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Abstract

The KdV equation can be derived via multiple scaling analysis
for the approximate description of long waves in dispersive systems
with a conservation law. In this paper we justify this approximation
for a system with unstable resonances by proving estimates between
the KdV approximation and true solutions of the original system.
We expect that the approach will allow to handle more complicated
systems without a detailed discussion of the resonances and without
finding a suitable energy.

1 Introduction

We consider the Boussinesq-Klein-Gordon (BKG) system

∂2t u = α2∂2xu+ ∂2t ∂
2
xu+ ∂2x(auuu

2 + 2auvuv + avvv
2), (1)

∂2t v = ∂2xv − v + buuu
2 + 2buvuv + bvvv

2, (2)

where u = u(x, t), v = v(x, t), x, t ∈ R, and coefficients α > 0, auu, . . . , bvv ∈
R. Inserting the ansatz

ε2ψKdV
u (x, t) = ε2A(ε(x− αt), ε3t) and ε2ψKdV

v = 0, (3)

with small perturbation parameter 0 < ε2 � 1, into (1)-(2) yields the KdV
equation

∂TA = ν1∂
3
XA+ ν2∂X(A2), (4)
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with coefficients ν1, ν2 ∈ R. The amplitude A(X,T ) ∈ R depends on the long
temporal variable T = ε3t and on the long spatial variable X = ε(x− αt).

We are interested in the validity of the KdV approximation for the BKG
system in case of unstable resonances, i.e., in case α > 2, cf. Remark 1.6.
We prove

Theorem 1.1. Let A be a solution of the KdV equation (4) with

sup
T∈[0,T0]

∫
R
|Â(K,T )|eµA|K|dK <∞ (5)

for an µA > 0. Then there exist ε0 > 0, T1 ∈ (0, T0], and C > 0 such that
for all ε ∈ (0, ε0) we have solutions (u, v) of (1)-(2) with

sup
t∈[0,T1/ε3]

sup
x∈R
|(u, v)(x, t)− (ε2ψKdV

u (x, t), 0)| ≤ Cε7/2.

Remark 1.2. Such an approximation result is nontrivial since solutions of
order O(ε2) have to be controlled on an O(1/ε3) time scale.

Remark 1.3. The linearized problem is solved by

u(x, t) = eikx±iωu(k)t, v(x, t) = eikx±iωv(k)t,

with

ωu(k) =
αk√

1 + k2
, ωv(k) =

√
1 + k2.

We have ωu(k) = αk− 1
2
αk3 +O(k5). In Fourier space the KdV equation de-

scribes the modes in the u-equation which are strongly concentrated around
the wave number k = 0, cf. Figure 1. We have ν1 = −1

2
α in (4).

Remark 1.4. Historically, the KdV equation has been derived for the so
called water wave problem first. Approximation results have been established
in a number of papers. They are either based on energy estimates, cf. [Cra85,
SW00, SW02, Due12], or on the use of analytic functions, cf. [KN86, Sch96].

Remark 1.5. Although the BKG system looks less complicated than the
water wave problem, for the KdV approximation some features occur which
are not present for the water wave problem over a flat bottom, namely the
occurrence of quadratic resonances.
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Figure 1: The curves of eigenvalues ±ωu, ±ωv for the linearized BKG system
plotted as a function over the Fourier wave numbers in case α2 = 1 (left)
and α2 = 5 (right). The modes in the blue circles are described by the KdV
approximation.

Remark 1.6. For α > 2 the curves ωu and ωv intersect at two wave numbers
k1 and k2, cf. the right panel of Figure 1. In [BCS17] it has been explained
that there are 2π

k1
-spatially periodic solutions of the form

u = ε2A(ε2t) + εnA1(ε
2t)eiωu(k1)teik1x + εnA−1(ε

2t)eiωu(−k1)te−ik1x + h.o.t.,

v = εnB1(ε
2t)eiωv(k1)teik1x + εnB−1(ε

2t)e−iωv(−k1)te−ik1x + h.o.t.,

which satisfy ∂2τA = 0 and

∂τ

(
A1

B1

)
= M

(
A1

B1

)
, with M =

1

iωu(k1)

(
−auuk21A −auvk21A
buuA buvA

)
,

where τ = ε2t. By suitably choosing the coefficients auu, auv, buu, and buv,
the matrix M has eigenvalues with non-vanishing real part. Hence growth
rates eβτ = eβε

2t = eβT/ε with a β > 0 occur. These allow to bring εnA1

and εnB1, which are initially of order O(εn), to an order O(ε2) at a time
T = O((n − 2)ε| ln(ε)|) � 1. Therefore, we have that v = O(ε2) far be-
fore the natural time scale of the KdV equation. Hence, in this situation
the KdV approximation makes wrong predictions. It can only make correct
predictions if initially εnA1 and εnB1 are chosen exponentially small w.r.t.
ε, cf. Assumption (5) in Theorem 1.1. Without excluding the possibility of
unstable resonances the restriction to analytic solutions and to T1 ∈ (0, T0]
cannot be avoided.
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Figure 2: The mode distribution for t = 0 in the KdV case and the mode
distribution for t = O(| ln ε|/ε2) � O(1/ε3). The KdV approximation is no
longer valid in the right picture, since the modes at ±k1 are of the same order
as the KdV modes at k = 0.

