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Abstract 

Tritium breeder and neutron multiplier materials are required to guarantee the self-

sustainment of the tritium fuel in a fusion reactor. Both materials are located in the breeder 

blanket, a compulsory component for the future DEMOnstration power reactor. Different 

breeder blanket concepts will be tested in ITER (International Thermonuclear Experimental 

Reactor) preceding DEMO to demonstrate the achievement of the operating targets and the 

fulfillment of allowable limits. In the solid breeder blanket concept both the breeder and 

neutron multiplier materials are in the form of packed pebble beds. Pebble beds are 

assemblies of pebbles highly packed into a stiff metallic structure with helium used as tritium 

purge gas flowing through the voids among particles. Due to the discrete nature of these 

materials, the macroscopic behavior of the whole bed is the result of the particle-particle, 

particle-wall and particle-gas interactions. This originates a complex fully coupled thermo-

mechanical behavior in which several parameters such as packing factor, particle size, gas 

pressure and temperature play a major role. In this frame, the Discrete Element Method 

(DEM) is an appropriate tool able to characterize the thermo-mechanical behavior of fusion 

pebble beds as result of the particle interactions by modelling pebbles individually. 

Furthermore, allowing investigating pebble beds at the microscale level, DEM is a suitable 

approach to study phenomena and evaluate parameters otherwise inaccessible to experiments 

or other tools, representing a strong support for the design of the breeder blanket.  

In Europe, an advanced DEM code is under development for a long time at the Karlsruhe 

Institute of Technology (KIT) to investigate the behavior of ceramic breeder pebble beds. In 

the first part of this thesis, the existing in-house mechanical DEM code, developed to study 

the mechanical behavior of perfect spherical packed particles, was further extended to 

investigate the influence of the sphericity of the currently produced pebbles on the mechanical 

behavior of the bed. In the second part of the work, an innovative in-house thermal DEM code 

was developed to simulate the heat transfer in the breeder pebble beds. As innovative step, the 

Smoluchowski effect was implemented for the first time into a DEM code allowing 

simulating the influence of the gas pressure on the effective thermal conductivity. The code 

was first validated and then used to evaluate the effective thermal conductivity of the breeder 

bed demonstrating a strong predictability under several different conditions. Afterwards, the 

code was applied to estimate the temperature field generated inside the thickness of the 

breeder bed under fusion relevant conditions. 
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Kurzfassung 

Zur Produktion des Tritium-Brennstoffs werden Tritium-Brutmaterialen und 

Neutronenmultiplikatoren in Fusionsreaktoren benötigt. Beide Materialien befinden sich im 

Brutblanket, einer unverzichtbaren Komponente des zukünftigen DEMO (DEMonstration 

Power Plant) Fusionsdemonstrationsreaktor. Im Versuchsreaktor ITER (International 

Thermonuclear Experimental Reactor) werden im Vorfeld des DEMO-Reaktorprojekts, zum 

Nachweise der Erreichbarkeit bestimmter Ziele sowie der Einhaltung zulässiger Grenzwerte 

während des Betriebs, verschiedene Brutblanketkonzepte getestet. Dem Feststoff-

Brutblanketkonzept liegen sowohl ein Neutronenmultiplikator als auch ein Brutmaterial in 

Form eines Schüttbetts zu Grunde. Letztere bestehen aus in eine steife Metallstruktur 

gepackten, dichten Kugelschüttungen, in deren Hohlräume Helium als Tritiumspülgas strömt. 

