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Abstract

The growing demand for higher performance and lower environmental impact
of tribological devices has led to the development of textured surfaces as ef-
ficient way to reduce friction losses and wear. Great part of the tribological
research of such engineered surfaces relies on experimental set-ups based on
pin-on-disc tribometers. The aim of the present work is the numerical repre-
sentation of such kind of experimental set-ups in order to study the influence
of textures in the hydrodynamic regime.
In the initial analysis of the mentioned set-up, particular attention is paid to the
high-resolution representation of the macroscopic geometry of the contact. In
this regard, the influence of the velocity gradient in the plane of rotation is
investigated and compared to experimental studies. The role of inertia effects
is then examined by means of the Navier-Stokes equation and the validity of
the Reynolds equation is investigated for 3D dimples resulting in the extension
of previous literature results. The effects of viscous dissipation are also con-
sidered in order to assess their influence on the pressure losses in the contact,
which are found to scale with the square of the Sommerfeld number.
Finally, the influence of the operating conditions on the optimal shape param-
eter of a texture made by dimples is investigated by means of an extensive
parametric study. As a result, the dimple depth is shown to have a higher
impact on the texture performance than the diameter. Moreover, the dimple
depth, which corresponds to the minimal friction coefficient, is found to scale
with the square root of the Sommerfeld number in agreement with experimen-
tal investigations on the same tribometer.
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Kurzfassung

Die wachsende Nachfrage nach höherer Leistung und geringerer Umweltbe-
lastung durch tribologische Geräte hat zur Entwicklung strukturierter Ober-
flächen geführt, die Reibungsverluste und Verschleißphänomene reduzieren
können. Ein großer Teil der tribologischen Forschung an solchen Oberflächen
beruht auf experimentellen Untersuchungen, die auf Pin-on-Disc-Tribometern
basieren. Ziel der vorliegenden Arbeit ist, die numerische Darstellung dieser
Experimente und die Untersuchung des Einflusses von Texturen im hydrody-
namischen Bereich.
Bei der ersten Analyse des Pin-on-Disc-Tribometers wird besonders auf die
hochauflösende Darstellung der makroskopischen Geometrie des Kontaktes
geachtet. In dieser Hinsicht wird der Einfluss des Geschwindigkeitsgradienten
in der Rotationsebene untersucht und mit experimentellen Studien verglichen.
Die Rolle von Trägheitseffekten wird anhand der Navier-Stokes-Gleichungen
analysiert und die Gültigkeit der Reynolds-Gleichung für 3D-Dimples über-
prüft. Die Auswirkungen der viskosen Dissipation werden ebenfalls berück-

Schließlich wird mittels einer umfangreichen Parameterstudie der Einfluss von
Betriebsbedingungen auf die optimalen Formparameter einer durch Dimples
strukturierten Oberfläche untersucht. Als Resultat dieser Untersuchung folgt,
dass die Tiefe der Dimples einen höheren Einfluss auf die gesamte Kontakt-
leistung hat als der Durchmesser. Darüber hinaus wird gezeigt, dass die Tiefe
der Dimples, die dem minimalen Reibungskoeffizienten entspricht, mit der
Quadratwurzel der Sommerfeldzahl skaliert und damit in Übereinstimmung
mit experimentellen Untersuchungen am gleichen Tribometer steht.

iii

sichtigt, um deren Einfluss auf die Druckverluste im Kontaktbereich zu be-
timmen, die mit dem Quadrat der Sommerfeldzahl skalieren.s
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1 Introduction

Nature is the source of all true knowledge. She
has her own logic, her own laws, she has no effect
without cause nor invention without necessity.

Leonardo da Vinci

The interaction between moving surfaces is a concept which is at the heart
of innumerable phenomena in the nature. Whether in the joints of a human
skeleton, in rolling elements of a jet turbine, or in crucial components on a
space station, no natural events nor human-designed devices are exempt from
the action of friction and wear. The intrinsic multidisciplinary character of
these two physical phenomena aroused the interest of mankind since the an-
cient times and particularly regained great attention in Renaissance with the
pioneering studies of Leonardo and subsequently during the industrial revolu-
tion [1, 2]. Nonetheless, the definition of the concept of tribology in terms of
scientific discipline and economical implications originated first in the second
half of the twentieth century thanks to the work of Jost [3]. By means of a
careful analysis of the state of lubrication research in different industrialized
countries, the Jost Report and many following independent studies estimated
a potential annual saving ranging from 1% to 1.4% of a country’s GDP [4–6].
Furthermore, such saving is deemed to be achievable with a very convenient
return on investment ratio of 1/50, implying a saving of 50 $ for each dollar
spent in research and development in the previous year [4, 7]. Particular em-
phasis is laid on the role of tribological progress in transportation, industrial
and utilities sectors, where it has been estimated that up to 11% of the used
energy can be saved by the application of the new developments in tribology
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1 Introduction

[8, 9]. In view of such relevant potential impact, the advance in the field of
tribology is nowadays of utmost importance to address the economical and
environmental challenge and also to cast light on a plenty of phenomena in
nature which characterize our everyday life.

1.1 Motivation

In the last decades, the research on tribology has spread in numerous branches,
ranging over multidisciplinary areas such as lubricants development [10, 11]
surface coating [12, 13], or the optimization of automotive and industrial ap-
plications [14, 15]. Among these research fields, the enhancement of the tribo-
logical performance through the introduction of surface textures has drawn a
considerable attention in the research community [16]. Surface texture nowa-
days represents an interesting technology for the reduction of friction and wear
thanks to recent advancements in the laser surface texturing techniques (LST)
which reduced the production costs and increased also the manufacturing pre-
cision [17].

However, an unanimous consensus in the research community has not been
reached yet, for what concerns the underlying physical mechanisms and the
possibility to obtain an optimal texture design which proves to be robust un-
der different operating conditions [18]. In order to bridge this gap, a more
and more increasing part of literature combines experimental and numerical
works [16]. Among them, the present work represents the numerical counter-
part of the three experimental studies on surface textures which were carried
out with a pin-on-disc tribometer [19, 20, GMB+15]. For this reason, this in-
troduction will first focus on the state of art of the experimental and numerical
research carried out with pin-on-disc tribometers, leaving further extensions
in the literature survey of each following chapters. [19, 20]

In the investigation of surface textures two main approaches are usually
adopted. In the first case, the whole component is studied in the framework
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1.1 Motivation

of the final application, while in the second one, the tribological contact is
isolated and investigated in a simplified system. To the first category belong
most of the studies on thrust bearings [21–25], journal bearings [26, 27], seals
[28, 29] or piston rings [30–32]. This first approach has the advantage to allow
the investigation of the impact of surface textures on the final performance of
the considered device. On the other hand, the increased complexity of the set-
up reduces the feasibility of extensive studies with different texture designs.
Therefore, a consistent part of the experimental research on surface texture
is carried out with tribometers in pin-on-disc configuration. This kind of ex-
perimental apparatus has the great advantage of reproducing a generic sliding
contact in a simpler and controlled way, still giving the possibility to analyze
the influence of a large set of design parameters. Moreover, it allows to test
different texture designs more rapidly due to the easiness in changing the tex-
tured specimen. This feature can be also exploited in order to easily investigate
the combined effects of textures on different materials, as done, for example,
by Wakuda et al. using silicon nitride ceramic pin on hardened steel disc [33]
or combining special surface treatment [34] or different steel alloys [35].

One of the first papers which investigated the effectiveness of surface textures
with a pin-on-disc tribometer was presented by Kovalchenko et al., who found
that, if properly designed, surface textures can extend the hydrodynamic range
for both high- and low-viscosity lubricants, leading to lower friction coeffi-
cients under the same operating conditions [36]. The experimental work by
Braun et al. [19] comes to similar conclusions and also points out that the shift
of the hydrodynamic range scales in good agreement with the operating condi-
tions. The results of this experimental work will be further analyzed in chapter
4 of the present thesis. The change of lubrication regime induced by surface
textures is further investigated by Zhang et al. under mixed and starved lubri-
cation regime [37]. A similar approach based on pin-on-disc tribometers was
also used by Scaraggi et al. in two works [38, 39], showing that friction reduc-
tion can be achieved by surface texturing in both mixed and lubrication regime.
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1 Introduction

The results of the above-mentioned studies confirm the different working prin-
ciples which have been identified also through other experimental techniques
and numerical analyses. These can be resumed as follows: firstly, in the
boundary regime or under starvation conditions, textures are deemed to act as
lubricant reservoirs [33, 40], hence providing lubricant to the contact and at the
same time entrapping wear debris and reducing third-body abrasion [41, 42].
Secondly, thanks to the reduction of contact area, the probability of adhesive
wear and the static friction may be diminished [43, 44]. Finally, the pres-
ence of texture can generate an additional hydrodynamic lift that can increase
the load-carrying capacity in mixed and hydrodynamic regimes. More specif-
ically, the hydrodynamic lift can be induced by inertial effects [45, 46], by
an asymmetrical pressure distribution caused by cavitation [47] or by partial
texturing [48, 49].

A part of these hydrodynamic effects is investigated also by means of joint ex-
perimental and numerical works based on pin-on-disc tribometers. For exam-
ple, Ramesh et al. combine the experimental activity with a numerical model
based on the Navier-Stokes equation which analyzes the increased pressure
distribution over a dimpled surface due to nonlinear effects [50]. Their model
is used to predict the friction coefficient as function of the texture shape, al-
though the numerical part focuses only on a single texture element, because
of the high computational cost of Navier-Stokes simulations.

Once assessed the positive influence which surface textures can have on the
tribological performance, the focus can be moved to the optimization of differ-
ent design parameters, such as the texture arrangement and its density. In this
regard, Yu et al. integrate the pin-on-disc measurement with a numerical anal-
ysis based on the Reynolds equation in order to cast light on the influence of
different texture arrangements [51]. In particular, they study the disposition of
rows of dimples as a function of the shift between every line, showing that an
optimum value can be found which minimizes the friction coefficient. How-
ever, cavitation phenomena are neglected and little information is provided
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1.1 Motivation

about the mesh and the numerical framework, leaving some questions opened.
For this reason, a similar experimental analysis was carried out by Schneider
et al. in 2017, by varying the shift between consecutive dimple rows in a more
systematic way [20]. A numerical analysis based on this experimental results
is performed in this thesis and its results are shown in section 4.5.

The pin-on-disc set-up is used also for the investigation of different texture
shapes, as done for example by Morris et al. [52]. In this respect, particular
attention has to be paid to the precise investigation of various dimple shapes
without changing other sensitive parameters, such as texture density and dim-
ple depth, as underlined by Etsion in [18]. Some pin-on-disc tribometers can
also employ rotating discs made out of transparent materials, in order to allow
the identification of cavitation zones in the macro contact as well as inside the
texture [53], or in order to measure the size of the contact area [54].

As a matter of fact, great part of the experimental activity on textured surfaces
is carried out with pin-on-disc tribometers. For this reason, it has become im-
portant to investigate the influence of certain characteristic parameters of such
an experimental device also from the numerical point of view. In this regard,
the work of Greiner et al. [GMB+15] analyzes the impact of the distance be-
tween the specimen and the center of rotation on the friction coefficient with
and without textures. The experimental evidence, which shows lower friction
at higher distance, is also confirmed numerically through CFD simulations,
whose details are presented in the present work in section 2.3.1. Other works
in literature investigate the pin-on-disc tribometer without texture with the aim
to give useful insights on the physical peculiarities which characterize it, such
as dry friction and wear phenomena [55, 56] and viscous heating [57].

More generally, for what concerns the numerical representation of pin-on-disc
tribometers, most of the works in literature consider two main hypotheses,
namely that the specimen is untextured and that its shape is assumed to be
spherical. This geometry is also known as ball-on-disc and is typically studied
in the framework of elastic hydrodynamics (EHD) due to the possibility to

5



1 Introduction

obtain an analytical solution with such a contact shape [58, 59]. Numerical
solutions of the EHD problem were proposed, among others, by Lubrecht
and co-workers [60, 61] through multigrid methods, by Doki-Thonon et al.

for non-Newtonian lubricants [62] and by Habchi et al. [63] by employing
a finite element solver for the contact mechanics coupled with the Reynolds
equation. Thermodynamics can also be added to elastohydrodynamic models
(TEHL) for both Newtonian [64, 65] and non-Newtonian fluids [66] through
the coupling of the Reynolds equation with the energy one. Alternatively to
the Reynolds equation, Bruyere et al. solved the compressible Navier-Stokes
equations in the case of sliding line [67], providing a physical description also
across the gap height.

However, the computational power required by the aforementioned works lim-
ited the analysis to untextured surfaces or even to 1D contact line. This issue
becomes even more evident when cavitation phenomena are considered, be-
cause of the relatively low convergence speed of the usual iterative schemes,
such as, for example, the p−θ algorithm by Elrod and Adams [68]. In this re-
gard, a big step forward has recently been done by Woloszynski et al. in 2015
by developing a mass-conserving cavitation scheme based on the so-called
Fischer-Burmeister-Newton-Schur (FBNS) algorithm [69]. This algorithm,
which solves the cavitation problem in the framework of an unconstrained
optimization, presents a convergence speed which is up to two orders of mag-
nitude faster than previous methods.

As a conclusion to this literature survey, the relevance of the pin-on-disc tri-
bometer for the experimental investigation of surface textures is highlighted
and the numerical works based on this set-up are introduced. To the author’s
knowledge no previous work addressed the numerical representation of the
full-size specimen of pin-on-disc tribometer with mass-conserving cavitation
algorithm in order to investigate the impact of surface textures.

6



1.2 Objectives and procedure

1.2 Objectives and procedure

The objective of this thesis is the numerical representation of a pin-on-disc
tribometer in order to study the influence of surface textures in tribological
contacts. The path to achieve this goal can be divided in two major parts. The
first one concerns the analysis of the physical phenomena which characterize
the hydrodynamic regime in order to determine which of them needs to be
modeled and which spatial scales needs to be considered for the analysis of
surface texture in this lubrication regime.

Therefore, the large-scale effects, namely those induced by the macro-geometry

of the tribometer, are addressed by means of direct numerical simulations with
the Navier-Stokes equation. In this framework, both the role of different set-up
configurations and inertia effects are analyzed. The latter are further analyzed
at smaller scales, namely on a single texture element, through the comparison
between the Navier-Stokes and the Reynolds equations.

Subsequently, the impact of thermodynamic effects is discussed, focusing on
the influence of viscus dissipation on the pressure and temperature distribution
in the lubricant film. For this analysis both the Navier-Stokes and the Reynolds
equations are coupled with the energy equation and particular attention is paid
to the efficient implementation of the thermal-Reynolds solver. In this way, a
comprehensive parametric study can be carried out under different operating
conditions in order to assess the scaling of viscous dissipation effects.

In the second part of this work, the high-resolution representation of the ex-
perimental set-up is used as basis for an extensive and systematic study of tex-
tured surfaces. Thanks to the prior analysis about the modeling of the hydro-
dynamic effects, the incompressible Reynolds equation with mass-conserving
cavitation is chosen as the best compromise to grant good accuracy and high
computational performance. The pin geometry is firstly studied in the frame-
work of a sensitivity analysis, focusing on the part of the domain in which the
presence of a texture improves the tribological performance. Subsequently,
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1 Introduction

optimal texture parameters, both in terms of load-carrying capacity and fric-
tion reduction, are studied with respect to the operating conditions; particu-
larly viscosity, velocity and gap height. The resulting scalings and trends are
finally compared to the previous experimental analysis carried out on the same
set-up and generalized with respect to the Sommerfeld number.
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2 Fundamentals

This chapter introduces the tribometer set-ups and the numerical models which
are used to describe the physical phenomena in the hydrodynamic regime.
Moreover, a preliminary analysis is discussed which deals with the impact
of important set-up parameters, such as the sliding radius and relevant flow
aspects, such as inertial effects.

Tribometers can actually operate under different lubrication regimes, which
are consequently dominated by different physical phenomena. A conceptual
representation of the different regimes is depicted by the Stribeck curve [70]
as shown in figure 2.1. The abscissa in the figure represents the dimensionless
number, also referred to as the Hersey number, which is defined as follows:

H=
µΩ

W
(2.1)

where µ is the dynamic viscosity, Ω the relative angular velocity and W the
average load applied.

Low Hersey numbers usually correspond to a small gap height and identify
the boundary lubrication regime, in which there is a significant asperity con-
tact and a lack of lubricant, leading to high friction coefficients (the latter is
defined in followings in equation 2.2). As the Hersey number increases, a
noticeable decrease of the friction coefficient can be detected. This is due to
the increasing thickness and the contribution to the load-carrying capacity as a
result of the pressurized lubricant flow between the reciprocating surfaces. In
this regime the tribological properties are very sensitive to both the interaction
between the asperities and the operating conditions concerning the lubricant

9
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Figure 2.1: Stribeck curve as a function of the Hersey number H. The friction coefficient is
computed as the ratio between the tangential and the normal force acting on one of
the reciprocating surfaces. Adapted from Hamrock et al. [71].

flow. As the Hersey number increases again, the friction coefficient reaches
a lower plateau which corresponds to the onset of the hydrodynamic regime.
In this regime the two surfaces are adequately separated by the lubricant film
and the contact between asperities is negligible. Even if the two surfaces are
well separated, elastic deformations can still be induced by pressure distribu-
tion in the fluid film. Therefore a further distinction can be made between the
hydrodynamic regime and the elastohydrodynamic one [71].

As mentioned before, several studies have proven that surface textures work
mainly in the mixed and hydrodynamic lubrication regime [19, 26, 38, 72].
This is because, among the several benefits which are introduced by surface
textures, the creation of an additional hydrodynamic lift is the most promi-
nent one and also the one which can better be captured by theoretical models
[16]. For this reason, the present work focuses only on the hydrodynamic
regime and further analysis in the mixed lubrication region are left to future
investigations.

10



2.1 Pin-on-disc tribometer

Nonetheless, the modeling of the hydrodynamic regime requires the accurate
analysis of the impact of many physical phenomena, such as inertia, thermal
effects and cavitation. After presenting the geometry of the tribometer, this
chapter focuses on the modeling of the three above-mentioned physical phe-
nomena in the hydrodynamic regime.

2.1 Pin-on-disc tribometer

A tribometer is an instrument which allows to measure tribological quanti-
ties, such as friction and wear in a controlled and reproducible manner. It is
based on the basic principle of reproducing a sliding contact in a simplified
way by focusing on the interaction of two surfaces whose characteristics are
representative for more complex designs.

There exist different configurations of tribometers, depending on which of the
two surfaces is set in motion and the shape of the indented specimen. The
configuration considered in this work is shown in figure 2.2 and consists of
a rotating disc whose shaft is loaded in the axial direction by a prescribed
normal force FN . The pin is underneath the disc and is fixed to the lower part
of the set-up through a self-aligning support which allows the pin to pitch in
order avoid misalignments during the mounting procedure of a new pin. This
configuration is the so-called pin-on-disc and is widely used for the study of
surface textures, since it allows to change the specimen more easily than other
experimental instruments.

According to its definition, the friction coefficient C f is measured as the ratio
between the tangential force FT resulting from the contact and the force FN

applied on the rotating shaft:

C f =
FT

FN
. (2.2)

11



2 Fundamentals

Ω,𝒯

𝐹𝑁

pin pin holder

rotating disc

oil bath

Figure 2.2: Schematic representation of the tribometer used in the experimental investigations
([GMB+15, CFM+18], [19, 20]) and analyzed in the present work.

The tangential force can either be measured through a torque measurement on
the shaft or directly through the measurement of the force acting on the pin.

Even though two tribometers are used in the experimental campaigns consid-
ered in this work, namely a Plint TE-92 HS (from Phoenix Tribology ltd) and
a CSEM (CESM Instruments, Peseux, Switzerland), the principle of the mea-
surement chain is the same. The shaft connected to the disc includes an in-line
force transducer for the measurement and feedback control of the load. The
tangential force is measured through a strain gauge force transducer mounted
on a bracket attached to the upper plate. A temperature sensor provides the
feedback for the control of the oil temperature, which can be set up to 200 ◦C.

In both tribometers, new lubricant oil is constantly fed into the contact through
a duct in the lower part which is placed in front of the specimen. Although
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2.1 Pin-on-disc tribometer

the presence of this feeding line is very important in order to assure the re-
producibility of the experimental measurements, its hydrodynamic influence
is negligible and will not be considered in the numerical representation of
the set-up.

The operating and geometrical parameters that characterize the experimental
activity with a tribometer can be classified in three main groups as follows:

• Tribometer’s settings: the two first operating inputs are the normal force
FN applied on the disc and the angular velocity Ω of the shaft. A third
geometrical parameter concerns the distance between the specimen po-
sition and the center of rotation of the disc. This distance is also referred
to as the sliding radius Rs (see [GMB+15]) and its influence is analyzed
in detail in section 2.3.1.

• Lubricant: the oil bath can be kept at a prescribed temperature during
the running of the experiments. That way, the viscosity µ of the lubri-
cant can be fixed.

• Specimen/pin: the most relevant parameter of the pin is the shape of the
surface, which can be either nominally flat or slightly curved as shown
in Figure 2.3. In case of a curved surface, an important parameter is the
shoulder height sh, which is defined in figure 2.3 as the height between
the center of the pin and the edge. In the definition of the surface shape
also the following geometrical parameters play a role: the pin radius
Rpin and the height of the side of the pin hside which is the distance
between the edge of the pin and the lower pin support.