Remark 1.7. For the BKG system in [CS11] for α < 2, i.e., in case of no
additional quadratic resonances, i.e., in case ωu(k) 6= ωv(k) for all k ∈ R,
a KdV approximation result has been established. It has been explained in
[BCS17] how to establish an approximation result for all α ≥ 2 in case of
stable quadratic resonances, i.e., in case that the eigenvalues of M are purely
imaginary or have negative real part. Hence, it is the purpose of this paper
to cover the case of unstable quadratic resonances, i.e, when M has at least
one eigenvalue with positive real part.

Remark 1.8. The proof of Theorem 1.1 is based on a control of the solutions
close to the wave number k = 0 by energy estimates and normal transfor-
mations. At the other wave numbers the solutions are solely controlled by
working in spaces of analytic functions leading to some artificial damping.
Functions which are analytic in a strip in the complex plane around the real
axis of width 2µA correspond in Fourier space to functions which decay as
e−µA|K| for |K| → ∞, cf. Assumption (5) in Theorem 1.1. See [RS75].

Remark 1.9. The BKG system is a prototype model for a whole class of sys-
tems. Elements of this class are the poly-atomic FPU problem and the water
wave problem over a periodic bottom. The transfer of the following analysis
to these systems will be the subject of future research. The main strength
of the approach of the present paper is, that it will allow to handle such
more complicated systems without a detailed discussion of the resonances
and without finding a suitable energy which will be different for every sys-
tem. Except of very few exceptions [CS11, CCPS12, GMWZ14, BDS18] the
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KdV approximation so far has only been justified for systems with a single
pair of curves of eigenvalues ±iωu.

Notation. The Fourier transform of a function u is denoted by Fu or û.
Possibly different constants which can be chosen independently of the small
perturbation parameter 0 < ε2 � 1 are denoted with the same symbol C.

Acknowledgement. The paper is partially supported by the Deutsche
Forschungsgemeinschaft DFG through the Collaborative Research Center
CRC 1173 ”wave phenomena”.

2 Derivation of the KdV approximation

Inserting the ansatz

ε2ψKdV
u (x, t) = ε2A(ε(x− αt), ε3t) and ε2ψKdV

v = 0. (6)

into the BKG system gives

Resu = −∂2t u+ α2∂2xu+ ∂2t ∂
2
xu+ ∂2x(auuu

2 + 2auvuv + avvv
2)

= ε8∂2TA,

Resv = −∂2t v + ∂2xv − v + buuu
2 + 2buvuv + bvvv

2

= ε4buuA
2,

if we choose
−2α∂T∂XA = α2∂4XA+ ∂2X(auuA

2),

respectively

∂TA = −α
2
∂3XA−

auu
2α

∂X(A2). (7)

The residuals Resu and Resv contain the terms which do not cancel after
inserting the approximation into the BKG system. For our subsequent error
estimates we need Resu = O(ε8) and Resv = O(ε8). In order to achieve
this goal, we have to extend our approximation of v by higher order terms.
Therefore, our final approximation is given by

ε2ψu(x, t) = ε2A(ε(x− αt), ε3t),
ε4ψv(x, t) = ε4B1(ε(x− αt), ε3t) + ε6B2(ε(x− αt), ε3t).
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For this improved approximation we find

Resu = O(ε8),

Resv = ε4(−B1 + buuA
2) + ε6(−B2 + ∂2XB1 + 2buvAB1) +O(ε8) = O(ε8),

if we choose B1 and B2 to satisfy

−B1 + buuA
2 = 0 and −B2 + ∂2XB1 + 2buvAB1 = 0.

Due to (
∫
R |u(εx)|2dx)1/2 = ε−1/2(

∫
R |u(X)|2dX)1/2 we lose a factor ε−1/2

when computing the magnitude of the residual w.r.t. powers of ε in L2-
based spaces. Therefore, we have

Lemma 2.1. Fix sA − s ≥ 8, s > 1/2, and T0 > 0. Let A ∈ C([0, T0], H
sA)

be a solution of the KdV equation (7) and ε2ψu and ε4ψv be defined as above.
For this approximation then there exist ε0 > 0 and C > 0 such that for all
ε ∈ (0, ε0) we have

sup
T∈[0,T0]

‖Resu‖Hs ≤ Cε15/2 and sup
T∈[0,T0]

‖Resv‖Hs ≤ Cε15/2.

Proof. Counting the powers of ε is straightforward. The term which loses
most regularity is ∂2TB2 which can be expressed in terms of ∂2T (AB1) and
∂2T∂

2
XB1. Since B1 can be expressed in terms of A2 it is sufficient to control

∂2T∂
2
X(A2). We have that ∂TA can be expressed via the right-hand side of

the KdV equation in terms of A, . . . , ∂3XA. Differentiating the KdV equa-
tion w.r.t. T shows that ∂2T (A2) can be expressed in terms of A, . . . , ∂6XA.
Therefore, ∂2T∂

2
XB can be expressed in terms of A, . . . , ∂8XA.

Then writing the equations for the error, obtained from the BKG system
(1)-(2), as a first order system, a term ∂−1x Resu occurs.

Lemma 2.2. Under the assumption of Lemma 2.1 we have the estimate

sup
T∈[0,T0]

‖∂−1x Resu‖Hs+1 ≤ Cε13/2.