Aufgrund der granularen Beschaffenheit solcher Materialien ist das makroskopische 

Verhalten der gesamten Schüttung das Ergebnis der Teilchen-Teilchen-, Teilchen-Wand- und 

Teilchen-Gas-Wechselwirkungen. Es entsteht ein komplexes, vollständig gekoppeltes 

thermomechanisches Verhalten, bei dem verschiedene Parameter wie beispielsweise die 

Packungsdichte, die Partikelgröße, der Gasdruck und die Temperatur einen entscheidenden 

Einfluss auf das Verhalten des Blankets haben. Die Diskrete-Elemente-Methode (DEM) ist 

ein angemessenes Werkzeug, das durch Modellierung einzelner Partikel die Charakterisierung 

des thermomechanischen Verhaltens von Fusionsschüttbetten als Ergbnis von 

Teilchenwechselwirkungen erlaubt. Darüber hinaus ist die DEM ein geeignetes Instrument 

Schüttungen auf mikrostruktureller Ebene zu erforschen und entscheidende, die Eigenschaften 

und das Verhalten beeinflussende Parameter zu identifizieren, die mit Experimenten oder 

anderen Methoden nicht untersucht und bewertet werden können. Dadurch stellt die DEM 

eine wesentliche Unterstützung für das Design eines Brutblanket dar.  

In Europa wird am Karlsruher Institut für Technologie (KIT) seit einiger Zeit an der 

Entwicklung eines geeigneten, eigenen DEM-Codes gearbeitet, der zur Untersuchung des 

Verhaltens keramischer Schüttbetten für die Tritiumerzeugung dient. Im ersten Teil der 

vorliegenden Dissertation wird der  mechanische DEM-Code, der zur Analyse des 

mechanischen Verhaltens perfekt sphärischer Partikelschüttungen entwickelt wurde erweitert, 

sodass der Einfluss der Sphärizität der gegenwärtig hergestellten Kugeln auf das mechanische 

Verhalten des Schüttbetts untersucht werden kann. Der zweite Teil der Arbeit behandelt die 

Entwicklung eines innovativen thermischen DEM-Codes zur Simulation des 

Wärmeaustauschs im Schüttbett. Der erstmals in einen DEM-Code implementierte 
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Smoluchowski-Effekt erlaubt es, den Einfluss des Gasdrucks auf die effektive 

Wärmeleitfähigkeit zu simulieren. Nach erfolgreicher Validierung des erweiterten Codes 

konnte dieser zur Bewertung der effektiven Wärmeleitfähigkeit des Schüttbetts verwendet 

werden. Er ermöglicht somit gute Vorhersagen unter verschiedenen Bedingungen. Des 

Weiteren findet der Code Anwendung zur Berechnung des innerhalb des Schüttbetts in 

Dickenrichtung erzeugten Temperaturfelds unter Fusionsbedingungen. 
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3
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2
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2
] Heat flux between particle i and j 
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𝑅𝑖 [m] Radius of the i-th primary sphere 

𝑅𝑖𝑗 [m] Equivalent radius 

𝑅𝑖𝑗
𝑒  [m] Effective radius 

Rin [m] Radius equal for all primary spheres for which no 

overlaps occur in the assembly 

𝑅𝑚𝑎𝑥 [m] Radius of the biggest primary sphere 

𝑅𝑚𝑖𝑛 [m] Radius of the smallest primary sphere 

Rout [m] Radius equal for all primary spheres to get a PF=1 
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an ellipsoidal particle 

𝑅rd [m] Reduced radius 

𝑅 [/] Rotation matrix 
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𝑋 [/] Fraction of the distance in overlap defining the height of 
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2
] Acceleration of the particle 
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3
] Volume of the virtual box 
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3
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3
] Volume of the individual ellipsoidal particle 
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3
] Volume of the i-th primary sphere 

(𝑉𝑠𝑐,𝑖 + 𝑉𝑠𝑐,𝑖+1) [m
3
] Total volume of the i-th spherical cap 

Greek letters 
  

𝛼 [/] Ratio between solid and gas thermal contact 

𝛼𝑑 [m
2
/s] Thermal diffusivity 

𝛼𝑐 [/] Thermal accommodation coefficient 

𝛼𝑟 [rad] Angle of rotation 
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𝛽 [/] Gas constant in Kaganer’s model 

