§) = 1 for all & € supp(og) + Qo and o}, = Spoq for all k € Z4, e.g.

§ =3 jepn 01, where A" = {z e 79| |l < gm}.
Combining (2.20) and yields
Vol (2. b)) = [(FOVS)FN @) Vh,z e R (2:23)

As g is compactly supported, there is a finite set A” C Z¢ such that >, pm 01(€) = 1 for
any & € supp(§) + Qo. Thus, for any m € Z? and k € Q,, one has

FEVS@)FVF Y opFu
leA”

Sa Y 10mpull,,, (2.24)
leA”

IVl k), = ‘

p

where Bernstein multiplier estimate (Corollary |A.53). Similarly, the converse estimate

10wl = | FVomSkaFu| SallVyul. k),  ¥Ymezl vkeQn  (225)
p
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holds.

Consider first the case ¢ < co. Then

Q=

i, = (X <k>sqvgu<-,k>gdk) (2.26)

meZd Qm

S

Rd,s,q Z<m>sq/Q %U(-,k)ff,dk)

meZd

by Peetre’s inequality (Lemma [A.31)). Inserting (2.24]), yields

a\
lullzy, Sdsa Z<m>sq<ZIIDm+zUIlp>

mezd leA
1
L q
< H#NT DY D m) | Oul|
leN" meZd
Sd,sa Z (m)™ IIDmUHZ = ”uHMﬁ,q ]
meZ4

where Holder’s inequality for the sum over A” was used for the second estimate and Peetre’s
and triangle inequalities for the last.

Inserting (2.25)) into (2.26]) immediately yields the converse estimate

q

”“HJ\Z;q Zd.s.q Z (m)™ HDmUHg = HU”M;q

meZd

For ¢ = oo the equation (2.26)) is replaced by

[ull s = sup sup (k)* [[Vou(-, k)|, Raq,s sup (m)® sup [[Vgu(-, k)|,
P4 mezd k€Qm mezd kE€Qm

Similarly to the case ¢ < 0o, equation (2.24]) together with Peetre’s inequality and equation
(2.25)) yield the desired estimates. This concludes the proof. O]

2.3. Characterization via the Littlewood-Paley decomposition

In this section, some ideas of the Littlewood-Paley decomposition for Sobolev spaces H*(R?)
are carried over to modulation spaces M, q(]Rd). The inspiration for this was [AGOT, Chapter
I1j.
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Figure 2.2.: Symbols of the dyadic decomposition operators.
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Definition 2.27 (Dyadic decomposition operators). Let d € N and ¢y € C°(R?) with
¢o(€) = 1 for all |¢] < § and supp(¢o) C B1(0). Set ¢y = ¢ (5) — ¢o and ¢ = ¢1 (577)
for all [ € N (see figure . Observe, that for any & € R? one has

S-S (§) 0 (65)] - mn (§) -

i.e. (¢1)ien, is a smooth partition of unity. Then the sequence of operators (A;)en, defined
through

A =FaF SR - S'RY VieN,

is said to be a family of dyadic decomposition operators (DDOs).

For the rest of this section, set
Ag = {g e RY [¢] < 1}, Ay = {g e RY 22 < ¢ < 21} Wl € N,
Observe, that supp(¢;) C A; for any [ € Ny. Hence, one has
l—m|>2= AA,=0 Vi,m € Ny (2.27)

analogously to Implication (2.1)). Similarly to Lemmaﬂ, one shows that the series Y ;2 A,
converges strongly uncondltlonally to id in S(R?) and S'(R%). As for IDOs, one has that
AVITAS Cool(]Rd) for any u € S’(R?%). Finally, one has the following equivalent of Corollary
2.8 for DDOSs.
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Lemma 2.28 (DDOs on a Lebesgue space). Letd € N and p € [1,00]. Then for any family
of DDOs (A})ien, there exists a C' > 0 such that for any p € [1,00] one has

HAl|’f(LP(Rd)) < C Vi e No.

Proof. By Lemma (put p1 = p2 = p there), one immediately has

HAZ||$(LP) < H‘bl”]:Ll Vi e No.

By the properties of the Fourier transform and change of variables one obtains

ks = (), = 0 =], e

The right-hand side above is a finite number independent of [ and so the proof is complete.
O

The main result of this section is the following

Theorem 2.29 (Littlewood-Paley characterization of M, ). Let d € N, p,q € [1,00] and
s € R. Then

vu € S'(R?)

ol = (2 18l 20,

is an equivalent norm for Mg,q(Rd). The constants of the norm equivalence depend only on

d and s.

Proof. Fix an | € Ng and a k € Z?. Recall, that supp(¢;) C A; and supp(o},) C B (k) and
hence

ke Ap={K ezl W] e (272~ Va2 + V) } = O =0, (2.28)
Peetre’s inequality (Lemma [A.31)) implies
(k) ~q 20, (2.29)
Finally, by definition of Aj, one has
oo
> 1y(k) Sal. (2.30)
1=0
Fix a u € §'(R?). In the following, ||| < ||I'lpzs Will be shown. Consider first the case
p.q

q < co. Then, one indeed has

o (o) oo
falt = 2w Al =302 S [DeAnls S ST ST Ly (k)29 Dyl
=0 =0

kezd kezd 1=0

Saas O K I0kulls = lul, .
kezd
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where Implication and Lemma was used for the first estimate and equations ([2.29)
and ([2.30) for the second. Similarly, for ¢ = oo, one has

lull = sup 2™ sup |ADgull, S sup sup 1y (k)2" [Orull, Sas sup (k)° = [lu
€N kezd keZd 1€No kezd P
It remains to show |[-[|,, < [|-l. As mentioned above, u = Yoo A in 8" and hence

triangle inequality yields

( Z (=M )

where additionally Implication (2.28)), equation (2.29)) were used for the second estimate.
Consider again the case ¢ < oo first. Then, Holder’s inequality for the variable [ and the

estimate (2.30)), yield
H (Z 211 47 (k) || O Ayul| )

lellags, < Sd.s

=0

(Z 251 () ||kau||p>
k

q

q q
= Y (Z]lA/ 215||DkAlu||>

kllg kezd \1=0
Sda D Zzlqs 10 A ]| = 22“18 1A,
kezd 1=0 =0
= Jull®.

Similarly, for ¢ = oo, one has

H (Z 211 40 (k) | D g )

= SUPZ]-A’ (k)2" | OxAgull,,

koo kEZdl 0
[ee]
< sup [ Y Lu(k) sup 2" | Ok Apul,
kezd \ 1 =p l'e
Sa sup 2° sup | OpAul|, = sup 2 | Al
leNp kezd
= ull

due to the estimate (12.30)).

Rechecking the implicit constants in the estimates above shows the claimed dependence on
d and s only. This finishes the proof. O

The components Aju of the Littlewood-Paley decomposition of u € &’ had their Fourier
transform supported in “almost disjoint” dyadic annuli and Theorem characterized
elements of a modulation space M, , by the decay of the M) ;-norm of those components.
The following lemma provides a sufficient condition for v € S’ to be an element of Mg,
for any decomposition of u for which the Fourier transform of the individual components is
supported in non-disjoint dyadic balls.
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Lemma 2.30 (Sufficient condition). Let p € [1,00], ¢ € [1,00) and s > 0. For each m € Ny
let tm € My q(R?) be such that supp(tim) C By, == { € RY| || < 2™} and assume

< 0. (2.31)

H 2me Hum HMp,q(Rd)) meNy

Then the series u =y > Um converges in szq(Rd). Moreover, there is a constant C' =

C(d, s) such that

HUHM;Q <C H <2ms ”um”Mp,q(Rd)> (2.32)

meENy q

If 275 | g, . ety 250, or if the series defining u converges n M;}OO(]Rd) and (2.31))
holds for q = oo, then the above conclusions are true with q =

Proof. Assume for now, that the series Y °_ uy, converges in Mg ;. To show is the bound
(2.32). Observe, that A; N By, = 0 if I > m + 2. One has

o
(zls 5 nmumnMp,q)
m=l

l
lullgg, =~ || (2180, | <

o0
H(zlsz numnMp,q)
m=l

where Theorem [2.29 was used for the first, triangle inequality and the above observation for
the second and Lemma for the last estimate. Assume for now that ¢ € (1,00). Then

g

: (2.33)

q

l

o] q
(2SSt ) | = 3 (2 St )
m=l g =0
(I-m)s (1— m)s q
_ Z(ZQ 7 < 9 QmsHUmHMp,q) . (2.34)
=0 \m=l

Fix an [ € Ny. Then, by Holder’s inequality, one obtains

q o) 7 [e’¢)
Z (I—m)s )s Z / Z
( 2o 2 HumHMpq> = ( 2 _Z)S) 2fmmegmae HumHMpq

m'=l m=l

The first factor above is essentially the geometric series > v/ _ 9—m's — 15— 2 . Reinserting

the above estimate into (2.34)) and interchanging the order of summation yields

00 [e¢] m %
l -
H (282 ||um||Mp,q> <s (Z 2795 |||, 2 m”)
m=l m=0 =0

llg

Because the sum over [ is just a geometric sum » ;" oU=—m)s — Yo 27m < the

inequality (2.32)) follows.

1287
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In the case ¢ = 1, one can interchange the order of summation in (2.33)) directly, which
yields

o o m o
l —(m—l
| <2 s Z ||um||Mp,1) = Z gms Hum”Mpyl 22 (m—1)s <, Z oms ||Um||Mp,1 7
m=l 11 m=0 =0 m=0

due to the sum over ! being bounded above by a geometric series.

In the case ¢ = 2.33) reads as

H (2152 HumHM,,w>

= sup o~ (m=lsgms |,
leNOZ [tmllag, ..

1so m=l
0o
< sup 27 Juglly, Y 27
m/ENy 1=0

< ms
Ss nigg[)? lumllag, o -

due to the sum over [ being a geometric series.

It remains to show the convergence of Y °_ uy,. To that end define u]]& = Zé\v/[ um € My .,

where M, N € Ng and M < N. To show is Hu]]tf/[HM& — 0 for M, N — oco. By the already
p,q
proven bound (2.32)), one has

HUI%HM;@ des (2m81[M7N](m) HumH)mENO q

The right-hand side goes to zero for M, N — oo, either by the dominated convergence
theorem for ¢ < 0o, or by assumption for ¢ = co. This finishes the proof. O

2.4. Some useful embeddings

Proposition 2.31. (Cf. [WH07, Proposition 2.5 (2)]). Letd € N and p € [1,00]. Further-
more, let q1,q2 € [1,00] and s1,s2 € R satisfy

1 1
s1— 89 >d < - ) > 0. (2.35)
@2 q
d d
Then MJL (RY) — M2, (R?).
1 1\ Y 1,1
Proof. Put q = (q—Q — q—l) . By assumptions on q1, g2, one has ¢ € [1,00) and + n = a T
Hence, by Hoélder’s inequality,
<k>sl q(s2—s1) !
s, = |k gy [0l < (30 ) lullagss,

q2 kezd
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holds for any u € M?, . Comparison of the series on the right-hand side with the corre-

sponding integral in spherical coordinates yields

(s1—52) oo
Z (k>_Q(31—sz) Rg.s / (1+ |x’2)_q 1-22) o <41 +/ - 1—q(s1-52) .
kezd R4 1

The integral over r is finite, if the exponent d — 1 — q(s1 — s2) is smaller than —1. As this
is exactly the condition from ([2.35)), the proof is complete. O

Proposition 2.32 (M1 — Cy). (Cf. [WHO7, Proposition 2.7]). Let d € N. Then

Mao 1 (RY) = Cy(RY). (2.36)

Proof. Denote by ® : L — S’ the embedding defined in equation (A.24]). It will be shown
that Moo1 C Im(®) and that Y|y, | € £(Mu 1, Ch) implements the embedding (2-36)).
To that end consider any u € My 1. One has

3 H(b(_l)(Dku)H < 0,
kezd o

ie. D pcza ®(=1)(O4u) is absolutely convergent in L, say to v. By the comment made in
Deﬁnition ®D(Opu) € C for all k € Z%. Hence, v € Cy, as a uniform limit of bounded
continuous functions. By Lemma [2.5] and continuity of ® one has

u= Y ®od () =2(v).
kezd

This shows that u € Im(®) and &~y = v. Furthermore, one has |jv[|,, < lullpr. , by
construction of v. As u € M1 was arbitrary, the proof is concluded.

Lemma 2.33 (M5, >~ H®). Letd € N and s € R. Then

M3 o(R?) ~ H¥(RY). (2.37)

Proof. As § is dense in H* and M3, it suffices to consider u € S. One indeed has

2

lullfre = I02als =~ | S kowal| = Y ((B)*oxa, (1)*ora)

kezd 9  kilezd

= DD (R okt (b + D0pnd) mas Y (k) (oxi, o) = Jlullyy,

lEA kezd kezd
where Peetre’s inequality (Lemma [A.31)) was used for the second and fifth equality and the
compact support of o, for the third. O

By complex interpolation one obtains the following

32



Proposition 2.34. Let d € N and p € [2,00]. Then M, (R?) — LP(R%).

Proof. The statement holds for p = co by Proposition and for p = 2 by Lemma [2.33
For any other p € (2,00), set § = %. Then M,y = [Moo1(RY), Mso(R%)]y by Proposition

and LP = [L>®°(R%), L?(R%)]s by Example The claim follows by Proposition
and the proof is thus complete. ]

Proposition 2.35 (Isomorphism of M;** and M ). (Cf. [WHO7, Proposition 2.4]). Let
deN, r,s € Rand p,q € [1,00]. Then J", the Bessel potential of order —r defined in
equation (A.26)), maps as follows

J" M;;S(Rd) — M;,Q(Rd)

and is an isomorphism.

Proof. Consider any u € My +*. Then

g, = (1)

Fix a k € Z¢ and put p, = EleA(d) ok+1- Due to Implication (2.1)) and Property in

Definition one has pi(§) = 1 for every & € supp(oy). Furthermore, by Property in
Definition [2.1], one has

supp(px) € U supp(ogyy) C U B\/a(’“r ) C B3\/E(k3)
leA leA

and hence |supp(pr)| <q 1. Define the multiplier By, :== F(~Yp,(-)" F and observe

w7l = H;<f1>gk<.>rqup _ H;H)pkwgkfuup < 1|Byll oy 10kl -

To show is || Bi|| ¢(») < (k)", as then

T r+s —
7 ulagy, S [ (6074 10ul) ]| = el
follows, proving the continuity of J".

By a multiplier estimate from Corollary (with p; = p2 = p), one has

[e.9]

d
1Bl oz Sa los) oo + 3 0% (01()7)
j=1

For the first summand above, one indeed has

e e < llorlla sup (O7 <D llowsillag sup -k + k)"

£€B3ﬁ(k) leA £EB3\/E(’€)
Sd,r <k>r sup <£ - k>r Sd,r <k>r
£€B3\/E(k)
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by Property in Definition [2.1 and Peetre’s inequality (Lemma [A.31)). For the second
summand, Leibnitz’ rule (Lemma [A.28)) yields

mgii(j) oo s @@l
j=1n=0

e £6B3\/E(k“)

d
> lo" ontn)
j=1
For the first factor above, one again has

]« 3 o] e
leA

due to the Property in Definition For the second factor, observe that for each
jy,me{l,...,d} and &£ € R? one has

. ) -2
(0™ (-)")(&)] < Z 07(7?1),7712 €™ (€)r2m2 < Z ngl)mlz <£>r+m1 ma
0<mi<ma<n 0<m1<ma<n
for some coefficients cﬁﬁf .mo (which additionally depend on ), due to the chain and product
rules. This shows, again invoking Peetre’s inequality, that

sup (9" (-)")(E)] Sar (k)"
£€B3\/E(k)
proving ||Bil ¢(re) Sar (k)" (i-e., by above, J" € L(MyEe, M ).
To show that J" is an isomorphism, observe that, as r,s € R were arbitrary, one has
J7" e L(M;,, Msim). But clearly, J7"0J" =id,res and JToJ " =idyg , Le. (J7)TD =
) ) D,q p,q

J~T e L(Mj,, M) t#). This finishes the proof. O
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3. Estimates for the Schrodinger propagator

This chapter covers the boundedness of the Schrodinger propagator on modulation spaces
and some classical Strichartz estimates. This lays the foundation for the local and global
well-posedness results treated in this thesis.