In addition to these parameters, a very crucial one is the gap height H, which
cannot be fixed a priori since it results from the balance between the pressure
distribution in the contact and the applied load. Moreover, the pin is mounted
on a self-align holder consisting of a half gimbal mechanism which can pitch.
This property of the pin holder is exploited at the beginning of each tribologi-
cal test when the disc is pressed against the pin in order to assure that the pin
surface is perfectly aligned with the upper disc surface.

13



2 Fundamentals

Figure 2.3: Profile of the three different kinds of pin as measured with optic profiler instruments
from the experimental set-ups. Pin A is used in the experimental campaigns reported
in [19, 20], pin B comes from [CFM+18] and pin C is used in [GMB+15]. Please
note that the y-axis is 1000 times magnified. The reference gap height H is defined in
the center. The surface profile of pin B is magnified in order to show the roughness
profile, the maximal measured height variation is δh = 0.047µm. The lengths of the
zoomed box are expressed in mm.

The alignment is considered to remain stable during the run of the experiments
because of the high friction which characterizes the contact between the pin
holder and the lower support of the tribometer.

All the textured surfaces considered in this work consist of dimples which are
obtained through laser surface texturing (LST). The shape of the dimples is
self similar and they resemble the shape of a sphere indented in the surface.
The geometrical definition of the texture is explained in detail in chapter 4.

Four experimental campaigns were carried out with the above-described tri-
bometer set-ups. In the following, a brief summary is provided about the main
technical aspects of these experimental activities (see also table 2.1), which
were subsequently analyzed from the numerical point of view in the present
work. The experimental evidences out of the above-mentioned campaigns
[19, 20, GMB+15,CFM+18] are then discussed in detail in section 2.3.1 with
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2.1 Pin-on-disc tribometer

regard to the preliminary analysis and in chapter 4 focusing on the other exper-
imental campaigns. Three oil lubricants were considered in the experimental
campaigns. The numerical modeling of the oil properties is considered in de-
tail in appendix A. The four mentioned analyses are listed in the following:

• Preliminary analysis. This preliminary analysis concerns the influence
of the sliding radius Rs on the friction performance of both textured and
untextured pins. The tribological tests are carried out with two different
sliding radii Rs = 10 mm and Rs = 18 mm. The tribometer from the
CSEM instruments was employed, using brass pins and saphire discs,
which are proved to have a very low wear rate [44, 73]. An arithmetic
mean surface roughness of Ra = 10 nm was measured for both the sur-
face of the disc and the pin through atomic force microscopy (AFM).
The chosen lubricant oil is the additive-free mineral oil FVA No.1 and
the experiments were carried out at room temperature T = 22◦C. Fur-
ther details can be found in the work of Greiner et al. [GMB+15].

• Influence of viscosity on the optimal diameter. In this experimental
campaign the Stribeck curve of textured pins with different dimple di-
ameters ranging from 15 µm to 800 µm are investigated at two different
temperatures. This analysis is carried out with the Plint TE-92 HS tri-
bometer. The disc consists of steel 100 Cr6 while the pin is made out
of normalized steel C85. The lubricant oil employed is an additive-free
poly-alpha-olefin PAO-18. The results of this experimental campaign
were firstly presented by Braun et al. in [19] (2014) and are further
explained in chapter 4.

• Disposition of the texture pattern. In the recent analysis by Braun
et al. [20] (2017), the influence of the dimple disposition is investigated
by testing different dimple arrangements ranging from a quadratic dis-
position to a hexagonal one. This experimental analysis uses the same
tribometer settings as the one above. The numerical investigation of this
experimental campaign is exposed in section 4.5.
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• Partial texturing. This last analysis about the impact of partial tex-
turing (see [CFM+18]) employed the CSEM tribometer with a steel
100Cr6 disc. The pin is made out of cemented carbide WC-Ni and was
hardened and polished in order to have a very flat surface whose max-
imal height variation is δh = 0.047µm. The lubricant is a automotive
oil Shell V-Oil 1404 and the experiments were carried out at room tem-
perature T = 22◦C. The corresponding numerical analysis is presented
in section 4.3.

2.2 Governing equations of the lubricant film

In the present work, the dynamics of continuum Newtonian fluids in laminar
flows is considered. In such a framework, the Navier-Stokes equations rep-
resent the most complete way to describe the physics of the fluid, which is
mainly characterized by the effects of inertia, pressure and viscosity. There
is, however, a category of flows known as "slow viscous motion" in which the
pressure and the viscous terms predominate. To this category belong most of
the fluid film lubrication problems which are typical of tribological applica-
tions in the hydrodynamic regime. For this class of flows the Navier-Stokes
equation can be simplified in order to deal with a more compact set of equa-
tions, such as the Stokes equations or a scalar equation, such as the Reynolds
one. The latter represents one of the most widely used equations in the de-
scription of thin film lubrication due to its relative easiness of implementation
and the lower computational cost [16].

For what concerns the hypotheses on the fluid and on the flow which are con-
sidered in the present work, the following observations have to be made. In
the first place, the assumption of continuum fluid is easily fulfilled, as long
as the analysis concerns the hydrodynamic lubrication, where, due to the rel-
atively high gap height, the Knudsen number is generally small. Secondly,
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2.2 Governing equations of the lubricant film

the hypothesis of laminar flow is also fulfilled, as the maximal Reynolds num-
ber (based on the gap height) considered in the present work remains always
small enough (see sections 3.2 and 4.4). Finally, the assumption of Newto-
nian fluid is considered valid for most of the analyses performed, since the
shear rate remains relatively small for most of the cases. The validity of this
assumption will be further discussed in chapter 4 for what concerns certain

preliminary

analysis

optimal

diameter

dimple

disposition

partial

texture

tribometer CSEM
Plint

TE-92 HS

Plint

TE-92 HS
CSEM

disc material saphire steel 100Cr6 steel 100Cr6 steel 100Cr6

disc diameter 50 mm 70 mm 70 mm 70 mm

sliding

radius
varying 30 mm 30 mm 30 mm

pin type C A A B

pin diameter 7.2 mm 8 mm 8 mm 7.77 mm

pin material brass
normalized

steel C85

normalized

steel C85

cemented

carbide

WC-Ni

lubricant
mineral

oil FVA
PAO-18 PAO-18

Shell

V-Oil 1404

normal force FN 12 N 150 N 150 N 15 N

reference

publication
[GMB+15] [19] [20] [CFM+18]

Table 2.1: Survey of the tribometer set-ups out of the experimental campaigns whose numerical
representation is considered in this work.
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particular conditions which are taken into account in the parametric study
about surface textures.

In the following, the governing equations for the modeling of the fluid film
lubrication are presented in a top-down approach, starting from the most com-
plete one, namely the compressible Navier-Stokes equations, to the most com-
pact and computationally efficient one, namely the Reynolds equation.

2.2.1 Navier-Stokes equations

Both the compressible and the incompressible Navier-Stokes equations are
considered in the present work for a steady flow. The steady-state compress-
ible Navier-Stokes equations are a partial differential set of equations which
represent the conservation of mass, momentum and energy and can be written
as follows:


∇ · (ρu) = 0

ρ (u ·∇)u+∇p = ∇ ·σ

∇ ·
[(

ρet + p
)
·u
]
= ∇ · (kT ∇T +u ·σ)

(2.3a)

(2.3b)

(2.3c)

where p,T and ρ are pressure, temperature and density, respectively while
u is the three dimensional velocity vector. The variable et is the specific total
energy and can be expressed as et =CvT + 1

2 |u|
2 for a fluid whose specific heat

capacity Cv does not depend on temperature. The viscous stress tensor can be
expressed as σ =

(
2µD(u)+ λ̂ (∇ ·u)

)
, where µ is the dynamic viscosity

and λ̂ =− 2
3 µ is the dilatational viscous coefficient and kT is the temperature

diffusion coefficient.

In order to be closed, the set of equations 2.3 also needs to be coupled with
an equation of state (EOS) for the fluid ρ(p,T ) and a constitutive law for
the dependence of the viscosity on pressure and temperature µ(p,T ). Two
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2.2 Governing equations of the lubricant film

equations of state are considered in this work, namely the stiffened gas equa-
tion of state and the Dowson-Higginson one while the lubricant is assumed to
behave as a Newtonian fluid whose viscosity varies exponentially with tem-
perature. Both equations of state and the viscosity constitutive law are pre-
sented in detail in appendix A for the three different lubricant oils which are
considered in this work.

The set of equations 2.3 is discretized through the finite volume method and
implemented in the in-house solver KIT-SPARC [74]. The code is imple-
mented in FORTRAN 2003 while the parallelization relies on the message
passing interface (MPI) and is based on a multi-block structured grid. In
order to converge faster to the steady state, the solver employs a full multi-
grid approach and the pseudo time integration is done using a 4th order ex-
plicit Runge-Kutta method. Steady state simulations are carried out until the
residuum drops below 10−5 on the finest grid. Both convective and diffusive
fluxes are discretized in space with a second order accuracy scheme.

The use of a compressible approach for such slow motion problems can lead
to stiffness-related problems due to the hyperbolic nature of the compress-
ible Navier-Stokes equations. In order to cope with this well-known issue
[75], a preconditioner is employed with the aim of obtaining a stable and fast
convergence even at the very low Mach numbers which characterize typical
tribological systems.

Particular attention has to be paid in the assignment of the boundary condi-
tions of the compressible Navier-Stokes equations, since they cannot be freely
prescribed [76]. In the simulations considered in this work, the flow remains
always subsonic. Therefore only four out of five boundary conditions can be
prescribed at the domain inlet while the fifth one has to be assigned at the
outlet. Further details about the mesh generation and the boundary conditions
are given case by case while presenting the simulations carried out with the
compressible Navier-Stokes equation in sections 2.3.1, 2.3.2 and 4.1.
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Also the incompressible Navier-Stokes equations are considered in the present
work, mainly with the aim to study the impact of inertia in the texture scales.
The incompressible set of equations can be easily obtained from the set of
equations 2.3 under the hypothesis of a constant density ρ = ρ̄ . Moreover,
no temperature variations are considered in order to focus better on the effect
of the inertial terms only. Under this assumptions we can rewrite the equa-
tions 2.3 as follows:

{
∇ ·u = 0

ρ (u ·∇)u+∇p = µ∇
2u.

(2.4a)

(2.4b)

The incompressible Navier-Stokes equations are solved numerically with the
commercial software ANSYS FLUENTr [77]. The solver is based on the
finite volume method and employs the SIMPLE pressure-velocity coupling
algorithm.

2.2.2 Reynolds equation

Fluid dynamic computational models, which consider the three dimensional
geometry of lubrication problems and also the nonlinear effects induced by
inertia, are often computational demanding due to the complexity of the solu-
tion and the high amount of degree of freedom. For this reason it is always
preferable to simplify the modeling of the fluid flow whenever possible. A
widely used simplification in the field of tribology concerns the determina-
tion of which length scales play a more relevant role in order to find out which
terms of the Navier-Stokes equation can be dropped out. In this regard, the typ-
ical applications in tribology consist of a thin lubricant film squeezed between
two sliding surfaces whose characteristic lengths in the streamwise and span-
wise directions (Lx and Lz respectively) are much bigger than the gap height h

in the wall normal direction y (see figure 2.4). These conditions can be gener-
alized and taken as hypothesis in order to simply the Navier-Stokes equation.
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Figure 2.4: Schematic representation of a generic gap height distribution h(x,z) with the reference
system and lengths.

Moreover, a second assumption can usually be considered, by assuming that
the two surfaces have a certain regularity and the slopes ∂h

∂x and ∂h
∂ z are small.

Under these two hypotheses, the steady Navier-Stokes equations 2.4 can be
simplified to the Reynolds equation as follows:

∇ ·
(

h3
∇p−6µ~V h

)
= 0 (2.5)

where ~V is defined as the relative velocity vector between the velocity of the
upper and lower surface ~V = ~Vup−~Vlow. The Reynolds equation is a scalar
partial differential equation whose unknown is the pressure field p(x,z).

As pointed out by Dowson [78] and also other authors [79], the two above-
mentioned hypotheses about the scales and regularity of the two surfaces, are
necessary and sufficient to derive the Reynolds equation. Nonetheless, there
is another important condition which has to be verified in order to assure the
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applicability of the Reynolds equation also in practical applications. This con-
dition concerns the Reynolds number, which is generally defined as follows,
based on the reference gap height H:

Re =
ρHV

µ
(2.6)

where ρ is the density of the fluid, V the magnitude of the relative velocity
and µ the dynamic viscosity. As a matter of fact, a limitation in the appli-
cability of the Reynolds exists when the Reynolds number exceeds a certain
threshold, because of the increasing relevance of inertial effects and the pos-
sible occurrence of turbulence. This limitation, as well as the one about the
regularity of the surfaces, were analyzed in detail by Dobrica and Fillon in
[46] with the 1D Reynolds equation. Section 2.3.3 presents an extension of
Dobrica and Fillon’s work for the 2D Reynolds equation applied to the texture
geometry analyzed in this thesis.

The Reynolds equation presented in the above formulation 2.5 can also be ex-
tended in order to model thermodynamic effects and cavitation. In this thesis,
these two aspects of the Reynolds equation are modeled separately as shown
in the next paragraphs.

It is important to notice that all the models based on the Reynolds equation
presented in this work are discretized through the finite volume method. As
underlined by Wolozynski et al. in [80], the use of the finite volume method
represents noticeable advantages in terms of stability and convergence speed
in comparison to the finite difference method. This property of the finite vol-
ume method becomes particularly relevant in the presence of discontinuities
in the gap height distribution, for example at the edges of the pin (see fig-
ure 2.3) or in case of textured surfaces. This is due to the fact that the finite
volume method discretizes the so-called weak formulation of the Reynolds
equation as shown in equation 2.5. Therefore, this approach requires to dis-
cretize only the pressure gradient while the finite differences method involves
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2.2 Governing equations of the lubricant film

the discretization of the pressure Laplacian and the gradient of the gap height.
On the other side, the finite volume method requires a slightly more complex
grid, a cell-based mesh is needed in which the pressure is computed at the
node in the center of the cells while the fluxes have to be computed at the cell
interfaces. The finite volume discretization used in this work is based on the
approach shown by Arghir et al. in [81].

The Reynolds equation 2.5 can be expressed also through its non-dimensional
formulation by introducing the reference variables µr, hr, pr, and Ur:

∇̃ ·
(

h̃3
∇̃p̃−6

µrUrLx

h2
r pr

µ̃~̃V h̃
)
= 0 (2.7)

where the letters marked with (·̃) express the non-dimensional variables. The
parameters group before the second term is referred to as the Sommerfeld
number S (or also bearing number) [71]. This number can also be rewritten,
without loss of generality, by using the reference applied load Wr instead of
the reference pressure pr:

S =
µrUrLx

h2
rWr

. (2.8)

The Sommerfeld number is widely used to analyze the operating conditions
of tribological applications and it will extensively be used to generalize the
effects of viscous dissipation and surface textures in chapter 3 and 4, respec-
tively. Thanks to the formulation of the Sommerfeld number, one can rewrite
equation 2.9 in following way:

∇̃ ·
(

h̃3
∇̃p̃−6S µ̃~̃V h̃

)
= 0. (2.9)

Thermal and compressible formulation

For the purpose of taking into account the variation of the thermodynamic
quantities, such as pressure, density and temperature, the Reynolds equation
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2.5 can be coupled with the energy equation and a suitable equation of state
which describes the thermodynamic properties of the lubricant. The 1D for-
mulation of this coupling is considered in this work with the main purpose of
studying the impact of viscous dissipation on the pressure losses and on the
temperature increase in thin film lubrication (see chapter 3). The current for-
mulation of the coupling can be derived from the compressible Navier-Stokes
equations 2.3 under the following hypotheses:

1. the film thickness h is much smaller than the characteristic length of the
two surfaces, namely Lx and Lz;

2. the nonlinear terms are negligible in comparison to viscous ones (low
Reynolds number);

3. the viscosity µ and thermodynamic variables p, ρ and T are constant in
the wall normal direction y.

Variations of viscosity and the thermodynamic variables along the channel
length x are considered. Starting from the above-mentioned hypotheses, one
can write the 1D Reynolds equation in its steady and compressible formu-
lation as follows:

d
dx

[
ρh3

µ

d p
dx

]
−6U

d
dx

(ρh) = 0. (2.10)

In many studies concerning the coupling between the Reynolds equation and
the energy one, the latter is discretized also in the wall normal direction [48,
67, 82, 83]. This typically leads to a big increase in the computational cost,
because of the additional dimension in which the energy equation has to be
discretized. In order to obtain a form of the energy equation which is more
suitable for coupling with the Reynolds equation, one can perform an inte-
gration in the wall normal direction, provided that the above-mentioned hy-
potheses are fulfilled. This procedure is similar to the one which leads to the
derivation of the Reynolds equation.
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2.2 Governing equations of the lubricant film

By recalling the energy equation 2.3c one can introduce the total enthalpy
Ht as follows:

Ht = ρet + p = ρe+
1
2

ρ|u|2 + p (2.11)

where e is the specific internal energy, which linearly depends on temperature
according to the relation e =CvT . Moreover, in tribological flows the kinetic
energy contribution can be neglectable with good approximation. Therefore,
we can restrict our analysis to the internal enthalpy only:

H(T, p) = ρCvT + p. (2.12)

The energy equation 2.3c can now be rewritten in its 1D formulation as func-
tion of the internal enthalpy.

d
dx

[Hu] = kT
d2T
dx2 +µ

(
∂u
∂y

)2

(2.13)

where u is the streamwise component of the velocity u.

The next step consists in substituting the Couette-Poiseuille velocity profile
obtained by the previous considerations about the continuity and the momen-
tum equation,

u(x,y) =
1

2µ

∂ p
∂x

(
y2− yh

)
+

U
h

y (2.14)

into the energy equation

d
dx

[
H
(

1
2µ

∂ p
∂x

(
y2− yh

)
+

U
h

y
)]

= kT
d2T
dx2 +µ

(
1

2µ

∂ p
∂x

(2y−h)+
U
h

)2

.

(2.15)
Where U denotes the velocity of the upper wall in the x-direction. The above
expression can now be integrated in the wall normal direction y thanks to the
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hypotheses of thin film lubrication. Finally, the integrated energy equation
reads

d
dx

[
H
(
− h3

12µ

d p
dx

+
Uh
2

)]
= kh

d2T
dx2 +

h3

12µ

(
d p
dx

)
+µ

U2

h
. (2.16)

Similar derivations of the energy equation for thin films can also be found in
other works [84–86]. Nonetheless, the current formulation is rather versatile
and general, since only the kinetic energy term 1

2

∣∣u2
∣∣ is neglected as additional

hypothesis to those done for the Reynolds equation. Moreover, in comparison
to the cited similar works, the terms involving the pressure transport d

dx (pu)
and the viscosity gradients in the streamwise direction remain in the equation,
hence addressing the problem with a more general approach.

Particular attention deserve the last two terms of equation 2.16 which represent
the viscous dissipation and, hence, the mechanical power which is lost from
the motion of the fluid and converted into thermal power. In other words, these
two terms correspond to the main coupling mechanism between the Reynolds
equation and the energy equation. The practical implication due to the influ-
ence of these terms will be further discussed in section 3.3.

Since the internal enthalpy directly depends on temperature and pressure, one
can solve the coupling between the Reynolds and the energy equation through
an iterative process, whose details are shown in figure 2.5. In this way, each
equation can be discretized with respect to a single thermodynamic unknown,
i.e. the pressure for the Reynolds equation and the temperature for the en-
ergy equation. Therefore, the following two linear systems for pressure and
temperature are obtained respectively:

Ap p = bp (2.17)

and
AT T = bT . (2.18)
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2.2 Governing equations of the lubricant film

Both of the above linear systems are obtained through a discretization based
on the finite volume method.

The convergence of the iterative loop is controlled on the normalized residues
of both pressure εp and temperature εT fields. The normalized residue at the
iteration step n is computed through the following definition:

εp=
∑

Nx
i=1 |pn

i − pn−1
i |

∑
Nx
i=1 |p

n−1
i |

. (2.19)

The validity of this formulation of the compressible and thermal Reynolds
equation is further discussed in chapter 3 by comparing it to the solution of
the compressible Navier-Stokes equation. In particular, two non-dimensional
numbers are considered in order to evaluate the applicability conditions of
the proposed hypotheses, namely the Reynolds number (see Eq. 2.6) and the
Péclet number. The latter expresses the ratio of the convected heat by the
fluid motion to the heat diffusion through the fluid itself. This quantity can
be derived from the non-dimensionalization of the energy equation 2.3c and is
related to the temperature distribution in thin film lubrication [66]

Pe =
ρCpUh

kT
(2.20)

where Cp is the specific heat coefficient at constant pressure.

Cavitation model

The cavitation model used in the present work is the so-called Fischer–Burmei-
ster–Newton–Schur (FBNS) presented by Woloszynski et al. in [69]. The
starting point is the Reynolds equation formulated in terms of pressure p and
cavity fraction θ as proposed by Elrod and Adams in [87] which is, in turn,
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Initial guess for
𝑇 , 𝜌 and 𝜇(𝑇 ).

Iterative
loop

Solution of
the Reynolds

equation
𝐴𝑝𝑝 = 𝑏𝑝.

Solution of the
energy equation

𝐴𝑇 𝑇 = 𝑏𝑇 .

Equation of state
𝜌 = 𝜌(𝑝, 𝑇 ).

Viscosity con-
stitutive law
𝜇 = 𝜇(𝑇 ).

Converge?

Solution for
𝑝, 𝑇 , 𝜌, 𝜇.