𝛾 [rad] Integration angle for the mean value of the gap size 𝑑𝛾 of 

the smaller particle in contact 

Δε [%] Variation of the residual strain 

∆ƞ [/] Difference between the packing factors calculated by the 

scaling radius Rout and Rin 

∆𝒙̇𝑇 [m/s] Sliding velocity 

∆𝑡 [s] Simulation time step 

𝛿 [/] Fraction of 𝑅𝑚𝑖𝑛in overlap 

δs [m] Overlap between two consecutive primary spheres 

δp [m] Overlap between two primary spheres of two different 

ellipsoidal particles in contact 

𝛿∗ [m] Weighted distance among contacting particles on the 

average normal force 

𝛿𝑑
(𝐼,𝐽)

 [m] Distance between the contacting particles I and J 

𝜀1 and 𝜀2 [/] Blockiness controllers in the Super-quadratic function 

𝜀33 [%] Strain in the axial direction 

𝜂𝑖𝑗 [/] Cut-off parameter in contacting particles  

𝜃 [rad] Integration angle for the mean value of the gap size 𝑑𝜃 of 

the bigger particle in contact 

𝛬 [m] Mean free path 

𝜉𝑖𝑗 [/] Cut-off parameter in particles with separation gap 

µf [/] Friction coefficient 

𝜈 [/] Poisson’s ratio 

𝜌 [kg/m
3
] Density of the particle 

𝜏 [/] Parameter for the stability of the calculation 

𝜎33 [MPa] Stress in the axial direction 

Σ  [N/mm3] Parameter to correlate CN to 𝑝ℎ 

𝒳 [/] Fraction of the sphere curvature involved in the heat 

transfer 

𝒳𝑐 [/] Ratio between Rout at the current time step over Rout at the 

previous time step 

𝛹 [W/m3] Neutronic power density 

𝜔 [1/s2] Angular velocity 
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Chapter 1                                                       

Introduction 

Tritium breeding and neutron multiplier materials are both needed for the self-sustainment 

of the tritium fuel in a fusion reactor. According to the solid breeder blanket concept both 

these materials are used in the form of pebble beds in the breeder blanket component. Due to 

their discrete nature, pebble beds show a complex fully coupled thermo-mechanical behavior. 

Simulations carried out with a Discrete Numerical Method (DEM) allow evaluating the 

thermo-mechanical behavior of pebble beds as a result of the interactions among particles 

supporting the design of the breeder blanket. In this chapter, a general overview about fusion 

technology, breeding blanket concept and pebble beds is given first. Thereafter, the 

motivation of this work is introduced. Finally, a brief description of the chapters is included. 

1.1 Nuclear Fusion Background 

The nuclear fusion reaction occurs when two or more atomic nuclei fuse together to form a 

heavier nucleus. The difference in mass between products and reactants is equivalent to the 

energy release. In order to overcome the Coulomb barrier due to the electrostatic repulsion, 

the nuclear short-range forces have to be activated bringing the two nuclei close to each other. 

To this end, a high amount of kinetic energy has to be provided to the two nuclei [1] (Azteni 

and Meyer-ter-Vehn,2017).  

In thermo nuclear fusion applications, the needed amount of kinetic energy is provided 

heating the two nuclei up to the corresponding ignition temperature
1
. The probability for the 

reaction to occur between the two nuclei, which is given by the microscopic cross section of 

the related fusion reaction, changes with the temperature. Figure 1–1 shows the microscopic 

cross sections as a function of the kinetic temperature [1] (Azteni and Meyer-ter-Vehn,2017).  

Among the fusion reactions, the deuterium tritium reaction (D-T) shows the highest 

microscopic cross section at the lowest ignition temperature. For this reason, it is considered 

as a promising candidate for a fusion reactor. 

The D-T reaction reads as  

𝐷1
2 + 𝑇1

3 → 𝐻𝑒2
4 + 𝑛0

1 + 17.6 𝑀𝑒𝑉 1.1 

                                                 
1
 The ignition temperature is reached when a nuclear fusion reaction becomes self-sustained, thus the external 

energy to heat the fuel is no longer needed. 

https://en.wikipedia.org/wiki/Nuclear_fusion
https://en.wikipedia.org/wiki/Nuclear_chain_reaction
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in which the 80% of the out coming energy is carried by the neutron (14 MeV), while the 

remaining 20% (3.5MeV) by 
4
He.  