Proof. The loss of ε−1 comes from ∂−1x = ε−1∂−1X . It is not obvious that
∂−1X Resu is again in L2. This is obvious for all terms which have a derivative
∂X in front. There is only one term in the residual for which this is not
obvious, namely ∂2TA. We have

∂2TA = ∂T (∂TA) = ∂T (ν1∂
3
XA+ ν2∂X(A2)) = ∂X∂T (ν1∂

2
XA+ ν2(A

2)).

Therefore, we are done.
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3 The equations for the error

The error functions (ε7/2Ru, ε
7/2Rv), defined by

u = ε2ψu + ε7/2Ru, u = ε2ψu + ε7/2Ru,

satisfy

∂2tRu = α2∂2xRu + ∂2t ∂
2
xRu + 2ε2∂2x(auuψuRu + auvψuRv) + ε3∂2xfu, (8)

∂2tRv = ∂2xRv −Rv + 2ε2(buuψuRu + buvψuRv) + ε3fv, (9)

where

ε3∂2xfu = ε7/2∂2x(auuR
2
u + 2auvRuRv + avvR

2
v)

+2ε4∂2x(auvψvRu + avvψvRv) + ε−7/2Resu,

ε3fv = ε7/2(buuR
2
u + 2buvRuRv + bvvR

2
v)

+2ε4(buvψvRu + bvvψvRv) + ε−7/2Resv.

This system is written as first order system

∂tRu = iωuR̃u,

∂tR̃u = iωuRu + 2ε2iωu(auuψuRu + auvψuRv) + ε3iωufu,

∂tRv = iωvR̃v,

∂tR̃v = iωvRv + 2ε2(iωv)
−1 (buuψuRu + buvψuRv) + ε3(iωv)

−1fv.

After diagonalization

Ru,1 =
1√
2

(Ru + R̃u), Ru,−1 =
1√
2

(Ru − R̃u)

and

Rv,2 =
1√
2

(Rv + R̃v), Rv,−2 =
1√
2

(Rv − R̃v)

of the linear part we obtain

∂tRu,1 = iωuRu,1 +
1√
2
ε3iωufu

+ε2iωu(auuψu(Ru,1 +Ru,−1) + auvψu(Rv,2 +Rv,−2)),

∂tRv,2 = iωvRv,2 +
1√
2
ε3(iωv)

−1fv

+ε2(iωv)
−1(buuψu(Ru,1 +Ru,−1) + buvψu(Rv,2 +Rv,−2)),
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and similar for Ru,−1 and Rv,−2.
Since ε2ψu is strongly concentrated at k = 0 we separate ε2ψu into a part

concentrated close to k = 0 and into the rest. For δ > 0 we define the mode
projection Eδ via Êδu = Êδû, where Êδ = 1 for |k| ≤ δ and Êδ = 0 elsewhere.

Moreover, we define Ec
δ via Êc

δ(k) = 1− Êδ(k). Since Ec
δψu is O(εsA)-small,

for instance w.r.t. the sup-norm if A is sA-times continuously differentiable,
see Remark A.6 in the appendix, we write the equations for the error as

∂tRu,1 = iωuRu,1 +
1√
2
ε3iωugu

+ε2iωu(auu(Eδψu)(Ru,1 +Ru,−1) + auv(Eδψu)(Rv,2 +Rv,−2)),

∂tRv,2 = iωvRv,2 +
1√
2
ε3(iωv)

−1gv

+ε2(iωv)
−1(buu(Eδψu)(Ru,1 +Ru,−1) + buv(Eδψu)(Rv,2 +Rv,−2)),

and similar for Ru,−1 and Rv,−2, where

ε3gu = ε3fu + 2ε2(auu(E
c
δψu)(Ru,1 +Ru,−1) + auv(E

c
δψu)(Rv,2 +Rv,−2)),

ε3gv = ε3fv + 2ε2(buu(E
c
δψu)(Ru,1 +Ru,−1) + buv(E

c
δψu)(Rv,2 +Rv,−2)).

4 The functional analytic set-up

In order to control the unstable resonances we introduce a number of function
spaces. By 〈·, ·〉 we denote the Euclidean inner product and by | · | the
associated Euclidean norm in Rd. The Fourier transform is denoted by

F(u)(k) = û(k) =
1√
2π

∫
R
e−ikxu(x)dx.

For m ≥ 0 we define the Sobolev spaces

Hm = {u ∈ L2(R) : (1 + | · |2)
m
2 û ∈ L2(R)},

endowed with the inner product

〈u, v〉Hm = 〈û, v̂〉L2
m

=

∫
R

(
1 + |k|2

)m 〈û(k), v̂(k)〉 dk.
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For any m ∈ N, the induced norm is equivalent to the usual Hm-norm.
Finally, for m ≥ 0 we introduce

Wm :=

{
u : u = F−1(û), û ∈ L1(R), ‖u‖Wm =

∫
R
(1 + |k|m)|û(k)| dk <∞

}
.

By Sobolev’s embedding theorem the space Hm+δ(R) is continuously em-
bedded into Wm for each δ > 1/2. Moreover, every u ∈ Wm is bmc-times

continuously differentiable with finite C
bmc
b (R)-norm.