The boundedness of the Schrédinger group on modulation spaces was first shown for a
special case in [WZGO06]. More spaces and more general operator groups are treated in
[BGOROT|. The sharpness of the time exponent in these estimates was proven in [CN09).
See [WHHG11], Section 6.4] for a monographic, coherent account.

Strichartz estimates mathematically measure dispersion and are typically used to prove
local well-posedness of dispersive equations. An example is [Tsu87, Lemma 3.1|, where the
mass-subcritical nonlinear Schrédinger equation is treated in L?. In the aforementioned
paper, global well-posedness follows by mass conservation. Strichartz estimates go back to
[Str77] and have been generalized and adapted to different settings in a multitude of works,
but see [KT98| and [TaglO] for maybe most noteable abstract results and, for example,
[LP09, Section 4.2] for a textbook presentation. Strichartz estimates for modulation spaces
are available, see [WHO7, Proposition 5.3] or [WHHGI11], Section 6.4], but did not give rise
to any well-posedness theorems of this thesis.

This chaper is structured as follows. In Section[3.I]the Schrédinger propagator is defined and
its boundedness on modulation spaces is proven. Moreover it is shown, that for modulation
spaces with finite Fourier index the Schrédinger propagator is a strongly continous group on
it. Subsequently, in Section [3.2] the classical homogeneous and inhomogeneous Strichartz
estimates for the Schrédinger propagator are presented. Finally, the aforementioned global
well-posedness result of Tsutsumi is stated and its proof is sketched in Section A non-
linear version of the homogeneous Strichartz estimate, which will be of importance for the
global well-posedness result of this thesis, is observed and proven.

3.1. Free Schrodinger propagator on modulation spaces

Consider for any d € N the Cauchy problem for the free Schrédinger equation

.Ou
5 (1) = ~Au(,t) (n,1) €R' xR, (3.1)
u(-,0) = up.

35



Formally taking the Fourier transform in the z-variable of (3.1]) yields
ata(gat) =1 |£|2 ﬂ(é-vt)v ﬂ(&a 0) = aO(é-) (f,t) € Rd X Rv

which is an ordinary differential equation for each ¢ € R with the solution given by @(£,t) =
e*it|5|2120(§) for ¢ € R. This gives rise to the following

Definition 3.1 (Free Schrédinger propagator). Let d € N. The family of operators (¢**),cr
in S'(RY) defined by
JA _ FD P E v e R (3:2)

is called the (free) Schridinger propagator.

If and in which sense t — el*®uq solves (3.1)) will be clarified after Proposition [3.5, For the
moment, observe the generalization of the fact that e? is unitary on L? = MS’Q for any
teR.

Lemma 3.2 (Adjoints of Schrédinger propagators in modulation spaces). Let d € N, p,q €
[1,00) and s,t € R. Then e'? € X(Mg’q(Rd)) and

(eitA)* —itA o $< (Rd))

Proof. The fact e"® € £(Mj,) and e 2 € & (M,*)) has been proven in Theorem |3
As (Mg )" = M,%, by Proposition , one may view (e**)* as an element of LM% )
In view of equation ([2.13) it remains to show that

Z Z /DkHuDkeltAvdx— Z Z /D;H_le Ay Opvde

leA(d) kezd leA(d) kezd

holds for any u € MpT, and any v € M, .. As p,q < 0o, one may assume w.l.o.g. that
v € § by Proposition Fix [ € A(d) and k € Z%. Then Oe*v € S and hence indeed

- . . 2
/Dk+luDkeltAvdx = <Dk+lu, DkeltAv>s/XS = <]:(71)0k+l.7:u,f(fl)akeﬂt"‘ ]:U>S’x8

_ it|-|? _ —itA
= <Uk+l€ fu,ak]:v>8,xs = <Dk+le U, Dkv>8’><s

= /DkHe_itAuDkvdx
by the definition of the operations on &’ (Definition |A.40]). This concludes the proof. O

Ezample 3.3 (Gaussian wave packet). Let d € N. Consider ug € S(R?) given by

up(z) =e 2 vz € RY.
Then e*®ug is given by
1 __le?
(@, t) = ———e 2050 = a(—t)"% fup(z) Vo € RIVIER, (3.3)

d
2

(1 + 2it)
where a(t) = 1 — 2it and f, ) is as in Example
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Proof. Recall from Example that 4p = up. Using (A.3)) one immediately confirms that

. 1 — 2
u(z,t) = (f(_l)e_‘tHzJ:uo) (z,t) = d/ ez =itlhl®  — 5= g
(2m)2 JRd

2
d 2 1.3 i
1 g 00 ( §+1tk¢f >
\/276 2(1+2it) e 24/ 3 +it dk
™ —00
=1

J

1 ix;
= e 2(1+2it) H — 7 + lt,
j=1V 2 2 2 %—i— t
1 __=?
— —e 2(1+2it)
(14 2it)2
holds for all z € R% and t € R. O

Theorem 3.4 (Schrédinger propagator bound). (Cf. [WZG06, Proposition 5.5/, [BGORO,
Corollary 18] and [CNQY, Proposition 4.1]). Letd € N, p,q € [1,00] and s € R. Then there
is a constant C' = C(d, s) such that

. 1_1
1 pag oy < OO (3.4)

holds for all t € R. Furthermore, the exponent of the time dependence is sharp.

The fact that the Schrédinger propagator is bounded on My , was first observed in [WZGO06,
Proposition 5.5| for the case p = 2. This was improved to p,q € [1,00], in [BGOROT7,
Corollary 18]. In fact, the last paper treats the more general multipliers with symbols of
the form el€l”, where a € [0,2]. The sharpness of the time exponent for p € [1,2] was
shown in [CN09, Proposition 4.1]. Adding a duality argument and treating the remaining
case M1 (which is not a dual or a predual of another modulation space) yields a

Proof of Theorem|[3.4 Fix at € R. By Proposition[2.24and one may assume the norm
on M, to be defined in terms of the STFT w.r.t. the window function g € SR\ {0}.

||
Suppose in the following that g = go, where go(z) = e~ 2~ for any = € R%. From Example

3.3 and 228 one obtains

3=

) 1_1 -1
e g0l = 1O oy, Savas lat=0) + 11678 =gy 0 G2), - 05)

lz|? . .
where a(t) = 1 — 2it and f,(z) = e” 2= are as in the examples above. This shows that

HeimHz(Maq(Rd)) Zapas 1)

i.e. the time exponent in (3.4]) is indeed optimal for p € [1,2].
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Now, drop the assumption g = go and consider any ug € My ;. Then
itA _ itA
ol g, = [k = )" (Ve S u) )L | (3.6)

For every k,z € R? one has
(V;}eitAUQ)(:U, k) = <f(—1)€—it|.|2qu’Mkag> _ <u0’]:(_1)€it"|2]:Mkag>.

Observe, that

/ FFEDR()dz = (SuFEVR)(E)
Rd

d
2

(FEVMR) () =
(2r)
and
(FEVS (O = — [Pz = (L, FERE)
(2m)2 JRA

holds for any h € S(RY) and [, y, ¢ € R This implies
(Ve ug) (2, k) = <u0,.7:(_1)eit|"25'_kMx.7:g> - <uo,f<—1>5 keitl'_k|2Mx]:g>.

Furthermore, as eltlE—kI* = oitle]* o=2itek o —itlkl” o] ds for every £ € R,
. 2 . 2 . 2 .
e I <U07-F(71)kaM2tkMxelt|.‘ ]:9> = e M (ug, MiSyqome™®g)

(Vge'"Suo) (x, k)
= (‘/eitAguo)(Q? + 2tk, k)
follows. Inserting this into equation ([3.6)) shows that the Schrédinger time evolution of wug
itAg. Changing it back to g via

corresponds to changing the window function from g to e

equation yields
[ ) | (Vs guo) |

itA _
el
9ls| N
< — i s
S | k) = P Visg) B Tl
Choose now g = e **gy. Then
—1zl? da
ol = ol = | e =k g1
Vk,z € RY,

gg)(x7 k) = (‘/tqoeiitAgo)(xv k)
|

and
(Vita
i.e., if one assumes gy as the window function for M1IS
—itA
~ e gol| ppls! -
el

Ll(RQd)

k) = )N (Vea o) )|
Estimate (3.5 with p = ¢ = 1 and regularity index |s| proves the bound (3.4)) for p € {1, 00}
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For p = 2, observe that by Plancherel theorem (Proposition [A.35)) one has
”DkeitAU(]HQ = H(Tke_itHQ]:uOH2 = HakaOHQ = HDkuOHZ Vk € Zd,

ie. HeitAuoH vy, = |luol| M3, by the defintion of the modulation space norm in equation

(2.3)). This prox}es the bound claimed in equation (3.4)) and, once again, the optimality of
the time exponent in this case.

Complex interpolation between the cases p = 1, p = 2 and p = oo proves the bound (3.4)
in the remaining cases. More precisely, suppose that p € (1,2). Then

1
My, = [M{ ,, M3 lo with =2 (1 — >
b K K p
holds by Proposition 2.19, As the complex interpolation functor is exact and of type 0,
H RN

i 1-6 i 0 dfi_1
o S 1 1 s Sao 076

follows, i.e. the bound (3.4 holds in that case. Similarly, interpolating between p = 2 and
p = oo shows (3.4)) for p € (2,00).

It remains to prove optimality of the time exponent for p > 2. If additionally ¢ > 1, then

P <2, ¢ <ooand e® € £ (M, ,) is the dual operator of e A ¢ Z(M,%,) by Lemma

As‘%—% :‘%—%,onehas
(t) 1+ Ripas ||e ltAH,s,ﬂ(MZ;fq,) = H(eltA)*H(M;,q)* - HeltAH,sf(M;ﬂ)

by the already known case, where additionally Proposition was used for the last
equality.

A similar duality argument applies if ¢ = 1 and p < co.

For the last case p = oo and ¢ = 1, assume that the time exponent g is not optimal, i.e.
there is an ¢ > 0 such that

12 | pars ) Sas ()2 VteR
But then interpolating between the cases p = 2 and p = oo yields the bound
. : 2 T - 11\ _(1_2
€ pare < 1€ Uqur o 1 iy S @G0 wem

for any p € (2,00). This contradicts the already proven optimality of the time exponent for
these p and finishes the proof. O

Proposition 3.5 ((e'?) is a strongly continuous group). Letd € N, p € [1,00], ¢ € [1, 00)
and s € R. Then (e*®)er is a Co-group in M;Q(Rd), Its generator A is given by

dom(A) = M*T2(RY), Au = FEY(=i]?)a = iAu Yu € dom(A). 3.7
P.q
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In the situation of Proposition consider the Cauchy problem ({3.1). By [ENOQ, Propo-
sition I1.6.2]) one has that if uy € le,f(]l{d) then el*ug is the unique classical solution
of the Cauchy problem (3.1)), i.e. e®® € C*(R, M), etA ¢ M;fg% for all ¢ € R and (3.1
holds. By [ENO0, II1.6.4] one has that for a general ug € Mz‘f’q(Rd), e*Aug is the unique mild
solution of (3.1)), i.e. e®ug € C(R, M ,(R?)), geiSAuods € M3t for all t € R and

t
u(,t) =up + iA/ u(s)ds  VteR (3.8)
0
holds. The integral above is understood as the Riemann integral in M, .

teRr is no longer a Cop-group in My .,

For ¢ = oo, the situation is more subtle. In fact, (e!*?)

but only a bi-continuous group. See [Kunl8]| for this case.

Proof of Proposition[3.3. First it will be shown that A = FC1 (= |.|*)F e L(MsH?, M ).
The proof of this is very close to the proof of Proposition Consider any u € M;:;Q.
One has

q

1Bully, = | 3 0 DAl
kezd
Fix a k € Z% and define py == > ,c Ok, Where A = {l ez | < 2\/&} is the set of

close indices as in chapter One has supp(px) C By g(k) and hence [supp(px)| Sa 1

holds. Define further the operator By = F(D(.)2F. Then, because pi(£) = 1 for any
¢ € supp(oy), one has

Ok, = [F Vo= 1AFu| = [F el o] < 1Bl on IOkl

and so it suffices to show that ||Bl| 4 1) (k)2. Bernstein multiplier estimate from

Corollary (with p; = pa = p) shows

~

d
1Bl sy Sallow (2l + D 0% (012 |
m=1
Leibnitz’s rule (Lemma [A.28]) yields

()2 RARIPY su a—B.\2
o <pk<>>|\o@3ﬂ2§;(5)HapkH b |00

o0 €€B3\/E(k)

for any |a| < d. Due to the properties of the symbols of IDOs (Deﬁnition, the first factor
is bounded independently of 5 and k. For the second factor, observe that any derivative of
()2 is either (-)2, £ +> &, for an n € {1,...,d}, 2 or 0 and the absolute value of all these
functions is bounded above pointwise by 2(-)2. Hence

s @RS s (6 Sa (k)
¢eB, (k) €eBy (k)
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where Peetre’s inequality was used for the last step. This shows the sufficient condition
2
1Bell 21y Sa (K)*

The fact that (T(t))ser = (e?)scr is a family of operators on M , has already been proven

in Theorem The group property (A.17)) of (T'(¢))er is obvious.

For the strong continuity of (7'(¢)) in ¢ = 0, let [¢t| € (0,1] and consider any v € M, ,. To
show is

q

1Tt —ullay = | 3 B0 (T — w2 | 0. (3.9)
kezd

By the triangle inequality and the boundedness of the Schrodinger group on My . (see
Theorem , one has

Sds u—oll + 1T(#)v — UHM;# Yu,v € My,

_ < _ _ _
17t — gy 170w~ 0)lagy, + = vllagy + 170~ olly

Hence, it suffices to show (3.9) for a dense subset Dg of M, . Let j € {0,1} (Objects with
index j = 1 will be used later, while determining the generator A. For the sake of brevity,
they are treated already here). Define and observe

D; = {v € M;"(;Qj(Rd)‘ supp(v) is compact}
= {ve M¥RY[IMEN:v= > D
|kl<M
By Lemma m, D; is dense in Mj+%. Moreover,
supp (F(T'(t)v)) = supp (e_itHQf)) = supp(?0) Vo e S (3.10)

This implies that for u € Dy the series in (3.9)) is just a finite sum and it is hence enough
to show that

IO (T()u —w)], =50 Vk ez
Fix for the following a k € Z?. Define the multipliers B! ;=F (_1)pkw§}" (as mentioned
above, j = 1 will be used later), where

—it|-|2
: et 1

wh = e~ it _ 1, wi = " +il?

and pg is as in the defintion of the operator By. Because of

10k(T(Hu —u)|, = H}"(*l)ak <e*it|'l2 — 1) ]:qu = H]—"(*l)pkwéak}"qu

IN

HB’tﬁOHiﬂ(Lp) H‘jkquv
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it is enough to show that ‘B,tc OH.Z %) — 0 as t — 0, which is done in the following using
’ D

the same techniques as for the operator Bjy. Bernstein multiplier estimate from Corollary

[A53 yields

d
1By S vt + 3 oem ]
m=1

Applying the Leibnitz’s rule shows that

107 (pusy) <Z()HaﬁpkH swp[u4(6)

o geBg\/E(k)

for any |a| < d. The first factor is again bounded independently of 5 and k. For the second
factor, observe that

SRSl

t B n—1 2n d

wj =t . o "€ V¢ € R
n=j+1

As the series above defines a real analytic function on R?, one has that

sup }w ‘ Sak [t
£eB

for any |a] < N and 8 < . All in all this showed that HB,’;

., = 0ast =0 This
5J g(Lp)
implies by the above that (7'(¢)) is indeed strongly continuous in ¢ = 0.