 

Figure 1–1: Microscopic cross sections of fusion reactions vs. kinetic temperature. 

Reproduced according to [1] (Azteni and Meyer-ter-Vehn, 2017). 

Due to the high temperatures needed to realize the fusion, the fuel D-T is in the state of 

plasma that is an electrically neutral hot ionized gas where the electrons are separated from 

the positive nuclei. To sustain the reaction, deuterium and tritium have to be constantly 

supplied to the plasma. While deuterium is available in nature, tritium is a radioactive isotope 

of hydrogen with a half-life of 12.4 years. Therefore it is not present naturally to a sufficient 

amount and has to be produced artificially. In a fusion reactor, tritium is produced by the 

reaction between the breeder material and the neutrons coming from the plasma. The breeder 

material is a lithium-based compound. Natural lithium is composed of two isotopes, 
6
Li and 

7
Li with the relative abundances of 7.4% and 92.6%, respectively.  

6
Li and 

7
Li produce tritium according to the reactions 

MeVnHeTnLi 8.2437   1.2 

MeVHeTnLi 8.4436  . 1.3 

The isotope 
6
Li represents the main source of tritium, since it has a significantly higher 

cross section for the breeding reaction. For this reason, 
6
Li has to be enriched up to 30-90%. 

In Figure 1–2 the cross sections of the reactions 
6
Li(n, α) T and 

7
Li(n, nα) T are reported [2] 

(Cismondi, 2011). 
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Figure 1–2: Cross sections of 
6
Li and 

7
Li for the production of tritium. Reproduced according 

to [2] (Cismondi, 2011). 

A certain percentage of the neutrons produced inside the plasma is lost due to leakage and 

undesired absorption in the structural components of the reactor. For this reason, a neutron 

multiplier, placed in the breeder blanket, is required in order to assure a ratio of the tritium 

produced in the reactor over the tritium burned in the plasma greater than one. Such ratio is 

named Tritium Breeding Ratio (TBR). A neutron multiplier material releases two neutrons 

after the absorption of one neutron (n, 2n). Beryllium and lead are both neutron multiplier 

materials considered as candidates for fusion reactors [2] (Cismondi, 2011). 

In Figure 1–3 a simplified scheme of a fusion reactor is shown. In the central zone, the 

reaction between deuterium and tritium generates plasma. The yellow region surrounding the 

plasma is the breeder zone, where breeder and neutron multiplier are located. Between the 

plasma and the breeder zone, the vacuum vessel is located. Neutrons generated from the D-T 

reaction overcome the vacuum vessel reaching the breeder zone where tritium is generated 

inside the breeder blankets. After that, tritium is extracted from the breeder zone to be carried 

into the plasma. The heat generated from the neutron interactions inside the blanket and the 

heat flux coming from the plasma into the blanket are then used for electricity production.  

The plasma can be heated up via ohmic heating, neutral beam injection or radiofrequency 

heating. However, if the contribution of the energy released from the helium molecule 

slowing down inside the plasma is equal to the energy lost from the plasma, the external 

heating is no longer necessary. In this condition, the plasma is self-sustaining and it is in the 

state of ignition. 
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Figure 1–3: Simplified scheme of a fusion reactor. 

In order to keep the plasma stable avoiding contacts with the walls of the vacuum vessel, 

the plasma has to be confined. A very effective technique to confine the plasma makes use of 

a torus shaped magnetic field to confine the plasma in a toroidal vacuum chamber. Moreover, 

to minimize the particle escape from the plasma, helical magnetic field lines around the torus 

are produced.  Stellarator and tokamak are two different toroidal fusion machines based on the 

magnetic confinement of the plasma [3] (Xu, 2016).  