𝑦𝑒𝑠

𝑛𝑜

Figure 2.5: Flowchart of the iterative solution of the thermal compressible Reynolds equation.
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based on the cavitation model presented by Jakobsson, Floberg and Olsson
(JFO) [88, 89]. The Reynolds equation including the cavity fraction reads:

∇ ·
(

h3
∇p−6µ~V h(1−θ)

)
= 0. (2.21)

The cavity fraction θ is defined through a reference density ρre f as follows:

θ = 1− ρ

ρre f
. (2.22)

The so-defined cavity fraction is zero when the flow is completely in the liq-
uid phase and its maximum value is one when the fluid is completely in the
vapor phase. At the same time, the difference between the pressure and the
cavitation pressure pcav in the cavitation zone is zero. These two aspects can
be combined into a single condition which constitutes the complementarity
constraint of equation 2.21:

(p− pcav)θ = 0 (2.23)

where both the relative pressure p− pcav and the cavity fraction θ are pos-
itive quantities.

The cavitation problem is usually solved iteratively by solving the Reynolds
equation 2.21 and then correcting the results through the application of the
constrain 2.23. Even though this solving approach is the most pursued in lit-
erature [68, 90, 91], [Lop17], the newly proposed FBNS algorithm presents
noticeable advantages in terms of convergence speed and stability in the pres-
ence of gap height discontinuities [69]. The reason lies in the fact that in the
FBNS algorithm both the Reynolds equation 2.21 and the constraint 2.23 are
rewritten in a single one leading to an unconstrained optimization problem.
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In order to derive such a formulation the constraint equation 2.23 can be re-
formulated using the so-called Fischer–Burmeister equation:

Fi = Fi(pi,θi) = pi +θi−
√

p2
i +θ 2

i = 0 fori = 1, ...,N (2.24)

where N is the number of computational nodes in the domain. In this way,
the constraint condition expressed in equation 2.23 is replaced by a system
F = F(p,θ) = 0 of N equations, where p and θ are the discretized pressure
and cavity fraction vectors. The Reynolds equation 2.21 can also be rewrit-
ten in a similar way as an implicit relation G = G(p,θ) = 0. The resulting
reformulation consists in an unconstrained system of 2N equations out of the
coupling between F = F(p,θ) = 0 and G = G(p,θ) = 0.

An efficient solution of the unconstrained system can be obtained by means
of the Newton–Raphson method. The solution is computed iteratively by
considering the incremental update expressed by p(k+1) = p(k) + δp(k) and
θ (k+1) = θ (k)+ δθ (k), where δp(k) and δθ (k) are the solution updates at the
k-th iteration. The solution updates are computed by considering the following
system based of the Jacobian matrices of F and G:

J

δp(k)

δθ (k)

=

JF,p JF,θ

JG,p JG,θ


δp(k)

δθ (k)

=−

F(k)

G(k)

 . (2.25)

The solution of this system now presents two main challenges, namely that
the matrix J is typically badly conditioned and that the system size is twice the
original one. The first mathematical issue can be overcome by preconditioning
the matrix J. This operation can easily be done by comparing the elements in
the matrices JF,p and JF,θ and swapping the respective columns whenever
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Ji
F,p < Ji

F,θ . In this way, the matrix J is reordered into the new matrix Jr and
equation 2.25 can be rewritten as:

Jr

δa

δb

=

AF BF

AG BG


δa

δb

=−

F

G

 (2.26)

where δa and δb are the reordered solution updates and AF, BF, AG and BG

are the preconditioned Jacobian matrices.

In order to overcome the issue related to the extended size of the Jacobian
matrix Jr, the system is solved by substitution in two steps, hence by splitting
the problem as follows:(

BG−AGA−1
F BF

)
δb =−G+AGA−1

F F

AFδa =−F−BFδb.
(2.27)

The matrix BG−AGA−1
F BF is typically non-singular and ensures a superlinear

convergence of the Newton method if the initial condition is close enough to
the solution [69, 92]. This can easily be achieved at least for the pressure initial
guess by solving at first the Reynolds equation without cavitation (Eq. 2.5).

After solving the system in equation 2.27 for δa and δb, one can reconstruct
the original updates vectors δp and δθ through a reverse swapping and finally
obtain the updated solution for p and θ . The new solution can now be used
to compute the new Jacobian matrices JF,p and JF,θ for the next iteration of
the Newton algorithm. The iteration process is stopped when the norm of
the update vectors δp and δθ get below a certain tolerance. In the present
work the tolerance is set to 10−6 which typically requires between 10 and 15
iterations of the FBNS algorithm.

The Reynolds equation expressed in the form G(p,θ) = 0 is numerically dis-
cretized in a similar way as shown before for the classic Reynolds equation
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(section 2.2.2). The only difference concerns the fact that the equation be-
comes hyperbolic in the cavitated area when a mass-conserving algorithm
is included. For this reason, the discretization requires a first order upwind
scheme for the Couette term of equation 2.21. Even though this may represent
a limitation for the convergence of the spatial scheme, the high converging
speed of the overall scheme still makes this algorithm competitive in compari-
son to other more used ones [69]. As a matter of fact, the solution of the FBNS
algorithm with a mesh of 2048x2048 points requires only a few minutes, mak-
ing this algorithm very suitable for extensive parametric studies, such as those
presented in chapter 4.

2.3 Preliminary analysis in the hydrodynamic regime

This section presents the preliminary analysis performed on the tribometer’s
geometry. The goal is to investigate the effects of geometrical and physical
aspects of the experimental set-up in order to identify the most suitable nu-
merical framework for a performing analysis of surface texture. To achieve
this goal, this analysis focuses on two scales, namely a large one regarding the
macroscopic geometry of the experimental set-up and a second one concern-
ing the micro scale of a typical texture element. The investigation in the macro
scales has the double aim to describe the effects of the sliding radius Rs (i.e.

of the velocity gradient in the rotation plane) and to assess the role of inertial
effects in the analysis of the untextured pin. Subsequently, the analysis on the
single texture element concerns the comparison between the Navier-Stokes
equations and the Reynolds one in order to verify the applicability conditions
of the latter expressed in section 2.2.2.

2.3.1 Velocity gradient effects

The sliding radius Rs represents an important operating parameter in the car-
rying out of experiments with a pin-on-disc set-up. In most of the cases, an
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Figure 2.6: Schematic representation of the velocity profile in the rotation plan x-z. The sliding
radius is defined as the distance between the center of the pin and the center of rotation
of the disc Rs = zC− zA.

ideal uniform distribution of velocity in the rotation plane x-z is preferred, in
order to reproduce the tribological condition in a more homogeneous and re-
producible way. Nonetheless, due to the fact that the sliding conditions are
obtained through the rotation of the disc, the velocity distribution over the pin
is always a function of distance form the center of rotation (i.e. the sliding
radius Rs). This leads to a difference in the sliding speeds over the pin surface
which is referred to as velocity gradient. Even if mostly unwanted, velocity
gradient effects are experienced by many applications, for example unidirec-
tional contacts, such as typical thrust bearings or start-stop systems in modern
automobiles [93, 94].

The impact of the velocity gradient on the tribological performance of both
textured and untextured pins was investigated experimentally and numerically
in the work by Greiner et al. [GMB+15]. This section presents more in de-
tail the numerical analysis carried out by the author of the present thesis for
above-mentioned paper.

Figure 2.6 shows the schematic representation of the velocity profile induced
by the rotation of the disc over the pin. Based on the work of Greiner et

al. [GMB+15], the velocity gradient is defined as the velocity difference be-
tween the inner and the outer side of the pin normalized by the pin radius

33



2 Fundamentals

untextured 20 50 75 100 150 200
0

0.05

0.1

0.15

dimple diameter [𝜇𝑚]

fr
ic

tio
n

co
effi

ci
en

t

𝑅𝑠 = 10𝑚𝑚
𝑅𝑠 = 18𝑚𝑚

Figure 2.7: Experimental measurements of the friction coefficient as a function of dimples diam-
eter and distance from the center of rotation [GMB+15]. The error bars represent the
standard deviation. The untextured case is compared to different diameters ranging
from 20 to 200µm while the dimple depth is kept constant to hD = 20µm.

∆U = UD−UB
Rpin

. The sliding radius is defined as the distance between the center
of the pin and the center of rotation Rs = zC−zA. In the experiments carried out
in [GMB+15], two different sliding radii are investigated, namely Rs = 10 mm

and Rs = 18 mm. In both cases the centerline velocity UC, which corresponds
to the average velocity, is kept constant by changing the angular velocity of
the disc Ω, so that in both cases UC = 0.1 m/s. That way, the velocity gradient
∆U is smaller in case of a larger sliding radius. The textured surfaces were
composed by equally spaced spherical dimple in a hexagonal pattern. Differ-
ent dimple diameter, ranging from 20 to 200 µm, were tested and compared to
the untextured case, while the dimple depth was kept constant to hD = 20 µm
and the texture density was also kept constant to ρtxt = 22%. Further details
about the experiments are reported in table 2.1.

The main results of the experimental activity carried out in [GMB+15] are
shown in figure 2.7. The figure shows the measured friction coefficient as a
function of the dimple diameter (as well as the reference untextured case) for
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Figure 2.8: Representation of the multigrid block-structured mesh used for the simulations with
the compressible Navier-Stokes equations. In order to ease the graphic representation,
the shown mesh corresponds to the fourth multigrid level out of five, whereas the
number of cells is doubled in each direction when the multigrid level is increased.
Moreover, the upper rotating wall is not shown and the y-axis is magnified 10 times.
The fifth multigrid level consists of about 1.2 ·106 cells

both of the investigated sliding radii Rs. All the tests carried out with the larger
sliding radius Rs show a higher friction coefficient, also in the untextured case.
Moreover, the effects of the velocity gradient lead to different values of dimple
diameters which corresponds to the minimum friction coefficient.

Parallel to the experimental activity, numerical simulations of the untextured
pin for both sliding radii were carried out. The numerical analysis consider the
real pin geometry as measured through an optical profiler scan (see figure 2.3).
The simulations are based on the compressible Navier-Stokes equations as
shown in section 2.2.1 which are solved with the in-house code KIT-SPARC.
Figure 2.8 shows the multigrid block-structured mesh used in the simulations.
The numerical analysis is restricted to the hydrodynamic lubrication regime.
For this reason, the minimum gap height considered in this preliminary study
is not lower than H = 1µm and it is anyway larger than the measured arith-
metic roughness Ra = 10 nm in order to neglect the effects of roughness.
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As boundary condition, the lower part of the domain and the whole pin surface
are considered as static wall with no-slip. The upper wall has a prescribed ve-
locity u(x,z,y = ȳ) = Ω× r, where ȳ is the y coordinate of the upper wall and
r is the distance with respect to the center of rotation. The magnitude of the
angular velocity is set so that the linear velocity at the center of the pin corre-
sponds to the same one considered in the experiments i.e. UC = 0.1 m/s. At the
inlet, the total pressure is prescribed equal to the reference ambient pressure
pt

in = 105 Pa since the very small disc velocity makes the dynamic pressure
contribution negligible. A static temperature Tin = 22◦C is prescribed at the
inlet in agreement with the room temperature at which the experiments were
carried out. Since this numerical analysis falls under the preliminary work of
this thesis, cavitation is not directly modeled in the Navier-Stokes equation
but is considered through the application of the so-called half Sommerfeld as-
sumption. Therefore the minimum pressure cannot drop below the cavitation
pressure, which is set to pcav = 80000 Pa.

The resulting pressure field is shown in figures 2.9 and 2.10 for the case of
Rs = 10 mm and Rs = 18 mm, respectively. As one can see, the pressure
distribution is influenced by the different sliding radii Rs applied through the
boundary condition on the upper wall. In the case of a smaller sliding radius
Rs = 10 mm, the pressure peak in the first part of the pin is slightly higher than
in the second case. This results in a higher normal force (i.e. load carrying
capacity) which is computed through the integration of the pressure distri-
bution as follows:

FN =
∫

A
p(x,z)dxdz. (2.28)

The computed normal force with Rs = 10 mm is FN = 11.375 N while for
Rs = 18 mm is FN = 11.034 N. Therefore, in the case of a smaller sliding
radius the load-carrying capacity is about 3% higher. The friction coefficient

36



2.3 Preliminary analysis in the hydrodynamic regime

Figure 2.9: Pressure distribution and streamlines obtained with Rs = 10 mm. The upper wall is
not shown and the y-axis is magnified 10 times.

Figure 2.10: Pressure distribution and streamlines obtained with Rs = 18 mm. The upper wall is
not shown and the y-axis is magnified 10 times.
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can be computed through the definition from equation 2.2 which requires, in
turn, the computation of the tangential force:

FT =
∫

A
τ(z,x,y = ȳ)dxdz. (2.29)

The computed tangential forces for the case with Rs = 10 mm is FT = 0.0375 N
which is slightly higher than the one for the case with Rs = 18 mm which re-
sults in FT = 0.0370 N. Nonetheless, the friction coefficient results smaller
for the case with smaller sliding radius C fRs=10 = 3.301 ·10−3 than in the case
with larger sliding radius C fRs=18 = 3.351 · 10−3 because of the much higher
normal force. This fact is in agreement with the experimental results shown in
figure 2.7 for the untextured case. Moreover, the results presented in this sec-
tion and in the work of Greiner et al. are in compliance with a similar analysis
presented by Zhang et al. in [37] in which the authors study the influence of
the sliding radius with a pin-on-disc tribometer but with a textured disc. As
a matter of fact, the sliding radius is a very sensitive parameter whose influ-
ence has to be considered while concealing the setting of tribological analyses
based on a pin-on-disc set-up.

2.3.2 Inertial effects in the pin-on-disc scale

This section focuses on the Direct Numerical Simulation (DNS) with the com-
pressible Navier-Stokes equations 2.3 which were carried out in order to esti-
mate the relevance of inertia in the hydrodynamic flow of the tribometer set-
up. This part of the preliminary analysis has the main goal to quantify the role
of the single terms of the Navier-Stokes equations. Similar balance analyses
are commonly used in literature in order to evaluate the different contributions
of terms in the energy equation, as shown in a work by Doki-Thonon et al.

[85] or in the study of turbulent phenomena in channel flows [95].

In order to evaluate the maximum impact of each term of the momentum equa-
tion 2.3b, one can compare the absolute value of the terms cell by cell after
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having solved the whole set of equations 2.3. The role of the single terms of
the momentum equation is checked for a wide range of operational param-
eters in order to investigate a comprehensive range of Reynolds number. In
the current analysis, the Reynolds number is computed through the defini-
tion 2.6 using the gap height H at the center of the pin surface as reference
length. Different gap heights 1 < H < 20 µm as well as different sliding
velocities 0.01 <V < 1 m/s were considered, leading to a range of the inves-
tigated Reynolds numbers which goes from Re = 0.005 to Re = 10. Density
and viscosity were kept fixed to typical experimental values form [GMB+15],
namely ρ = 936.3 kg/m3 and µ = 0.0187 Pa·s.

Figure 2.11 shows the absolute value of the three terms of the momentum
equation, namely the pressure gradient, the viscous term and the nonlinear
term. The portrayed case represents one of the strictest condition, since its
Reynolds number is Re = 5. In order to ease the visualization of the balance
analysis, which is performed in the whole domain, the terms are visualized on
the cutting plane passing through the half of the channel. As one can see, the
pressure term and the viscous one have an almost coincident distribution and
also very close maximal values, whilst the nonlinear term is in average three
order of magnitude smaller. Therefore, one can conclude that the nonlinear
terms are less relevant than the viscous and the pressure ones for what con-
cerns the hydrodynamic flow in the macroscopic scales of the untextured pin.

2.3.3 Inertial effects in the texture scale

In the last decades, the Reynolds equation has been by far the most used math-
ematical framework in the numerical analysis of surface textures [16]. How-
ever, there exist some limitations in the applicability of such an equation due to
the hypotheses considered in its derivation. These limitations are investigated
in detail in the work of Dobrica and Fillon [46] concerning the hypotheses
of the low Reynolds numbers and domain aspect ratio (length/height) of the
considered geometry. In their work, these authors focused on a 2D rectangular
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Figure 2.11: Contour of the magnitude of the pressure, viscous and nonlinear terms evaluated in
a plane aligned with the centerline of the gap. The above disc (not shown) slides
with a uniform linear velocity U from left to right. Due to the symmetry of the
problem, only one half of the pin is considered. The y-axis is magnified 40 times.
The prescribed flow parameters are: U = 1m/s, H = 10 µm, ρ = 936.3 kg/m3 and
µ = 0.0187 Pa·s, giving a Reynolds number of Re = 0.5.

cavity (2D dimple) and compared the pressure distribution obtained with the
Navier-Stokes equation to the one obtained with the Reynolds. The compari-
son was carried out for a wide range of Reynolds numbers and aspect ratios,
the latter is defined as follows:

λ =
lD
hD

(2.30)
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Figure 2.12: Sketch of the considered dimple geometry. In order to ease the comparison of the
results, all the reference lengths are set consistently to those defined by Dobrica and
Fillon in [46].

where lD and hD are the length and the depth of the dimple, respectively (as
defined in figure 2.12).

The pressure difference between the Navier-Stokes and the Reynolds equation
can be studied as a function of the Reynolds number and the aspect ratio λ by
defining the pressure error ∆1 as follows:

∆1 =
∫

A

(
|pRe(x,z)− pNS(x,z)|

p+averageNS

)
dxdz. (2.31)

This formulation of pressure error is defined through the integration over the
area A which corresponds, by convention, to the upper moving surface of the
computational domain as shown in figure 2.12. Therefore, the definition 2.31
is the extension for 3D texture elements of the one proposed by Dobrica and
Fillon in [46] which was originally presented only for 2D rectangular dimples.
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Figure 2.13: Comparison between the contour of the pressure error ∆1 adapted from [Fur16] and
the contour plot presented by Dobrica and Fillon in [46]. The considered aspect
ratios on the left are λ = 2,4,16,64.

In particular, this section shows the results concerning 3D spherical texture el-
ements, since all the experimental campaigns mentioned in section 2.1 and
in chapter 4 dealt with such a texture shape. Further analysis with other tex-
ture shapes can be found in the theses of Oscar Furst [Fur16] and Jingzhe
Shu [Shu16].

The pressure field is computed with both the incompressible Navier-Stokes
equations 2.4 (solved through the commercial solver FLUENT) and the in-
compressible version of the Reynolds solver presented in section 2.2.2. Both
numerical methods employ periodic boundary conditions at the inlet and at the
outlet where the reference ambient pressure is prescribed. The flow is driven
by the movement of the upper wall with velocity V . Thanks to the symmetry
of the geometry, only half of the domain is considered.

Figure 2.13 shows the contour of the pressure error ∆1 obtained in collabora-
tion with Furst [Fur16] and the contour distribution presented by Dobrica and
Fillon in [46]. As one can see, the pressure error in case of a 3D spherical
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dimple presents a smaller applicability region with respect to the Reynolds
number, meaning that the pressure distribution obtained with the Reynolds
equation over a 3D spherical dimple is reliable for a smaller range of Reynolds
numbers. A possible explanation could be the fact that the flow detachment
at the leading edge of the 3D spherical dimple occurs for higher Reynolds
numbers than in the case of 2D rectangular dimples. Even though one might
deduce that the ∆1 should be lower for a relatively smoother geometry such as
the spherical dimple, streamline visualizations clearly pointed out that a sharp
detachment can actually lead to a smaller difference between the Reynolds
and the Navier-Stokes solutions. This may happen because the flow outside
the dimple is less influenced by what happens inside when the detachment
line is more prominent. Further, it has to be noted that the computation of ∆1

may be more sensitive in the 3D case because the integration is extended to
an additional dimension, hence making the computation of ∆1 more sensitive
to the pressure differences.

On the other side, the limit of the applicability region with respect to the aspect
ratio λ remains with good approximation unvaried. As reported also by Do-
brica and Fillon as practical guideline, the aspect ratio should not exceed the
limiting value of λ = 10 in order to assure the applicability of the Reynolds
equation. This limitation will be considered also in chapter 4 in which the
extensive parametric study about surface textures is presented.
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3 Relevance of viscous
dissipation effects

This chapter focuses on the thermodynamic representation of lubricant flows
with the aim to investigate the role of the viscous dissipation in thin film lu-
brication.

Even though the thermodynamic analysis of lubricant flows represents an im-
portant branch of the tribological research, the possibility to numerically pre-
dict the distribution of all thermodynamic variables, such as pressure, tem-
perature and density in typical tribological applications still represents a chal-
lenge [96]. Since the first works on thermo-elastohydrodyamic lubrication
(TEHL), it is well known that even small variations of one of these variables
may drastically influence the other two leading to very different tribological
performances of the analyzed device. In particular, the impact of viscosity
and temperature on the pressure is referred to as viscosity wedge or thermal
wedge in the works of Cameron [97] and Cope [98]. These effects may rep-
resent the only way to generate a non-zero pressure distribution if a simple
lubricant shear flow between two parallel plates is considered. On the other
side, they may lead to additional pressure losses when more complex systems
are considered, especially when these effects are induced by viscous dissipa-
tion mechanisms [82, 83, 99]. More generally, the impact of such variations
in the thermodynamic state of the system can imply both detrimental as well
as positive consequences, as presented, for example, by Bruyere et al. in [67].
The underlying causes of pressure losses are, more commonly, a multidis-
ciplinary matter of study which ranges from the thermo-elastohydrodynamic
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lubrication [100–102] to the investigation of micro channel applications in
electronics and cooling devices [103, 104].

