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Abstract We investigate four algorithms for microlens center de-
tection, two of which have not been previously discussed in
the literature. Using a physical approach, we create a set of
81 synthetic white images with known microlens center coordi-
nates. Applying the different detection algorithms to the syn-
thetic white images, we are able to quantitatively evaluate their
respective performance in terms of accuracy, precision and recall.
Overall, the proposed methods outperform the ones that have
been previously published.
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1 Introduction

In the scope of geometrical optics, light is described as rays whose op-
tical path lengths, according to Fermat’s principle, attain an extremum.
Geometrical optics is well suited to describe the imaging process of cam-
eras but as such is lacking the description of many essential properties
of light. By means of an extension to geometrical optics, properties such
as color and intensity, which can only be described within wave op-
tics (or higher order theories such as quantum electrodynamics), can be
heuristically incorporated into geometrical optics: The light field (LF) or
plenoptic function Lλ,t(x, y, z, φ, θ) describes the optical radiance at point
(x, y, z) in direction (φ, θ) of wavelength λ at time t in units Wm−2sr−1.
In homogeneous media that are free of occluders, the radiance along a
ray is constant. The spatial dependency of the LF can hence be reduced
by one dimension, resulting in the so-called 4D light field Lλ,t(u, v, a, b),
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where the coordinates (u, v, a, b) correspond to a certain parametriza-
tion of the spatial dependency of the LF of which there are numerous.
For LF cameras, one usually uses the plane-plane parametrization: A
light ray inside a camera is uniquely described by the intersection points
(u, v) and (a, b) of two parallel planes, the main lens plane and the sen-
sor plane.

At every sensor coordinate (a, b), conventional cameras perform an
integration of the LF over the time t, the wavelength λ as well as the co-
ordinates (u, v) which encode the direction of the incident light ray. The
aim of LF cameras is to measure this angular dependency that is lost
in conventional camera systems. LF cameras have been part of active
research over the past two decades and open new possibilities to mea-
sure spatial information, in particular the depth, of a scene. There are
different implementations of LF cameras such as camera arrays, gantry
or microlens array (MLA) based LF cameras. Camera arrays and gantry
based LF cameras are the optically most straightforward way to con-
struct a LF camera. They offer very good spatial and angular resolution
but require sophisticated calibration schemes, are bulky and mechani-
cally sensitive. MLA based cameras [1, 2] have recently gained in pop-
ularity due to their compact monocular design. By placing a MLA in
front of the imaging sensor, the direction (u, v) of incident light rays is
coded into the sensor image: Light rays hitting the sensor plane perpen-
dicularly will be imaged onto the central pixel underneath a microlens
(ML), slanted rays will be imaged onto pixels deviating from the center.
Thus, the relative position of the image point w. r. t. the ML center codes
the (u, v) coordinate of the incident light field, the position of the ML
itself the (a, b) coordinate.

The foundation of all calibration and decoding schemes needed in the
case of MLA based LF cameras is the exact detection of the ML centers
with subpixel precision. The ML centers are detected using so-called
white images (WIs) – images of a white scene for example taken using an
optical diffuser. The calibration and decoding quality is dependent on
the accuracy and robustness of the ML center detection. In spite of the
importance of the ML center detection, to our knowledge there is no lit-
erature investigating the quality of the ML center detection algorithms.
This is the main scope of this article. The results presented in this paper
analogously apply for MLA based computational cameras other than LF
cameras with little or no adjustment, e. g. MLA based spectral cameras.
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The paper is organized as follows. Following this short introduction,
we outline two existing and propose two new ML center detection al-
gorithms in Section 2. In Section 3, we first present the methods used
to create reference data and the used evaluation metrics. Using the syn-
thetic ground truth data, we present a performance evaluation of the
different ML center detection algorithms. Section 4 concludes the paper
with a brief summary.