The first commercial fusion station will be planned after the realization of two intermediate 

projects: 

 ITER (International Thermonuclear Experimental Reactor), an international 

experiment involving Europe and 7 other countries, will be the first fusion device to 

produce net energy
2
. Currently, it is under construction in Cadarache. It will be used to 

test materials, components and technologies for a fusion reactor based on the tokamak 

confinement. The realization of the first plasma is planned on 2025.  

 DEMO (Demonstration Power Reactor), the first DEMOstration Power Station, will 

guarantee to supply the power grid with a few hundred megawatts of electric energy 

demonstrating the possibility to work with a closed fuel cycle. 

                                                 
2
 This means that the energy generated by a fusion plasma pulse is higher than the energy amount required to 

power the machine system. 
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1.2 The breeder blanket concept 

The breeding blanket is a key component of fusion reactors. It is designed to guarantee 

tritium fuel sustainability, power extraction and radiation shielding. Several breeder blanket 

concepts based on different breeding and structural materials, coolants and geometrical 

arrangements were developed to meet specific requirements. Six of these concepts will be 

tested in ITER in the form of Test Blanket Modules (TBMs) under fusion severe conditions 

[4] (Van der Laan et al., 2015).  

In Figure 1–4, TBMs with their designated position in ITER are shown. The six TBMs are 

located, in pairs, in three ports close to the plasma, while the ancillary systems (pipes, 

extraction pumps, heat exchangers, molecular sieves etc.) are arranged away from the vacuum 

vessel. 

 

Figure 1–4: The six Test Blanket Modulus with their dedicated locations in ITER, [5] 

(https://www.iter.org/mach/TritiumBreeding), (credit: ITER Organization).  

All breeder blanket concepts are based on a similar design [2] (Cismondi, 2011): 

 An actively cooled first wall necessary to remove the heat flux deposited by the plasma. 

 A breeder zone, where the neutronic energy is deposited and tritium is produced. The 

breeder zone can be either actively cooled when the breeder is a solid material (solid 

breeder blanket), or cooled by the breeder material itself when the breeder is in the liquid 

state (liquid breeder blanket). 

https://www.iter.org/mach/TritiumBreeding


Introduction 

20 

 

 A shield in order to isolate the large magnets from the neutron flux. 

Among the six TBMs, the Helium Cooled Pebble Bed Test Blanket Module (HCPB-TBM) 

is the solid breeder blanket concept under development at Karlsruhe Institute of Technology 

(KIT). In the HCPB-TBM, pebble beds of both lithium ceramic compound and beryllium are 

used for the tritium production and neutron multiplication, respectively. Pebble beds are 

accommodated inside the TBM box in so called Breeder Units (BU). The structural material is 

EUROFER, a reduced activation ferritic martensitic steel. Helium at a pressure of 8 MPa is 

used as coolant to extract the heat produced in the breeder zone, while Helium at 0.4 MPa is 

used as purge gas to extract tritium from the pebble beds. In Figure 1–5, the HCPB-TBM is 

shown together with a magnified view of the BU [6] (Hernandez et al., 2012). 

 

Figure 1–5: HCPB-TBM together with a magnified view of the BU, [6](Hernandez et al., 

2012). Image reused with the permission of Elsevier. 

As shown in Figure 1–5, beryllium pebble beds are physically divided from the lithium 

orthosilicate particles by Cooling Plates (CPs). CPs are two actively cooled Eurofer structures 

with a U-shape enclosing the lithium orthosilicate pebbles. CPs remove the heat produced in 

the lithium orthosilicate and beryllium pebble beds. The blue pipes shown in Figure 1–5 are 

the inlet and the outlet of the CPs for the coolant, while the red pipes are both outlets for the 
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helium purge gas. Purge gas enters into beryllium pebble beds from dedicated holes in the 

manifold (indicated in orange), then it flows into the lithium orthosilicate pebble bed and 

comes out through the purge gas pipes. The beryllium pebbles are surrounded by actively 

cooled Eurofer structures (shown in gray) such as the first wall and grids.  