To characterize the generator A of (T'(t)), assume first that uy € D;. Then there exists an
M & N such that

1
q\ ¢

Hi (eitAu() — uo) —iAug

= > W

Mg [k|<M

Oy (1 (eimuo — uo) — iAu0>

p

for any ¢ # 0. Fix for the following |t| € (0,1] and k € Z?. One has

—1t|| -1
H < - +1HZ> Fug
p

= |F Pkwlo'k]‘—UOHpﬁHB;;le(LP) 1Dkl

H[]k (1 (eimuo - uo) - iAu0>

p

As shown above,

t7 HM — 0 as t — 0. This implies that D; C dom(A) and Au = iAu
for all u € D;. o

To Complete the proof of A = iA, consider the following. By Proposition 3|and equation

, Dy is a core for A, i.e. D1” la = dom(A). Because Dj is dense in M;‘gQ, it suffices

to show that |lul| 4 =~ HUHM;Z? for all w € D;. On the one hand, one immediately has

ulla = lllagy, + 1Aullagy = lullagy . + 1Aullygy Sa lllagy + lullygsse < ullyysss
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for any w € D1 by the above proof of the boundedness of A € X(M;:gz,Mqu). On the
other hand, Proposition implies

lullygsse =a [[7%ullye = I = D)ullygy, < llullygg, + 1Aulyy = llul, — Yue D

The proof is now complete. O

3.2. Two classical Strichartz estimates

Definition 3.6 (Admissible pairs). (Cf. [KT98, Definition 1.1]) Let 2 < ¢, < 0o, d € N.
The pair (7, q) is called admissible , if

(3.11)
and (r,q,d) # (00,2,2). Put ¢a(d,r) = ﬁ
2 r
Proposition 3.7 (Homogeneous Strichartz estimate). (Cf. [KT98, Corollary 1.4]) Let
d € N and (r,q4(d,r)) be admissible. Then there is a constant C = C(d,r) > 0 such that
for any T > 0 and any ug € L*(RY) the following homogeneous Strichartz estimate
itA
Het UOHan(d,r)([QT},Lr(Rd)) <c Hu0||L2(Rd) (3.12)

holds.

To formulate the inhomogeneous Strichartz estimate the geometric notation of Kato shall
be introduced (cf. [Kat89, Section 2|). Consider the points

A:(1 0> B_ (0,2) ifd=1, o (0,0) ifd=1,
2’ (5-15.1) ifd>2, (5-1,0) ifd>2,
A,:<1 1> B (1,2) itd=1, ., _J(1) ifd=1,
2" )7 (3 +35,0) ifd>2 (2+31) ifd>2

)

and the triangles T(d) = A(A, B,C) and T'(d) = A(A', B',C"), which are open, except
that A € T(d) and A’ € T'(d) (cf. figure 3.1).

Proposition 3.8 (Inhomogeneous Strichartz estimates). (Cf. [Kat94, Theorem 2.1]) Let
deN, 1<gq,ry,p < oo such that <%, %) € T\(d), (%, %) € T\’(d) and

(2+9)- (9>

Then there is a constant C = C(d,q,r,p) > 0 such that for any T > 0 and any F €
L7([0,T), LP(RY)) the following inhomogeneous Strichartz estimate

t
‘/ ei(th)AF("T)

0

< C Il v o,11, L0 (reY) (3.14)
La([0,7],L™(R4))

holds.

43



1A é

q A C/
1

T'(1)

B B’
1

2

(1)
C .A >

(a) Triangles 7/(1) and 7"(1).

1A :
q B
1
C
1 1E 1 1 1 ?
0 37 d 2 3ta 1: 5

(b) Triangles T(d) and 7"(d) for d > 2.

Figure 3.1.: Geometric notation of Kato.
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3.3. Global well-posedness of the mass-subcritical NLS in L?

Set for all u,v,w € C
Glu,v,w) = [u+v]" (w4 v) — |u+w” (u+w) (3.15)
and observe the following

Lemma 3.9 (Size estimate). Let v > 1. Then the following size estimate
|G (u, v, w)| < vmax {1,2"7"} (W*l F ol |w\”*1) v — wl (3.16)

holds for any w,v,w € C.

Proof. W.lo.g. v+ v and u + w are not colinear (as elements of R? = C). Then, by the
fundamental theorem of calculus,
‘\u +ol" M u+v) — Ju+w] T (u+ w)‘
1
/

1
Vo —wl / (ul 4 7 [o] + (1 — 7) [w])” " dr.
0

IN

g [|u +ro4+ 1 =1w)" " (u+To+ (1 - T)w)} ’ dr

IN

Clearly the function f : (0,00) — (0,00),  + f(x) = 2V~ is strictly convex for v > 2 and
subadditive for 1 < v < 2. The first case is seen by taking the second derivative. For the
second case, consider any z,y > 0 and set a = % One has

flaty) =" A +a) P <" P (1 +a") = flx) + f(y)
& (I+a) ' <1+a L

Last inequality is Bernoulli’s inequality, which can be proven by observing that it is true
for a = 0 and considering the derivatives of the left and right-hand sides.

Hence, the integrand above satisfies

(1 r Tor A (a7 o)+ ]t ifl<v<2,
2 §|u|+§]v|+ |w <

2 ov—2 (W*l Flol |w\”*1) if > 2,

for all 7 € [0, 1]. This concludes the proof. O

One has the following
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Lemma 3.10 (Strichartz estimate for a Banach contraction mapping argument). Let d € N,
€ (1,1 + %) and % S (max {O,%— é} , %] Then there is a constant C = C(d,v,r) > 0
such that for any T > 0 and any v,w € LI+ ([0, T), L¥*1(R?)) the estimate

d
< CTl (V 1)[||U”an(d v+1)

¢
/ A (u, v, w)dr
0

Laa(dr) ([0,T], L7 (R4))
(10,71,L7+1 (R))

+ ||UHan(d v+1) ([0 T] L’”Ll(Rd + ||wHan(d v+1) ([0 T] Lu+1(Rd))

v = Wl paacaw qo77,0001 e

holds.

Proof. Proposition [3.8] yields

if <%, %) € T'(d) satisfies condition [3.13] i.e.

1 1 . 1 1 1 d(1 1
— € |z,min< 1, -+ - and —=1--(-—=.
p 2 2 d ~y 2\p 2

By the size estimate from Lemma [3.9) one has

t
/ el(tiT)AG(uv v, w)dT sdﬂ’,P ||G(u7 U, w) HL“/([O,T],LP(Rd)) ’

0

L2a(d:) ([0,T],L7 (R4))

1G (w0, W)l e
<, Hu(v—l)(v _ w)’

+ HU(V_l)(’U - w)‘

+ Hw(”_l)(v — w)}

LYLP LYLe Le

Consider f € {u,v,w}. Applying Hélder’s inequality to the functions (v — w), f*~! and 1
yields

s

ooy < T IS o110 oy 10 = 2l oy s oy

where all but the last of the exponents r1,72,¢1,q2,q3 € [1,00] are already fixed by the
norm indices to

4 1
7°1:V+1, q1:qa(d,l/+1):(l/+1)am,
v+1 Ga(d,v+1) v+14 1
ro = ) q2 = = -
v—1 v—1 v—1dv—1
and need to satisfy the Hélder conditions
1 1 1 1 1 1 1
S=—4+— and =4 —4—.
p T T2 Y@ 492 43
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This immediately fixes 2 = - 1 =1 1.4
P

v+1
calculation confirms that indeed % € %, min {1, %
in the interval [1, co].

Summing over f € {u,v,w} finishes the proof. O

The aforementioned local well-posedness result is stated in

Theorem 3.11 (Local well-posedness in L?). (Cf. [LP0J, Theorem 5.2]) Let d € N,
ve (1,14 9) and vy € L*(R?). Then there exists a C = C(d,v) > 0 such that the Cauchy
problem for the mass-subcritical NLS, i.e.

{ivt(az,t) + Av(a,t) £ (o) (@,) =0 (2.) R xR, (3.17)

v(-,0) = vy,

has a unique mild solution in

1

T 1 _d
C((0, 6], LAR?) N L@@+ ([0, 6], LT (RY) - provided 6 < C lvo| gy * -

The NLS with v € (1,1 + %) as in the theorem above is called mass-subcritical (cf. [KV13]

Section 1.]).

Observe, that the uniqueness is claimed in the space L L2N L%+ Lv+1 only (conditional
uniqueness). In fact, it is not immediately clear how to make sense of the nonlinearity in

(3.17) for a general u € L>®L2.

Proof. For §, R > 0 set

X(6) = C([0,6], L*(RY)) n L=+ ([0, 6], LV TH(R?))  and
M(R,8) = {f € X©®)| Iflx < B},

where |||l x5y = suPo<s<s 1/ O)llo + 11| Laacv1) (0,5, 41 (may) for any f € X(6).
The Cauchy problem for the NLS is formulated as the corresponding integral equation
t
v(-,t) = ePug £ i/ DA | vdr = (Tw) (-, t)
0

and it is to show that for some §, R > 0 its right-hand side defines a contractive self-mapping

T : M(R,5) — M(R, ).

To fix R, consider the self-mapping property of T first. For the linear evolution part the
estimate
itA
Helt ’U()HX((S) < C(d,v) |Juolly (3.18)
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holds by Proposition (the pair (2,00) is also admissible). This suggests the choice
R =2C(d,) |l

The integral part is estimated via Lemma (observe that the assumptions on r are
satisfied for r = 2 and r = v 4 1) against

¢ ¢
/e‘(tT)A ]~ wdr /el(tT)AG(O,v,O)dT
0

0

= ‘ (3.19)
X(8)

<, oG-

~d,v

X(8)

b HvHZQa(d,V)([075]’Lu+1(Rd))
< 517%(1/71)R1/ < R,

1

1 _d
which holds, provided that § <q, [Jv]l, “7 * (as assured by the assumptions).

The contraction property is shown in the same manner (i.e. via Lemma [3.10)), only poten-
tially making the implicit constant above smaller. This finishes the proof. O

The fact that the time-step § in the last theorem depends on ||vgl|, only, together with the
conservation law ||v(-,t)||, = |lvo||y allows one to extend the local solution v globally. This
has first been proven by Tsutsumi in 1987, cf. [Tsu87].

Proposition 3.12 (Global L? solutions). (Cf. [LP09, Theorem 6.1]) Let d € N, v €
(1, 1+ %) and vy € L2(Rd). Then the Cauchy problem (3.17) has a unique mild solution v
n

Cf(R7 LQ(Rd)) N LQa(dyV-i-l)(R’ LV+1(Rd)).

loc

The given proof of Theorem [3.11]implies also the following

Corollary 3.13 (Nonlinear Strichartz estimate). (Cf. [LP09, Corollary 5.1]) Let d € N,

Ve (1, 1+ i i, vy € L2(R?) and v be the global solution of the Cauchy problem ([3.17) as in

Proposition |3.12. Furthermore let % € [%,max {O, % - é}) Then

v e LR, LT(RY).

loc

More precisely, there is a constant C = C(d,v,r) > 0 such that the estimate

1
||U||an(dﬂ'>( t,t+6],L7(RD)) < ||U('vtO)HL2(Rd) (3.20)
[t,t+0] C

holds for any ty € R, provided

n 17§Zu171)
s

4 < C Hv('a tO)

Proof. Consider v(-,tg) € L?>(R) as the initial value in Theorem and denote the unique
solution constructed there by @ € C([0, 8], L>(R%)) N Le(d»+1) ([0, 8], L**1(RY)). Observe,
that the assumptions on 7 in Proposition [3.7|and Lemma allow one to replace X (d) by
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L% ([0, 6], L (R%)) in the inequality (3.18) and (3.19) (but the respective constant now
additionally depends on r). This shows

101l Laata.n o,5], - (Ry) Sdar V(5 t0) 5 -

Recalling that, by uniqueness of v, one has v(-,t) = 0(-,t —tg) for t € [to,to + d] finishes the
proof. O
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4. A local well-posedness result

Local well-posedness of the Cauchy problem for the nonlinear Schrédinger equation with
an algebraic nonlinearity on a certain intersection of modulation spaces is presented in this
chapter. A weaker version of this result, covering the range of parameters for which no
intersection is neccessary, is in [CHKP16, Theorem 1|. Furthermore, this chapter contains
a new Holder-like inequality, which is also in [CHKP16l, Theorem 3].

The aforementioned local well-posedness relies on the fact that the Schrodinger propagator
is a strongly continuous group and the algebra property of the intersection. From [Fei83|
Proposition 6.9 and Remark 6.4], i.e. since the very beginning of modulation spaces, it is
known that certain modulation spaces are Banach *-algebras. The fact that the same is
true for particular intersections of modulation spaces seems to be known in the community,
see e.g. [STW1IL remark before Proposition 3.2]. However, even a modern monograph like
[WHHGI1 Theorem 6.2] contains only a version of the local well-posedness result from
[BO09L Theorem 1.1], which is weaker than the one in the thesis at hand.

This chapter is structured as follows. In Section the algebra property of the intersection
is stated and shown. Also, the Hdlder-like inequality for certain modulation spaces is
observed and proven. Subsequently, in Section the notion of an algebraic nonlinearity
is defined and the local well-posedness is derived. The chapter concludes with Section
which contains some comments on this and comparable local well-posedness results in the
current literature.

4.1. Algebra property of M]‘j’q N M

Recall, that each u € My 1 has a unique representation in Cy, by Proposition . This
allows a meaningful definition of multiplication and complex conjugation of elements of
My 1. As G}, — &', the question whether uv € Mg, or uw € My, holds is also meaningful.
Consider first the following technical

Lemma 4.1. (Cf. [WZG06, Proof of Lemma 4.1]). Let d € N and u,v € My 1(R?). Then
there is a constant C' = C(d) > 0 such that

IOk, < C D0 > 1 Bkrimu)(Bmv)l,, (4.1)

leA meza

where A = {l e 74 | < 3\/&}
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Proof. One has

Oe(wo) =0 [ [ D D |- [ Y. Omo || = D De[(Timmu) - (Omo)] (4.2)

lezd meZzd I,mezd

for any k € Z%. Above, the series in [ and m are absolutely convergent in L> which justifies
taking the Cauchy product. Interchanging [J;, with the series is due to the continuity of the
IDOs on &’. Moreover, applying Proposition one has

@m) 2O [(Tpemte) - Q)] = FORF(F Vo) - (FCVo00)]
= f(fl)ak[(al_mﬂ) % (0m0)]

for any k,l,m € Z%. By Proposition one has

supp(og[(o1_mi) * (01,0)]) C B (k)N [supp(0i—m) + supp(om)] € B 4(k) N B, /4(1),

where the right-hand side is the empty set, unless Kk — [ € A. This means that many
summands in the double series over I,m € Z¢ in (#.2)) vanish. More precisely, one has

Dk(uv) = Z Z Dk[(DkJrlfmu) : (Dmv)]

leA mezd

for all k € Z%. Taking the LP-norm, invoking the triangle inequality and applying Corollary
shows (4.1]) and finishes the proof. O

A Banach *-algebra X shall be a Banach algebra over C on which a continuous involution
* is defined, i.e. (z +y)* = 2* +y*, (\r)* = A\o*, (vy)* = y*z* and (z*)* = z for any
z,y € X and A € C. It is neither required that X has a unit element nor that C in the
continuity estimates

-yl < Cllelllyll, ™l < Cllzfl  Vo,ye X (4.3)

is equal to one. The proof of [STWII, Proposition 3.2] implies the following stronger
statetement.