As underlined in the previous chapter, viscous dissipation is responsible for
the strong coupling between the energy and the momentum equation (or the
Reynolds equation, as shown in section 2.2). Through this coupling, the me-
chanical energy of the flow is typically transformed into internal energy, lead-
ing to a temperature increase. More generally, viscous dissipation induces a
heat generation which, in turn, increases the temperature of the fluid. This has
important consequences on the behavior of the system, since this mechanism
is further enhanced by the the high sensitivity of the viscosity to tempera-
ture variations. Many studies showed that ignoring the heat generated trough
viscous dissipation can result in a wrong estimation of important tribological
quantities, such as the film thickness and the friction coefficient [105–107].

The implication of viscous dissipation in TEHL analyses were studied, among
others, by Habchi et al. in [84], pointing out that compressibility and thermal
effects are particularly enhanced by the severe operating conditions and the
small high aspect ratio L/h of the geometry close to the contact region. The
energy transfer mechanisms can also be studied by means of a simple energy
balance of heat fluxes, as done by Doki-Thonon et al. in [85], showing that vis-
cous dissipation represents the largest contribution among all thermal effects.

In the last decades, TEHL models have been constantly improved in order
to describe the contact performance in complex systems and under critical
conditions. Nonetheless, only qualitative relationships have been proposed
between certain operating parameters and the corresponding changes in the
thermodynamic state of the system [66, 103, 108]. For this reason, this chapter
focuses on quantitative scaling laws for viscous dissipation with respect to the
flow parameters and to the lubricant properties.

Both the compressible Navier-Stokes equations and the thermal-compressible
Reynolds equation presented in section 2.2 are employed in this chapter with
the aim to quantitatively evaluate the dependence of the flow parameters on
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the pressure losses and the thermal increase . Furthermore, the relevance of
each term of the energy equation is investigated by means of an energy balance
analysis, providing a corresponding scaling law with respect to the flow con-
ditions. Part of the scaling laws presented in this chapter are also presented in
one of the author’s publications [CSMF17].

3.1 Problem definition

The numerical set-up considered in this chapter describes the steady flow of a
compressible lubricant fluid sheared in a 2D channel whose height h is con-
stant. Such a numerical set-up is representative of typical tribological appli-
cations and, at the same time, simple enough in order to isolate the effects
caused by the viscous dissipation from those induced by the complexity of
the geometry [48, 109].

Figure 3.1 shows the plane channel geometry which is considered in this chap-
ter. The boundary conditions are assigned in a consistent way for both the
chosen numerical methods, namely the compressible Navier-stokes equation
and the thermal-compressible Reynolds equation. The flow is driven by the
upper surface which moves at the velocity U (where U = ~Vup · x̂) while the
lower one is fixed; both walls are adiabatic. At the inlet, the static temperature
Tin and zero pressure gradient d p

dx

∣∣∣
x=0

= 0 are prescribed together with a linear
velocity profile. At the outlet, static pressure pout is assigned while all other
variables have a zero second derivative. These conditions allow the tempera-
ture distribution and the velocity field to freely adapt at the outlet, hence hav-
ing less invasive boundary conditions. The same is valid at the inlet, where the
pressure value can adapt according to the pressure gradient required to balance
the loss. In this way, the pressure loss can be measured as ∆p = pin− pout . A
schematic representation of the pressure loss and the increase of temperature
is also proposed in figure 3.1.
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Figure 3.1: Schematic representation of the flow between the two parallel walls. The channel has
height h and length Lx. The flow is driven by the movement of the upper wall whose
velocity is U . The pressure loss is measured as the difference between the inlet and the
outlet pressure ∆p = pin− pout . In the same way, the temperature increase is defined
as ∆T = Tout −Tin. A Couette velocity profile is prescribed at the inlet. This sketch
also portrays the two different kind of velocity profile which can occur at the outlet,
namely a linear one (Coutte) or a parabolic one (Poiseuille).

A mineral base oil is chosen as lubricant for this analysis. The oil proper-
ties are taken from the experimental characterization carried out by Regueira
et al. in [110]. As shown in section 2.2, two equations of state (EOS) are
considered in this study, namely the stiffened gas EOS [111] and the Dowson-
Higginson EOS in the form presented in [110]. The stiffened gas EOS is used
in the first part of this analysis when the validity of the thermal-compressible
Reynolds equation is discussed by comparing it to the compressible Navier-
stokes equation. This is due to the fact that the Navier-Stokes solver includes
only the stiffened gas as possible equation of state for compressible liquids.
After this validation step, the thermal Reynolds solver is run only with the
Dowson-Higginson equation of state. Further details about the implementa-
tion of the equation of state are shown in appendix A. It is important to notice
that, although the Dowson-Higginson EOS fits better the experimental data
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[110], the results presented in this chapter show a very weak dependence on
the kind of EOS which is chosen [CSMF17].

The computational grid for the simulations with the compressible Navier-
Stokes equation consists of a 2D mesh with 256 points in the streamwise di-
rection x and 64 points in the wall normal direction y. The results are proved
to be mesh-independent through the application of 5 multi grid levels, so that
there is a negligible difference in the solution between the last two multi grid
levels. The steady solution of every multi grid level is computed in the pseudo
time until the relative residuum drops below a certain tolerance, namely 10−5.
The computational grid for the thermal-compressible Reynolds approach con-
sists of a 1D mesh with 256 points.

3.2 Validity of the thermal-compressible
Reynolds approach

In this section the comparison between the compressible Navier-Stokes equa-
tions and the thermal-compressible Reynolds equation is presented. This anal-
ysis is needed in order to validate the approach with the Reynolds equation and
to quantitatively identify the parameter range in which this approach can be
safely applied. Once assessed the validity region, the computational advan-
tages of the thermal-compressible Reynolds equation can be fully exploited
to carry out an extensive parametric study with the aim of investigating the
effects of viscous dissipation.

The main differences between the two approaches rely on the two main hy-
potheses which are made in the derivation of the Reynolds model. The first one
is that the inertial terms are considered negligible in the Reynolds model, while
the second one concerns the assumption of constant flow properties in the wall
normal direction y. Three non-dimensional numbers can be used to describe
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the applicability of these two hypotheses. The first one is the Reynolds number
defined using the channel height as presented in section 2.2.2:

Re =
ρUh

µ
. (3.1)

The second non-dimensional number is the Péclet number (recalled from
equation 2.20):

Pe =
ρCpUh

kT
(3.2)

which expresses the ratio between the heat convected by the fluid motion and
the heat diffused through the fluid itself. The Péclet number is also directly
related to the temperature distribution in thin-film lubrication, in particular,
at small Péclet values the temperature results constant in the wall normal di-
rection [66]. The third non-dimensional number is the Sommerfeld number
(recalled from equation 2.20):

S =
µULx

h2 pr
(3.3)

where the reference pressure pr is set equal to the outlet pressure pr = pout

for the whole analysis in this chapter. As shown further in section 3.4, the
Sommerfeld number is also the scaling factor which multiplies the viscous
dissipation term in the energy equation 2.16 when the latter is brought into
the dimensionless formulation.

To investigate the validity of the approach with the Reynolds model, the im-
pact of the two above-mentioned hypotheses has to be highlighted. The re-
quirement of low Reynolds number is typically easily fulfilled, due to the
channel geometry and the laminar nature of the flow in typically tribological
applications [78]. On the other hand, the hypothesis of constant flow prop-
erties across the channel is more strict and requires a more careful treatment.
For small Sommerfeld numbers, this approximation holds rather well, since
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the viscous dissipation term in the energy equation remains almost negligible
and no other possible heating-up mechanism can change the thermodynamic
status of the flow. Therefore, the channel temperature remains constant as
well as the density and the pressure distributions. In this case, the channel
flow fulfills the so-called Couette solution and maintains its linear velocity
profile unchanged from the inlet to the outlet.

Conversely, the behavior of the flow changes drastically when the Sommerfeld
number is high enough to trigger the heating of the fluid through viscous dis-
sipation. Thanks to this generated heat, the temperature increases along the
channel implying that the density and the viscosity have to decrease accord-
ing to the equation of state and the viscous laws. At this point, the mass
conservation implies that the velocity profile has to change in order to con-
trast the decrease of the density. The velocity profile evolves, hence, from
the linear one prescribed at the inlet to a parabolic one at the outlet. This
corresponds to the generation of a streamwise pressure gradient. Therefore,
the flow becomes shear- and pressure-driven, assuming the typical Couette-
Poiseuille configuration.

The formation of a pressure gradient is related to a dissipation phenomenon
and has to be considered as an additional source of mechanical energy from
the outside (e.g. pumping power) in order to cope with the pressure loss due
to the internal dissipation of the system. Such an occurrence of pressure loss
is then associated to the so-called "thermal wedge", since the variations in the
pressure distribution are driven only by changes in the thermodynamic state
and not by changes of the geometry ("geometry wedge") [97, 98].

The presence of a pressure gradient also affects the shear stress distribution in
the channel, which is defined as follows:

τyx = µ
du
dy

=
1
2

d p
dx

(2y−h)+µ
U
h
. (3.4)
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Figure 3.2: Temperature distribution in the channel computed with the compressible Navier-
Stokes equation. The simulation is carried out with the following non-dimensional
numbers: S = 590.2, Re = 1.1442, Pe = 4636.08. Adapted from [CSMF17].

Due to d p
dx < 0, the pressure term of the shear stress results to be positive on the

lower wall and negative on the upper wall. Since the second term µ
U
h is always

positive, the shear stress is higher at the lower wall than at the upper one.
This leads to higher viscous dissipation in the lower part of the channel and,
consequently, a temperature gradient in the wall normal direction can appear.

Simulation results at high Sommerfeld number reveal, indeed, a higher tem-
perature in the lower part o the channel. Figure 3.2 shows the temperature
distribution as computed with the compressible Navier-Stokes equations for a
representative case with S = 590.2, Re = 1.1442 and Pe = 4636.08. In this
simulation, the maximum temperature difference between the lower and the
upper wall is ∆Ty = 1.38 [◦C].

The wall normal temperature gradient cannot be caught by the numerical ap-
proach based on the thermal-compressible Reynolds equation. For this rea-
son, further simulations were carried out with different Reynolds and Péclet
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Figure 3.3: Temperature distribution along the x-axis obtained with the compressible Navier-
stokes equation. Two simulations with the same Sommerfeld number S = 590.2 but
different Péclet and Reynolds numbers are shown. Upper ( ) and lower ( )
wall temperature for the case with Re = 0.035, Pe = 146.84. Upper ( ) and lower
( ) wall temperature for the case with Re = 1.1442, Pe = 4636.08. Adapted from
[CSMF17].

numbers. Figure 3.3 shows the temperature distribution at both walls for two
different cases with the same Sommerfeld number but with different Reynolds
and Péclet numbers. As one can see, for the same value of Sommerfeld num-
ber, the wall normal temperature gradient occurs only when a certain threshold
in the Reynolds and Péclet numbers is exceeded. More generally, it was found
that the hypothesis of constant flow properties across the channel is valid for
values of Pe < 103 and Re < 0.1. Therefore, the application of the thermal-
compressible Reynolds model as formulated in equations 2.10 and 2.16 will
be restrained to this range. An extension of this limitation could be obtained
by considering the generalized Reynolds equation, as presented by Dowson
in [78], since this model can take into account also the variation of the flow
properties across the channel.

As further validation of the thermal compressible Reynolds model, figures 3.4
and 3.5 compare the pressure, density and temperature distributions computed

53

3.2 Validity of the thermal-compressible Reynolds approach



3 Relevance of viscous dissipation effects

0 0.5 1

1

2

3

4

5

·106

x/l

p
[P
a]

Navier-Stokes
Reynolds

Figure 3.4: Comparison of the pressure distribution along the non-dimensional streamwise direc-
tion x/Lx obtained with the Navier-Stokes equations and the thermal-compressible
Reynolds equation. The simulation is carried out with S = 590.2, Re = 0.035,
Pe = 146.84. Adapted from [CSMF17].

with both models. The figures show the results obtained with a Sommerfeld
number of S = 590.2 and two Péclet and Reynolds numbers which sat-
isfy the above-mentioned applicability condition, namely Re = 0.035 and
Pe = 146.84. As one can see, the results show a good agreement between
both numerical models. This allows to exploit the higher computational ef-
ficiency of the Reynolds model in order to further investigate the impact of
viscous dissipation throughout this chapter.

It has to be noticed that the results in this section were obtained by coupling
both models with the stiffened gas EOS, while in the following sections the
Dowson-Higginson EOS will be used.
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Figure 3.5: Comparison of the temperature and density distributions along the non-dimensional
streamwise direction x/L obtained with the Navier-Stokes equations and the thermal-
compressible Reynolds equation. Temperature ( ) Navier-Stokes, temperature
( ) Reynolds. Density ( ) Navier-Stokes, density ( ) Reynolds. These
results are obtained at S = 590.2, Re= 0.035, Pe= 146.84. Adapted from [CSMF17].

3.3 Scaling of pressure losses and
temperature increase

As shown in the previous section, as the Sommerfeld number increases, the ef-
fects related to viscous dissipation become more evident and induce important
variations in the distribution of the thermodynamic variables, such as pressure
and temperature. The impact on pressure and temperature can be quantified
by considering the variation between the inlet and the outlet of the channel.
In particular, since the pressure variations occur due to a dissipation mecha-
nism, we can define the pressure loss as ∆p = pin− pout as shown in figure
3.1. Similarly, the temperature increase is defined as ∆T = Tout −Tin.

In order to understand the behavior of the pressure loss ∆p and the tempera-
ture increase ∆T under different operating conditions, an extensive paramet-
ric study is carried out based on the four flow parameters which characterize
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3 Relevance of viscous dissipation effects

1< h< 100 [µm]

10−6 < l < 10−3 [m]

7.9 ·10−2 < µ0 < 7.9 ·10−5 [Kg/(ms)]

10−4 <U < 1 [m/s]

Table 3.1: Range of the four flow parameters used to compute the Sommerfeld number S = µ0lU
h2 pre f

.

Adapted from [CSMF17].

the channel flow, namely the gap height h, the channel length Lx, the upper
wall velocity U and the viscosity µ . These four parameters constitute the
Sommerfeld number. Therefore, the dependence of ∆p and ∆T can be stud-
ied with respect to the Sommerfeld number, whereas the reference pressure pr

used in the definition 3.3 can be set to the outlet pressure, since it represents
a constant for all the simulations.

Figures 3.6 and 3.7 portray the behavior of the normalized pressure loss and
temperature increase as function of the Sommerfeld number. Each of the
points represented in the figures corresponds to a single simulation at a spe-
cific value S which is obtained through different combinations of the four
parameters h, Lx, U and µ . The investigated parameter range is presented in
table 3.1. Particular attention was paid to the setting of the parameter range in
order to fulfill the applicability condition for the thermal-compressible model
as expressed in the previous section (Pe < 103 and Re < 0.1).

Figure 3.6 shows that a correlation exists between the normalized pressure
loss ∆p

pr
and the Sommerfeld number S. Furthermore, for Sommerfeld num-

bers below S < 10 the normalized pressure loss scales with the square of the
Sommerfeld number ∆p

pr
∝ S2. Also the temperature increase is found to scale

with the Sommerfeld number, but in a linear way: ∆T
Tr

∝ S . This denotes the
role of the Sommerfeld number as a key parameter in lubrication theory also
for what concerns the effects of viscous dissipation and their implication on
the pressure and temperature distributions. This scaling can be successfully
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Figure 3.6: Normalized pressure losses ∆p/pout as a function of the Sommerfeld number S which
is obtained through different combinations of the four flow parameters ( ) h, ( ) Lx,
( ) U , ( ) µ . The fitted dashed line marks the linear proportionality of the temperature
increase with the Sommerfeld number. Adapted from [CSMF17].
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Figure 3.7: Normalized temperature increase ∆T/∆Tout as a function of the Sommerfeld number
S which is obtained through different combinations of the four flow parameters ( )
h, ( ) Lx, ( ) U , ( ) µ . The fitted dashed line marks the linear proportionality of the
temperature increase with the Sommerfeld number.
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3 Relevance of viscous dissipation effects

used for the quantitative estimation of the pressure loss and temperature in-
crease. For example, by doubling the viscosity value, one can know a priori

that the pressure loss will be four times higher, while the temperature at the
outlet will be twice as much as at the inlet.

The behavior of ∆p and ∆T presented here are obtained in the reference sce-
nario of a plane channel flow. Therefore, a quantitative extension in a more
complex geometry cannot directly be done because of the possible presence
of "geometry wedge" effects [94].

3.4 Energy balance analysis

The heat transfer mechanisms in the flow can be analyzed by means of a de-
composition of the energy equation, in order to understand the role of each
term in the energy balance. Similar approaches are common in literature and
have been used, for example, by Doki-Thonon et al. in [85] for the analy-
sis of the heat fluxes in spinning contacts or by Huang et al. for the study
of compressible turbulent flow [112]. The aim of this analysis is to evince
the underlying scaling between the the single term of the energy equation and
the operating parameters. The dependence on the latter can be subsequently
generalized with the aid of the Sommerfeld number.

The energy balance analysis can be performed by first integrating the energy
equation 2.3c over the whole domain V of the channel∫

V
∇ ·
(
(ρet + p) ·u

)
dV =

∫
V

∇ · (k∇T +u ·σ)dV. (3.5)

By applying the divergence theorem and by assuming a unitary width of the
channel, the above equation can be rewritten as follows:

∫ hout

0
(ρet + p)udy−

∫ hin

0
(ρet + p)udy =∫ hout

0
k∇T n̂dy−

∫ hin

0
k∇T n̂dy+

∫ hout

0
u ·σ n̂dy−

∫ hin

0
u ·σ n̂dy.

(3.6)
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3.4 Energy balance analysis

In this way, the integral formulation of the energy equation expresses the con-
servation of the total enthalpy over the whole channel domain per unit of width
[W/m]. The normal versor n̂ is assumed to be positive in the outward direction.
The integrals are evaluated at the channel inlet and outlet.

The terms of equation 3.6 can be regrouped and renamed in order to ease the
discussion of the balance analysis. The terms on the left hand side represent
the net enthalpy flux along the channel:

∆WHt =
∫ hout

0
(ρet + p)udy−

∫ hin

0
(ρet + p)udy =WHt

out
−WHt

in
. (3.7)

The first term on the right hand side in equation 3.6 corresponds to the net
power diffused by the thermal conduction along the channel and can be sum-
marized as follows:

∆WTdi f f =
∫ hout

0
k∇T n̂dy−

∫ hin

0
k∇T n̂dy. (3.8)

Finally, the power dissipated by the viscous dissipation is renamed as

∆Wdiss =
∫ hout

0
u ·σ n̂−

∫ hin

0
u ·σ n̂. (3.9)

Therefore, equation 3.5 can be expressed in the following short form:

∆WHt = ∆WTdi f f +∆Wdiss. (3.10)

Due to the hypothesis of adiabatic walls, no heat exchange terms are con-
sidered in equation 3.10. Equation 3.10 can be physically interpreted as the
balance between the net enthalpy flux ∆WHt and two contributions consist-
ing of the power diffused by thermal conductivity of the fluid ∆WTdi f f and the
power dissipated by viscosity ∆Wdiss.
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3 Relevance of viscous dissipation effects

The enthalpy flux ∆WHt can be further decomposed, in order to distinguish be-
tween the contributions of the mechanical energy and the internal energy (i.e.

thermal energy). In this way, the net flux of the mechanical energy becomes

∆WEi =
∫ hout

0
(p)udy−

∫ hin

0
(p)udy (3.11)

while the net flux of the internal energy reads

∆WEi =
∫ hout

0
(ρet)udy−

∫ hin

0
(ρet)udy. (3.12)

Therefore, the net enthalpy flux is decomposed as:

∆WHt = ∆WEi +∆WEm . (3.13)

This decomposition will be extensively used in the following discussion in
order to highlight the mechanism related to the pressure loss and the tem-
perature increase.

The flow in the channel is driven by the movement of the upper wall, which
consequently represents the only source of energy in the channel. The power
introduced by the upper wall can be expressed by integrating the wall shear
stress times the velocity of the upper wall U .

Wwall =
∫

Swall

τyxUdxdz. (3.14)

By considering a global balance of channel, as schematically portrayed in fig-
ure 3.8, one can see that the power Wwall introduced by the movement of the
wall has to be balanced by the net enthalpy flux ∆WHt of the entire channel:

∆WHt =Wwall . (3.15)
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Figure 3.8: Visual representation of the energy balance expressed in equation 3.16. The net flux
of power ∆WHt is computed as the outlet-inlet difference ∆WHt = WHt

out
−WHt

in
. The

moving wall introduces the power Wwall in the system, while the flow in the channel
diffuses the power ∆WTdi f f and dissipates the power ∆Wdiss. Adapted from [CSMF17]

The equivalence expressed in equations 3.10 and 3.15 can be, hence, re-
grouped together in order to highlight the relationships between all the energy
balance terms analyzed so far:

Wwall = ∆WHt = ∆W Tdi f f +∆Wdiss. (3.16)

The behavior of the energy balance terms outlined in equation 3.16 can be
studied as function of the operating conditions by means of a parametric study
as done in the previous section for the pressure loss and the temperature in-
crease. The considered parameter space concerning Lx, h, U and µ is shown
in table 3.1. The simulations are carried out with the thermal-compressible
Reynolds approach and particular attention is posed in the fulfillment of the
applicability region in terms of Reynolds and Péclet numbers as shown in sec-
tion 3.2. The terms of the energy balance are computed in the post-processing
using the same resolution of the simulations and considering 100 points in the
wall normal direction. In this way, the fulfillment of equation 3.16 was always
verified with a maximal error margin of 0.3%.