In order to control the positive growth rates, occuring at the resonances,
we work in the space

H∞µ,m = {u ∈ L2(R) : eµ|·|(1 + | · |2)
m
2 û ∈ L2(R)},

equipped with the norm

‖u‖H∞
µ,m

=

(∫
R
|û(k)|2e2µ|k|(1 + |k|2)mdk

) 1
2

,

where µ ≥ 0 and m ≥ 0. Functions u ∈ H∞µ,0 can be extended to functions
that are analytic on the strip {z ∈ C : |Im(z)| < µ}. Similarly, we define the
spaces W∞

µ,m.
In our notations of the spaces and norms we do not distinguish between

scalar and vector-valued functions. The spaces H∞µ,m are closed under point-
wise multiplication for every µ ≥ 0 and m > 1/2 and the spaces W∞

µ,m for
every µ ≥ 0 and m ≥ 0. See the appendix.

5 Some first estimates

In this section we collect various estimates which are necessary for the proof
of Theorem 1.1. We start by rewriting Lemma 2.1 and Lemma 2.2 into
H∞µ,s-spaces.

Lemma 5.1. Fix µA ≥ µ ≥ 0, sA − s ≥ 8, s > 1/2, and T0 > 0. Let
A ∈ C([0, T0], H

∞
µA,sA

) be a solution of the KdV equation (7), and let ε2ψu
and ε4ψv be defined as above. For this approximation then there exist ε0 > 0
and Cres > 0 such that for all ε ∈ (0, ε0) we have

sup
T∈[0,T0]

(‖Resu‖H∞
µ,s

+ ‖Resv‖H∞
µ,s

+ ε2‖∂−1x Resu‖H∞
µ,s+1

) ≤ Cresε
15/2.
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Proof. Using Lemma A.1 from the appendix the proof goes line for line as
the proofs of Lemma 2.1 and Lemma 2.2.

Since ωu is a bounded operator in H∞µ,s and since (ωv)
−1 is a bounded

operator from H∞µ,s to H∞µ,s+1 we have, using Lemma 5.1, that

‖ε3iωufu‖H∞
µ,s

+ ‖ε3(iωv)−1fv‖H∞
µ,s+1

≤ Cε7/2(‖Ru‖2H∞
µ,s

+ ‖Rv‖2H∞
µ,s

)

+Cε4(‖ψv‖W∞
µ,s
‖Ru‖H∞

µ,s
+ ‖ψv‖W∞

µ,s
‖Rv‖H∞

µ,s
) + Cresε

3.

With these estimates and Lemma A.5 we find

ε3‖iωugu‖H∞
µ,s
≤ ε3‖fu‖H∞

µ,s
+ Cε2Cψε

sA−s(‖Ru,1‖H∞
µ,s

+ ‖Ru,−1‖H∞
µ,s

)

+Cε2Cψε
sA−s(‖Rv,2‖H∞

µ,s
+ ‖Rv,−2‖H∞

µ,s
),

ε3‖(iωv)−1gv‖H∞
µ,s+1

≤ ε3‖fv‖H∞
µ,s+1

+ Cε2Cψε
sA−s(‖Ru,1‖H∞

µ,s
+ ‖Ru,−1‖H∞

µ,s
)

+Cε2Cψε
sA−s(‖Rv,2‖H∞

µ,s
+ ‖Rv,−2‖H∞

µ,s
)

6 From analytic to Sobolev functions

In order to control the unstable resonances, we solve the equations for the
error in H∞µ,s-spaces with s ≥ 1 and µ = µ(t) decreasing in time. In detail,
we choose

µ (t) = µA/ε− βε2t

for 0 ≤ t ≤ T1/ε
3 with T1 = µA/β. With respect to this time-dependent norm

the unstable resonant modes are damped artificially. Since the solutions of
the KdV equation satisfy

sup
T∈[0,T0]

‖A (T )‖W∞
µA,sA

≤ Cψ

we have
sup

T∈[0,T0/ε3]

∥∥ε2ψu (t)
∥∥
W∞
µA,sA

≤ Cψε
2.

In order to work in usual Sobolev we introduce

Rj(t) = Sω(t)Ru,v,j(t),
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with Sω(t) a multiplication operator defined in Fourier space by

Ŝω(k, t) = e(µA/ε−βε
2t)|k|.

As a direct consequence of the definitions we have:

Lemma 6.1. For t ∈ [0, µA/(βε
3)] the linear mapping Sω(t) : H∞µ(t),s → Hs,

resp. Sω(t) : W∞
µ(t),s → W s, with µ(t) = (µA − ηε3t)/ε, is bijective and

bounded with bounded inverse.