Proposition 4.2 (Algebra property). Let d € N, p,q € [1,00] and s > 0. Then M;Q(Rd) N
Moo,l(]Rd) is a Banach *-algebra w.r.t. pointwise multiplication and complex conjugation.

Proof. Only the closedness of M7 N My 1 under pointwise multiplication and the continuity
of this operation will be shown here. This is because all other properties of a Banach *-
algebra are easily verified for M, N Moo 1.

To that end consider two elements u, v € Mqu NMs 1. Let A be as in Lemma Observe
that by Lemmas [A-3T] and [A-30] one has

(k)* Sas (kB +1)° Ss (B +1—m)° +(m)°
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for any k,m € Z% and any | € A. Inserting equation ({.1)) into the definition of the
modulation space norm, employing the estimate above and applying the triangle inequality
yields

fuollagg, = || (0" IDeo,) || (4.4)

Sos ([ 32X (k- m = D [(Orstem) @),

leA mezd

H D2 D ) 1(Orgi—m) @),

kllq

q

Consider the first summand. By Hélder’s inequality, one has
| Ottm) Ol < 10kttt (Ol (4.5)

for any k,l,m € Z%. Inserting this estimate into the first summand above and subsequently
invoking Young’s inequality yields

ke > (k4 m = 1) (Oppr—m) (Do) [,

leA mezd q
So || (0 1 Owuly), * Nl < el o,
where “x” denotes the discrete convolution of sequences.

The other summand is estimated in the same way, i.e.

Eeor 3 S ) | Oketcmt) Ot | St lellar, lellagy -

leA mezd

which yields
||UUHM;# Sd.s (H“HM;M HUHMOOJ + ||U||M0071 HUHM;,q) S ||U”M;7quoo’1 ||U”M57quoo,1 .
For s = 0, p= oo and ¢ = 1 this shows [luv|;, | Sas [[ully,_, V[l , and hence implies

||UU||M57quOO,1 Sd,s ||u||ngquoo71 HUHngquoo’l

completing the proof. O

Ifg=1land s>0orifqg>1ands> q,, then, by Proposmonu Mg, = Moo and the
intersection in Proposition 4.2 is superfluous. In this case one even has the following
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Theorem 4.3 (Holder-like inequality). Let d € N and p, p1, p2, € [1,00] satisfy the Holder

condition % = p% + p%. Furthermore, let q € [1,00]. For q = 1 let s > 0, for ¢ > 1 let
s > %. Then there is a constant C' = C(d, q,s) > 0 such that for any u € M, q(Rd) and
any v € My, q(Rd) one has wv € M}j”q(Rd) and
< . .
fuvlagg iy < Cllullgy, oy Iolasg, o (4.6)

Proof. As in the proof of Proposition one arrives at the inequality (4.4). In contrast to
(4.5)), one chooses the Holder exponents differently, namely

1Ok tt-mw)(Bmo) [, < 10kr1-mull, [Bmoll,, -

Inserting this estimate into (4.4) and invoking Young’s inequality shows

luvllagy, S lollags, 0l + Nl Bollass

As HUHMP L Sdg,s HUHMS and HuHMpl L Sdgs HuHMs » by Proposition the inequality
. holds and the proof is completed.

This result easily generalizes to N € N factors and 0 < p,p1,...,pn < co. Hence, it extends
the multilinear estimate [BO09L eqn. (2.4)] to the case ¢qo = ... = ¢, > 1.

4.2. Local well-posedness for algebraic nonlinearities

Definition 4.4 (Algebraic nonlinearities). Let X be a Banach *-algebra and (c;) € CN
such that limy_,o ¢/|ck] = 0. A mapping F': X — X given by

M

cp(uu®) u Vu € X
k=1

is called an algebraic nonlinearity on X.

Lemma 4.5. Let X be a Banach *-algebra and F an algebraic nonlinearity on X. Then F
is locally Lipschitz continuous, i.e. for any R > 0 there is an L = L(R) > 0 such that for
any u,v € X with |lul, ||v|]| < R the inequality

[F(u) = F(u)|| < Lju— (4.7)

holds.

Proof. Let R > 0 and consider any u,v € X with ||u]|,||v|| < R. Then

|F() - F)l| < Zmr [ty = o )| (4.8)
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Fix a k € N. One has
1
Huk+1(u*)k _Uk+1(v*)kH S/
0

where for every 7 € [0, 1]

(v + 7(u — )" + 7 (u* — )k

d
or i

0 * * *
E(’U—{—T(U—U))IH_I(U + 7(u* —v*))F

= (k+D)(u—v)(v+7(u— v))k(v* + 7 (u* — v*))k
+k(u* _ U*)(’U + T(U _ v))k+1(v* + T(u* . U*))kil

holds. Taking the norm and using the continuity estimates (4.3)) yields
— (v 4 7(u— ) 4+ T(ut —v*))E

’ 0

< lu— ol C**22k + D) ([Jo] + 7 [lu — v])*

or

< lu— o] C%(2k +1)(3CR)%**

for every 7 € [0,1]. Reinserting the above into (4.8) shows
[e.e]
IF (w) = F(u)|| < flu— ol C* ) (2k + 1) |ex| BCR)*".
k=1
As series above converges due to the decay assumption on (¢), (4.7) holds and the proof is
complete. n

Theorem 4.6 (Local well-posedness). Let d € N, p € [1,00], ¢ € [1,00) and s > 0.
Moreover, let F' be an algebraic nonlinearity on X = M[iq(Rd) N Moo 1 (R?) and up € X.
Then the Cauchy problem for the NLS in X has a unique maximal mild solution
u : C((—a,b),X), where a,b > 0. The blow-up alternative holds, i.e. if a < oo, then
liminf; oy ||u(t)]] = oo and if b < oo, then liminf; ,;_ ||u(t)|| = oco. Finally, the map
ug — u is locally Lipschitz continuous.

Proof. By Proposition et is a Cy-group on M, , and on M 1 and hence it is also a
Co-group on X. Let A denote its generator. Clearly, C' := M{ng N MEOJ C dom(A) and

Au =1iA Vu e C.

Also, C'is dense in X by Lemma and ey € C for all t € R and u € C' by Theorem
B:4] Proposition [A.23] hence implies that C' is a core for A. As

lulla = lullx + lidullx = lullagy, + liBulyy + lulla, + lidully,
~ Nullyggse + lulae = lulle Vued,

it follows that C' = dom(A) and A = iA.

Hence, the integral equation corresponding to the given Cauchy problem is indeed

t
u = ePug + / ¢ =) P (u(s))ds.
0

As F is locally Lipschitz continuous by Proposition [f.2] and Lemma [£.5] the claim follows
by Proposition and hence the proof is complete. O

95



4.3. Comments

The proof of the algebra property above is largely inspired by the proofs of [WZG06 Lemma
4.4] and [STW1I, Proposition 3.2|. The former work also includes a version of Theorem
for the space My 1. A version of the local well-posedness for M, ; from [BO09, Theorem
1.1] is proven there via the theory of pseudo-differential operators.

Observe, that Theorem [4.6] immediately generalizes to other dispersive equations, for which
the respective group is strongly continuous on M7 N Ms 1. Examples include the nonlinear
wave and the nonlinear Klein-Gordon equations (cf. [BO09, Theorem 1.2 and 1.3|).

Other results of local well-posedness of a nonlinear Schrodinger equation for initial data in
a modulation space include the following. In [Guol7, Theorem 1.4] local well-posedness of
the cubic NLS in one dimension in the space My, with ¢ € [2,00) is shown.

The same equation with the same nonlinerity is treated in [Patl§| in the space M3 . There,
existence is obtained for ¢ € [1,2] and s > 0. For ¢ € [1, %] and s > 0 or g € (%, 2] and
5§ > % — % even unconditional well-posedness holds.

This result is generalized in [CHKPI§| in the following way. For ¢ € [1,2], s > 0 and

10 . . . .
p € [2,q,f6) existence is obtained in M; . For q € [1,%}, s > 0and p € [2,3] or

10q’
' 104’16

g€ (38, s>3-Landpe |2

) even unconditional well-posedness holds.

In [STW11, Theorem 4.2| nonlinearities of the form F(u) are treated in the Banach *-
algebra My, (s > g), where F': R — R is sufficiently often continuously differentiable and
sufficiently many derivatives of F' vanish in the origin. Due to an upper bound on p in
terms of the number of the derivatives of F' to vanish in the origin, this does not give rise
to a well-posedness result interesting for the model problem from the introduction, which
would require p = oo due to the form of the initial values stated in Equation .

Negative results concerning the construction of nonlinearities in M, , include [RSTT09,
Theorem 2.4 and 2.6].
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5. A Global well-posedness result

In this chapter a global well-posedness result stated in Theorem is presented. It deals
with the Cauchy problem

{iut(x,t) + Au(z, t) £ (|u|<”*1) u) (,8)=0 (z,¢) e R x R, 51)

u(+,0) = uo,

for the mass-subcritical (i.e. v € (1,14 %)) NLS and ug € M, ,y(R?) and its mild solutions,
i.e. solutions to the corresponding integral equation

t

u( 1) = eBug + i / eilt=mA (|u\V*1u) (r)dr. (5.2)
0

A much weaker version (with d = 1, v = 3 and a smaller range of allowed p’s) of the theorem

has already been published in [CHKP17].

This work is inspired by the article [HT12] of Hyakuna and Tsutsumi, where, motivated by
the work [VVO0I] of Vargas and Vega, they successfully adapt Bourgain’s high-low frequency
decomposition (HLFD) method (see e.g. [Bou99, Section IV.3|, [Tao06l Section 3.9| and
[ETT6, Section 4.2]) to initial data in LP(R) for p sufficiently close to 2.

At the heart of the HLFD is the following idea: Consider a splitting of the initial datum wug
into a good part vy € X (“low frequencies”) and a bad part wg € Yy (“high frequencies”).
Assume, that local well-posedness of the NLS with IV in X is already known in a space
X C C(I,Xp) (here, I 5 0 denotes a time interval). Assume further that linear theory
in the space Y C C(R,Yp) has already been developed. Using nonlinear smoothing (i.e.
control of the X-norm of the integral in ) show local well-posedness of in X+Y.

To show global existence, assume that global existence of for initial values in Xy is
known in X and relies on a conserved quantity M (v(t)) = M (vp) (say, mass conservation).
Try to construct solutions u of the form u = (v +w) + e!**wp, where v € X is the nonlinear
time evolution of vy, e®wq € Y is the linear evolution of wy and w € Y is their nonlinear
interaction term. Using interpolation theory (i.e. assuming that ug € (Xo,Y0)g o), argue
that [lwolly, can be made arbitrarily small resulting in v 4 w being close to v in X and the
quantity M ((v + w)(t)), although no longer conserved, growing slowly enough to yield a
global solution.

The remainder of this chapter is structured as follows: In Section the splitting of the

initial data is made precise, the notion of a solution to (5.1 is fixed and the results of local
well-posedness (Theorem and global existence (Theorem [5.4]) are formulated. The proof
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of the former theorem is given in Section [5.2] Existence and properties of the perturbation
w, which was introduced above, are provided in Section[5.3] Globality of solutions is proven
in Section [5.4] The chapter concludes with Section [5.5 which includes a literature survey
and a comparison of the achieved result to other works.

5.1. Statement of the results

The splitting of the initial data is done via the following

Proposition 5.1. Let d € N, r > 2 and p € (2,r). Then there exists a constant C =
C(d,p,r) such that for any u € M,y (RY) and N > 0 there are v € L*(RY) and w €
M, (RY) satisfying

1
u=vtw, ol <Clully @oN® and g <Cllully, @

11
where oo = 3% shall be called the trading exponent.
p T

Proof. By Proposition [2.19 one has

11
11
M,y =[L* M, p for 0= T i.
2 T
Furthermore, by Theorem [A.63]
22 My o (12000,
holds. Given a u € M, ,/, recall equation (A.29) to obtain
_ . -0 1-0
ol o, ), =5 b (7 el + ' el )
UELQ,wEMTYT/

1
Given an N > 0 consider t = N1-¢ in the formula above. Observing that

NG
S 1=

NI
<14

—_
)
=
|
S 1=

[
|
||

3 I

shows that there are indeed v € L? and w € M, ,» such that v = v + w and
N olly + N ol , < Nullzzar, o S lellgzar, -

Rearranging this inequality shows the required estimates and finishes the proof. O

Next, the notion of a solution to (5.1 needs to be fixed. This is done in the following
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Definition 5.2 (Mild solutions of the NLS). Let d € N, v € (1,1+ 4). Consider uy =
vo+wo € L2(RY) + M1 v+1y (R?) and a T > 0. A function u : R x [0, T) — C is said to
be a (mild) solution of up to time T, if it satisfies the corresponding integral equation
in C([0, "), L2(R) 1 L0 (0, 77], L RD) + C([0, '], My 11y (o1 (RY) for
any T" € (0,T). The supremum of all such T is called mazimal time of existence Ti.

A solution is called global if Ty, = co. It is called unique, if any other solution uy up to time
Ty satisfies uq|pr = u|g for any T' € [0, min {71, T }).

The choice of M;.,» = M, ;1) 41y in the definition above is such that the integral in the
Duhamel’s formula ([5.2]) makes sense. This will become more clear in the proof of the local
well-posedness formulated in

Theorem 5.3 (Local well-posedness for initial values in L? + M 41),(v41y)- Let d € N,
v e (1, 14+ %) and ug € L*(R%) + M(,,_H)’(VH)/(Rd). Then, there exists a unique mazimal
mild solution u of (5.1) (in the sense of Deﬁnition and the blow-up alternative

T, <oo = lirﬁ}l_p [uCo ) 2 (ray s aag, 1) g gay (RY =

holds. Moreover, there is a C = C(d,v) > 0 such that

_ v—1
1,1(1,,1)

T* 2 C HuOHLQ(RLrll)+M

(1), (1) (RY)

Finally, there is a T" € (0,T,) and a neighborhood V of ug in L?>(R?) + M(VH),(VH)/(RCI),
such that the initial-data-to-solution-map

V= C([07 TI]? L2 (Rd)) N an(d,u+1) ([07 Tqv LVJrl(Rd)) + C([07 Tl]a M(V+1),(V+1)’(Rd))

1s Lipschitz continuous.

Local well-posedness for IVs in L?(R%) 4+ My 1), +1)/(]Rd) implies uniqueness for smaller
spaces such as M), ,y (R%). These are used to construct global solutions in

Theorem 5.4 (Global well-posedness for initial values in M, ). (Cf. [CHKP17, Theorem
3]) Letd € N, v € (1,1+ %) and p € (2, pmas), where

2 d 1 . 1 d 1, d\2
o =25 =5 (1=3) v>s-g+y2+ (3 +9) (5.3)
v+1 otherwise.