2 Microlens center detection

Challenges in the detection of MLs and their centers are versatile: On
the one hand, the sheer amount of MLs in MLAs used in practice (in
the case of the Lytro Illum camera about 150.000 MLs) limits the algo-
rithm’s complexity. On the other hand, the geometry of the MLA is not
trivial and usually slightly irregular: Ideally, the MLs are circular, ar-
ranged in a perfect rectangular or hexagonal grid and perfectly aligned
with the sensor. In practice, the MLA will be translated, rotated and
scaled1 w. r. t. the sensor and the lattice will be slightly irregular due to
manufacturing tolerances. Furthermore, main lens and ML vignetting
influences the form and brightness of the ML images, particularly of
those that are close to the sensor edge.

There are two ML detection methods proposed in the literature: Cho
et al. [3] first perform a greyscale erosion and clustering of the WI. To
estimate the ML centers, they use a parabolic least squares (LS) regres-
sion of the clustered MLs. Dansereau et al. [4] propose a decoding
pipeline for the Lytro light field camera implemented, as the de-facto
non-proprietary standard, in the MATLAB Light Field Toolbox. As a pre-
processing step, the WI is convolved with a filter kernel. In the case
of the MATLAB Light Field Toolbox, a disk kernel with a fixed radius of
1/3 of the expected ML spacing is used. The ML centers are then esti-
mated by finding the local maxima in the filtered image2. We propose
two detection algorithms that join parts of the aforementioned detection
pipelines: First, to reduce noise and other high frequencies, we convolve
the image with a filter kernel. We investigate different kernel types and

1 That is, ML centers will not be imaged onto pixel centers.
2 This does not result in subpixel precision. However, in the succeeding decoding

pipeline of the toolbox, a ML grid model is built with subpixel precision.
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sizes. In a second step, the images are clustered using local thresholding
(by local Gaussian weighted mean with a block size of 17 px) to find ar-
eas around local peaks and a standard cluster labeling algorithm. Each
cluster represents exactly one ML. The thresholding has to be performed
locally, as the main lens vignetting results in different local maximum
values for the MLs close to the sensor edge. Finally, we either perform a
parabolic LS estimation to obtain the ML centers or calculate the center
of mass (CoM) of the individual clusters. Both methods yield ML cen-
ters with subpixel precision but perform differently in terms of accuracy
and runtime. The different ML center detection pipelines are depicted
in Figure 1.

3 Evaluation

3.1 Reference data

In order to objectively evaluate the performance of the ML detection
algorithms, appropriate reference data is needed. Of course, real WIs,
as for example provided by the Lytro cameras, are unsuited since the
actual ML centers are unknown. Therefore, the reference data has to be
synthesized: In general, the irradiance at a sensor coordinate (a, b) for
a camera with one lens of radius r at distance d to the sensor is given
by [2]

E(a, b) =
1

d2

∫ T

0

∫
Λ

∫∫
A

Lλ,t(u, v, a, b) cos4 φ dudv dλ dt .

Here, A =
{
u = (u, v) ∈ R2 : ‖u‖ < r

}
, T denotes the exposure time, Λ

a wavelength interval and φ = arctan
(
d−1 ·

∣∣√u2 + v2 −
√
a2 + b2

∣∣) the
angle between the incident light field and the sensor normal. For WIs,
we assume that the incident light field is constant inside the camera
at the MLA plane, hence the time and wavelength integration yields a
constant factor. We obtain

E(a, b) ∝ 1

2d2

(
A−

A2
− + 1

− A+

A2
+ + 1

+ arctanA− − arctanA+

)
, (1)

where A± = d−1
(√
a2 + b2 ± r

)
. Using (1), we calculate the irradi-

ance underneath each ML. These ML illuminations are then arranged
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(a) Dansereau et al. [4].
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Figure 1: ML center detection pipelines.
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(a) Synthetic (noise free). (b) Lytro Illum.
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Figure 2: Image sections of normalized WIs with ML radius r = 7 px. The
shown Lytro WI is the mean of all 34 Lytro WIs.

in a hexagonal grid to compose a WI. Main lens vignetting is added to
the WI in an analogous fashion. To simulate irregularities of the grid,
we add bivariate Gaussian noise of different variances to the ideal grid
point coordinates. Furthermore, we add different levels of Gaussian im-
age noise to the WIs. Finally, the synthesized images are downsampled
to 16 bit. The used parameters (ML and main lens radius, focus dis-
tance, pixel pitch, grid spacing) are taken from a metadata file of a Lytro
Illum camera. The remaining parameters, such as the grid rotation and
subpixel offset, are varied throughout the investigation. A comparison
of a synthesized and a Lytro WI are shown in Figure 2.