Similar to what was done in section 3.3 for the pressure loss, the terms of
equation 3.16 and 3.13 are analyzed as a function of the Sommerfeld number
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3 Relevance of viscous dissipation effects

S. Figure 3.9 shows the six contributions that we can consider out of equation
3.10 and 3.15, namely the net flux of enthalpy ∆WHt , the net flux of internal
energy ∆WEi , the power diffused by heat conduction ∆WTdi f f , the power dissi-
pated by viscosity ∆Wdiss, the power introduced by the moving wall ∆Wwall and
the loss of mechanical power |∆WEm |. As one can see, the terms corresponding
to ∆WHt , ∆Wwall and ∆Wdiss overlap perfectly, because the contribution of the
temperature diffusion ∆WTdi f f is almost negligible at low Péclet and Reynolds
numbers. Therefore, equation 3.16 can be simplified to:

Wwall = ∆WHt =��
�*0

∆W Tdi f f +∆Wdiss. (3.17)

This means that the power introduced by the wall is completely dissipated by
the viscous dissipation and corresponds to the net increase of enthalpy along
the channel. This finding is in agreement with the work of Doki-Thonon [85],
in which the viscous dissipation is found to be the dominant physical phe-
nomenon responsible of the temperature increase in the lubricated contact.

Thanks to the decomposition of the enthalpy in equation 3.13, one can also
study the dependence of the internal and mechanical energy on the Sommerfeld

number. As a result, the net flux of mechanical energy is always negative,
confirming that the mechanical energy can only diminish in the system. For
this reason the contribution of the mechanical energy is portrayed in figure 3.9
through its absolute value |∆WEm |. The loss of mechanical energy corresponds,
on the other side, to an increase in internal energy ∆WEi . Moreover, the me-
chanical loss |∆WEm | is almost negligible for small values of the Sommerfeld
number S, but they become more important as soon as S > 10.

The behavior of the energy equation terms shown in figure 3.9 is obtained by
varying only the channel height h inside the Sommerfeld number S. The scal-
ing relationship can be further generalized thanks to a non-dimensionalization
of the energy equation 3.5. After carrying out a dimensional analysis, this
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Figure 3.9: Contributions of the energy equation as function of the Sommerfeld number S (ac-
cording to the decomposition done in the equations 3.7,3.8,3.9,3.10 and 3.14). Lines
are introduced as guideline to the eye. Adapted from [CSMF17]

non-dimensionalization can be achieved by dividing equation 3.5 through the
following dimensional group:

β =
µU2Lx

h
. (3.18)

The behaviors of the so-obtained dimensionless terms of the energy equation
are shown in figure 3.10 as a function of the Sommerfeld number. In these
simulations, the Sommerfeld number is computed by varying all four operat-
ing parameters, namely Lx, h, U and µ . Also in this case the three terms Wwall ,
∆WHt and ∆Wdiss from equation 3.17 collide on the same curve. This is also
a sign that the Sommerfeld number represents a good scaling parameter for
the representation of the energy term, since different combinations of the four
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operating parameters lead to the same simulation results if the Sommerfeld
number remains unvaried. Only the term corresponding to the temperature
diffusion does not scale with the Sommerfeld number. This is due the fact that
the temperature diffusion scales by definition with the Péclet number, which
is why one sees two different lines in figure 3.10 for the term ∆W Tdi f f .

It is clear from figures 3.9 and 3.10 that an energy transfer mechanism occurs
at high Sommerfeld numbers, which leads to a degradation of the mechanical
energy into internal energy. This energy degradation mechanism consequently
leads to a pressure loss and to an increase of temperature in the channel.
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Figure 3.11: Histogram representation of the enthalpy decomposition as presented in equation
3.13. Two groups of histograms are shown at two different values of the Sommerfeld
number. The height of the columns represents the relative, namely the respective
value of Wwall , ∆WEi and ∆WEm normalized by net flux of enthalpy ∆WHt (which is
equal to the power introduced by the wall according to equation 3.17).

In order to portray more directly the impact of high Sommerfeld numbers on
the thermodynamics of the flow, figure 3.11 shows a histogram representa-
tion of the enthalpy decomposition (equation 3.13). As one can see, for a
small value of the Sommerfeld number, namely S = 0.1, the mechanical loss
is almost negligible and all the power introduced by the wall goes into the
increase of the net flux of internal energy ∆WEi . Conversely, for a relatively
high Sommerfeld number S = 103, about 15% of the power introduced by the
wall is subtracted to the mechanical energy and used to increase the internal
energy of the system.

Role of the Sommerfeld number in the energy equation

The scaling laws of the effects related to viscous dissipation can be obtained
also through a dimensional analysis of the energy equation itself. Indeed, since
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3 Relevance of viscous dissipation effects

we know that the temperature diffusion is negligible at low Péclet numbers,
one can recall the energy equation 2.3c in the following simplified form:

∇ ·
(
Ht ·u

)
= ∇ · (u ·σ) . (3.19)

This equation can be further simplified for the considered case of a 2D chan-
nel flow:

∂

∂x

(
Htu
)
= µ

(
∂u
∂y

)2

. (3.20)

In order to carry out a dimensional analysis, the following quantities have to
be redefined in terms of non-dimensional and reference variables: ∂

∂x = ( 1
l )

∂

∂ x̃ ,
∂

∂y = ( 1
h )

∂

∂ ỹ , u = Uũ, µ = µ0µ̃ , Ht = Ht
0H̃t , where (·̃) refers to a dimension-

less variable. These non-dimensional relationships can be substituted into
equation 3.20:

1
l

∂

∂ x̃

(
Ht

0H̃tUũ
)
= µ0µ̃

(
U
h

∂ ũ
∂ ỹ

)2

. (3.21)

By rearranging the terms and making the non-dimensional total enthalpy gra-
dient explicit it follows that:

∂

∂ x̃
H̃t =

µ0Ul
h2Ht

0
µ̃

(
∂ ũ
∂ ỹ

)2

(3.22)

where the factor on the left hand side can now be re-elaborated as a function
of the Sommerfeld number in the following way:

∂

∂ x̃
H̃t =

Spr

Ht
0

µ̃

(
∂ ũ
∂ ỹ

)2

(3.23)

where both pr and Ht
0 can be arbitrarily chosen as constant.
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Equation 3.23 shows how the Sommerfeld number corresponds to the scal-
ing factor between the viscous dissipation and the enthalpy gradient in the
streamwise direction. This is in agreement with the numerical results shown
in the previous figures, where the viscous dissipation effects get higher at high
values of the Sommerfeld number. As a more general consideration, at high
values of Sommerfeld number the viscous dissipation mechanisms increase
the amount of power which is degraded from mechanical to internal power,
hence lowering the efficiency of the system. This could be the case for high
performance applications, where the small size and the high load typically
lead to high Sommerfeld numbers.
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4 Optimal texture shape and position

In this chapter we want to apply the numerical models, which were developed
and tested in the previous part of this work, with the aim to study the effect of
surface textures on the tribological performance of a pin-on-disc tribometer.

The relevance of surface texturing and the interest which it aroused in the sci-
entific community were already highlighted in the introduction of this work
(see section 1.1). In the following, the focus of the literature survey is ori-
ented to the works which show closer analogies to the investigation presented
in this chapter. In particular, the numerical analysis presented in this chapter
is closely related to three experimental campaigns which were carried out at
the institute of applied material IAM-CMS at the Karlsruhe Institute of Tech-
nology KIT.

Among them, the most relevant experimental campaign concerns the role of
viscosity in the determination of the texture design parameters which lead to
the minimum friction coefficient. Many studies in the past focused on the
search and determination of the optimal texture parameters, nonetheless con-
sensus has not been achieved universally yet in the research community. This
is mostly due to the big variety of investigation methods which were employed
and the large arbitrariness in which texture design parameters can be chosen.
For example, in case of textures made of spherical dimples, many experimen-
tal studies based on pin-on-disc tribometers found contradicting optimal as-
pect ratios of dimples (i.e. the ratio between the length and depth of a dimple
λ = lD

hD
), such as λ = 1 in the work of Andersson et al. [113], λ = 4 in the

work of Pettersson et al. [114], or even λ = 174 as found by Kobatake et al.

in [115]. Also theoretical studies focused on the role of the aspect ratio λ .
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One of the first was by Shinkarenko et al. [116], who identifies in the aspect
ratio one of the most decisive design parameters whether the texture brings a
real improvement to the tribological performance or not. Further results about
the optimal aspect ratio are extensively reported in the work of Dobrica and
Fillon [46], where the two authors identify the geometrical limitations in the
shape of dimple which allow to safely apply the Reynolds equation instead of
the Navier-Stokes equations.

With the aim to investigate the relevance of the aspect ratio λ , and more gen-
erally the optimal dimple shape, the group at IAM-CMS presented two works
focused on the study of individual aspects of the dimple shape in order to sys-
tematically determine the influence of each design variable. The details about
the experimental set-up used in both above-cited works are given in section
2.1. In the first one, presented by Braun et al. [19], the influence of viscos-
ity on the optimal dimple diameter is found by analyzing the optimal dimple
diameter at different temperatures with a pin-on-disc set-up. In this way, it
was possible to confirm that also the optimal Stribeck curve (i.e. the one ob-
tained with the texture which minimizes the friction coefficient) scales with
the Hersey number and that the optimal dimple diameter strongly depends on
the viscosity value. These experimental evidences laid the basis for part of the
numerical work presented in section 4.4. In the second work at IAM-CMS,
Schneider et al. analyzed the role of the aspect ratio and the texture density,
concluding that the optimal values of these two parameters are λ = 10 and
ρtxt = 10% respectively [20]. This fundings agree with most of the values
provided in literature through the research based on similar experimental set-
ups [117–119]. The corresponding numerical analysis of this second work of
the IAM-CMS group is also performed in the present work in appendix B.
From this point of view, this chapter belongs to the branch of tribological re-
search which analyzes the surface textures through a numerical approach. In
this context, extensive parametric analyses were carried out by Fowell et al. in
[120] and by Rahmani et al. in [121]. Among the main outcomes, these works
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pointed out the greater influence that the texture depth has in comparison to its
diameter. Moreover, a linear dependence is found between the optimal dimple
depth and the reference gap height of the contact geometry [50, 120].

Other strategies, which are pursued in order to find the optimal texture parame-
ters, concern the use of an optimization algorithm based, for example, on non-
linear programming routines, [122, 123], or on genetic algorithms [124, 125],
or eventually on a combination of both approaches [126]. In the present work
we use a parametric approach to find the optimal value, since, in contrast to
the majority of literature, the aim is not simply to find an optimal design but
also to understand how it scales with respect to the operating parameters, such
as velocity, viscosity, gap height and load. Furthermore, this work bases its
numerical analysis on the high-resolution representation of the flow in a real
set-up geometry through the 2D Reynolds equation with mass conservation
cavitation, whilst, to the author’s knowledge, all previous optimization studies
focus either on 1D cases [120, 121, 124] or on a smaller parameter space
[50, 123, 125].

Among the other investigated design parameters, the study of the texture den-
sity ρtxt is presented in relation to the one carried out in the work of Schneider
et al. in [20]. The comparison between numerical and experimental results
will be run in view of other literature results, such as those by Wang et al. who
pointed out how the consideration of contact mechanics results to be crucial
for the correct numerical prediction of the role of the texture density [127].

The second experimental campaign, whose results are directly compared to
the simulations carried out in this chapter, concerns the influence of partial
texturing and, in particular, how the presence of partial textures in different
regions of the pin surface impact on the tribological performance of the set-
up. In one of the first numerical studies about this topic, Shinkarenko et al.

underlined how partial texturing can result to be more effective than textures,
which cover the whole contact area. Further studies have been presented both
experimentally and numerically, by the group of Fillon [48, 49, 128–130] for
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thrust and plain bearings, by Vlădescu et al. [131] for Piston-Liner Contacts
and also in the already cited works by Brizmer et al. [132] and Guzek et al.

[122]. In particular, it was found that the textured region generally increases
the load carrying capacity, if it is placed in a part of the domain where the
gap converges. Moreover, Cupillard et al. also identify the region where the
gap height is minimum, as the part of the domain where texturing is most
convenient, in the case of gap height distributions which are comparable to the
one of a pin-on-disc tribometer [133]. From the numerical point of view, this
thesis investigates the role of partial texturing in the framework of a sensitivity
analysis, i.e. by probing the main pin surface with a single dimple in order to
compute a sensitivity map which can tell where and how the texture can bring
an actual benefit to the overall tribological performance.

The third experimental campaign which is analyzed in this chapter deals with
the disposition of the texture elements on the surface and its strong depen-
dence on the texture density. For what concerns the texture disposition, the
first studies about it are reported in the works of Yu et al. [51, 134], where the
authors arranged the texture elements (in the shape of spherical dimple) in dif-
ferent rows and subsequently added a shift to every consecutive row in order
to switch from a square pattern to a pseudo-hexagonal one. As a result, it was
found that a an optimal angle exists, which maximizes the load carrying ca-
pacity and it almost corresponds to a pseudo-hexagonal disposition. Inspired
by this findings, Schneider et al. analyzed the effects of the texture disposi-
tion in a similar fashion from the experimental point of view [20], finding that
the pseudo-hexagonal pattern shows the lowest friction coefficient. However,
the cited analysis of Yu et al. was carried out numerically without considering
cavitation and omitting some information about the mesh and other simulation
parameters. For this reason, this chapter presents the numerical investigation
carried out with the mass conserving implementation of the Reynolds equa-
tion presented in section 2.2.2 which was run with the same parameters used
in the experiments of Schneider et al. in [20].
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4.1 Numerical representation of the textured pin

As conclusion to the introductory part of this chapter, the key point of the
numerical analysis in this chapter is the use of a Reynolds solver with mass-
conserving cavitation applied on a high-resolution representation of a real pin-
on-disc set-up, with the aim to study not only the optimal texture design but
also the influence of operating conditions on it. Part of this analysis is also
presented in one of the author’s publications [CFM+18].

4.1 Numerical representation of the textured pin

As first step, the numerical representation of the textured pin is addressed,
with the double aim to show the details of the mesh generation in presence
of a texture elements and to elucidate the possible different strategies to ap-
ply the Reynolds solver with mass-conserving cavitation for the study of the
textured pin.

4.1.1 Texture definition

This subsection introduces the definition of the textures applied on the pin sur-
face which was firstly presented in chapter 2. In particular, the pin geometries
considered in this chapter are the so-defined geometries A and B which are
introduced in figure 2.3. Among the numerous possible ways to realize tex-
tured surfaces, we here focus on non-communicating textures, namely spher-
ical dimples such as those used in the experimental campaigns which were
represented in section 2.1 ([19, 20],[CFM+18, GMB+15]). Spherical dimples
are one of the most used kind of texture because of their proved effectiveness
and because of the fact that they can be described with only two parameters,
namely the diameter D and the depth hD [16, 17], hence reducing the parame-
ter space in the optimization process. Figure 4.1 shows the textured pin surface
as considered in most of the simulations carried out in the following analysis.
In the figure, the texture is realized through the disposition of spherical dim-
ples according to a pseudo-hexagonal arrangement. In the represented case
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Figure 4.1: Graphical representation of Pin A with texture. The untextured surface distribution is
obtained from the measurement of a real specimen used in the experiments by Braun
et al. in [19], while the texture is generated numerically. The partial front texture here
portrayed corresponds to a dimple diameter D = 400 µm with a depth hD = 40 µm.
The overall texture density is ρtxt = 10%. No texture elements are applied in the
center in order to make the reference gap height independent from the texture depth.
The domain size is Lx = Lz = 9 mm. Adapted from [CFM+18].

only the first half is of the pin surface is textured in order to show better the
contrast between the textured and the untextured part. The possible dimple
arrangements can be generalized with the aid of the schematic representation
shown in figure 4.2. According to this definition of the texture arrangement,
every row of dimples is subject to a shift sz which allows to range from a
quadratic pattern (sz = 0) to a pseudo hexagonal pattern (sz = 0.5lz). A similar
definition is used in the experimental work of Yu et al. [51] and of Schneider
et al. [20], where the angle α , as shown in figure 4.2, is used to identify the
type of pattern. It is important to notice that the distances between two adja-
cent dimples are kept equal to each other in all simulations, namely lx = lz.
This allows to keep the texture density ρtxt independent from the considered
arrangement. For this reason, the arrangement obtained for sz = 0.5lz assumes
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Figure 4.2: Schematic representation of the texture arrangement. The upper wall slides with con-
stant velocity U in the x-direction. The square pattern is obtained for sz = 0, while the
pseudo hexagonal occurs for sz = 0.5lz. The horizontal and the vertical spacing are
always equal to each other lx = lz. Adapted from [CFM+18].

the shape of a slightly distorted hexagon, whose bases measure lz while the
other four sides measure

√
5

2 lz. This particular arrangement definition is re-
ferred to as pseudo-hexagonal in the following discussion.

In summary, the considered texture parameters are four: dimple depth hD,
dimple diameter D, dimple spacing in the streamwise and spanwise direction
lx and lz and the shift of the texture rows sz. Other design parameters, such
as the texture density ρtxt are indirectly defined as result of the combination
of D, lx and lz.

For what concerns the numerical solution of the cases analyzed in this chapter,
the Reynolds solver with mass conserving cavitation (see section 2.2.2) was
employed in all the presented simulations. This leads to the particular chal-
lenge of dealing with a very broad range of scales, ranging form the pin size
(Rpin = 4 mm) to the smallest texture diameter D = 40 µm. The efficient im-
plementation of the mass conserving cavitation algorithm has allowed to mesh
the 2D pin domain shown in figure 4.1 with up to 2049 cells per side, reach-
ing a maximum resolution of 4.39 µm in both directions while keeping the
solution time in the order of few minutes (in case of a single core simulation).
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4 Optimal texture shape and position

number of cells in each direction normal force [N] tangential force [N]

65 1178.379057 5.029480

129 1188.524679 5.037692

257 1193.755952 5.045461

513 1196.401560 5.049900

1025 1197.470182 5.051418

2049 1198.008821 5.052289

4097 1198.288155 5.052802

Table 4.1: Convergence of the Reynolds solver with respect to the normal and tangential force.
The shown values correspond to the textured pin geometry A with a dimple diameter
D = 40µm which represents one of the most strict cases because of the relatively small
size of the dimples. Due to the negligible difference between the last two cases, a
resolution of 2049 cells per side was chosen as standard for the simulations in this
chapter. Adapted from [CFM+18].

The spatial convergence analysis for the textured pin A is reported in table
4.1. Similar convergence rates are obtained also with the second type of pin,
namely the geometry B. Further details about the computational performance
are reported in section 2.2.2.

The numerical solution through the Reynolds solver presented in section 2.2.2
delivers two fields, namely the pressure distribution p(x,z) and the cavity frac-
tion θ(x,z). Figure 4.3 and 4.4 show, respectively, the pressure and the cavity
fraction distribution for the textured case whose mesh is shown in figure 4.1.
These distributions correspond to a typical solution scenario in which the first
half of the pin experiences a strong pressure increase while cavitation domi-
nates the second half of the pin domain. This is due to the particular profile
of the pin A (see figure 2.3) which presents a certain curvature, converging in
the front and diverging in the rear. The cavity fraction shown in figure 4.4 is
directly related to the density of the lubricant according to equation 2.22 and
shows how the density decreases in the cavitation region in order to preserve
the mass conservation. It is important to notice that the domain boundaries

76



4.1 Numerical representation of the textured pin

−4.5 0 4.5
−4.5

0

4.5

𝑥 [mm]

𝑧
[m

m
]

𝑃 [𝑃𝑎]

0.08 · 106

75 · 106

Figure 4.3: Pressure distribution over the textured pin surface shown in figure 4.1 with the fol-
lowing texture parameters D = 400 µm, hD = 40 µm and ρtxt = 10%. The red line
delimits the cavitation region. The chosen operating parameters are the following: the
upper wall moves from left to right with velocity U = 1 m/s, the dynamic viscosity is
µ = 0.1871 Pa·s and the gap height is H = 1 µm. Adapted from [CFM+18].

are far enough away from the pin edge, so that both the pressure and the cav-
ity fraction distribution are not affected by the imposed boundary conditions.
This is also due to the big ratio between the height of the pin edge and the
average gap height on the pin surface. The importance of a relatively big gap
height of the inlet in comparison to the gap height in the rest of the domain
was pointed out also by Cupillard et al. in [133] as a geometrical condition in
order to make the solution independent from the boundary conditions.