Then the Cauchy problem with initial data ug € My, (RY) has a unique global solution
(in the sense of Definition .

Observe, that the uniqueness in the two theorems above is a conditional one. That means
that the solutions are not guaranteed to be unique in

C(Myy) = L=(L* + M40y (v41y) = LOL? + L M40 (v41y
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but in the space L®°L2? N Lea(dv+1D) pr+1 4 LMy 41),(v+1y only, which is smaller than the
right-hand side of the formula above.

While this is similar to the situation of Theorem m (it is again not obvious how to even
make sense of the nonlinearity for a general v € C(M,,)), the solutions now (at least
possibly) lack persistence in the sense that it is not clear that u € C'(M, ).

5.2. Proof of the local well-posedness

The proof is similar to that of Theorem The linear evolution of initial data ug poses
no problem, as it splits as the initial data. The integral part is handled using the embedding
LMy 11,41y <= Laa(dv+1) pr+1 allowing for the usual Strichartz estimates. Recall the

notation G(u,v,w) = |u+v[" " v —|u+w|" ' w from equation (3.15). Consider the

Proof of Theorem[5.3. For §, R > 0 set

X1(6) C([0,6], L*(RY) 0 L=+ ([0, 8], L+ (RY)),
XQ((S) = C([()? 5]7 M(V+1),(u+1)’(Rd))a
X(5) = Xl((S) +X2(5) and
)

= {FeX0)] Iflxe < R},

where

1Flxy = ,int (lallx,e) + 1hll )
9€X1(9),
heXs(6)
for any f € X(§). Consider an arbitrary decomposition of ug = vg +wp, where vg € L? and
wo € M(,41),(v+1y> and of u = v+w € X(J), where v € X1(d) and w € X2(d). It is to show
that the right-hand side of defines a contractive self-mapping 7 : M(R,) — M(R, )
for some 9, R > 0.

To fix R, consider the self-mapping property of T fist. For the linear evolution part one has
the estimate

le*%uoll x5 < €™ wollx, s + e w0l 5,

Saw lvolly + (146177 g

~dv 0ll2 OlM, 41y, sy
<

<o loolly + lwollag,,, oo

where the first inequality is due to the fact that X (0) is the sum of X;(9) and X5(d), the
second to Proposition and Theorem and the last one to the assumption § < 1 (which
is made here w.l.o.g.). As the decomposition ug = vy + wy was arbitrary, it follows that
(5.4)

itA
Ie uOHX(«S) < Cld ) lwollzernr oy -
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This suggests the choice R = 2C(d,v) Huo”L2+M(u+1>,<y+1y' From now on, set
R(r) =2C(d,v)r  Vr>0.

Before considering the integral part, observe that Mg, 1) 41y < L"*1 by Proposition
Hence, by Hélder’s inequality for the time variable and the assumption that § <1,

1
1wl paatan qo,g, 1y = 0@ Wl oo qo.5),0, 11y 40y @D S 10 x206)
follows, which in its turn implies
vl Laatasn prsr < 0] paatdorn prar + [0l paatarrn o Sa ||U||X1(5) + ||w||X2(§) .

As the decomposition u = v+ w was arbitrary, [[ull e @1 v+ Sa [Jull x g follows.

The integral part is estimated by Lemma (put 7 € {v + 1,2} there) against

H/ot elt=m)A (\u!”_l u) (r)dr

t
/ AG(0, u, 0)dT
0

X1(9) ‘
< 51—%(1/—1) ‘

~d,v

,Sd 51—%@—1) Hu”g((é) < 51—%(V—1)RV

X1(9)
|u”zqa(dﬂ/+1)LV+1

I

where the penultimate inequality is due to the observation above and G is defined just
before Lemma [3.9 The estimates of the linear evolution and of the integral part show that
the self-mapping property holds, if

_ v—1
1-4w-1)

6 Sdw |uol (5.5)

L24+M, 1), g1y

For the contraction property of 7 apply Lemma [3.10] again to observe that

t .
IT(w) — T,y = H /0 SIAG(0, 0, v)dr

X1(9)
d _ _
S,d,z/ 5171(”71) (HUHanl(dw-&-l)Lwrl + ”szqal(dw%—l)Ll&l)
Nw = vl paatavrn

Sq § DR fu — vl x(s) -

~

This means that the condition on ¢ sufficient for 7 to be contractive only imposes an
additional smallness assumption on the implicit constant in (5.5). From now on, set

v—1

§(r) == min {C(d7 vy -0, 1} Vr >0,

where C(d, v) is chosen so small, that all previous requirements are fulfilled.
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By the above and Banach’s fixed-point theorem, there is exactly one u € M (R, §) such that
u = T (u). That means that this u is a solution of (5.2)) in the sense of Definition and
u = v for any other solution v : [0,0] — C([0,0], M(,11) w41y + C([0,6], M1y (41 if

HUHL°°(LQ)HLQa(”+1>(L”+1)+L°°(M(U+1)7(U+1)/) < R~ay HUOHL2+M(,}+1)’(H1),'

To show uniqueness, assume u' € X(T}) and u? € X(T3) both satisfy (5.2) for some
Ty, To > 0. One has u!(-,0) = u?(-,0) = uy and hence

T = sup {S € [0, min {Tl,Tg})‘Vt €[0,9]:ul(-,t) = u2(~,t)} > 0.

Assume that 7' < min {7}, T>}. By continuity, one has u'(-,T) = u?(-,T) =: u;. Hence, u'
and u? both solve the time-shifted version of (5.2)

t
(e t) = DDy 1 / =7 (ju ) (r)dr (5.6)
T

on [T, minTy,T5). Furthermore, for any i € {1,2},

0+
= Juall 2

Hui“TT‘f'a]HX(min{T T M,
g 1,72}) M1y, (1)

by the dominated convergence theorem (for the norm in L%+ (L¥*1)) and continuity
(for the norms in L>®(L?) and L>(M,41),41y))- Hence, for both i € {1,2}, one has

Hu’i|[T7T+5]HX(min{Tl,Tz}) < ||U1HL2+M(V+1),(D+1>' for some € > 0. This fact allows one to

apply the uniqueness statement of the Banach’s fixed-point theorem from above to (5.6))
to conclude that u!(-,t) = u?(-,t) for all t € [T, T + €|, if € > 0 is sufficiently small. This
contradicts the definition of 7" and hence T = min {T}, 7>} follows.

To show the blow-up alternative, let © now denote the maximal solution, which is unique

by the above, and let T, < co. Assume that limsup; 7, _ ||u(-,t)HL2+M( iy SO0 T
tes[gg*} HU("t)||L2+M(u+1>,(u+1)’ =<

But then, given any time point T € [0, T}), the solution u is defined at least up to t + §(.5)
by the Banach’s fixed-point theorem applied to ((5.6). This contradicts Ty < oo.

For the local Lipschitz continuity, fix any € > 0, put r = ¢ + ||u0HL2+M( sty and

consider any vo,wo with [lvo|| 2.y, HwOHLQJrM(uH) iy < r. Denote by v and w

v41),(v+1)"
the unique maximal solution of ([5.2) with initial value vy and wy, respectively. Observe

that by the above, v and w are defined at least on [0,7"], where T” := §(r). Moreover,
v| (o771, w7 € M(R(r),8(r)) and hence

o —wlixgy = |60~ wo+T(v) = T(w)]| )

IN

C(d,v) oo = woll 2 4ar ) ey + Cello =@l

where C(d,v) > 0 is the constant from Equation (5.4 and C. < 1 the contraction constant
of 7. Collecting terms containing [[v — w|| x ) shows

v — w”X(T’) Sdw [lvo — w0”L2+M(V+1)‘(V+1)/
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for any
v, wo € V i= Be(ug) C L + My 41),(v41y

i.e. the claimed local Lipschitz continuity. This concludes the proof. [

5.3. Construction and properties of the perturbation

Global existence follows by constructing a solution of (5.2)) of a special form which is suitable
to exploit the mass conservation. This will be done using the following

Lemma 5.5 (Strichartz for perturbation). Let d € N, v € (1, 1+ %) and consider % €
(max {O, % — é} , %] Then there is a constant C = C(d,v,r) > 0 such that for any T > 0,
any v € L3 ([0,T), LY TY(R?)) and any w € L®([0, T], Lt (R?) the estimate

‘ Laa(d7)([0,T7,L7 (R?))

1——Y_d(y—1 v—
< C[T v+l il ) ||UHan1(d,u+1)([07T]’Lu+1(Rd)) ”wHLOO([O,T],LV+1(Rd))

t
/ AG (v, w, 0)dr
0

RIS ,
7w ath Hw”LOO([O,T},LVH(]Rd))}

holds.

Proof. The proof is very similar to that of Lemma Again, Proposition [3.8] yields

if (%, %) € f’(d) satisfies condition (3.13)), i.e.

€ B, min {1, % + ;}) and (5.7)
- 1—3(;—;) (5.8)

By the size estimate from Lemma [3.9] one has

Sdrp |G(v,w, 0)||Lv([o,T],Lp(Rd)) J

t
/ AG(v, w, 0)dr
Laa(dr) ([0,T],L" (R%))

0

el SR

,U(I/fl

ol g

”G(vavo)HL'va Sv I Le

1

Consider the term v~V first. Applying Hélder’s inequality to the functions w, v*~! and

1 yields

(v—1) = =)
[ oz oy < T 1056 b o100y ol oy sy
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where all but the last of the exponents r1,72,q1,q2, g3 € [1,00] are already fixed (by com-
parison with the indices of the norm of the same term in the claim) to

T1:V+17 q1 = 09,

v+1 Ga(dv+1) v+14 1
To — = = —
UL 1 v—1 v—1dv—1

and need to satisfy the Holder conditions

1

- = —+— and (5.9)
P 1 T2

1 1 1 1

- = 4= (5.10)
v q1 q2 g3

Equation (5.9)) immediately fixes % = ;%5 Inserting p into (5.8) yields % =1- %H%(U— 1).
Inserting 7, ¢1 and ¢ into ([5.10]) shows q% =1- #_1%(1/ —1).

Considering % =1 — - and inserting the upper and lower bounds on v yields

v+1
16 1 1+ 1
p \2'2  2+4d)’

which shows that (5.7)) is satisfied. The fact that all Holder exponents lie in the interval
[1,00] is apparent from their values and the bounds on v.

As the term w” has already been treated in the proof of Lemma (put f = v there), the
proof is concluded. O

Theorem already implies the uniqueness of solutions w for initial values § € L? +
M, 11),(v+1y- To show that in the case 6 € M) (RY) these unique solutions are global,
consider their special decomposition into u = (v + w) + e, where § = ¢ + 1 €
L2(R9) + M 11, (v+1) and v is the unique solution to the NLS with initial value ¢ (see the
introduction to this chapter). Inserting this ansatz into yields

t
’U+U}:€itA¢:|:i/ ei(t—T)A <|’U+U}+61TAT,[}}V_1 (U+M+61TAQJZ))) dr,
0

which, after subtracting the equation for v, transforms into
L i v—1 i
w = :I:l/ el(t*T)A (}’U + w4+ elTAw‘ (’U +w _’_617'A¢) N |U‘Vfl 1)) dr
0
t t
= i / EIAG (v + B, w, 0)dr £1i / EDAG (v, €™, 0)dr  (5.11)
0 0

as the governing equation for the perturbation w. Existence of solutions to (5.11]) is estab-
lished in the following
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Proposition 5.6 (Local well-posedness for the perturbation). Let d € N, v € (1, 1+ %),
¢ € L2(RY) and ) € M 11),w+1) /(R?). Denote by v the global L?-solution from Proposition
-for initial value ¢ and by e* ) the free propagation of 1 in C([0, 00), M, (v+1), (z/+1) (RY)).
Then there exists a constant C = C(d,v) > 0 such that the integral equation (5.11) has a
(unique) solution w € L4+ ([0, 6], L¥T1(R?)) provided

6 < 1 (5.12)
v—1
Ti_do,_
6 < C(Iolly+ Wl 00) T, (5.13)
u 1
d(-1)
5 < ”¢||M(u+1> iy (5.14)

Proof. Assume, w.l.o.g. that ¢ is the minimum of the right-hand sides of (5.12)), (5.13) and
(5.14). For R > 0 set

X(8) = Lo (0,6], I RY) and  M(R,8) = {f € XO) [ fllx(p) < R}

One has to show that after fixing the constant C' and some R > 0 the right-hand side of
(5.11) defines a contractive self-mapping 7 : M(R,d) — M(R,§) (Banach’s contraction
mapping principle).

To fix R, consider the integral not involving w first. By Lemma [5.5] one has

b : v _d
‘ / dETAG (v, €79, 0)dr Sap 0 il ’""Hx(a) HeltAl/’HLOOLV+1 (5.15)
0 X(8)
Il G
For the first summand, observe that 1 — m%(l/ —-1) = %%(V —1)+1- %(1/ — 1) and
hence
5T oy = 6T ol g 070D

by Corollary - (justified by assumption (5.13))). Furthermore,

I s S5l et S Wt

by Proposition and Theorem [3.4| under the assumption ([5.12]). This suggests the choice
3 _1 é(,,,l)
C(d, 1/)5 . 100212y 2y (5.16)

so only the constant C'(d,v) (the same as in conditions (5.13) and (5.14)) remains to be
fixed.

R =

For the second summand, observe that 1 — ﬁ%(y 1) = %g(u —1)+1- ﬁ%(y -1)
and hence
]
Saw 0TSO gy T gt
Sdv st WHM(VH) w1y’
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where additionally assumption ([5.14)) was used for the last inequality. Comparing the last
expression with (5.16)) and choosing C(d,v) small enough shows that the right-hand side
above can be estimated by %

The integral involving w is estimated by Lemma against

t
/ e‘(t_T)AG(v + €™, w, 0)dr
0

(5.17)
X(5)

_d(,_ itA v—1 v—1
Saw 750 ([lo s+ lolih) Tl
For the first summand, observe that
itA itA
o+ €20l gy < lellxs) + 1€ x5y Satw N6l + Wllar, o

where again Corollary was used for the estimate on v, whereas the estimate on w
follows by embedding L™ s L% (4¥+1) Proposition and Theorem . Making C' in
(5.13)) small enough then implies

1-4(y—1) itA (V1 1
0" [v+ el 5 < 3"
Recalling that w € M(R,d) hence shows that

v—1

sl-4(-1) HU i eitAwHX(é) HWHX(a) <

w| =

For the second summand, estimate w in the same spirit to obtain

_d(,_ _d(,_ 1 R
5D oo gy Saw 63 0l RS T

under yet another smallness assumption of C'(d,v) in (5.13) for the last inequality.
All in all this shows that

i.e. the self-mapping property of 7.

Contractivity of 7 is shown in the same way (i.e. via Lemma [3.10)), possibly enforcing an
even smaller constant C'(d, v), and finishing the proof. O

The L?-norm of the perturbation is controllable by Lemma This is stated in the
following

Corollary 5.7 (L?norm increase). There erists a constant C = C(d,v) > 0 such that the
solution w of (b.11]) constructed under the assumptions of Proposition satisfies

1 de, 1
HwHLOO([O,é},L?(Rd)) < Cov+t $w=1) Hw\\M(V+1>,<V+1>' '
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Proof. The proof is similar to that of Corollary As w solves , one may work
with its right-hand side. Both its summands are estimated in the X (4)-norm in inequalities
and . In both of them the norm on the left-hand side may be replaced by the
L L2-norm as the pair (2, 00) is admissible and hence Lemma and respectively are
still applicable. This shows that indeed

t
/ ei(t_T)AG(U, eTAY, 0)dr
0

foless < |
L2

t

+ / dEDAG( + €AY, w, 0)dr

0

L2
1 d
< Vf*(”_l)
R ~d,v dv+ia Hw||M(u+1),(u+l)’

IN

and finishes the proof. ]

5.4. Proof of global existence

Now, all ingredients are at hand and the main theorem of this chapter can finally be
proven.