Each Lytro Illum camera provides 34 white images for calibration,
taken at different focus and zoom settings. These white images differ
mostly in the severity of vignetting: With different focal lengths of the
main lens but with unchanged entry pupil, the ML images will be cres-
cent shaped instead of circular at the sensor edges. To be able to detect
the true geometric ML centers, a preprocessing of the white images is
necessary, for example by averaging all available white images. This
shall not be part of this paper, as we focus on the actual ML center de-
tection.

Using the synthetic WIs, the performance of the ML center detection
algorithms can be investigated: The coordinates of the true ML centers
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are known and can be compared with the estimated ones. We investi-
gate a total of 81 different synthesized WIs of size 1200 × 1800 px con-
taining around 10 000 MLs each.

3.2 Metrics

For every WI, we calculate the estimated ML centers using the four dif-
ferent ML center detection pipelines for varying parameters such as the
convolution filter kernel and kernel radius3 or the size of the structur-
ing element. For every detected center, using the ground truth data,
we calculate the distance to the closest known grid point. If the dis-
tance is larger than 4 px, the detection is dismissed and regarded as a
false positive. Otherwise, the measured distances are collected and the
mean and variance of these measured distances are saved along with
the corresponding WI and algorithm parameters. If two or more detec-
tions occur within a 4 px radius around the same grid point, only the
closest one is considered a true positive. We then can calculate the accu-
racy Q and its standard deviation as the mean and standard deviation
of all measured absolute distances of detected to actual ML centers, the
precision P , the recall R and the F-measure F ,

P =
TP

TP + FP
, R =

TP
TP + FN

, F = 2
P ·R
P +R

,

where TP (FP), FN denote the detected true (false) positives and false
negatives respectively.

3.3 Results

To be able to compare the performances of every detection pipeline, we
first determine the free parameters of each method with the highest de-
tection accuracy. For this, we investigate the mean accuracy over all WIs
for different sizes of the kernel respectively the structuring element. The
results are shown in Figure 3.

The accuracy in case of the method proposed by Dansereau et al.
shows only little dependence on the size of the used filter kernel as well

3 We only investigate kernels of odd size with size = 2 · radius + 1.
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Figure 3: Meausred accuracy Q for different kernel radii respectively different
sizes of the structuring element for the various detection pipelines.

as the kernel shape. Except for a kernel radius of 1 px, the algorithm per-
forms with an mean accuracy Q ≈ 0.4 px with a minimum at a kernel
radius of 6 px. The algorithm proposed by Cho et al. shows alternating
performance depending on the size of the structuring element. A min-
imum of Q = 0.0137 px is reached for a size of 1 px, corresponding to
no erosion performed at all. For even-sized structuring elements, the
algorithm performs significantly worse than for odd-sized ones. This is
caused by shift of the picture due to the fact that even-sized structuring
elements do not possess a central pixel: The shift causes a systematic
error in the estimation of the ML centers. Overall, we conclude that ero-
sion is not well suited as part of the image preprocessing in the case of
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ML center detection. The proposed method using a parabolic LS estima-
tor shows a dependence on the kernel size similar for all kernel types. A
minimum is reached for kernel sizes larger than one, but the algorithm
performs poorly for large kernel sizes. For large kernel sizes, the disk
kernel performs the poorest. This is unsurprising as the disk kernel is
not suited as a high frequency filter as it contains high frequencies itself.
Overall, an optimum of Q = 0.0120 px is reached for a disk kernel with
2 px radius, but similar results are obtained also with the Gauss and
Hann kernel with radii of 2 and 3 px. Finally, for the proposed method
using a CoM calculation, only slight dependence on the kernel size is
observed, with an exception again being a large disk kernel. A mini-
mum is obtained for a Gauss kernel of radius 4 px with Q = 0.0723 px.
For further comparison, we choose the two best performing parameters
for every algorithm.