4.1.2 Setting of the numerical parametric study

In order to ease the comparison, numerical simulations should mimic as well
as possible the same operating conditions which characterize the experimental
measurements with the pin-on-disc set-up. In the experiments, the tribolog-
ical tests are run under the condition of a constant normal force FN and the
gap height, which is unknown, is determined by the resulting equilibrium. On
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Figure 4.4: Pressure (a) and cavity fraction (b) distribution over the textured pin, D = 400 [µm],
Depth = 40 [µm], ρtxt = 10%. The upper wall slides from left to right with velocity
U = 1m/s, viscosity µ = 0.1871Pas and the gap height H = 1µm.

the other side, the Reynolds equation requires the complete gap height distri-
bution as input, providing the normal force as result of the integration of the
pressure distribution. In order to cope with the intrinsic difference of the two
approaches, an iterative algorithm can be used, so that the simulations with
the Reynolds equation converge to the a solution which fulfills a prescribed
value of normal force by adapting the gap height at each iteration. The in-
troduction of such an iterative algorithm can result computationally expensive
if applied to parametric studies [16]. For this reason, simulations with pre-
scribed normal force will be considered in this work only for a certain part of
the following numerical analysis. In particular, simulations with prescribed
normal force will be considered in section 4.4 where the direct comparison
with experimental data strictly requires such an approach. The root-finding
algorithm chosen in this this work is the secant algorithm, which represents a
good compromise between stability and computational speed [135].
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As mentioned in section 2.1, an important aspect of the numerical representa-
tion of the pin-on-disc tribometer is the self-aligning pin holder which allows
the pin to pitch in order to prevent misalignment errors during the mounting
and assure a flat-on-flat contact [19]. Due to the high asymmetry of the pres-
sure distribution over the pin, a pitching-moment can occur which can conse-
quently make the pin pitch of a certain angle and, hence, changing the overall
gap height distribution drastically. This pitching movement is further compli-
cated by the adhesion mechanism between the surface of the pin holder and
the lower support of the tribometer. This makes the problem of a numerical
representation of the whole pin-on-disc device more complicated and compu-
tationally expensive, because of further iteration loop which is needed in order
to find the resulting pitch angle which change the inclination of the pin until
the pitch-moment becomes zero. Therefore, the consideration of both iterative
loops concerning the gap height and the pitch angle would make an extensive
parametric study on textures unfeasible. This is evident, for example, in the
recent work of Gropper et al. [125], where the consideration of both tilting an-
gles of a textured pad bearing inevitably leads to the restriction of the number
of considered texture elements and other investigated texture parameters.

4.2 Effects of the number of dimensions
of the Reynolds equation

In this section the relevance of the numerical approach based on the 2D
Reynolds equation is assessed. The aim is to investigate the differences be-
tween the 1D and the 2D representation of a textured surface, in order to
understand how much the quality of the numerical simulations can take ad-
vantage from a 2D approach despite the higher computational costs. More-
over, particular attention is also paid to the influence of the macro geometry of
the pin surface on the pressure distribution due to the presence of the texture.
This is done for the first time with a realistic pin-on-disc set-up, while previ-
ous literature works, which carry out such systematic investigations, mainly
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Figure 4.5: Impact of the presence of a dimple on the net normalized pressure distribution over
the pin surface (marked within the blue line). The normalized net pressure distribution
is computed as ∆p

∆pmax
where ∆p = ptxt − puntxt . The region in which cavitation occurs

is marked with the red dotted line. The same operating parameters were used as in
figure 4.6 for the case with xc =− 3

4 Rpin. Adapted from [CFM+18].

describe either 1D slider bearings [21, 120, 121, 136], 1D or 2D parallel thrust
bearings [124, 137–139], 2D seals [140] or 2D journal bearing [141, 142].

Figure 4.5 shows the pressure perturbation over the pin surface due to the
presence of a single dimple. The pressure distribution shown in figure 4.5 is
computed through the ratio ∆p

∆pmax
where ∆p = ptxt − puntxt . It can be noted,

that pressure perturbation due to the dimple decays very fast and gets smaller
than 1% within 10 diameters from the center of the dimple.

Contrariwise, when the dimple is placed on a 1D representation of the pin, the
influence of its pressure perturbation is propagated to a much farther distance.
This can clearly be seen in figure 4.6, where the net 1D pressure perturbation
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due a single dimple is directly compared to the centerline pressure distribu-
tion extracted from figure 4.5. In particular, the pressure perturbation in the
1D case also has a different decay rate than in a 2D simulation and this could
deeply influence the computation of the resulting load carrying capacity, hence
leading to a false estimation of the latter. In both 1D and 2D cases, the net pres-
sure distribution becomes almost zero when it reaches the cavitation region.

The difference between the two cases may be attributed to the fact that a 1D
dimple is not really representative for a spherical dimple but it rather repre-
sents a cylindrical channel with infinite extension in the spanwise direction.
Moreover, the pressure gradient in the z-direction contributes to the attenua-
tion of the pressure perturbation due to the presence of the dimple.

This analysis on the effects of the number of the dimension shows that the ap-
plication of a 1D approach may lead to wrong estimations of the impact of tex-
tures. This evidence has, surprisingly, aroused little attention in the research
community, since, most of the works, which compared simulations carried
out with a different number of spatial dimensions, focused rather on the dif-
ferences between the 2D and the 3D Navier-Stokes equations [45, 143, 144],
although the Reynolds equation is by far the most used approach in litera-
ture [16].

4.3 Sensitivity analysis

This section focuses on the influence of the position of the texture elements on
the pressure distribution over the pin. The goal is to deduce important insights
about the interaction between the texture elements and the macroscopic geom-
etry of the pin-on-disc set-up. This investigation can be seen as a sensitivity
analysis, in which the pressure perturbations due to the presence of texture
elements are systematically studied also under different operating conditions,
in order to generalize the findings as much as possible.
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Figure 4.6: Comparison of the pressure distribution in the centerline of the pin between 1D and 2D
simulations. The figure shows the difference between the pressure distributions with
the textured surface and the untextured case ∆p = ptxt − puntxt . Two different dimple
positions on the first half of the pin surface are shown, in the second half cavitation
occurs. Both simulations are carried out with the following parameters: H = 10 µm,
µ = 0.18 Pa, U = 0.1 m/s. Adapted from [CFM+18].

In the first part of the sensitivity analysis, a group of texture elements is stud-
ied at once, while the second part focuses rather on the effects generated by
single dimples. In particular, the effects of texture on the half pin surface
will be addressed first, since the numerical investigation can be easily placed
side by side with the experimental activity carried out at the IAM at KIT
[19, 20],[CFM+18].

Experimental tests with single dimple are unfeasible due to the risible signal-
to-noise ratio, therefore, the role of the position of the textured area has to be
investigated by means of clusters of dimples on the surface. In this regard,
an experimental analysis is presented out in [CFM+18], by focusing on two
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Figure 4.7: Experimental Stribeck curve for different extensions of the textured area. Three differ-
ent cases are shown, namely a partial texturing on either the front or the rear part of the
pin and the untextured pin. In both the textured cases the texture consists of a spheri-
cal dimple in a pseudo-hexagonal arrangement with the same design parameters as in
the numerical simulations shown in figure 4.8: D = 60 µm, hD = 4.5 µm, ρtxt = 10%.
The error bars represent the standard deviation. Adapted from [CFM+18].

different extensions of the textured area, namely only on the leading or on
the trailing half of the pin. Figure 4.7 shows the experimental Stribeck curve
obtained for the two mentioned cases and the reference untextured one. The
texture consists of spherical dimples arranged in a pseudo-hexagonal pattern
with the following characteristics: D = 60 µm, hD = 4.5 µm, ρtxt = 10%. As
one can see, the texturing of the leading half leads to a friction reduction in
comparison to the other two curves. On the other side, texturing the trailing
part of the pin results in a smaller friction reduction and may actually lead to
an increase of the friction coefficient at small velocities. These results are in
agreement with previously-cited studies in literature [49, 130, 131] about par-
tial texturing. The description of the set-up configuration used to obtained the
curves in figure 4.7 are shown in detail in section 2.1. In particular, it has to be
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Figure 4.8: Pressure distribution in the centerline of the pin for different extensions of the tex-
tured area. This simulations are carried out with the pin geometry B in accordance
to the experiment carried out in [CFM+18] and presented in section 2.1. The operat-
ing parameters used for the simulations in the figure are: H = 10 µm, U = 0.1 m/s,
µ = 0.18 Pa·s. Adapted from [CFM+18].

noted that the measurements focused mainly on the mixed lubrication region,
because the very low signal-to-noise ratio does not allow to appreciate the fric-
tion differences in the hydrodynamic regime with a sufficient level of certainty.

The numerical counter part of the results in figure 4.7 is shown in figure 4.8,
where the pressure distribution over the centerline of the pin is portrayed for
four different cases: front and rear texture, total texture and, finally, the un-
textured case as reference. Only the partial texture in the front part of the pin
surface leads to a net increase of the load carrying capacity. In this case, the
rear texturing can even lead to a decrease of the performance in comparison
to the untextured case, since the corresponding pressure distribution is clearly
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lower and, hence, with a smaller resulting load carrying capacity. Since a
higher load carrying capacity can typically be associated with a smaller fric-
tion, these results can be related to the experimental ones in figure 4.7, where
the partial front texturing showed a better impact on the reduction of the fric-
tion coefficient than the rear one. Both experiments and the numerical sim-
ulations were obtained with the pin geometry B (see figure 2.3), whose very
flat surface could resemble the one of other applications, such as parallel bear-
ings. This similarity allows to run comparisons with previous literature results,
which also found that texturing the front part of such a geometry results more
effective than full or rear texturing [49, 130, 131].

Having assessed the validity of the numerical approach for the study of the
sensitivity analysis through the comparison with experimental results concern-
ing textures with multiple dimples, we move the focus to the sensitivity anal-
ysis by means of single texture elements. In particular, the goal is to study
how the perturbations of the load carrying capacity due to the presence of the
dimple are influenced by the position of the dimple itself on the surface and
by the operating parameters. For this reason, several simulations are carried
out for different values of the operating parameters (gap height, viscosity, ap-
plied load and velocity of the upper wall) and of the texture design parameters,
such as the diameter and the depth. The operating parameters can be repre-
sented in a more generic way by recalling the definition of the Sommerfeld
number in equation 2.8:

S =
µULx

H2W
. (4.1)

In the following analysis, the reference domain length Lx does not vary and
the reference applied load W is the one from the reference untextured case,
since the presence of a single dimple affects the overall load carrying capacity
in a negligible way.
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Figure 4.9: Zero-isolines of the net normal force ∆FN = FNtxt −FNuntxt obtained through the varia-
tion of the operating parameters. The portrayed isolines are a function of the position
of the center of the dimple on the surface of the pin. The variation of the operating
parameters is summarized by the Sommerfeld number in the legend. The values of vis-
cosity, velocity and gap height are varied in the following ranges: 0.0187< µ < 1.871
Pa·s and 0.01 <U < 1 m/s, 1 < H < 10 µm. Due to the symmetry of the geometry,
only the lower half of the pin is portrayed here and the flow comes from left to right.
The simulations are carried out with prescribed gap height and the normal load is an
output. Adapted from [CFM+18].

At first, we focus only on the operating parameters by using a probing dimple
with a fixed size of D = 100 µm and hD = 10 µm. This size can be considered
small enough to introduce small perturbations which are, at the same time, big
enough in order to have a noticeable and clear effect. The results of this first
part are presented in figure 4.9, where the zero-isolines of the net normal force
are shown as a function of the position of the center of the probing dimple on
the surface. Twelve different isolines are represented in three groups, each
group represents a different gap height ranging from 1 to 10µm. The four
lines in each groups represent, in turn, a different value of the Sommerfeld
number obtained through the different combination of viscosity and velocity.

It is important to notice that the contour area with positive normal force con-
cerns always the first half of the pin surface. This hints to the fact that in the
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presence of a total texture, only the front part can actually increment the load
carrying capacity, while the rear part could have a detrimental effect. This is
also due to the fact that the dimples have almost no effect in the cavitation
zone, because their influence on the pressure distribution is not big enough
to influence the cavitated regime in most of the rear part of the pin. These
conclusions are again in agreement with the above-mentioned literature re-
sults [49, 130, 131] and also with the experimental and numerical analysis on
the partial texturing which was previously assessed in this section. Further-
more, as pointed out by Cupillard et al., in case of geometries with a curvature
similar to that of pin A, dimples are deemed to be more adequate if placed
close to the center of the region where the pressure distribution reaches its
maximum [133].

In figure 4.9, isolines with the same gap height but different values of the
Sommerfeld number (i.e. with different values of viscosity and velocity) al-
most collide. On the other hand, isolines with a different gap height are much
farther away from each other. This means that the gap height is a much more
sensitive parameter than velocity and viscosity. As a matter of fact, small vari-
ations of the gap height have a much bigger impact on the distribution of the
area corresponding to an actual benefit introduced by the probing dimple. In
summary, if the Sommerfeld number changes because viscosity or velocity
vary, the region, in which a dimple would increase the load carrying capacity,
remains almost unchanged.

If the gap height is very small the positive net force region shrinks consider-
ably and, for the considered cases, may approach to zero if the H < 0.1 µm.
In this regard, the work of Murthy et al. presented a similar consideration by
analyzing slider bearings [136]. Indeed, the smaller the gap height in the pin
geometry, the higher becomes the slope of the gap height due to the curvature
of the pin surface and this effect is known to reduce the area where dimples
bring actual benefits in slider bearings which are highly slanted.
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The second part of the sensitivity analysis with a single probing dimple con-
cerns the role of the dimple design parameters, i.e. diameter D and depth
hD (as well as the aspect ratio λ = D

hD
). The impact of the dimple diameter

and aspect ratio of the probing dimple are shown in figure 4.10. In particular,
figure 4.10a represents the sensitivity analysis carried out with different dim-
ple diameters and depths but keeping the aspect ratio constant. In this case,
for each group of isolines with a different gap height, the curves do not col-
lide, meaning either the diameter or the depth (or a combined effect of both
of them) changes the influence area of the probing dimple. In order to cast
light on this aspect, figure 4.10b shows the simulation results where the dim-
ple depth is kept constant to hD = 10 µm and only the diameter is varied. As
one can see, the three isolines with the same color (corresponding to different
diameters for every investigated gap height) collide. This means that the ex-
tension of the region where dimples work is not affected by the diameter of
the dimple, therefore, the dimple depth is responsible for the deviations seen
in figure 4.10a. This suggests that the dimple depth has a much higher impact
on the properties of the texturing than the dimple diameter.

4.4 Scaling of the optimal dimple depth

This section introduces the two main parametric studies, which were carried
out in order to analyze the scaling of the optimal dimple shape, both in terms of
maximal load carrying capacity and minimal friction coefficient, with respect
to the operating conditions. The two parametric studies are based on the two
possible strategies which can be employed in the numerical simulation of pin-
on-disc tribometers, namely the carrying out of simulations with prescribed
gap height H or with constant normal force FN . The first simulation strategy
has the great advantage of being fast and easier to set than the second one,
hence enabling us to focus on a richer parameter space. On the other side,
the second strategy mimics more realistically the experimental set-up, where
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(a) Sensitivity analysis with constant dimple aspect ratio λ = 10 but different dimple
diameters and depths ( ) D = 100 µm and hD = 10 µm, ( ) D = 200 µm and
hD = 20 µm, ( ) D = 400 µm and hD = 40 µm.
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(b) Sensitivity analysis with constant dimple depth Depth = 10 µm but different dim-
ple diameters ( ) D = 100 µm, ( ) D = 200 µm, ( ) D = 400 µm.

Figure 4.10: Zero-isolines of the net normal force ∆FN = FNtxt −FNuntxt as function of the position
of the dimple on the pin surface. The two subfigures present the results concerning
the sensitivity analysis with different texture parameters, such as dimple diameter D
and dimple depth hD. The isolines are divided in three groups with different colors,
each color corresponds to a specific gap height in the range 1 < H < 10 µm. Vis-
cosity and velocity are kept constant in this plots: µ = 0.187 Pa·s and U = 0.1 m/s.
Adapted from [CFM+18].
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4 Optimal texture shape and position

a constant known load is applied on the upper disc and the gap height is the
result of the force equilibrium.

The motivation to numerically investigate the scaling of the optimal shape
comes from the experimental evidences about the relationship between the
optimal dimple diameter and the viscosity presented by Braun et al. in [19].
Figure 4.11 shows the experimental Stribeck curves measured by Braun et al.

at two different temperatures (i.e. with two different values of viscosity). For
both temperatures, the untextured case is compared to the one whose texture
diameter entails the lowest friction coefficient. The aspect ratio is λ = 10, and
is a constant parameter during the experimental campaign. Therefore, also
two optimal depths, namely hDopt = 4 µm at T = 100 ◦C with µ = 0.00308
Pa·s and hDopt = 20 µm at T = 50 ◦C with µ = 0.1117 Pa·s, correspond to
the two optimal diameters.

This experimental results will be further analyzed in comparison to the numer-
ical simulation with constant normal force in the following subsection (4.4.2).

4.4.1 Analysis of the optimal dimple depth

This subsection is based on the numerical analysis of the tribometer set-up
with prescribed gap height. This first parametric study focuses on the influ-
ence of different dimple diameters and depths on the load carrying capacity
and on the friction coefficient. As presented in [69] and [145], the compu-
tation of these two quantities for a flow with cavitation is based on the fol-
lowing definitions:

FN =
∫

A
(p− pamb)dA, (4.2)

FT =
∫

A

[
(1−θ)µ

U
h
+(1−θ)

h
2

∂ p
∂x

]
dA, (4.3)

C f =
FT

FN
(4.4)
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Figure 4.11: Stribeck curve of the experimental investigation of the optimal dimple diameter per-
formed by Braun et al. [19]. Two groups of curves are portrayed, each one at a
different test temperature, hence two different viscosity values. For each of the two
groups, both the untextured case as well as the case with optimal texture diameter are
represented. The dimples were obtained with constant aspect ratio λ = 10, meaning
that the optimal depth values are hDopt |T=100◦ = 4 µm and hDopt |T=50◦ = 20 µm.

where pamb is the ambient pressure which is considered to act homogeneously
on both sides of the rotating disc.

For each point in the diameter-depth space different operating conditions are
tested by varying viscosity, velocity and gap height in a broad range which is
representative for running conditions in typical tribological applications. The
investigated range for the viscosity and velocity values is resumed in table 4.2
while the gap height H was varied between 0.5 and 20 µm.

As shown in section 4.3, only the first part of the pin surface experiences a
real benefit if textured. For this reason, only a partial texture in the front part
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4 Optimal texture shape and position

XXXXXXXXXµ [Pa·s]
U [m/s]

0.01 0.05 0.1 0.5 1 5 10

0.0187

0.0935

0.1871

0.9357

1.8714

Table 4.2: Velocity and viscosity range considered in the parametric study with prescribed gap
height. The values in the table correspond to those portrayed in figure 4.13. As in the
experiments, the texture density is kept constant at ρtxt = 10%, while the gap height
ranges between 0.5 and 20µm. The overall range of Sommerfeld number based on the
gap height H is 172< S < 14.3 ·103.

of the surface is considered in this part of the present work. The texture den-
sity is kept constant at ρtxt = 10% as in the experiments from Braun et al.

[19]. The dimple diameter ranges from 40 to 400 µm while the depth varies
between 0 (untextured case) and 200 µm. Since the dimple has a spherical
shape, the minimum aspect ratio cannot exceed λ = 2. Following the pre-
liminary results presented in section 2.3.3, the applicability of the Reynolds
equation may become arguable for values of the aspect ratio which are below
λ < 10. The implications of this condition will be addressed further while
presenting the results in the following part of this subsection. Moreover, the
Reynolds number never exceeds the value Re = 0.01 for every combination
of the operating parameters.

The diameter-depth parameter space is now analyzed for each possible com-
bination of the operating parameters, namely U , µ and H. As a result, figure
4.12 shows the normal force as a function of the dimple depth and diameter
for a certain combination of the operating parameters. It can be seen, at first,
that the distribution of the normal force is more affected by variations of the
depth than of the diameter. In particular, the shape of the normal force dis-
tribution clearly presents a maximum value which is aligned with a certain
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Diameter [𝜇m]
Depth [𝜇m]

𝐹𝑁 [N]

Figure 4.12: Distribution and contour lines of the normal force in the depth-diameter parameter
space. The red line marks the position of the optimal depth hDopt which maximizes
the normal force FN . The black line marks the position where dimples have an aspect
ratio λ = 10 which is the one considered in the experiments by Braun et al. [19].
Moreover, most of the optimal depth line (red) is above the ratio λ = 10, hence
ensuring the validity of the Reynolds equation used in this analysis. The shown case
is computed with the following parameters: U = 1 m/s, µ = 0.187 Pa·s, H = 7µm.
Adapted from [CFM+18].

constant depth of the dimple. This means that an optimal dimple depth hDopt

can be identified and this value remains insensitive to variations of the diame-
ter. The value of the optimal depth is marked with a red line in the projected
contour plot in figure 4.12.

The black line in the figure corresponds to the aspect ration λ = 10. As one can
see, the great part of the optimal depth line lies in the region of the parameter
space where the aspect ratio is bigger than 10, meaning that the most relevant
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4 Optimal texture shape and position

part of the depth-diameter parameter space lies in the applicability region of
the Reynolds equation, where the condition on the aspect ratio is fulfilled [46].

The absolute value of the normal force has a direct proportionality on velocity
and viscosity through the Sommerfeld number. Nonetheless, the shape of the
normal force distribution does not depend on the operating conditions and one
can always clearly identify a maximum in the depth-diameter space which is
aligned with a certain value of the dimple depth and does not almost depend
on the diameter. Only by varying the gap height H one can see a shift in the
normal force distribution which will simply change the location of the maxima
but still keep the same distribution shape, hence allowing to find an optimal
dimple depth at a shifted value.

The so-identified optimal depth can be plotted as function of the gap height
for different values of viscosity and velocity as shown in figure 4.13. Each
point in the figure corresponds to the optimal depth value which is computed
with a certain gap height for a specific value of viscosity and velocity whose
range is presented in table 4.2. It is interesting to notice that the optimal depth
is, with good approximation, a linear function of the gap height, regardless of
the analyzed combination of viscosity and velocity. This linear dependence is
also in agreement with literature results based on the 1D Reynolds equation,
such as those by Fowell et al. [120] and ramesh et al. [50].