Proof of Thm. [5.4 Assume, that for an initial datum uo € M, the unique maximal solu-
tion w from Theorem [5.3]is not global, i.e. T < oco. This will be shown to be a contradiction
by constructing a solution @ on a larger time interval.

To that end, recall from Proposition[5.1] that there is a constant C; such that for any N > 0
there are vg € L? and wq € M, 11),(v+1) such that

lvolly < C1N® and (5.18)

lwollar, .1y iy < Crg

where a = +—%—. Observe, that « is strictly increasing as a function of p. Hence, the

N
S 1=

p v+1
prerequisite p € (2, pmax) translates to the equivalent condition o € (0, A(d,v)), where
A(d,v) is calculated by substituting p in the formula for @ by pmax (see equation (5.3))). To

that end, observe that

N[ =
_|_
s
~—
N

v 1 : 1 d

Pmax V%rl otherwise.

The value of ﬁ from the first of the two cases distinguished above yields

1 v

S A . ,

2 2 v+1-¢(v—1) v+1-¢(v-1) 1- Z(V — 1) 1-— Z(V - 1)
v, 1 _ 1 - _ v 2 v+1—2(v—1 o _ dv—1
2 vt1-4@w-1) wvHl v+1-4(w-1) v+l v— 2% V=245
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as the corresponding value of A(d,v). In fact, the denominator of the last term is positive
if and only if the condition corresponding to the first case holds, i.e.

dv—1

>0 & (V—Z)(V+1)+(V—1)g>0
2

o (e (L)) e (8

<:>>1d+2+1+d2
Y257 27 1) "

In the other case pmax = v + 1 and so oo is the corresponding value of A(d,v). All in all,
one obtains

1*%(1’*1) : v—1d
I —y—— lf vV — 2 + Y > 0,

A(d,v) == V24533 vil2 (5.19)
00 otherwise.

Denote the constant from Proposition by Co = Cy(d,v) and put

v—1

§=8(N) = Cy (3C,N®) =10-n JZ2, g (5.20)

(any number greater than 1 instead of 3 works).
Consider the finite sequences vy, vy, ...,vx and w', w?, ..., w" constructed using the fol-
lowing
Algorithm 1 Iterative Procedure

1: k<0

2: while k§ < T, and ¢ = v, ¢ = e*%wy, § satisfy (5.12)), (5.13)), (5.14) do

3 k+k+1

4. wF + w from Proposition {applicable by conditions of the loop}

5 v < w(-,kd) +v(-, kd) {v from the same proposition}

6: end while

7. K+ k

Put v*! for k € {0,...,K — 1} to be the NLS evolution of IV v, and observe, that by
construction

(-, t) = "t —kO) + Tt —kS) +Pwy  ift € [k6, (k+1)d),k € {0,..., K —1}

for any t € [0, K§] defines a solution of (5.1). Hence, it remains to show that the iterative
procedure terminates with K§ > T, for sufficiently large N. Consider, to that end, the
conditions in line [2] of the algorithm above.

The smallness condition (5.12)) is satisfied independently of k for large N by definition of ¢
in (5.20).
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Now consider the condition ({5.14]) on the modulation space norm. By Theorem and the
second inequality in ([5.18)) one has

itA I Nooo
Sar wolla, ) yry St 7 —

wOHLoo (0T +11, M, 11 (1)) ~d, T 0. (5.21)

le

Inserting this estimate (1) = e*¥%wy) into the right-hand side of (5.14) yields

1/ 1

v (V 1) 1,
[l A 2, N

,_.

,_.

d N—oo
12 — o0.

As this lower bound is independent of k and § Nooo, 0, this condition is also satisfied for

large N.

That means that K6 > T, or the condition (5.13) involving both norms fails in the last
iteration step k = K, i.e.

3CIN® < [luglly + ] e

iKéAwOH .
M1y, 041y
By inequality (5.21]) the second summand of the right-hand side is smaller that C; N¢ for

large N and hence
2C1N° < ||lvk]ly - (5.22)

By definition, mass conservation and the first inequality in ([5.18]) one has

lvkll, < HUKHLOOB + HwKHLooL2 = [lvr—1lly + HwKHL‘”LQ
S P e P e P = o 4
<

K K
" k
R EUR T B 2] Ly PN
k=1 k=1

The sum 215:1 is further estimated by Corollary and inequality (5.21]) against

Z Hw HLOOL2 ~sdv 5U+14(V Y Z ‘

Inserting the estimate on vy into the right-hand side of (5.22)) and recalling (5.20) yields

dw-nl

1k:6A H <dT 5U+1 i

M, 1), (1)

v—1)(1-—L1-d—1
. . 1+a< ! )(1 du+lf;f< >)>
Ko Zdﬂ/,T* Nites V+14(V )Nd,wuo N —ay
1_06(1/71)7(17%{%(1/71))
— N 1-4@w-1)

By the prerequisite on « from equation ((5.19) the exponent of N above is positive. Hence,
for sufficiently large N, one has K¢§ > T in each case. This concludes the proof. O
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5.5. Comments

The precursor of Theorem [5.4, [CHKPI7, Theorem 3|, was (to the best of the author’s
knowledge) the first global well-posedness result for the NLS with I'Vs in a modulation space
M, ,(R%) which required no smallness condition of the initial data. The former theorem
extends the latter result to arbitrary dimensions, arbitrary powers of the nonlinearity (such
that the NLS is still mass-subcritical) and a larger range of the index p. The last fact is due
to the estimate of the modulation space norm being more careful than the original
one [CHKPIT, p. 4438]. Also, the notion of a solution to is clearly stated in Definition
and the proof of their uniqueness (Theorem is much more elaborated than in the
original publication.

Other known global well-posedness results for the NLS with initial data in a modulation
space are [WHOT, Theorem 1.1] (see also [RSW12, Theorem 4.11] and [WHHG11, Theorem
6.3]) and [Katl4] Theorem 1.1|. Both require smallness of the initial data and none cover
the cubic nonlinearity in dimension one.

Further results involving initial data with infinite L?-norm are [VV0I, Theorem 2| (ug €
L? + Y3 with trading exponent a < 1), [Grii05, Theorem 1.5] (ug € HZ where s > 3 and
r € (1,2]) and [HT12, Theorem 2| (ug € LP where p is sufficiently close to 2). In fact, as

Yoq= {(b € S(RY| H(ﬁHyp,q = sup{HeitA(bHLp(LLq(R)) ‘ I interval of length 1}}

and

HeitA S HeitA

¢HL3(1,L6(R)) ¢HL<>0(1,L6(R)) S HeitAd)HLOO(I,M&%(R)) N Hd’HMﬁ,g(lR)

by Theorem [3.4] one recognizes that the aforementioned theorem by Vargas and Vega

applies to ug € M,y (R) for p € (2,3). However, their result does not guarantee persistence
in L2 + M6 6.
5
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A. Appendix

Complex Analysis

Lemma A.1. (Standard estimate, cf. [FL12, proposition 1.5.4] )
Let v be a complex path of integration and f : Tr(y) — C continuous. Then

/Vf(z)dz

Theorem A.2. (Cauchy’s integral theorem, cf. [FL12, section IV.1])
Let © C C be a domain. Then the following statements are equivalent:

< L(y) max [ f(z)]. (A1)
2€(7)

(a) Q is simply connected.

(b) For every f holomorphic on Q and every closed, piecewise continuously differentiable
path in Q it is

JRCE (A2)
i

Ezample A.3 (Gaussian integrals). Let «a,3 € C such that Re(a?) > 0 and define the
Gaussian integral

I(a, B) = / e (t+h)? 4.
R
Then the integral above is absolutely convergent and

I(a, B) = I(a,0) = ém,()) - \f (A3)

Proof. Let «, 8 be as above. Observe, that

|exp(—(at + 8)?)| = exp(— Re((at + 5)?))

= exp(—Re(8?)) exp (_t2 <Re(a2) + 2Ret(aﬂ)>>

< exp(—Re(8?)) exp <_t2 Re(2a2)>

for all [t| > 4

|Rz(aﬂ )| This establishes the absolute convergence of the integral.

Re(a?)
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For the first equality consider

(e, B)

lim
R—o —R

R 2 1
e (8 qt = = lim

o R—oo

/Rl
Yo,

>
@,

)
e * dz,

where 'yf’g, is as in figure . For any fixed R > 0 it is

/R,1
7,

a,B

e % dz —I—/
7R2

,
a,B

2
ezdz—/
1
.

R,
«,0

2 2
ezdz—i—/ e “dz=0
R,3
Va,p

by Cauchy’s integral theorem formula The standard estimate yields

2 _ .2 R—o0
/ e ? dz,/ e % dz 0
R,2 R,3
’ya,,B 'Ya,ﬂ
and hence
1 . 2 . 42
I(a, ) = — lim e~ dz=— lim e *dz=I(a,
o R—oo R,1 o R—oo R,1
’ya,ﬁ 'Ya,O

For the second equality observe, that

I(a, 0) :/_Z

where 75 s as in figure Same arguments as for the first equality yield

lim

R,2
R—o0 ~E

The last equality is the well-known value I(1,0) = [ e Pdt

e dz =0

o0
et = 2/ e
0

and

I(a,

2 R
0) = — lim

o R—oo 0

N

1
e_tht =1

~I(1,0).

Im(z) R
7a7@ Phe ’7
P Im(z)
P ’
P ’ R,1 .
," /I R,2 ’ya,” \
,” II’yO‘7B ,”’ ‘\ R2
< B s - R
R3 /) -7 @ 1
,-ya”B,, o !
3
/ L Re(z) Al Re(z)
e ’R,
“7 a0 (b) Independence of c.

(a) Independence of 3.

Figure A.1.: Paths of integration used in proof of example
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Measure and Integration

Theorem A.4 (Continuity of parameter integrals). (Cf. [Elsil, Chapter IV, Theorem
5.6]). Let (2, A, ) be a measure space, (M,d) a metric space and xo € M. Furthermore,
let f: M xQ — F satisfy the following conditions:

(a) For each x € M it is f(x,-) € L}(9).
(b) For p-a.e. w € Q the function f(-,w) is continuous in xg.

(c) There is a neighborhood U of xg and a non-negative function g € L' () s.th. for all
xeUitis|f(x,w)| < g(w) for p-a.e. w € Q.

Then the function F' : M — F defined by F(z) = [ f( w(dw) for every x € M is

continuous in xIo, 1.€.

lim f(m,w),u(dw):/ﬂ lim f(z,w)p(dw).

T—T0 0 Tr—T0

Theorem A.5 (Differentiation under the integral sign). (Cf. [Elsl1l, Chapter IV, Theorem
5.7]). Let (0, A, 1) be a measure space, To € U C R? open. Furthermore, let f : U xQ — F
satisfy the following conditions:

(a) For each ¥ € U it is f(Z,) € LY(Q).

(b) For some i € {1,...,d} the partial derivative —f(ac w) ezists for all w € Q and all
zeU.

(c) There is a non-negative function g € L' () s.th.
all w e Q.

ox; (f7w) < g(w) fOT' all 2 € U and

Then the function F : U — F defined by F(Z fQ p(dw) for every @ € U is partially
differentiable in Ty w.r.t. x;, gg{ (Zo,-) € LI(Q) and

E)F(q )= of
8SUZ' v 8131

(Zo, w)pu(dw).

Theorem A.6 (Order of integration). (Cf. [Elsll, Chapter V, Theorem 2.1])
Let (1, A1, 1) and (Q2, Az, v) be measure spaces where p and v are o-finite. Then:

(i) For each Ay ® Asx-measureable f:Qq x Qg — Rar U {oo}
e O d>wi— fQQ flwr, wo)v(dws) is Aj-measureable,

e (9 3wy le w1, wo)pu(dwy) is Ag-measureable
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and

/gl o fdyd”:/ﬂ2 - fdpdv = / fdpev (A.4)

Ql XQ2

(Tonelli’s theorem ).
(i) For each p ® v-integrable f: Q1 x Qg — F

e the function f(wi,-) is v-integrable for p-a.e. w1 € Qq, the (u-a.e. defined)
mapping Q1 > wy > fQQ f(w1,w2)v(dws) is p-integrable;

e the function f(-,ws) is u-integrable for v-a.e. wy € Qo, the (v-a.e. defined)
mapping Qo D we — fﬂl f (w1, wo)pu(dwy) is v-integrable;

and holds (Fubini’s Theorem ).

Theorem A.7 (Change of variables). (Cf. [Elsil, Chapter V, Theorem 4.2]). Let d € N,
X, Y CRY, ® € CY(X,Y) bijective such that 1) € CY(Y, X) and f : Y — C measureable.
Then f € LY(Y) if and only if (f o ®)|det (V®)| € L}(X). In that case one has

/ f(y)dy = / (f 0 ®)(x) |det (V)] (x)d. (A.5)
B(X) X

Ezample A.8. Let d € N, p € [1,00], f : R? = C measureable, A € GL(d,R), yo € R? and
® : R? — R? defined by ®(z) = Ax + yp for all z € R%. Then

If o @, = A7 [I£]],- (A.6)

Lemma A.9 (Surface of the d — 1-sphere, volume of a d-ball). (Cf. [Elsil, Chapter V,
Ezample 1.8]) Let d € N, r > 0 and denote by B = {z € RY| |z| < 1} the unit ball in R?.
Then

d d+1
T2 _ 22
)\d(B) = m and O'd 1(33) = T (dJ2rl) . (A?)

Definition A.10. (Dual exponent)
Let 1 < p < co. Define the dual exponent 1 < p’ < oo via the formula

L1 00 forp=1,
-+ —==1, ie. p = ﬁ for 1 < p < o0,

1 for p = oo.

Lemma A.11 (Holder’s inequality). (Cf. |Elsil, Chapter VI, Theorem 1.5])
Let (Q, A, ) be a measure space, f,g : Q@ — F measureable and 1 < p < oco. Then the
so-called Hélder’s inequality

1£glly < 11, gl (A.8)
holds.

74



Corollary A.12 (Littlewood’s inequality). Let (2, A, u) be a measure space, f : Q — F
measureable, 1 < pg,p1 < 00, 8 € (0,1) and 1 < p < oo such that
1 1-60 6

p Do p1 '

Then the so-called Littlewood’s inequality

11 < 1 11, (A.9)

holds.

Theorem A.13 (Convolution). (Cf. [LL01, Theorem 4.2]) Let d € N and p,q,r € [1, 0]

satisfy

1 1 1
l+-=>+-. (A.10)
TP oq

Furthermore, let f € LP(RY) and g € LY(R?). Then the integral
(F=o)la) = | =iy

exists for almost all x € R and defines a measureable function f * g (convolution of f and
g). Futhermore, Young’s inequality

1F*gll, < 11, gl (A.11)

holds.

Functional Analysis

Definition A.14 (Complemented subspace). (Cf. [Brelll, Section 2.4]) Let X be a Banach
space and U C X one of its closed subspaces. A subspace V C X is called a complement of
Uin X, if

(i) V is closed,

(ii) UNV =0 and

(i) X =U+V.
If U has at least one complement, it is called complemented.