Pebbles are highly packed inside the box. The packing factor (PF) of pebble beds in a 

breeder blanket, defined as the ratio of pebbles volume to pebble bed volume, is about 64%. 

In this way the contact between pebbles and Eurofer walls is guaranteed and the heat transfer 

occurs without overheating during the entire life of the breeder material. High PFs assure 

safety conditions avoiding cracking of particles caused by vibration during operation. 

Cracking produces lack of contact between particles and walls in certain areas and generates 

sand of ceramic material that could obstruct the purge gas system. 

1.3 Pebble Beds for solid breeder blankets 

Pebble beds are assemblies of packed particles of a nearly spherical shape. The ceramic 

breeder pebbles are produced with a diameter range of about 0.25-1 mm, while the size of the 

beryllium pebbles is around 2 mm. The small sizes as well as the spheroidal shape are 

required to guarantee a homogenous filling of complicated blanket geometry, to minimize 

thermal cracking and volumetric swelling [7], [8] (Shikama et al., 2008; Ying et al, 2007).  

Due to their discrete nature, pebble beds show a complex fully coupled thermomechanical 

behavior [9] (Ying et al, 2012). Under fusion relevant conditions, such as neutron irradiation, 

high heat flux and the cyclic loading due to the burn pulses of the plasma, the thermal 

expansion and irradiation-induced swelling of each particle generate stresses in the whole 

assembly. Particles rearrange themselves inside the box changing their packed state and 

accordingly the effective thermal conductivity of the bed. In turn, a variation of the thermal 

conductivity of the packed bed affects the temperature distribution changing the stress state 

inside the pebble bed once again.  

Furthermore, a skeleton of solid particles and a matrix of interstitial gas coexist as 

multiphase material. Therefore, the heat transfer in the assembly is influenced by the skeleton-

matrix combination. In this scenario the type of material, size, shape and density of the 

particles are of primary importance for the blanket design. These characteristics strongly 

influence the thermo-mechanical behavior of the bed which affecting project parameters like 

tritium inventory and the release rate [10] (Cristescu et al., 2007) and thus the functionality of 

the entire blanket.  



Introduction 

22 

 

Candidates for tritium breeder pebbles include several lithium-ceramic compounds e.g.: 

lithium orthosilicate (Li4SiO4), lithium metatitanate (Li2TiO3) and lithium metazirconate 

(Li2ZrO3). Beryllium metal or its compounds, such as Be12Ti or Be13Zr will be used as 

neutron multiplier. The characteristics of the pebbles are greatly influenced by the fabrication 

method. In Table 1–1, some fabrication processes and the resulting size, sphericity and 

density of the produced ceramic breeder pebbles are reported. Here, sphericity refers to the 

ratio between the maximum and the minimum dimension of a particle, while density 

represents the percentage of the theoretical density (TD) accounting for unavoidable pores 

generated inside pebbles during the fabrication process. 

Table 1–1: Types of pebbles with fabrication process and some main characteristics 

Material Fabrication method Particles 

Diameter (mm) 

Sphericity Density 

Li4SiO4 Melting –spray [11] (Knitter et al., 

2013)  

~0.25-0.65 ~1.05 ~95% 

Li4SiO4 Sol-gel [12] (Wu et al, 2010) ~1.2 ~1.1 >75% 

Li2TiO3 Sol-gel [13] (Hoshino, 2013) ~1-1.12 ≤ 1.03 >85-65% 

Li2TiO3 extrusion, spherodization and 

sintering [14] (Mandal et al, 2010) 

~1.7-2 ~1.02-1.1 ~90% 

Further details about fabrication methods and techniques to refine shape and density of 

particles are explained in the references reported in Table 1–1. In Figure 1–6 a comparison 

between pebbles produced by the melting-spray and sol gel methods are shown, respectively. 

  

Figure 1–6: Li4SiO4 particles produced by: (a) the sol gel method [12] (Wu et al, 2010) and 

(b) the melting-spray process [11] (Knitter et al., 2013). Both images reused with the 

permission of Elsevier. 