The new variables satisfy

∂tR1 = −βε2|k|opR1 + iωuR1 +
1√
2
ε3iωuSω(t)gu

+ε2iωuSω(t)(auu(S
−1
ω (t)Eδψu)S

−1
ω (t)(R1 +R−1)

+auv(S
−1
ω (t)Eδψu)S

−1
ω (t)(R2 +R−2)),

∂tR2 = −βε2|k|opR2 + iωvR2 +
1√
2
ε3(iωv)

−1Sω(t)gv

+ε2(iωv)
−1Sω(t)(buu(S

−1
ω (t)Eδψu)S

−1
ω (t)(R1 +R−1)

+buv(S
−1
ω (t)Eδψu)S

−1
ω (t)(R2 +R−2)),

and similar for R−1 and R−2. The operator |k|op is defined via its operation

in Fourier space |̂k|opR(k) = |k|R̂(k).
Using Lemma 6.1, Lemma A.1 and the previous estimates we find

ε3‖iωuSω(t)gu‖Hs + ε3‖(iωv)−1Sω(t)gv‖Hs+1

≤ Cε7/2(‖R1‖2Hs + ‖R2‖2Hs)

+Cε4(‖ψv‖W∞
µ,s
‖R1‖Hs + ‖ψv‖W∞

µ,s
‖R2‖Hs) + Cresε

3

+Cε2Cψε
sA−s(‖R1‖Hs + ‖R2‖Hs).

7 The normal form transformation

The modes to wave numbers bounded away from zero, are controlled with
the sectorial operator −β|k|op. At k = 0 this operator is of no use and so
normal transformations and energy estimates have to be used at k = 0.

For wave numbers in a δ0-neighborhood of the origin the error equations
are simplified by a number of normal form transformations, i.e., by a number
of near identity change of variables.
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• The term Eδ0iωuSω(t)(auv(S
−1
ω (t)Eδψu)S

−1
ω (t)(R2 + R−2)) in the R1-

equation can be written in Fourier space as∫
q1,2(k, k − l, l)ψ̂u(k − l)R̂2(l)dl +

∫
q1,−2(k, k − l, l)ψ̂u(k − l)R̂−2(l)dl,

with

q1,2(k, k − l, l) = Êδ0(k)iω̂u(k)Ŝω(k, t)auv(Ŝ−1ω (k − l, t)Êδ(k − l)S−1ω (l, t)

and similarly for q1,−2(k, k − l, l). It is well known that this term can be
eliminated by a near identity change of variables

R̂3 = R̂1+

∫
b1,2(k, k−l, l)ψ̂u(k−l)R̂2(l)dl+

∫
b1,−2(k, k−l, l)ψ̂u(k−l)R̂−2(l)dl,

where

b1,±2(k, k − l, l) =
q1,±2(k, k − l, l)

iωu(k)− iωu(k − l)∓ iωv(l)− βε2(|k| − |k − l| − |l|)

For |k| ≤ δ0 and |k − l| ≤ δ the denominator is bounded away from zero if
δ0 > 0 and δ > 0 are sufficiently small.
• The term Eδ0(iωv)

−1Sω(t)(buu(S
−1
ω (t)Eδψu)S

−1
ω (t)(R1 + R−1)) and the

term Eδ0(iωv)
−1Sω(t)(buv(S

−1
ω (t)Eδψu)S

−1
ω (t)(R−2)) in the R2-equation can

be written in Fourier space as∫
q2,1(k, k − l, l)ψ̂u(k − l)R̂1(l)dl +

∫
q2,−1(k, k − l, l)ψ̂u(k − l)R̂−2(l)dl

+

∫
q2,−2(k, k − l, l)ψ̂u(k − l)R̂−2(l)dl,

with

q2,1(k, k − l, l) = Êδ0(k)(iω̂v(k))−1Ŝ(k, t)buu(Ŝ−1(k − l, t)Êδ(k − l)S−1(l, t)

and similarly for q2,−1(k, k − l, l) and q2,−2(k, k − l, l). It is well known that
this term can be eliminated by a near identity change of variables

R̂4 = R̂2 +

∫
b2,1(k, k − l, l)ψ̂u(k − l)R̂1(l)dl

+

∫
b2,−1(k, k − l, l)ψ̂u(k − l)R̂−2(l)dl +

∫
b2,−2(k, k − l, l)ψ̂u(k − l)R̂−2(l)dl

12



where

b2,±1(k, k − l, l) =
q2,±1(k, k − l, l)

iωv(k)− iωu(k − l)∓ iωu(l)− βε2(|k| − |k − l| − |l|)

and

b2,−2(k, k − l, l) =
q2,−2(k, k − l, l)

iωv(k)− iωu(k − l) + iωv(l)− βε2(|k| − |k − l| − |l|)
.

For |k| ≤ δ0 and |k − l| ≤ δ the denominator is bounded away from zero if
δ0 > 0 and δ > 0 are sufficiently small. Estimates such as

‖
∫
b(k, k − l, l)ψu(k − l)R(l)dl‖L2

s(dk)
≤ (sup

k,l
|b(k, k − l, l)|)‖ψu‖W s‖R‖Hs

then imply:

Lemma 7.1. There exist ε0 > 0 and C > 0 such that for all ε ∈ (0, ε0] the
transformation (R1, R2) 7→ (R3, R4) is bijective with

‖R1 −R3‖Hs + ‖R2 −R4‖Hs ≤ Cε2(‖R1‖Hs + (‖R2‖Hs).