Proposition A.15 (Open mapping Theorem). (See [Brell, Corollary 2.7]) Let X, Y be
Banach spaces and T € £(X,Y) be bijective. Then T~! € L(Y, X).
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Proposition A.16 (Adjoint operators). Let X be a Banach space and T € £ (X). Then
its adjoint T* € L (X*) satisfies
1T =Tl (A.12)

where the norm above is the operator norm on X and X* respectively.

Proof. One indeed has

IT| = sup ||Tz|x= sup sup |[(&*,Ta)y., x|
lzll x=1 llzll x=1ll*|| x==1
= sup  sup [(T"z%,2)xe x| = sup [|T"2" -
Hac*”x*:l Hzllle ‘x*”)(*:l
= [IT7,

where the second equality holds by the Hahn-Banach theorem and all others by definition.
O

Definition A.17 (Sequence spaces). (Cf. [WZGO06, Proof of Proposition 3.2|) Let d € N,
p,q € [1,00], and s € R. Define

1

)9S Jlugl|9) T if ¢ < oo,
1) wezallizgze o gzay) = (Zkezd< Y ka) | q V(fo)regs € M, (A13)
supgeza (k) [lull, if ¢ = o0

where
M = {(rezi Wk € 27+ fi € L'®Y},
LO(RY) = {f ‘RY — C‘ f measureable} /N and

N = {f:R¥'= (C‘ f measureable and f = 0 almost everywhere} .

Furthermore, define

19(z4, LP(RY)) :

{hezs € M| 1Ukezsllin o pomay <}
{neze e v im0 1A, =0} 1@ @Y)  and

{(fk)kezd = lg(Zd,Lp(Rd))‘HK EN:VIk|>K: fr = o} .

Az, LP(RY)) :

Nz, LP(RY)) -

Often, the notation is shortened to 14(LP) = 14(Z4, LP(R?)) and 19(LP) = I3(LP). Further-
more, [9(Z4, LP(R?)) := O(LP) := (24, LP(RY)).

Proposition A.18. Letd € N, p,q € [1,00] and s € R. Then space 1(Z%, LP(RY)) endowed
with the norm ||-|ja(za 1»ray) is @ Banach space. Moreover, (72, LP(RY)) is a closed subset

of 1°(Z%, LP(RY)). Furthermore, c°°(Z%, LP(R?)) is dense in 2(Z4, LP(RY)) and, if ¢ < oo,
in 1(Z2, LP(R?)).
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A proof of the last proposition is not given here, but see [Werl8|, Beispiel 1.1 (f,g)| for the
scalar case [P(N, C), which is very similar.

Proposition A.19. Let d € N, p € [1,0), ¢ € {0} U[1,00) and s € R. Then the map
® 17 (24, 1V (RY)) — (14(Z%, LP(R%)))" defined by
(@czd) ezt = Y [ m@hone)ds  Viodgens €HELPERY) (A1
kezd ” R

is antilinear, bijective and isometric (for ¢ =0, set ¢ = 1 in this proposition and its proof).

Proof. For any (uy) € l‘lls(Lp/) and any (vg) € (9(LP) one has

(@ (ur)e) (Rl < /Uk!’vk!dfvﬁ > k) gl (B floxll,

kezd kezd
)t gy N8 i

IN

by Holder’s inequality. This shows that & : l(i/s (LP") — (19(LP)) and

19 (u) | < [ul] (A.15)

1 (e

The antilinearity of ® is immediately clear from Equation (A.14). It remains to show the
converse inequality of (A.15) (which implies the injectivity of ®), and the fact that & is
surjective.

To show the surjectivity of ®, consider a ¢ € (I{(LP))" and fix a k € Z%. Then the linear
functional v — G((Spmv)m) is continuous on LP and hence there exists a unique uy € L'
such that

¢((5kmv)m) = /Uk’UdCL‘ Yv € LP

(see |Brelll Theorem 4.11] for p > 1 and [Brelll Theorem 4.13] for p = 1). Furthermore,
[v = ¢((Skmv)m)|l = |lukll,, and thus, for any e > 0, there is a vy = vgx(e) € LP with

[[vkll, = 1 such that
/ukvkdaj = ‘/ukvkdx

To show is that (ug)x € l‘i/s(Lp/)7 e (luel)x € l‘i/s. Arguments similar to those above

> [kl (1 = e€).

applied to the space of complex sequences [7 (Z?,C) show that for any ¢ > 0 there is a
(real) sequence (ay)pezd = (k(€))peza € ®° with [((k)*ax)ll, = 1 such that

> o llurlly =1 o llull,| > I Cur)illyar oy (1= €).

kezd kezd
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Fix any € > 0 and choose the corresponding (vx) and («y). Linearity of ¢ implies that
o((wi)k) = Y peza | Wrwy for any (wy) € PO(LP). In particular

S((opvr)e) = > ak/wwkdﬂf >(1=2) > opllull, > (1-¢) Ctie)lyar g -
kezd kezd

Due to the continuity of ¢, the left-hand side is bounded from above by

[¢((awvr)r)] < [l [ (wvr)llya ey = NIl

Hence, passing to the limit ¢ — 0+ shows that
Nl g0, < I8 < . (A.16)

Thus ®((uy)) is defined and (®(uy))(vy) = ¢(vg) for any (vg) € "O(LP). As c"O(LP) is dense
in I{(LP) by Proposition |A.18, ®((ux)) = ¢ follows and finishes the proof of the surjectivity
of .

Observing that the choice of (ug) was unambiguous shows that ¢ may be replaced by ®(uy)
in (A.16]), which proves the converse inequality of (A.15) and finishes the proof. O

Strongly continuous groups

Definition A.20 (Cp-group). (Cf. [ENOO, Definition I1.5.1]). Let X be Banach space and
(T()ter € Z(X)® be a family of bounded operators on X. If (T'(t))cr satisfies the
functional equation

T(t+s)=T(t)T(s) (A.17)

for all t,s € R and the initial condition 7'(0) = idx, then it is called a group. If in addition
(T'(t))ter is strongly continuous, i.e. for any x € X the orbit map t — T'(t)x is continuous,
then (T'(t))ser is called a Cy-group.

Definition A.21 (Generator of a Cp-group). (Cf. [ENOQ, Definition I1.1.2]). Let (T'(t))ier
be a Cy-group on the Banach space X. The linear operator A : dom(A) — X defined by

.1 :
dom(4) = {a: € X’ hlir& 7 (T'(h)x — x) ex1sts} and

Az = hlim % (T'(h)x — x) Vz € dom(A)

is called the generator of (T(t))ier.

Definition A.22 (Core for a linear operator). (Cf. [EN00, II.1.6]). Let X be a Banach
space, C' C dom(A) linear subspaces of X and A : dom(A) — X a linear operator. C' is a

core for A, if clla = dom(A), where
[zl 4 = [l + | Az]] V2 € dom(A)

is the graph norm.
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Proposition A.23 (Core criterion for generators). (Cf. [ENOO, Proposition I1.1.7]). Let
(T(t))ter be a Co-group in the Banach space X and A : dom(A) — X its generator.
Furthermore, let C C dom(A) be a linear subspace of X. If C is dense in X and T'(t)x € C
forany x € C and t € R, then C is a core for A.

Proposition A.24. (Cf. [Paz92, Theorem 6.1.4]). Let (T(t))ier be a Co-group with gen-
erator A. Moreover, let F' : X — X be locally Lipschitz continuous and ug € X. Then the
integral equation

u(t) = T(tyup + /0 T(t — )F(u(s))ds

has a unique mazimal solution v € C((—a,b),X), where a,b > 0. If a < oo, then
liminfi oy ||u(t)]| = co. Similarly, if b < oo, then liminf, ., ||u(t)|| = oco. Finally, the
map ug — u s locally Lipschitz continuous.

Fourier Analysis

Definition A.25 (Fourier transform on Ll(Rd)).A (Cf. |Gra08, Definition 2.2.8|). Let d € N
and f € LY(R?). The Fourier transform Ff = f of f is given by
. 1 .
k) = —— / f@)e*dy Wk e RY (A.18)
(2m)2 JRd

The inverse Fourier transform FU f := f of f is defined by f(z) = f(—z) for all 2 € R%.
Ezample A.26 (Fourier transform of a Gaussian). Let d € N and g € L'(R?) be given by

glz) =€ "2 vz € RY. (A.19)

Then § = g.

Proof. Using (A.3) one immediately confirms that

z|2 d o0 i kN2 k2
i) = [ e = ()
]Rd

holds for all k& € R?. O

Definition A.27 (Multi-indices). Let d € N. A tuple a € N¢ is called multi-indez. Its
size Z?Zl «; is denoted by |a|. For z € R? set 2* = H?Zl 2. For f € Clol(RY) set
0“f = % f. For another multi-index 8 € N& define

b<asViel{l,...,d}: B < .

Of course, if 8 < «, then their difference a—3 = (B1—ax, ..., fa—aq) is again a multi-index.
Finally, define the binomial coefficient (g) = ngl (%1)

79



Lemma A.28 (Leibnitz’ rule). (Cf. [Gra08, equation 2.2.4]). Let d,m € Ny and f,g €
C™(RY). Then for any a € N& with |a| < m one has the multidimensional Leibntiz’ rule

(f9) =3 (%)@ 1) (° ). (A.20)
> (3)

Definition A.29 (Japanese bracket). (Cf. [Tao06l Preface|) Let d € N and & € R?. Denote
by
1
© = (1+1¢P)’
the Japanese bracket of €.

Lemma A.30 (Quasi-subadditivity of (-)*). Let d € N and s > 0. Then the inequality
(r+y)” <2°((x)° + (1)°) (A.21)

holds for all x,y € RY.

Proof. Observe, that because s > 0 the function a — a® is increasing on [0,00). Assume
w.l.o.g. that |z| < |y|. Then one indeed has

@ty (atw?\E (T4 (el )\ 1A\,
<:L‘>S+<y>8§< Ok ) S( L+ P > §<1+|y2> =%

Lemma A.31 (Peetre’s inequality). (Cf. [RT10, Proposition 3.3.31]). Let d € N, s € R
and £, n € R%. Then

O

(€ +m)* <28 (m)el. (A.22)

Definition A.32 (Schwartz space). (Cf. |Gra08, Definition 2.2.1]) Let d € N. For o, 5 €
Ng and f € C®(RY) consider the Schwartz seminorm pag(f) = supycga [2*(0° f)(z)|.
Denote by

S(RY) = {f € C®(RY)| Vo, B € N : pas(f) < oo}

the so-called Schwartz space. The topology on S(R?) is induced by the family of seminorms
(pa,p), i-e.

k—o0 k—o00
fi =7 | & Va, B € NG < pas(fic = f) = 0.
Proposition A.33. (Cf. [Gra08, Proposition 2.2.6] and [Werl8, remark after Definition
V.2.8]) Let d € N and p € [1,00]. Then S(R?) — LP(R?). If p < oo, then S(R?) is even
dense in LP(RY).

Proposition A.34 (Fourier transform on S). (Cf. [Gra08, Corollary 2.2.15]) The Fourier
transform is bijective and continuous on S(R?). Its inverse is continuous and is given by
the inverse Fourier transform.
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Proposition A.35 (Parseval’s theorem). (Cf. [Gra08, Theorem 2.2.14]) Let d € N and

f,9¢€ S(]Rd). Then <f, §> = (f,g). In particular, the Fourier transform F and the inverse

Fourier transform FY uniquely extend to isometries on L*(R%Y) satisfying F o FED =

F o F =idjaray.

Proposition A.36 (Hausdorff-Young inequality). (Cf. [Gra08, Proposition 2.2.16]) Let
d € N and p € [1,2]. Then the Fourier transform F and the inverse Fourier transform
FU uniquely extend to continuous linear operators from LP(R?) to i (RY) satisfying

1F £l = |70 s

Sl v e L. (A.23)

Proposition A.37 (Fourier transform of a convolution in S). (Cf. [Gra08, Proposition
2.2.11]) Let d € N and f,g € S(R?). Then f+gc S(RY), fg € S(RY),

f-46  and  fg= L
(2m)

—

fxg=(2m)

d
2

f*g.

e,

Definition A.38 (Functions of moderate growth). Let d € N. A smooth function f €
C*°(R%) shall be of moderate growth, if every of its derivatives grows at most polynomially.
Denote the space of such functions by

pol

(R = {f € C®RY)|Va e N§:3C > 0,n € No: ¥ € RY|(0%)(@)] < C(1L+ Jal") }

Definition A.39 (Tempered distributions). (Cf. [Gra08| Definition 2.3.3, Proposition
2.3.4]) Let d € N. Denote by S’(R?) the space of continuous linear functionals on S(R?)
(so-called tempered distributions), i.e. for a linear functional u : S(R?) — C one has

uweS RN ©3IC>0,kmeN:VfeSRY : |(u, /)| <C > pas(f).

la|<m,

18I<k

The topology on S’(R?) is the weak *-topology, so

ule—oo>u<:>Vf€S(Rd): (uk—u,f)]H—OO>O.

For a suitable measureable function f : R? — C one obtains a tempered distribution ® f
defined by

@s.9) = [ T@gla)da Vg e SE, (A.20)

if the integral above exists and can be controlled by the sum of finitely many Schwartz
seminorms of g. For example ® : LP(R%) — S'(R%) for any p € [1,00] by Lemma and
Proposition In such cases one often identifies f = ®f.

Furthermore, given an operation A on functions one tries to consistently extend it to an
operation A on tempered distributions, i.e. ®Af = A f. If this is possible one again often

identifies A = A. Some examples relevant to the thesis at hand are shown below.
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Definition A.40 (Operations on S'(R%)). (Cf. [Gra08, Definitions 2.3.6, .7, .11, .15]) Let
d € N. For u € §'(R?%) define

(a) the a-th derivative 0%u of u, for o € N¢, by

(0%u, fy = (1)1 (w,0°f)  VfeSRY,

(b) the reflection @ of u by

(c) the Fourier transform Fu of u by

(Fu, f) = (@ f) = (u, F ) vfeS@Y,

o

(d) multiplication gu with a function of moderate growth g € Cpol(Rd) of u by

(gu. f) = (w.gf)  VfeSRY),

(e) convolution g *u with a Schwartz function g € S(R?) of u by
(geuf)=(ufrg)  VfeSER.

Proposition A.41. (Cf [Gra08, Proposition 2.3.22]) Let d € N, f € S(R?) and u €
S'(RY). Then
. — 1
f-a and fu=

(27)

fru=(2m)?

f*ﬂ.

[S]ISW

Definition A.42 (Support of u € S’(R%)). (Cf. [Gra08, Definition 2.3.16]) Let d € N and
u € 8'(RY). The support of u is defined as the intersection of all closed sets K C R% which
satisfy

supp(f) C K= (u, f) =0 Vf e S(RY).

The set of (tempered) distributions with compact support shall be denoted by &'(R%).

Proposition A.43 (Convolution &'(R?) x S'(R?) — S'(RY)). (Cf. [Via02, subsections
4.2.7,5.6.1]). Letd € N, u € S'(R?) and v € &'(RY). Then

(vru, f) = (uy = (Sy,f))  VfeSRY

defines a tempered distribution uxv € S'(R?), which is called the convolution of u with v. If
v = ®g for a function g € D(RY), then v*u = g*u as given in Definition|A.40. Moreover,

supp(u * v) C supp(u) + supp(v) (A.25)

holds, so in particular wxv € £'(R?), if u,v € &' (RY).
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Proposition A.44. (Cf. [Gra08, Theorem 2.3.21]) Let d € N, u € S'(R?) and 4 € &' (R?).
Then u can be uniquely represented by a function f € C’;ﬁl(Rd) as in (A.24), which is given
by
1 -, < _ <
flx) = — U (oce 1) Vo € RY,
(2m)2

where o € D(RY) satisfying o(y) = 1 for all y € supp(a) is arbitrary. Moreover, f has a
holomorphic extension to C¢.