Using these best performing parameters, detailed performance re-
sults are shown in Figure 4. Here, each scatter point represents the result
calculated from one WI. Overall, the results cluster in three groups: The
pipeline proposed by Dansereau et al. runs fast but has a poor perfor-
mance w. r. t. the detection accuracy. The method by Cho et al. and the
proposed LS method result in very accurate measurements with small
standard deviations but with significantly longer runtime. Last, the pro-
posed CoM method performs very fast with reasonable accuracy below
0.1 px. All methods reach a very high F-measure in general. Looking
more closely at the recall and precision, we observe that the LS-based
methods perform poorly w. r. t. precision compared to the remaining
methods. The problem is inherent to the used non-linear LS estimator:
Depending on the detected ML clusters, the used optimization algo-
rithm might not converge within the desired tolerance or a given max-
imum number of iterations yielding an invalid ML center resulting in
a FP and thus in a suboptimal precision value4. The proposed CoM
based method and the one proposed by Dansereau et al. always per-
form with a precision of exactly one, meaning that no false positives are
detected. This can be of importance for applications where the centers
are directly used for further calculations. All methods show reasonable
recall performance. Further analysis showed that suboptimal recall val-

4 Using a linear LS estimator showed even worse numerical stability resulting in a lower
precision performance with only a slight improvement of runtime.
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Figure 4: Overall performance comparison of the different detection pipelines.
The size of each scatter point is proportional to its measurement’s standard de-
viation. The shown lines correspond to each dataset’s mean value.

ues, meaning that not all ML are detected, occur exclusively at image
edges. Due to cut off ML images, in real applications, one would ne-
glect the image edges anyway.

Finally, we have a closer look at the performance dependence on the
WI properties such as rotation, grid and image noise. The results are
shown in Figure 5. Overall, we again observe that the LS methods are
the most accurate, with the proposed method performing slightly better
than the one by Cho et al. [3]. The method by Dansereau performs worst
and the proposed CoM method’s performance lies in between. For grid
rotation and grid noise, there is no influence on the detection accuracy
for either one of the pipelines. This is not a surprise since the detection
pipelines are all operating locally and every ML is detected and evalu-
ated separately. Rotation and grid noise do not have a systematic influ-
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Figure 5: Performace comparison of the different detection pipelines for differ-
ent WI properties.

ence on the local ML image. Image noise, on the other hand, does have
a local impact on each ML image. We observe a significant influence on
the LS based methods. Both the proposed LS and the method by Cho et
al. perform considerably worse with increasing image noise while the
methods by Dansereau et al. and the proposed CoM method are invari-
ant to image noise. The latter perform a low-pass filtering with kernel
radii of about 7 px whereas the former either perform no filtering (Cho
et al.) or use very small filters (proposed LS method). Increasing the fil-
ter radius, and hence decreasing the cutoff frequency, for the proposed
LS method to 7 px (depicted in Figure 5 by the (LP) label) confirms that
the filtering successfully suppresses image noise. In doing so, the ac-
curacy of the proposed LS pipeline drops significantly, resulting in an
accuracy close to the proposed CoM method.
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4 Conclusions

We have investigated four ML center detection pipelines, two of which
have not been previously discussed in the literature. Overall, the pro-
posed methods perform better than those having previously been pro-
posed in the literature: The method proposed by Dansereau et al. [4]
shows a fast runtime, high precision, but poor accuracy. The proposed
CoM based method outperforms the previous in terms of accuracy and
runtime while performing similarly in terms of precision and recall. On
the other hand, the method proposed by Cho et al. [3] performs with
a high accuracy but long runtimes and suboptimal precision. The pro-
posed LS based method again outperforms the former in terms of accu-
racy while performing similarly in the remaining metrics. With respect
to WI parameters and noise, the method by Dansereau et al. and the
proposed CoM method are the most robust. Concluding, the proposed
CoM method is well suited for most applications.
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