This analysis hints to the fact that geometrical parameters such as the gap
height, play a more important role than viscosity and velocity in the definition
of the optimal texture shape. However, it has to be noticed that this statement
holds only for simulations which are carried out with prescribed gap height. In
case of simulations with constant normal force, the variations of the viscosity
and of the velocity cause changes in the gap height and, hence, in the definition
of the optimal dimple depth hDopt .
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Figure 4.13: Optimal dimple depth as function of the gap height. Each point in this graph rep-
resents the optimal depth extrapolated from the depth-diameter parameter space as
show in figure 4.12. The plot style of the points corresponds to the respective oper-
ating parameter shown in table 4.2. Adapted from [CFM+18].

4.4.2 Scaling between the dimple depth and
the Sommerfeld number

In order to analyze the dependence of the optimal texture design on the op-
erating parameters, this section extends the previous work for the simulation
approach with constant normal force. This simulation approach is in agree-
ment with the working principle of the experimental set-up and, therefore,
the most suitable approach in order to compare the numerical results with the
above-cited experimental ones by Braun et al. [19].

In the simulations presented in this subsection, the normal force is prescribed
and the gap height is iteratively varied through the application of the secant
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4 Optimal texture shape and position

algorithm. The normal force applied on the rotating disc is directly related to
the applied normal load through the area of the disc as follows:

W = FNA. (4.5)

This relationship can be further developed in order to make the dependence of
the applied load W on the operating conditions emerge. It is known [71, 146]
that the pressure distribution scales with the following law:

p = pr
µULx

H2 (4.6)

where pr is an arbitrary reference pressure. By combining the normal force
definition (equation 4.2) with the definition of applied load (equation 4.5), one
can rewrite the above equation as follows:

W =Wr
µULx

H2 (4.7)

where, similarly to pr, Wr is an arbitrary dimensionless reference load. Con-
sequently, the variation of the gap height can be expressed as:

H =

√
µULxWr

W
. (4.8)

Equation 4.8 implies that, in case of simulations with prescribed normal force
FN (applied load W ), any change in the viscosity and the velocity will cause
a variation in the gap height H.

With this simulation settings, the depth-diameter space is investigated again
as previously done in the simulations with prescribed gap height (subsection
4.4.1). In this case, since the normal force is prescribed, the search for the
optimal depth is carried out by analyzing the distribution of the friction coef-
ficient in the depth-diameter space. Figure 4.14 shows the distribution of the
friction coefficient as a function of the depth-diameter space. As happened in
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4.4 Scaling of the optimal dimple depth

Figure 4.14: Distribution and contour lines of the friction coefficient in the depth-diameter pa-
rameter space. The red line marks the position of the optimal depth hDopt which
minimizes the friction coefficient C f . Similarly to figure 4.12, the black line marks
the position where dimples have an aspect ratio λ = 10 which is the one considered
in the experiments by Braun et al. [19]. The depicted case is computed with the
following parameters: U = 1 m/s, µ = 0.187 Pa·s, FN = 20 N.

the previous subsection, an optimal depth can be identified which can mini-
mize the friction coefficient. Moreover, the value of the optimal depth does
not depend on the diameter with good approximation.

In this case, the value of the optimal depth changes with the viscosity and
velocity values. This change is, however, only due to the fact that, since the
applied normal force is constant, the gap height changes according to the vari-
ation in viscosity and velocity. As a matter of fact, if the optimal depth value

97



4 Optimal texture shape and position

10 20 30
0

10

20

30

40

𝐻 [𝜇m]

ℎ
𝐷

𝑜
𝑝

𝑡
[𝜇

m
]

𝐹𝑁 = 20𝑁
𝐹𝑁 = 40𝑁
𝐹𝑁 = 60𝑁
𝐹𝑁 = 80𝑁
linear fit

Figure 4.15: Optimal dimple depth as function of the gap height for simulations with constant
normal force. The four colored lines represent the optimal depth extrapolated from
the depth-diameter parameter space shown in figure 4.14 for the case with constant
normal force. Adapted from [CFM+18].

hDopt is plotted as function of the resulting gap height H the same linear rela-
tionship can be clearly seen as in the previous subsection. Figure 4.16 shows
this relationship for different values of the normal force, which ranges from 20
to 80 N. The optimal gap values are extracted from the depth-diameter space
(as shown in figure 4.14) in the same way as done in the previous subsection.

The linear relationship between the optimal depth and the gap height can be
explicitly formulated by recalling, at first, a more general description of how
the optimal depth depends on the other parameters:

hDopt = hDopt (µ,U,H,D,W ). (4.9)

This general formulation can be rewritten according to the results shown in
this section. Firstly, figures 4.12 and 4.14 show that the optimal depth does not
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depend on the diameter with good approximation. Therefore, the dependence
on the diameter can be neglected in equation 4.9. Secondly, the optimal depth
is found to scale linearly with the gap height for both the possible simulation
approaches (constant applied force or prescribed gap height). Thanks to these
two findings one can rewrite equation 4.9 as follows:

hDopt = kH(µ,U,W ) (4.10)

where k is a constant which depends only on the shape of the macro-geometry.
At this point, the dependence of the gap height on the operating conditions is
known from the above-mentioned equation 4.8. Therefore, by substituting
equation 4.8 into equation 4.10 one obtains

hDopt = k

√
µLxUWr

W
= K

√
µLxU

W
(4.11)

where the reference load Wr has been grouped outside the square root together
with k into the a new constant K. The reference length Lx is considered, in
this analysis, as a constant because it always refers to the domain length of the
pin geometry. It appears clear now that the optimal depth is proportional to
the square root of viscosity, velocity and reference length, while it is inversely
proportional to the square root of the normal load W .

The dependence of the optimal depth on the square root of the viscosity is
confirmed in figure 4.16 where the optimal depth values obtained from the
procedure shown in figure 4.14 are plotted against the viscosity. Four curves
are shown from the simulations with four different values of normal force. A
dashed line representing the square root dependence of the optimal gap height
is introduced in the figure in order to show the good agreement between the
simulation results and the scaling proposed in equation 4.11.

Moreover, the optimal depth values, which were found in the experimental
work of Braun et al. [19], are also plotted in figure 4.16. These experimental
values are obtained form figure 4.11 by converting the diameter values into
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Figure 4.16: Scaling of the optimal dimple depth with respect to the viscosity. Four different
values of the normal force are represented. The fitting dashed line corresponds to the
scaling shown in equation 4.11. Adapted from [CFM+18].

the depth ones, knowing that the experimental analysis was carried out with
constant aspect ratio λ = 10. As one can see, the slope of the experimental
curve is in very good agreement with the simulation results and, hence, with
the scaling relationship expressed in equation 4.11.

The relationship expressed in equation 4.11 can be further generalized by
introducing the Sommerfeld number as presented in equation 2.8. More-
over, for geometries such as sliding bearings and the one in the current study,
Hamrock et al. [71] and Raimondi and Boyd [146] introduced a definition of
Sommerfeld number, which is based on the so-called shoulder height sh. The
shoulder height is defined as the height difference between the outer edge of
the pin and the center of the pin (i.e. the point where the gap height has its min-
imum). The definition of the shoulder height sh is shown in figure 2.3 for the
case of pin A and reads sh = 6.22 µm. Such a definition results from the need
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of defining a fixed geometrical quantity which is comparable to the gap height
but, at the same time, it is known a priori, since the gap height can freely vary
during the simulations. The so-defined Sommerfeld number is hence:

S =
µULx

s2
hW

. (4.12)

By substituting the above definition in equation 4.11 we obtain:

hDopt = K

√
µLxU

W
= K

√
µULs2

h

Ws2
h

= Ksh
√
S. (4.13)

The shoulder height can be brought to the left hand side in order to define
the non-dimensional optimal depth and its dependence on the Sommerfeld
number.

hDopt

sh
= K
√
S. (4.14)

This relationship expresses the proportionality of the dimensionless optimal
depth to the square root of the Sommerfeld number. Furthermore, the propor-
tionality constant K depends only on the macro geometry of the pin and the
arbitrarily chosen reference load Wr.

Figure 4.17 shows the behavior of the dimensionless optimal depth as a func-
tion of the Sommerfeld number defined through the shoulder height sh in equa-
tion 4.12. It is interesting to note that all the numerical curves collapse onto
a single line, which is, in turn, in good agreement with the proposed scaling
(fitting line hDopt ∝

√
S).

Also in this case, the slope of the experimental results is in very good agree-
ment with the numerical ones, but different in the absolute values. In this case,
the reason of this shift can be attributed to two factors. Firstly, the experimen-
tal results are obtained in the mixed lubrication regime, meaning that a contri-
bution of the normal force probably comes from the direct contact between the
two surfaces or other effects typical of this lubrication regime. Secondly, the
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Figure 4.17: Non-dimensional optimal depth as function of the Sommerfeld number. The curves
are the same as in the dimensional case shown in figure 4.16. The fitting line repre-
sents the scaling proposed in equation 5.2. The experimental results from Braun et
al. [19] are non-dimensionalized through a constant velocity U = 1 m/s. Adapted
from [CFM+18].

Sommerfeld number for the experimental values shown in figure 4.17 can be
arbitrarily shifted according to the velocity used in the definition since the ex-
perimental values of the optimal depth have been measured for different values
of velocity. This second aspect will be further investigated in future works.

As conclusion, the overall good agreement in the slope of the experimental
and numerical results indicates that the physical mechanisms which are re-
sponsible for the scaling of the optimal depth can be successfully investigated
with a hydrodynamic approach, even though the experiments are carried out
in the mixed lubrication region.
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Figure 4.18: Experimental Stribeck curve with different orientations of the texture surface. This
experimental results are presented by Schneider et al. in [20]. The methodology
and the operating conditions of this experimental campaign are espoused in section
2.1. The considered texture has the following parameters: D = 40 µm, aspect ratio
λ = 10, texture density ρtxt = 10%. The Stribeck curve is plotted as a function of the
Hersey number H. Adapted from [CFM+18] and [20].

4.5 Impact of the dimple distribution

The last parametric investigation concerns the effects of different dispositions
of the texture elements. This analysis is motivated by the experimental work
of Schneider et al. [20], whose results are exposed in figure 4.18. This fig-
ure shows the experimental Stribeck curve obtained for different orientations
of the texture pattern, ranging from a square one to a pseudo-hexagonal one
according to the sketch shown in figure 4.2. As one can see, the pseudo-
hexagonal arrangement has an overall lower friction than the other tested ar-
rangements.
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Figure 4.19: Friction coefficient as function of the normalized shift parameter sz of the texture
arrangement. Two groups of curves are presented showing the friction performance
for both investigated dimple diameters. For each group five values of texture den-
sity are shown. The untextured case is also plotted as reference. The simulation
results shown in this figure are obtained under the following operating conditions:
µ = 0.187 Pa·s, U = 0.1 m/s, FN = 15 N.

The corresponding numerical study is performed by varying the shift parame-
ter sz (see figure 4.2) in order to generate a set of textures with the same kind of
spherical dimple but with a different arrangement as done in the experimental
campaign. Moreover, a parameter space with different viscosity and velocity
values is considered. The simulations are carried out in the framework of a
constant applied load which is set to FN = 15 N as in the experiments. In
this case, also the effects of different values of texture density is analyzed,
ranging from ρtxt = 10% to ρtxt = 35%. Two values of the dimple diameter
are investigated (i.e. D = 100 and D = 200 µm) while considering a constant
aspect ratio λ = 10.

Figure 4.19 shows the friction coefficient as a function of the shift parameter
sz for two groups of simulations with different dimple diameters. As one can
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Figure 4.20: Friction coefficient as function of the normalized shift parameter sz of the texture
arrangement. Two groups of curves are presented showing the friction performance
for both investigated dimple diameters. For each group five values of texture den-
sity are shown. The untextured case is also plotted as reference. The simulation
results shown in this figure are obtained under the following operating conditions:
µ = 0.0187 Pa·s, U = 0.1 m/s, FN = 15 N.

see, for small values of the texture density ρtxt < 20%, the different arrange-
ment of the texture elements does not really impact on the friction coefficient,
since the curves remain almost perfectly horizontal regardless of the value of
the shift sz. The influence of the shift parameter becomes more evident for in-
creasing values of the texture density and this influence can clearly be noticed
for ρtxt = 35%. Nonetheless, the effects of the texture arrangement appear to
act differently than in the experiments shown in figure 4.18. As a matter of
fact, the simulations show a lower friction coefficient for the square arrange-
ments than for the pseudo-hexagonal one.

The same trend was found for all the other combinations of velocity and vis-
cosity which were tested in this parametric study. Figure 4.20 shows similar
numerical results to those in figure 4.19 but with a lower viscosity µ = 0.0187.
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In this case, the textured surface has a worse friction performance than the un-
textured one. Moreover, also in this case the square pattern shows a lower
friction coefficient than the hexagonal one. More generally, the increase of the
texture density corresponds to an enhancement of the texture performance in
both possible cases, regardless of whether the friction is reduced or increased.

In conclusion, it appears that the influence of the texture disposition cannot be
fully represented by means of a solely hydrodynamic approach. The reason
behind this discrepancy could lie either in the neglection of the inertial terms
(which might describe the possible mutual effects between dimples [80, 128])
or in the absence of contact mechanics modeling. Therefore, despite the im-
plementation of a mass conserving algorithm, the Reynolds equation should
be also coupled with a contact mechanic algorithm in order to study the im-
pact of the texture distribution.
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The numerical representation of a pin-on-disc set-up in the hydrodynamic
regime is undertaken in this work with the aim to deepen the study of surface
texturing as a promising way to reduce friction and wear in lubricated contacts.
In order to achieve this goal, this work is divided into two main steps: the first
one focuses on the modeling strategies for the description of the hydrodynamic
flow in a pin-on-disc tribometer, while the second part concerns the systematic
study of the texture design characteristics as a function of the operating condi-
tions. Both parts are exposed in the present work as a homogeneous adaptation
based on the three publications of the author [GMB+15, CSMF17, CFM+18]
with also extensions and further investigations.

The numerical analysis is based on two main numerical models: the Navier-
Stokes equations and the Reynolds equation. These two models are ana-
lyzed in both their compressible and incompressible formulation. Moreover,
the Reynolds equation is further developed through the addition of a mass-
conserving cavitation algorithm.

As first step, a comprehensive comparison between the various numerical
models is carried out in order to understand the level of detail that can be
achieved in describing the physical phenomena occurring during pin-on-disc
investigations in the hydrodynamic lubrication. In this regard, the analysis
concerned the numerical description of the pin-on-disc tribometer and its set-
ting parameters, such as the sliding distance, i.e. the distance between the pin
and the center of rotation of the disc. This analysis is performed with the com-
pressible Navier-Stokes equations and it is based on the real pin geometry as
measured from the experimental set-up, so that the simulations can represent
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the whole system in a way which is as complete as possible. As a result, a
dependence is found between the sliding distance and the measured friction
coefficient. In particular, the friction coefficient is found to reduce if the pin
is moved closer to the center of rotation as also experimentally confirmed by
Greiner et al. in [GMB+15].

The analysis with the compressible Navier-Stokes equation also brought to
light that a faster computational approach is needed in order to run simula-
tions more efficiently considering a richer parameter space. For this reason,
the Reynolds equation is considered as a more suitable numerical approach
for efficient simulations. In this regard, the applicability hypotheses of the
Reynolds equation are examined in the case of a geometry consisting of a pin-
on-disc tribometer both at the macro scale of the pin as well as at the micro
scale of the texture elements.

For the analysis in the macro scale, several simulations of the pin are carried
out with the Navier-Stokes equations for different values of gap height and
viscosity with the aim to evaluate the relevance of the inertial terms for a
broad range of operating conditions. The contribution of every single term of
the Navier-Stokes equation is evaluated in the domain, showing that for the
macro geometry in the pin scale, the inertial terms are always negligible in
comparison to the pressure and viscous terms. Hence, the analysis through the
Reynolds equation could represent a sufficiently good approximation in order
to obtain a faster numerical representation of the flow in the macro geometry.
The approach used to check the validity of the Reynolds equation in the micro
scale which characterize the texture elements follows the scheme proposed by
Dobrica and Fillon in [46]. In their work, these authors analyzed the role of
the Reynolds number and the role of the aspect ratio of a 2D square dimple by
comparing the pressure distribution resulting from the Navier-Stokes equation
and the Reynolds one. This work extended that analysis also for 3D spherical
texture elements, showing that a slightly lower applicability margin is found
with respect to the maximum allowed Reynolds number.
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The modeling part of the tribometer set-up is then further analyzed with a par-
ticular focus on the relevance of thermodynamic effects in the lubricant film.
In particular, the effects of viscous dissipation are investigated in order to pro-
vide a characterization of the pressure losses and of the temperature increase
as a function of the operating conditions. In order to concentrate the atten-
tion rather on the thermodynamic aspect than on the particular feature of the
pin-on-disc geometry, the geometry of a parallel channel is considered. The
numerical analysis is carried out both with the compressible Navier-Stokes
equation and the Reynolds one. The latter is coupled with the energy equa-
tion through a generic and versatile formulation which allows to deal with
the coupled equations in a rather fast and efficient manner. At first, the ap-
plicability region of this approach is identified as a function of the Reynolds
and of the Péclet number, respectively Re < 0.1 and Pe < 103. The thereby
validated model is then applied to the study of the pressure losses as func-
tion of four operating parameters, such as viscosity µ , velocity of the moving
wall U , reference length of the bearing Lx and gap height H. These four pa-
rameters can be resumed through the introduction of the Sommerfeld number
defined as S = ULxµ/(H2 pr), where pr is the reference pressure. It was
found that, when the Sommerfeld number increases, the temperature distribu-
tion increases as well along the channel due to the viscous dissipation. This
temperature increase affects also the density and the pressure distribution. In
particular, it is shown that the pressure distribution has to decrease (pressure
loss) along the channel in order to counterbalance the increase of thermal en-
ergy in the flow through a decrease of mechanical energy. This mechanism
was highlighted through the analysis of the contribution of every term in the
energy equation. As quantitative results, the mechanical energy losses become
relevant for S > 1. Moreover, it was shown that the pressure losses scale with
the square of the Sommerfeld number while the inlet-outlet temperature dif-
ference increases linearly with the Sommerfeld number.

109

5 Conclusion and Outlook



5 Conclusion and Outlook

In the second part of this work, the geometry of the tribometer is considered
also in the presence of a texture on the pin surface. The numerical approach
is based on the incompressible Reynolds equation with mass-conserving cav-
itation, whereas particular emphasis is laid on the computational performance
of the solver in order to carry out parametric studies based on high-resolution
surface representations of experimental set-ups. Three main studies are under-
taken with the goal of investigating the texture performance focusing on the
relations and scalings between operating parameters and the optimal shape of
dimples. The first study concerns the sensitivity of the load carrying capacity
with respect to the dimple position on the pin surface. Consistently to the liter-
ature results and the experimental results shown in [CFM+18], it is found that
the front part of the pin surface experiences the best benefits from the presence
of a texture, while on the rear part of the pin, where cavitation occurs, the tex-
ture elements have either no influence or even a detrimental effect. Moreover,
this analysis showed that for simulations with prescribed gap height, viscosity
and velocity have a much smaller influence than the gap height in defining the
position in which dimples have a positive effect on the normal force.

The second study of the textured surface focuses on the influence of the oper-
ating parameters on the dimple diameter and depth. At first, the load carrying
capacity is found to have a maximum in the depth-diameter space which is
independent of the diameter value. This hints to the fact that an optimal value
of the dimple depth exists which is shown to be a linear function of the gap
height. Starting from the generic function which describes the optimal depth
hDopt = hDopt (µ,U,H,D,W ), the linear relationship between the optimal depth
and the gap height can be expressed in the following way:

hDopt = kH(µ,U,W ) = K

√
µLxU

W
(5.1)

where µ is the viscosity, Lx the reference length, U the sliding velocity, W

the applied load and D the diameter. The latter dependence is excluded from
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equation 5.1 since the distribution of the maximal normal force in the depth-
diameter space is independent of the dimple diameter.

A further generalization of the scaling results comes from the introduction
of the shoulder height sh as reference length for the gap height [71, 146].
This allows to rewrite the above equation 5.1 by considering the Sommerfeld
number as defined in equation 4.12 and, hence, leading to:

hDopt

sh
= K
√
S. (5.2)

This equation shows that the dimensionless optimal dimple depth is a function
of a constant K (which depends only on the shape of the macro geometry and
on the arbitrary reference load Wr) times the square root of the Sommerfeld
number. This scaling has been proven through simulations which employed
both possible simulating strategies, namely with prescribed gap height and
with constant normal force. The scaling results are also in very good agree-
ment with the experimental results presented by Braun et al. in [19], sug-
gesting that hydrodynamic mechanics induced by dimples also play a relevant
role in the mixed lubrication region.

The third parametric analysis concerns the role of the texture orientation on
the surface. The numerical analysis in the hydrodynamic regime showed that
for low values of the texture density almost no influence is noticed between
different kind of dimple dispositions. On the other side, for a relatively high
texture density the square arrangement of dimples appears to have a lower
friction coefficient than in the case with a pseudo-hexagonal pattern. These
findings are in contrast with those of the experimental analysis performed by
Schneider et al. [20] where the pseudo-hexagonal pattern is found to perform
better than the square one. The reason for this discrepancy may lie in the
fact that the simulations are carried out in the hydrodynamic regime while the
experiments were performed under mixed lubrication conditions. Hence, the
fluid dynamic model based on the Reynolds equation with mass-conserving
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cavitation has to be complemented with the addition of models which can
consider the influence of the other physical phenomena which occur in the
mixed lubrication regime.