Proposition A.45. (Cf [Via02, Section 6.5]). Let d € N, u,v € S'(R?) and v € £'(R?).
Then

1
F(fu) = -0 * 1,
(2m)2
where f € ngl(Rd) denotes the unique representation of v as in Proposition M

Lemma A.46. Let d € N, ¢ € S(RY) (symbol) and p1,p2 € [1,00] satisfy p1 < po.
Then the multiplier Operator T, = FYaF is bounded from LP*(R%) to LP?*(R%) and

HT0|’$(LP1,LP2) < |6l for
1 1 1
)
r P P2

Proof. One has LP1(RY) — &'(R?) via Equation (A.24). As ® by construction commutes
with all operations from Definition

1 T 1

T,0f = FoFof =

Q»

*

A
ht!

I
m

(5 f)

M

(2m)2 (2m)2

follows (i.e. T, f is understood as ( 1)d g * f for f € LP1). By the prerequisites r € [1, 0]
2m)2

1 _ 1.1
and 1+ = T Hence, one has

16 fll,, < 511, I1f1,, — VF € LP(RY)
by Young’s inequality (A.11). As o € S one also has & € S by Proposition and so

I1To | (o1, o2y Sa 151l < 00,

where finiteness of the right-hand side follows by Proposition finishing the proof. [J

The operator norm bound in the multiplier estimate above gives rise to the following

Definition A.47 (Fourier-Lebesgue spaces). (Cf. [PTT10, Equation (1.2)]) Let d € N and
p € [1,00]. Then the Fourier-Lebesgue space FLP(RY) is defined as

FLP(RY) = {u € S'(RY)| Fu e LP(Rd)} .

Here, Fu € LP(R?) means that Fu = ®f as in Equation (A.24) and ferr (R%). Another
notation for the Fourier-Lebesgue spaces is (note the dual exponent) LP' (R%) := FLP(R%).
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Fourier-Lebesgue spaces equipped with the norm

[ull 7o (ray = 1Full,

are Banach spaces.

By the Hausdorff-Young inequality (Proposition [A.36) one immediately obtains
Lemma A.48. Let d € N and r € [2,00]. Then L" (RY) < FL"(R%).

For r € [1,2), the situation is more subtle.

Definition A.49 (Bessel potential of order s). (Cf. |[BL76, Section 6.2].) Let d € N and
s € R. Define the operator J° = (I — A)z : &'(RY) — S'(R?) through

Ju=F VO Fu vuS'(RY). (A.26)
The operator J? is called Bessel potential of order —s.

Definition A.50 (Bessel potential spaces). (Cf. [BL76l Definition 6.2.2]). Let d € N,
p € [1,00] and s € R. Then the Bessel potential space H;(Rd) is defined as

HE(RY) = {u e S'(RY)| Jou € Lp(Rd)} .

Here, J*u € LP(R%) means that F(~1)(-)*Fu = ®f as in Equation (A.24) and f € LP(R%).
Another common name for the Bessel potential spaces is (generalized) Sobolev spaces.

Bessel potential spaces equipped with the norm
[ull g (may = Il Full,

are Banach spaces. In the special case p = 2 they are Hilbert spaces and are denoted by
H*(R%).

Lemma A.51. Letd € N, r € [1,2) and s > d (+ — 3). Then H*(R?) < FL"(R?) and the

implicit constant depends on r and s only (i.e. not on d).

Proof. By Hoélder’s inequality one has

follrer = |80 < 10l Bl

for % + % = % The first factor is estimated using hyperspherical coordinates against

(1 + /100 p(s”d)ldp> - (1 — (sp—d) [p(spd)]:"1> g

IN
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and is hence finite, if s > g =d (% — %) This is true by the prerequisites.

The implicit constant in the first estimate does not depend on d, as the maximum of the
surface measure of the unit d — 1-sphere is attained for d = 7. Hence, one has

IS

T
1 S T
e e T (1 + ) el -
r 2

As the right-hand side does not depend on d, the proof is concluded. O

Observe, that for d € N, o € N¢ and f € S(R?), one has

o ) = 1 i ozeik::nA _ (-1) e x " d
@D = g [ e = (R F) @) et

due to Proposition [A-34] and Theorem [A-5] Together with Definition [A740] this proves

°u=FVG0)Fu  Vue S RY. (A.27)

Proposition A.52 (Characterization of Hj via derivatives). (Cf. [BL76, Theorem 6.2.3.])
Let d e N, p € (1,00) and s € Ng. Then

HA(RY) = {f € IP(RY|Vje{l,....d}: 0% f e Lp(Rd)}

and

d
1F Ny ey s 11, + DO fIl,  VF € Hy(RY).

j=1

Here, of course, f € LP(RY) is identified with ®f € S'(RY) and 0°% f is then understood
in the sense of (A.27). Moreover, the fact that 9°%i f = ®g € S'(RY) for a g € LP(RY) is
implied and |0°% f||, is understood as ||g||,,. For f € S(R%), 94 f is the usual derivative,
i.e. g=0% f € S(RY).

In the thesis at hand the following corollary of Lemma [A-40] is heavily used.

Corollary A.53 (Bernstein multiplier estimate). (Cf. [WHO07, Proposition 1.9]). Let
d €N, o € D(RY) and py,ps € [1,00] satisfy p1 < pa. Then the multiplier T, = FVoF is

bounded from LP*(R?) to LP?(R%) and there is a constant C = C <d, p% - p%) such that

d
IToll pzn 1wy < COA+Isupp(@)]) | lolloo + Y 050 |- (a28)
j=1

Proof. Define r € [0, 1] through
1 1 1
()
r pr P2
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By Lemma one immediately has

||To|‘g(Lp17Lp2) < llollzr--

Distinguish between the cases r > 2 (i.e. % > %) and r < 2 (i.e. % > %)

In the first case, one immediately has

1
lollzzr < lloll, < lsupp(o)[ ol < (1 + [supp(a)]) llo]l
by the Hausdorff-Young inequality from Proposition This shows (A.28) with C' = 1.

1 1 1

For the second case, put s .= d. As (; — 5) < 1, one has s > d (% — 5) and hence Lemma

applies. Together with Proposition (for p =2 and s as above) this yields

d
de.: 1
lollrer Sar lolla Salloly+ Y- |00 < Isupp@)(? { ol + D 16°0]
j=1 |a|<d+1

< (W fsupp(@))) [ lloll + Y 0%l
|| <d+1

and hence shows (A.28)) with C' = C(d,r) =C (d L i). The proof is complete. O

’ p1 D2

Interpolation theory

Definition A.54 (Interpolation couple, intermediate space). (Cf. [Tri78, Subsection 1.2.1].)
Let X, Y be complex Banach spaces. If there is a topological Hausdorff vector space V such
that X, Y C V and X,Y < V, then {X,Y} is said to be an interpolation couple. In this
case X NY equipped with the norm

12l xny = max{llzllx,[lzly}  VzeXNY
and X +Y = {zEV‘EIxEXEIyEY:z:x—Fy} equipped with the norm

lell:= " inf (el +llylly]  ¥z€X+Y
rzeX,yeyY

are Banach spaces. Any Banach space Z satisfying X NY C Z C X +Y and
XNY —<Z—=X+Y

is called an intermediate space (w.r.t. the interpolation couple {X,Y}).

Definition A.55 (Interpolation functor, interpolation space). (Cf. [Tri78), Definition 1.2.2/1].)
An interpolation functor F is any “procedure” which, given an interpolation couple { X, X3 },
produces an intermediate space F'({Xo, X1}) such that for any other interpolation couple
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{Yo,Y1} and any T € Z(Xo + X1, Yo + Y1), which satisfies T'|x, € £(X;,Y;) for i € {0,1},
one has
T|F({X0,X1}) € L (F({Xo, X1}, F({Y0, Y1})).

If for a Banach space X there exists an interpolation functor F' such that X = F({ Xy, X1}),
then X is called an interpolation space (w.r.t. the interpolation couple {Xo, X1}.

Real interpolation

Definition A.56 (K-functional). (See [Tri78, Subsection 1.3.1].)  Let {X,Y} be an
interpolation couple. Define the functional K : (0,00) x (X +Y) — R} by

KX V)= inf (el +tyly) (A20)
=TTy
rzeX,yeY

for any ¢ > 0 and any z € X+Y. One often shortens the notation to K (¢, z) = K(t,z; X,Y).

Definition A.57 (Real interpolation spaces (X,Y)q ). (See [Tri78| Definition 1.3.2].) Let
{X,Y} be an interpolation couple, 6 € (0,1) and ¢q € [1,00]. Define the real interpolation
space

(X,Y)pq = {z €EX+Y| ||ZH(ij)9q < oo}, where
1
- adt\y
& _ JUS IR ) for g <o,
(XY)oq - sup [t VK (t, 2)] for g = oo.
>0

Proposition A.58. (Cf. [Tri78, Theorem 1.3.3].) Let 6 € (0,1) and q € [1,00]. Then the
mapping {X, Y} — (X,Y )y, defines an interpolation functor.

Complex interpolation

Definition A.59 (Complex interpolation spaces [X,Y]g). (Cf. |Tri78| Definition 1.9.2].)
Let {X,Y} be an interpolation couple and 6 € (0,1). Set S = {z € (C‘O < Re(z) < 1},
S ={z€C|0 <Re(z) <1} and let F({X,Y}) denote the set of functions f : § — (X +Y)
satisfying

(i) f € Cp(S,X +Y) and f is analytic on S with values in X +Y,

(ii) t— f(it) S Cb(R, X), t— f(l + it) S Cb(R, Y)

Define the complex interpolation space

(X, Y]p={z€X+Y|3f e F{(X,Y}): 2= f(0)} (A.30)
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equipped with the norm

el = nt e {sup 7o)l smp L+ 0l f. (as)
FeR(XYY) * ©

Proposition A.60. (Cf. [Tri78, Theorem 1.9.3].) Let 8 € (0,1). Then the mapping
{X,Y} — [X,Y]g is an interpolation functor. Moreover, X NY is dense in [X,Y]p and if
X=Y onehas [X,)Y]p=X =Y.

Lemma A.61. Let {X,Y} be an interpolation couple, a,b >0 and 0 € (0,1). Then
[G“X7 bY]@ = a1—0b0 [X7 Y]@a

where the equality above means not only the equality of sets but also the equality of norms.

Proof. As F:= F({aX,bY}) = F({X,Y}), the equality Z := [aX,bY]s = a' 90[X, Y]y as
sets is apparent from Equation (A.30)).

For the equality of norms, fix any z € Z and consider any € > 0. By Equation (A.31]), there
is an fo € F such that fy(d) = 2z and

a1~ max {sup 1 f0(is) 1 - sup [ fo(1 + it>||y} =
seR teR

Set gg = (%)Z_e fo and observe that gy € F, go(0) = fo(0) = z,

. a\ is—0
sup [lgo(is)|l,x = asup (5>

a ) Re(is—0
seR seR

IG5l = asup [ (2

0.0 .
= o' % Suﬂgﬂfo(ls)ﬂx < 2llar-oporx,y7, T€
sE

)
[ fo(is)ll x

and similarly
ilelﬂlg lg0(L +it)[lpy < HZHal—HbG[X,Y]g +e

Hence
”ZH[aX,bY]g < max {SUP 190(i5) [ ox » sup [lgo(1 + it)”bY} < ||Z||a1*9b9[X,Y}g +e
seR teR
and thus [|z|;,x pv), < |2lla1-0p0[x v, for any z € Z, because € > 0 was arbitrary.

and b == %. Then, X = aX,

ISHl

To show the converse inequality, set X =aX,Y =bY,a:=
Y =bY and, by the above, one has

—61.6 —0160
HzHal_ebe[X,Y]g =a'"% HZH[aX,BY]e <a'™% HZHal—HBH[)”(,?]g = ”ZH[aX,bY]g Vze Z.

This finishes the proof. O
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Ezample A.62 (Riesz-Thorin). (Cf. [Tri78, Theorem 1.18.6/2 and the proof of Theorem
1.18.7/1]). Let (£2, A, u) be a o-finite measure space, pg,p1 € [1,00] and 0 € (0,1). Define

p € (1,00) via
1 1-6 6
+

p bo b1

Then
[LP(Q), L ()], = LP (),

where the equality above means not only the equality of sets but also the equality of norms.

Theorem A.63. (Cf. [Tri78, Definition 1.10.1 and Theorem 1.10.3/1].) Let {X,Y} be an
interpolation couple and 6 € (0,1). Then [X,Y]s — (X, Y)(,00)-

Ezample A.64 (Complex interpolation of I{(Z¢, LP(R?)) spaces). Let d € N, pg, p1 € [1, 00]
and qo,q1 € {0} U [1,00] such that gy # 0o or ¢; # co. Furthermore, let sp,s1 € R and
6 € (0,1). Define s := (1 —60)sg + 0s; € R and p € [1, o0] via

1 1-6 6

i + =

p Do D1
Finally, define ¢ € {0} U [1, 00) via

1 1-6 6

R + —,

q q0 T
in the case gy # 0 and ¢; # 0. For the other cases, set

25 for qo # oo and q1 = 0,

qg=1% for go=0and g # oo,

0 otherwise.

Then
[190(27, L (RY)), 191(Z7, LP* (R))]g = 14(27, L (RY)),

1YS1

where the equality above means not only the equality of sets but also the equality of norms.

Proof. Observe, that L° is canonically equipped with the topology of local convergence in
measure and M =[], ;4 LY from Deﬁnitionwith the corresponding product topology.
With this topology, M is a Hausdorff vector space and [ (LPi) — M, for i € {0,1}. Hence,
{138 (24, LPo(RY)), 12} (¢, LP* (R?)) } is an interpolation couple and the notion of the complex
interpolation space [120(Z4, Lo (R?)), 1% (Z%, LP1 (RY))]g makes sense.

For every k € Z% set Ay, := (k)*0LPo, ie. Ay = LP(R?) as sets and
1flla, = RNl VS € A

Define in the same way By = (k)*'LP! for every k € Z?. By [Tti78, Theorem 1.18.1 and
Remarks 1.18.1/1-3| one has that

120 (z, Lo (RY)), 1324, L (RY))]g = (1% (A), 1 (By,)]o = 1([Ak, BiJo), (A.32)
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where the equalities above also mean the equalities of norms.

Observe, that by Lemma and Example one has
[Ar, Bilg = [(K)S°LPO, (k)*1LP1]g = (k)S[LP0, LP']g = (k)*LP  Vk € Z4,

where, again, the equalities above also mean the equalities of norms. Inserting this equality
into Equation (|A.32)) finishes the proof. O

For the case g9 = ¢1 = oo, which is not covered by Example [A.64] more can be said if
additionally pg = p1 = p € [1,00]. One has for sg,s1 € R with s9 # s1, € € (0,1) and
s =(1—0)sg+ 0s; that

(15 (LP), 135 (LP)]g = 13(LP)

1781

(the proof of this statement is along the lines of the proof of [Tri78, Equation (1.18.1/16)]).
Of course, if s = s1 = s € R, then
(Lo (L), 13 (LP)]g = 15°(LP)

1781

by Proposition
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