After the transformation our system is of the form

∂tR3 = −βε2|k|opR3 + iωuR3 +
1√
2
ε3iωuSω(t)g3

+ε2iωuS(t)(auu(S
−1
ω (t)Eδψu)S

−1
ω (t)(R3 +R−3))

+ε2iωuSω(t)Ec
δ(auv(S

−1
ω (t)Eδψu)S

−1
ω (t)(R4 +R−4)),

∂tR4 = −βε2|k|opR4 + iωvR4 +
1√
2
ε3(iωv)

−1S(t)g4

+ε2(iωv)
−1Sω(t)Ec

δ(buu(S
−1
ω (t)Eδψu)S

−1
ω (t)(R3 +R−3))

+ε2(iωv)
−1Sω(t)(buv(S

−1
ω (t)Eδψu)S

−1
ω (t)(R4))

+ε2(iωv)
−1Sω(t)Ec

δ(buv(S
−1
ω (t)Eδψu)S

−1
ω (t)(R−4)),

and similar for R−3 and R−4. The terms with Ec
δ in front will be controlled

with −βε2|k|opRj by choosing β = O(1) sufficiently large. The remaining
terms of order O(ε2) at k = 0 have to be estimated differently. The terms
with g3 and g4 are coming from gu and gv and from higher order terms

13



obtained via the normal form transformation from terms not contained in gu
and gv. Therefore, using sA − s ≥ 2, the terms with g3 and g4 obey

ε3‖iωuSω(t)g3‖Hs + ε3‖(iωv)−1Sω(t)g4‖Hs+1

≤ Cε7/2(‖R3‖2Hs + ‖R4‖2Hs) (10)

+C1ε
4(‖R3‖Hs + ‖R4‖Hs) + Cresε

3,

where C1 is a constant independent of 0 < ε � 1, solely depending on
‖A‖W∞

µA,sA
.

8 The terms at k = 0

Ignoring at the moment all terms which are of higher order or which have
some Ec

δ in front, our system is of the form

∂tR3 = −βε2|k|opR3 + iωuR3

+ε2iωuSω(t)(2auu(S
−1
ω (t)Eδψu)S

−1
ω (t)(R3 +R−3)) + . . . ,

∂tR4 = −βε2|k|opR4 + iωvR4

+ε2(iωv)
−1Sω(t)(buv(S

−1
ω (t)Eδψu)S

−1
ω (t)(R4)) + . . . .

Hence, the R3-equation and the R4-equation decouple up to the terms hidden
in . . .. Due to the iωu-operator in front of the term in the second line of the
R3-equation, in Fourier space this term vanishes at the wave number k = 0.
Therefore, in the end also this term will be handled subsequently with the
damping term −βε2|k|opR3. The same is true, if we write an Ec

δ-operator in
front of the term in the second line of the R4-equation, and so it remains to
discuss

∂tR4 = −βε2|k|opR4 + iωvR4

+
1

2
ε2(iωv)

−1Sω(t)Eδ(buv(S
−1
ω (t)Eδψu)S

−1
ω (t)(R4)) + . . . .

We find

d

dt

∫
ωv|R4|2dx =

d

dt

∫
ωv(R4R−4)dx = −βε2

∫
ωv||k|opR4|2dx+ 0 + ε2s4 + . . .

14



where

ŝ4 = 2i

∫ ∫
R̂−4(k)Ŝω(k, t)Êδ(k)buvŜ−1ω (k − l, t)Êδ(k − l)ψ̂u(k − l)Ŝ−1ω (l, t)R̂4(l)dldk

−2i

∫ ∫
R̂4(k)Ŝω(k, t)Êδ(k)buvŜ−1ω (k − l, t)Êδ(k − l)ψ̂u(k − l)Ŝ−1ω (l, t)R̂−4(l)dldk

= 2i

∫ ∫
R̂−4(k)Ŝω(k, t)Êδ(k)buvŜ−1ω (k − l, t)Êδ(k − l)ψ̂u(k − l)Ŝ−1ω (l, t)R̂4(l)dldk

−2i

∫ ∫
R̂4(l)Ŝω(l, t)Êδ(k)buvŜ−1ω (l − k, t)Êδ(l − k)ψ̂u(l − k)Ŝ−1ω (k, t)R̂−4(k)dldk

= 2i

∫ ∫
q0(k, k − l, l)R̂−4(k)ψ̂u(k − l)R̂4(l)dldk,

with

q0(k, k − l, l) = 2iŜω(k, t)Êδ(k)buvŜ−1ω (k − l, t)Êδ(k − l)Ŝ−1ω (l, t)

−2iŜω(l, t)Êδ(k)buvŜ−1ω (l − k, t)Êδ(l − k)Ŝ−1ω (k, t),

where we used ψ̂u(l − k) = ψ̂u(k − l) which holds due to the fact that ψu is
real-valued. By definition we have

buvŜ−1ω (k − l, t)Êδ(k − l) = buvŜ−1ω (l − k, t)Êδ(l − k) ∈ R,

and so q0(k, 0, k) = 0 for all k ∈ R. Since we have a compact set of wave
numbers this implies |q0(k, k − l, l)| ≤ C|k − l|. As a consequence, we can
apply Corollary A.5 and obtain∫ ∫

q0(k, k − l, l)R̂−4(k)ψ̂u(k − l)R̂4(l)dldk = O(ε),

resp. ε2s4 = O(ε3).

9 The final energy estimates

We have now all ingredients to perform the final energy estimates. We define
an operator Ω via the multiplier Ω̂(k) = min(ωv(k), 4) in Fourier space. On
the one hand this operator allows to perform the energy estimates from the

15



last section for k close to 0, on the other hand this operator allows to work
with the same regularity for R3 and R4.