The consideration of the coupling between the Reynolds equation and the
complementary models represents the main outlook for the present work. In
this regard, the aim would be the progressive shift of focus from the hydro-
dynamic region to the mixed regime. This could be done by also consider-
ing models for the interaction between the roughness and the fluid dynamics
(such as flow factors [147, 148] or homogenization techniques [149, 150])
and also the interaction between the pressure in the fluid film and the me-
chanical deformation of the surfaces through a fully elasto-hydrodynamic ap-
proach [63, 151, 152]. In addition, the above-mentioned steps can be coupled
with a contact mechanics algorithm which can describe the resulting inter-
action between the two surfaces as soon as they get in contact [153, 154].
All the above-mentioned methods can be finally coupled in a fully thermo-
elasto-hydrodynamic approach [145, 155] paying attention to an efficient im-
plementation so that a systematic optimization of the textured surfaces can
be carried out.
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[131] S. Vlădescu, A. Ciniero, K. Tufail, A. Gangopadhyay, and T. Reddy-
hoff. Optimisation of pocket geometry for friction reduction in piston-
liner contacts. Tribology Transactions, pages 1–10, 2017.

[132] V. Brizmer, Y. Kligerman, and I. Etsion. A laser surface textured paral-
lel thrust bearing. Tribology Transactions, 46(3):397–403, 2003.

[133] S. Cupillard, M. J. Cervantes, and S. Glavatskih. Pressure buildup
mechanism in a textured inlet of a hydrodynamic contact. Journal of

Tribology, 130(2):021701, 2008.

[134] H. Yu, H. Deng, W. Huang, and X. Wang. The effect of dimple
shapes on friction of parallel surfaces. Proceedings of the Institution

of Mechanical Engineers, Part J: Journal of Engineering Tribology,
225(8):693–703, 2011.

[135] A. Gherca, A. Fatu, M. Hajjam, and P. Maspeyrot. Effects of sur-
face texturing in steady-state and transient flow conditions: Two-
dimensional numerical simulation using a mass-conserving cavitation

128



Bibliography

model. Proceedings of the Institution of Mechanical Engineers, Part J:

Journal of Engineering Tribology, 229(4):505–522, 2015.

[136] A.N. Murthy, I. Etsion, and F.E. Talke. Analysis of surface textured air
bearing sliders with rarefaction effects. Tribology Letters, 28(3):251–
261, 2007.

[137] M. Adjemout, N. Brunetiere, and J. Bouyer. Numerical analysis of the
texture effect on the hydrodynamic performance of a mechanical seal.
Surface Topography: Metrology and Properties, 4(1):014002, 2015.

[138] V.G. Marian, M. Kilian, and W. Scholz. Theoretical and experimental
analysis of a partially textured thrust bearing with square dimples. Pro-

ceedings of the Institution of Mechanical Engineers, Part J: Journal of

Engineering Tribology, 221(7):771–778, 2007.

[139] Y. Qiu and M.M. Khonsari. Performance analysis of full-film textured
surfaces with consideration of roughness effects. Journal of tribology,
133(2):021704, 2011.

[140] N. Brunetière and B. Tournerie. Numerical analysis of a surface-
textured mechanical seal operating in mixed lubrication regime. Tri-

bology International, 49:80–89, 2012.

[141] S. Kango, R.K. Sharma, and R.K. Pandey. Comparative analysis of
textured and grooved hydrodynamic journal bearing. Proceedings of

the Institution of Mechanical Engineers, Part J: Journal of Engineering

Tribology, 228(1):82–95, 2014.

[142] H. Zhang, G. Dong, M. Hua, F. Guo, and K. S. Chin. Parametric de-
sign of surface textures on journal bearing. Industrial Lubrication and

Tribology, 67(4):359–369, 2015.

129



Bibliography

[143] F. Sahlin, S. B. Glavatskih, T. Almqvist, and R. Larsson. Two-
dimensional CFD-analysis of micro-patterned surfaces in hydrody-
namic lubrication. Transactions of the ASME-F-Journal of Tribology,
127(1):96–102, 2005.

[144] Hu Yong and Raj Balendra. Cfd analysis on the lubrication behaviours
of journal bearing with dimples. In Mechatronics and Automation,

2009. ICMA 2009. International Conference on, pages 1279–1284.
IEEE, 2009.

[145] C. Gu, X. Meng, Y. Xie, and D. Zhang. Mixed lubrication problems
in the presence of textures: An efficient solution to the cavitation prob-
lem with consideration of roughness effects. Tribology International,
103:516–528, 2016.

[146] A.A. Raimondi and J. Boyd. Applying bearing theory to the analysis
and design of pad-type bearings. Trans. ASME, 77(3):287–309, 1955.

[147] N. Patir and H.S. Cheng. An average flow model for determining effects
of three-dimensional roughness on partial hydrodynamic lubrication.
Journal of Tribology, 100(1):12–17, 1978.

[148] N. Patir and H.S. Cheng. Application of average flow model to lubrica-
tion between rough sliding surfaces. Journal of Tribology, 101(2):220–
229, 1979.

[149] H. G. Elrod. Thin-film lubrication theory for newtonian fluids with sur-
faces possessing striated roughness or grooving. Journal of Lubrication

Technology, 95(4):484–489, 1973.

[150] R. Larsson. Modelling the effect of surface roughness on lubrication in
all regimes. Tribology International, 42(4):512–516, 2009.

130



Bibliography

[151] R. Lee, C. Hsu, and W. Kuo. Multilevel solution for thermal elastohy-
drodynamic lubrication of rolling/sliding circular contacts. Tribology

International, 28(8):541–552, 1995.

[152] M. Nabhani, M. El Khlifi, O. S. T. Gbehe, and B. Bou-Saïd. Coupled
couple stress and surface roughness effects on elasto-hydrodynamic
contact. Lubrication science, 26(4):251–271, 2014.

[153] P. Sainsot and A.A. Lubrecht. Efficient solution of the dry contact of
rough surfaces: a comparison of fast fourier transform and multigrid
methods. Proceedings of the Institution of Mechanical Engineers, Part

J: Journal of Engineering Tribology, 225(6):441–448, 2011.

[154] M. H. Müser, W. B. Dapp, R. Bugnicourt, P. Sainsot, N. Lesaffre,
T. A. Lubrecht, B. N. J. Persson, K. Harris, A. Bennett, K. Schulze,
et al. Meeting the contact-mechanics challenge. Tribology Letters,
65(4):118, 2017.

[155] C. Wen, X. Meng, and W. Li. Numerical analysis of textured piston
compression ring conjunction using two-dimensional-computational
fluid dynamics and reynolds methods. Proceedings of the Institution

of Mechanical Engineers, Part J: Journal of Engineering Tribology,
page 1350650118755248, 2018.

131





Journal Publications

[CFM+18] A. Codrignani, B. Frohnapfel, F. Magagnato, P. Schreiber,
J. Schneider, and P. Gumbsch. Numerical and experimental inves-
tigation of texture shape and position in the macroscopic contact.
Tribology International, 122:46–57, 2018.

[CSMF17] A. Codrignani, D. Savio, F. Magagnato, and B. Frohnapfel. A
scaling parameter for pressure losses and thermal effects in lu-
bricant flows with viscous dissipation. Tribology International,
113:238–244, 2017.

[GMB+15] C. Greiner, T. Merz, D. Braun, A. Codrignani, and F. Magag-
nato. Optimum dimple diameter for friction reduction with laser
surface texturing: the effect of velocity gradient. Surface Topog-

raphy: Metrology and Properties, 3(4):044001, 2015.

133





Co-Supervised Student Theses

[Alb17] Linda Albert. Implementation of roughness models in the Reynolds
equation. Bachelor thesis at Karlsruhe Institute of Technology, 2017.

[Fur16] Oscar Furst. Analysis of 3D surface textures with the reynolds equa-
tion. Bachelor thesis at Karlsruhe Institute of Technology, 2016.

[GB17] Benjamin Guthier-Brown. Numerical analysis of surface textures
for lubricant applications. Bachelor thesis at Karlsruhe Institute of

Technology, 2017.

[Lop17] Eduardo Lázaro Lopez. CFD analysis of heat transfer in microchan-
nels. Master thesis at Karlsruhe Institute of Technology, 2017.

[Ros16] Tommaso Rossi. Numerical analysis of surface pattern for a clutch.
Master thesis at Karlsruhe Institute of Technology, 2016.

[Shu16] Jingzhe Shu. Investigation of inertia effects in lubricant flows with
textured surfaces. Bachelor thesis at Karlsruhe Institute of Technol-

ogy, 2016.

[Ukr18] Ihor Ukrainets. Numerical modeling of hydrodynamic effects in
mixed lubrication regime. Bachelor thesis at Karlsruhe Institute of

Technology, 2018.

135





Nomenclature

TRIBOMETER

Ra arithmetic mean roughness of a surface

R f friction radius

FN normal force

FT tangential force

C f friction coefficient x

Rpin pin radius

hside height of the pin (from the edge to the pin holder)

sh shoulder height of the pin

T torque applied on the tribometer shaft

SIMULATIONS

x streamwise direction

z spanwise direction

y wall normal direction

Lx length of the domain

Lz width of the domain
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H gap height

p pressure



Nomenclature

pcav cavitation pressure

p discretized pressure vector

ρ density

ρre f reference density

ρ̄ generic density as constant value

T temperature

θ cavity fraction

θ discretized cavity fraction vector

Nx amount of grid nodes in streamwise direction

Ny amount of grid nodes in wall-normal direction

Nz amount of grid nodes in spanwise direction

N total amount of grid nodes

kT temperature diffusion coefficient

J Jacobian matrix

Jr preconditioned Jacobian matrix

p discretized pressure vector

θ discretized cavity fraction vector

F Fischer-Burmeister matrix

G matrix representation of the Reynolds equation

εT pressure residue

εp temperature residue

Ht total enthalpy
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V Volume of the channel



Nomenclature

NON DIMENSIONAL NUMBER

S Sommerfeld number

Re Reynolds number

Pe Péclet number

LUBRICANT

µ dynamic viscosity

ν kinematic viscosity

ρre f reference density

µ0 reference dynamic viscosity

C2 exponential coefficient for the viscosity-temperature rela-

tion

T0 reference temperature

TEXTURE

ρtxt texture density

D dimple diameter

De dimple depth

α angle between two lines of the dimple distribution

lx streamwise distance between two adjacent dimple

lz spanwise distance between two adjacent dimple

sz spanwise shift between two consecutive lines of dimples
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Nomenclature

ABBREVIATIONS

DNS direct numerical simulation

EHL elasto-hydrodynamic lubrication

TEHL thermo-elasto-hydrodynamic lubrication

FBNS Fischer-Burmeister-Newton-Schur (Cavitation algorithm)

LST laser surface texturing

AFM atomic force microscopy

PAO Poly-alpha-olefin (lubricant oil)

FVA
Forschungsvereinigung Antriebstechnik

(german consortium for lubricant oils)

EOS equation of state

MPI message passing interface

ISTM Institut für Strömungsmechanik

KIT Karlsruher Institut für Technologie
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A Modelling of the lubricant properties

In this appendix, the rheological properties of the lubricant oil, which was
considered in the numerical simulations, are presented. The rheological de-
scription of a fluid concerns two main steps, namely the representation of the
thermodynamic behaviour through an equation of state in the form of ρ(T, p)

and the choice of a constitutive law for the characterization of the viscosity as
a function of the thermodynamic state µ(T, p).

Among the four different experimental campaigns which are presented in sec-
tion 2.1, three different kinds of lubricant oil were employed. Moreover, in the
analysis of the effects of viscous dissipation presented in chapter 3, a fourth
kind of lubricant oil was considered. This variety in the choice of lubricants
were imposed by different necessities in the carrying out of the experiments.
Nonetheless, in the numerical representation of the cited experimental cam-
paigns, particular attention is paid in the faithful description of the properties
of the lubricant and for every analysis the parameters of the oil are change in
order to match the physical properties of the oil used in the experiments.

For this reason, the following equations of state and the constitutive laws were
used for different lubricant parameters. However, for sake of brevity, the
graphs in the following discussion will be presented for the case of the mineral
oil considered for the viscous dissipation analysis in chapter 3. All other oil
parameters used for the other analysis are just reported in the table A.1.
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A Modelling of the lubricant properties

Equation of state for lubricant oils

Two equations of state (EOS) are analyzed in this work, namely the stiffened
gas equation of state (SG) and the Dowson-Higginson (DH). Both of them are
considered in the form ρ(T, p), where the density is expressed as function of
the temperature and pressure. This formulation is typical for the solution of
fluid dynamic problems, since pressure, temperature and velocity fields are
commonly computed through the solution of the mass, momentum and en-
ergy equations, leaving the computation of the density as an iterative update
at the end of every iteration (as shown, for example, in the algorithm flow
chart in figure 2.5).

The stiffened gas equation of state is based on a reformulation of the ideal gas
EOS applied for compressible liquids [111]. This equation of state is typically
expressed in the following formulation:

ρ(T, p) =
p+ γsgPsg

RsgT
(A.1)

where γsg and Psg are two constants which depend on the characteristics of
the fluid and are tuned in order to fit the experimental measurements. The
stiffened gas constant Rsg is defined as Rsg =Cv(γsg−1), where Cv is the heat
capacity at constant volume.

The lubricant chosen for the study in chapter 3 is a mineral base oil whose
properties were measured experimentally by Regueira et al. in [110]. Such
kind of oil is chosen for the twofold reason of being commonly used in many
tribological applications and also because of the availability of experimental
works which provide a detailed experimental characterization of it, such as
the one by Regueira et al. [110].
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k 0.154 [W/(mK)]

γsg 4.0606

Psg 4.27871 ·108 [Pa]

Cv 2000 [J/(KgK)]

A1 −7.2447 ·10−4 [1/K]

A2 2.2444 ·10−7 [1/K2]

B1 6.6009 ·10−10 [1/Pa]

B2 2.8225 ·10−9 [1/Pa]

ρ0 877.7007 [Kg/m3]

P0 101325 [Pa]

T0 303.1500 [K]

µ0 1.871 ·10−2 [Pa·s]

c1 −0.070712 [1/K]

c2 313.0 [K]

Table A.1: Rheological and thermal parameters of the lubricant, considered for the characteriza-
tion of the lubricant oil in [CSMF17].

The second equation of state which was employed is the Dowson-Higginson
one [58]. This is one of the most used EOS in tribology, because of its abil-
ity to fit experimental data without increasing the complexity of model exces-
sively. This work considers the DH EOS in the formulation presented in [110]:

ρ(P,T ) = ρ0
(
1+A1(T −T0)+A2(T −T0)

2)(1+
B1(P−P0)

1+B2(P−P0)

)
. (A.2)

The corresponding coefficients are summarized in Table A.1 along with ther-
mal and material properties of the fluid.

Figures A.1 and A.2 show the dependence of the pressure on density at two
different temperature values as portrayed by the stiffened gas EOS and the
Dowson-Higginson EOS, respectively. Both figures show also the comparison
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Figure A.1: Stiffened gas equation of state for the mineral base oil considered in the study of the
viscous dissipation effects presented in chapter 3. This graphs represent the relation
p(ρ,T ) by showing the dependence of the pressure on the density for two values of
temperature. The experimental data are taken from the work of Regueira et al. [110].

with the experimental data from [110]. As on can see, the Dowson-Higginson
model provides a better match of the experimental data than the stiffened gas
one. This is also due to the fact that the Dowson-Higginson EOS has more
degrees of freedom which allow to find a better fit of the data, in particular
for what concerns the temperature variations. The optimal fit is found in the
present work through the application of a genetic algorithm.

Constitutive laws

The analyzed lubricant is always assumed to be Newtonian in the present
work. This hypothesis is verified to hold for great part of the numerical work
performed in the hydrodynamic region in chapters 3 and 4, where the max-
imum shear rate γ̇ = 106 is reached only for a very small portion of the in-
vestigated parameter space.
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Figure A.2: Dowson-Higginson equation of state for the mineral base oil considered in the study
of the viscous dissipation effects presented in chapter 3. This graphs represent the
relation p(ρ,T ) by showing the dependence of the pressure on the density for two
values of temperature. The experimental data are taken from the work of Regueira et
al. [110].

The viscosity is assumed to vary exponentially with the temperature and since
the pressure variations remain always relatively small, no dependence on the
pressure in the viscous law is considered in this work.

µ(T ) = µ0ec1(T−c2) (A.3)

The three coefficients are calibrated through the experimental data by Braun
et al. in [19]. Figure A.3 shows the exponential relationship exposed in equa-
tion A.3 together with the experimental measurements of the viscosity. In the
parametric study in chapter 4 the viscosity is varied by keeping as reference
the viscosity value µ0 = 1.871 · 10−2 at T = 30 ◦C.

Internal energy depends linearly on the temperature follows the definition
Ei(ρ,T ) = ρCvT (where Ei(T = 0) = 0) with the assumption of constant spe-
cific heat coefficient at constant volume, Cv = const.
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Figure A.3: Constitutive law of the PAO-18 lubricant. The graph shows the dependence of the
viscosity on the temperature which is modeled through the exponential laws shown
in equation A.3. The coefficients µ0, c1 and c2 are shown in table A.1. The two
points represent the experimental measurements as provided in the work of Braun et
al. [19].

[GB17, Ros16, Alb17, Ukr18]
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B Role of the texture density in
pin-on-disc set-ups

In this appendix, the analysis on influence of the textured area is presented
starting from the experimental campaign carried out by Schneider et al. in
[20] by means of the tribometer set-up introduced in section 2.1. Figure B.1
shows the experimental Stribeck curve with different values of textured area
ranging between 5% and 30%. The dimple diameter is kept constant to 40
µm with a constant aspect ratio λ = 10. As one can see, texturing the 10%
of the surface area brings the best results in terms of friction reduction. As
said in the introduction to this chapter, this findings obtained by means of a
tribometer set-up are in agreement with previous literature results presented,
for example, by Klingerman et al. in [117] for piston-rig systems and by
Shinkarenko et al. in [119] for seals.

In the corresponding numerical analysis the same texture configuration is an-
alyzed and, moreover, particular attention is paid to the role of the viscosity
on the definition of the optimal texture density. The main results of the sim-
ulations are shown in figure B.2 where the normalized friction coefficient C̄ f

is plotted against the texture density ρtxt . the normalized friction coefficient
is defined as the ratio between the friction coefficient in the texture case C ftxt

and the reference one in the untextured case C f0 so that C̄ f = C ftxt/C f0 . It is
interesting to notice that the friction normalized friction coefficient decreases
monotonically with increasing texture density. On the contrary, experimen-
tal investigation have proved that an optimal texture density exists around
ρtxt = 10%. An explanation of this discrepancy was recently proposed by
Wang et al. in [127] by analysis a single texture element with an approach
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Figure B.1: Experimental Stribeck curve as function of the sliding speed for different values of the
texture density ρtxt as reported by Schneider et al. in [20]. The dimple diameter and
depth are kept constant to D= 40 µm and hD = 4 µm respectively. The texture pattern
is hexagonal, further details about the experimental set-up are reported in section 2.1.

based on the contact mechanics. That study concluded that a pure fluid dy-
namic approach cannot take into account the increasing forces exchanged
through the direct contact of the two surfaces as soon as the untextured area
reduces due to an excessive presence of texture elements.

Beside confirming the literature results, the current study aims also to study the
influence of the operating condition on the texture design parameters. For this
reason, five values of viscosity are shown in figure B.2 ranging from the ref-
erence value µ0 = 0.0187 Pa·s to a value which is 20 times higher: µ = 0.374
Pa·s. As one can see, the increase of the viscosity makes the effects of texture
density more effective, since a much lower normalized friction coefficient can
be achieved for higher values of viscosity at the same level of textured area.
This could mean that also the optimal texture density value could be actually
very sensitive on the viscosity and this could bring to the identification of a
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Figure B.2: Normalized friction coefficient C̄ f as a function of the textured density ρtxt . The
normalized friction coefficient is computed as the ratio between the friction coefficient
in the texture case and the reference one in the untextured case. The dimple diameter
and depth are kept constant to D = 40 µm and hD = 4 µm respectively as in the
corresponding experimental analysis by Schneider et al. [20].

different optimal ρtxt in comparison to what already done in literature [117–
119]. Further study should also consider the role of the contact mechanics as
underlined by Wang et al. in [127].
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The growing demand for higher performance and lower environmen-
tal impact of tribological devices has led to the development of tex-
tured surfaces as efficient way to reduce friction losses and wear. Great 
part of the tribological research of such engineered surfaces relies on  
experimental set-ups based on pin-on-disc tribometers. The aim of the 
present work is the numerical representation of such kind of experi-
mental set-ups in order to study the influence of textures in the hydro-
dynamic regime.
In the initial analysis of the mentioned set-up, particular attention is 
paid to the high-resolution representation of the macroscopic geom-
etry of the contact. Several physical phenomena are investigated with 
different numerical methods in order to efficiently focus on the analy-
sis of the most relevant aspects. 
Finally, the influence of the operating conditions on  the optimal shape 
of a texture made by dimples is investigated by means of an exten-
sive parametric study. As a result, the dimple depth is shown to have 
a higher impact on the texture performance than the diameter and to 
scale with the square root of the Sommerfeld number in agreement 
with experimental investigations.
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