We start now to estimate the time derivative of

Es = ‖R3‖2Hs +
∥∥Ω1/2R4

∥∥2
Hs .

We compute

1

2

d

dt
Es = (R3,−βε2|k|opR3)Hs + (Ω1/2R4,−βε2|k|opΩ1/2R4)Hs

+s1 + s2 + s3 + . . .+ s8,

where

s1 = (R3, iωuR3)Hs +
(
Ω1/2R4, iωvΩ

1/2R4

)
Hs ,

s2 =

(
R3,

1√
2
ε3iωuSω(t)g3

)
Hs

+

(
ΩR4,

1√
2
ε3(iωv)

−1S(t)g4

)
Hs

,

s3 =
(
R3, ε

2iωuSω(t)(auu(S
−1
ω (t)Eδψu)S

−1
ω (t)(R3 +R−3))

)
Hs ,

s4 =
(
R3, ε

2iωuSω(t)Ec
δ(auv(S

−1
ω (t)Eδψu)S

−1
ω (t)(R4 +R−4))

)
Hs ,

s5 =
(
ΩR4, ε

2(iωv)
−1Sω(t)Ec

δ(buu(S
−1
ω (t)Eδψu)S

−1
ω (t)(R3 +R−3))

)
Hs ,

s6 =
(
ΩR4, ε

2(iωv)
−1Sω(t)Eδ(buv(S

−1
ω (t)Eδψu)S

−1
ω (t)(R4))

)
Hs ,

s7 =
(
ΩR4, ε

2(iωv)
−1Sω(t)Ec

δ(buv(S
−1
ω (t)Eδψu)S

−1
ω (t)(R4))

)
Hs ,

s8 =
(
ΩR4, ε

2(iωv)
−1Sω(t)Ec

δ(buv(S
−1
ω (t)Eδψu)S

−1
ω (t)(R−4))

)
Hs .

In the following we give the final estimates. The detailed calculations to
obtain the estimates can be found in Appendix B.

We start with the good terms, namely

(R3,−βε2|k|opR3)Hs + (Ω1/2R4,−βε2|k|opΩ1/2R4)Hs

= −βε2
∥∥∥|k|1/2R3

∥∥∥
Hs
− βε2

∥∥∥|k|1/2 Ω1/2R4

∥∥∥
Hs
.

Using the skew-symmetry of iωu and iωv yields

s1 = 0.

Using the Cauchy-Schwarz inequality and (10) yields

|s2| ≤ Cε3Es + Cε7/2E3/2
s + Cε3.
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The terms s4, s5, s7, and s8 have some Ec
δ in front and can be estmated

by the good terms

−βε2
∥∥∥|k|1/2R3

∥∥∥
Hs
− βε2

∥∥∥|k|1/2 Ω1/2R4

∥∥∥
Hs

which for the Ec
δ-terms is a lower bound for

−βε2
∥∥δ1/2R3

∥∥
Hs − βε2

∥∥δ1/2Ω1/2R4

∥∥
Hs .

The term s3 can be estimated by the good terms, too, using the fact that
|ω̂u(k)| ≤ C|k| for k → 0. Finally, the term s6, as explained in Section 8, is
of order O(ε3).

Summarizing all estimates gives

1

2

d

dt
Es ≤ (−βε2 + Cε2 + Cε7/2E1/2

s )(
∥∥∥|k|1/2R3

∥∥∥
Hs

+
∥∥∥|k|1/2 Ω1/2R4

∥∥∥
Hs

)

+Cε3Es + ε7/2E3/2
s + Cε3

≤ Cε3Es + ε7/2E3/2
s + Cε3

≤ (C + 1)ε3Es + Cε3,

if
−β + C + Cε3/2E1/2

s < 0

and ε1/2E
1/2
s ≤ 1. Gronwall’s inequality then implies

Es(t) ≤ Cte(C+1)t ≤ CT0e
(C+1)T0 =: M.

We are done, if we choose ε0 > 0 so small that ε
1/2
0 M1/2 ≤ 1 and then β > 0

so big that
−β + C + Cε

3/2
0 M1/2 < 0.

A Some technical estimates

In this section we collect a number of estimates which we used in previous
sections. Together with their proofs they can be found as Lemma A.4, Corol-
lary A.5, Corollary A.6, Lemma A.9, and Corollary A.10 in [HdRS18]. We
start with some estimates for the nonlinear terms.
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Lemma A.1. The spaces H∞µ,s are Banach algebras for µ ≥ 0 and s > 1
2
. In

detail, there exists a µ-independent constant Cs such that

‖uv‖H∞
µ,s
≤ Cs‖u‖H∞

µ,s
‖v‖H∞

µ,s

for all u, v ∈ H∞µ,s.

For our error estimates we need the following tame estimates version of
this lemma.

Corollary A.2. For δ > 0, µ ≥ 0 and s > 1/2 we have

‖u2‖H∞
µ,s
≤ Cs‖u‖H∞

µ,1/2+δ
‖u‖H∞

µ,s

for all u ∈ H∞µ,s.

Corollary A.3. For µ ≥ 0 and s ≥ 0 we have

‖uv‖H∞
µ,s
≤ Cs‖u‖Wµ,s‖v‖H∞

µ,s

for all u ∈ W∞
µ,s and v ∈ H∞µ,s.

The expansion of the kernels in the multilinear maps can be estimated
with the following lemma.

Lemma A.4. Let ϑ0 ≥ 0, ϑ∞ ∈ R, and let g : R→ C satisfy

|g(k)| ≤ C min(|k|ϑ0 , (1 + |k|)ϑ∞).

Then for the associated multiplication operator gop = F−1gF the following
holds. For i) µ1 > µ2 and m1,m2 ≥ 0 or ii) µ1 = µ2 and m2 − m1 ≥
max(ϑ0, ϑ∞) we have

‖gopA(ε·)‖H∞
µ1/ε,m1

≤ Cεϑ0−1/2‖A(·)‖H∞
µ2,m2

for all ε ∈ (0, 1).

In W∞
µ,m-spaces there is no ε−1/2 loss due to the scaling invariance of the

norm and so we have as a direct consequence:
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Corollary A.5. Let ϑ0 ≥ 0, ϑ∞ ∈ R, and let g(k) satisfy

|g(k)| ≤ C min(|k|ϑ0 , (1 + |k|)ϑ∞).

Then for the associated operator gop = F−1gF the following holds. For i)
µ1 > µ2 and m1,m2 ≥ 0 or ii) µ1 = µ2 and m2−m1 ≥ max(ϑ0, ϑ∞) we have

‖gopA(ε·)‖Wµ1/ε,m1
≤ Cεϑ0‖A(·)‖Wµ2,m2

for all ε ∈ (0, 1).

Remark A.6. This corollary is used for instance to estimate Ec
δ . Since Êδ

c (k)

is identical zero in a neighborhood of the origin we have |Êδ
c (k)| ≤ C|k|r for

every r ∈ N.

B Estimates for the sj

In this section we give the detailed calculations which are necessary for ob-
taining the bounds in Section 9.

a) We start with the bound on the linear terms (R3,−βε2|k|opR3)Hs and
(Ω1/2R4,−βε2|k|opΩ1/2R4)Hs . Using the Fourier representation of |k|op gives

(R3,−βε2|k|opR3)Hs = −βε2(R̂3, |k|R̂3)L2
s

= −βε2(|k|1/2R̂3, |k|1/2R̂3)L2
s

and similar for (Ω1/2R4,−βε2|k|opΩ1/2R4)Hs .
The problem is now, that these ’good’ terms do not allow to estimate

terms at the wave number k = 0. We have to use the fact, that the terms s3,
s4, s5, s7, and s8 vanish at the wave number k = 0, too.

b1) The term s3 can be estimated by the ’good’ terms using the fact
that |ω̂u(k)| ≤ C|k| for k → 0. The last estimate implies that the symbol of

ϑ = |k|−1/2op ωu is bounded at the wave number k = 0. We find

|s3| = |
(
R3, ε

2iωuSω(t)(auu(S
−1
ω (t)Eδψu)S

−1
ω (t)(R3 +R−3))

)
Hs |

= |
(
|k|1/2op R3, ε

2i|k|−1/2op ωuSω(t)(auu(S
−1
ω (t)Eδψu)S

−1
ω (t)(R3 +R−3))

)
Hs |

≤ Cε2‖|k|1/2op R3‖Hs‖ϑSω(t)(auu(S
−1
ω (t)Eδψu)S

−1
ω (t)(R3 +R−3))‖Hs

≤ Cε2‖|k|1/2op R3‖Hs

×(‖ϑ1/2ψu‖Ws‖R3‖Hs + ‖ψu‖Ws‖ϑ1/2R3‖Hs)

≤ Cε5/2‖|k|1/2op R3‖Hs‖R3‖Hs + Cε2‖|k|1/2op R3‖Hs‖|k|1/2op R3‖Hs

≤ C(ε2‖|k|1/2op R3‖2Hs + ε3‖R3‖2Hs)
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where we used that ‖ϑ1/2ψu‖Ws = O(ε1/2) due to Corollary A.5 applied to

|ϑ̂(k)| ≤ C|k|1/2. In the last line we used ε5/2ab ≤ ε2a2 + ε3b2.
b2) The term s4 can be estimated exactly the same as the term s3. The

last lines have to be modified into

|s4| = Cε2‖|k|1/2op R3‖Hs

×(‖ϑ1/2ψu‖Ws‖R4‖Hs + ‖ψu‖Ws‖ϑ1/2R4‖Hs)

≤ Cε5/2‖|k|1/2op R3‖Hs‖R4‖Hs + Cε2‖|k|1/2op R3‖Hs‖|k|1/2op R4‖Hs

≤ C(ε2‖|k|1/2op R3‖2Hs + ε2‖|k|1/2op Ω1/2R4‖2Hs + ε3‖Ω1/2R4‖2Hs).

b3) The remaining terms s5, s7, and s8 can be estimated by the ’good’
terms using the fact that they have a Ec

δ in front which vanishes at the wave
number k = 0, too. We finally obtain

|s5|+ |s7|+ |s8| ≤ C(ε2‖|k|1/2op R3‖2Hs + ε2‖|k|1/2op Ω1/2R4‖2Hs

+ε3‖R3‖2Hs + ε3‖Ω1/2R4‖2Hs).
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