1.4 Motivation and goals  

In the framework defining the complex coupled thermo-mechanical behavior of fusion 

pebble beds, a model describing the behavior of the individual particles and how their 

interactions affect the response of the granular bed is needed for the advancement of the 

breeder blanket design. While the Finite Element Method (FEM) is suitable to simulate large 

(a) (b) 
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volumes representing components with their real sizes, the Discrete Element Method (DEM) 

is a powerful tool to characterized discrete materials representing particles individually within 

a defined structure. DEM allows investigating pebble beds at granular level controlling 

parameters inaccessible in a FEM code such as pebble size, shape, packed state and modelling 

of the interstitial gas among particles. In this sense DEM is the only tool able to bridge the 

gap between microscopic and macroscopic behavior guaranteeing the representation of 

phenomena experimentally inaccessible.  

In KIT an in-house DEM code exists for the investigation of the mechanical behavior of 

ceramic breeder pebble bed composed of perfect spherical particles. The aim of this work is to 

investigate the influence of the slight deviation from a perfect spherical shape of the currently 

produced pebbles on the mechanical behavior of pebble beds and to model the heat transfer in 

granular materials.  

In order to investigate the influence of the particles shape, the in-house Discrete Element 

Method code has to be further extended. Since the real shape is more close to an oblate 

spheroid, an algorithm to create assemblies of ellipsoidal particles and to investigate their 

mechanical response has to be implemented. The main difference in the modelling of 

spheroidal and ellipsoidal particles is the need to represent the variation of the particle 

orientation during the compression. Furthermore, the curvature of the surfaces involved in the 

interaction between ellipsoidal particles and thus the contact area, changes with the position 

of the contact point, unlike spheres. However, depending on the method used to represent the 

ellipsoidal particles this problem can easily overcome.  

In order to model the heat transfer in granular beds, a thermal DEM code has to be 

developed. The heat transfer in the bed depends on the thermal properties of the two 

component phases: solid pebbles and interstitial gas. In particular, the evaluation of the 

effective thermal conductivity of the bed is of primary importance to guarantee a correct 

estimation of the temperature field generated in the bed under neutron irradiation. The heat 

transfer in ceramic breeder pebble beds has to be simulated taking into account the influence 

of the interstitial gas, temperature of the system, compression state and level of neutron 

irradiation. Furthermore, since the gas is confined in the small gaps defined among particles, 

the implementation of the Smoluchowski effect to study the influence of the gas pressure on 

the thermal behavior of pebble beds is of primary importance. According to the 

Smoluchowski effect, the thermal conductivity of a confined gas decreases with decreasing 

pressure affecting in this way the effective thermal conductivity of the bed. Several works are 
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reported in literature providing analytical and experimental results accounting for the 

influence of the gas pressure in pebble beds.  However, to my knowledge, nobody studied this 

effect by means of a DEM code until now.  

1.5 Chapters description  

In order to set a framework for the study reported in this thesis a literature review about 

previous studies, methods and related concepts is given in Chapter 2. After that the thesis 

proceeds with the description of the study related to the mechanical behavior of ellipsoidal 

particles under uniaxial compression. In Chapter 3 the method to generate an individual 

ellipsoidal particle and to create an assembly of packed particles is presented. By means of a 

DEM code, the interactions of each contact pair are studied and the mechanical behavior of 

the whole assembly under uniaxial compression is investigated. Finally, the influence of the 

aspect ratio and smoothness of the ellipsoidal particles on the macroscopic/microscopic 

behavior of the assemblies is discussed.  

To represent the thermal behavior of pebble beds, an in-house thermal DEM code was 

developed. The thermal network model is introduced in Chapter 4, including sensitivity 

studies about temperature, gas pressure, compression state, packing factor, different solid 

materials and gas types. In Chapter 5 the application of the KIT thermal-DEM code to the 

breeder zone is reported modelling the temperature profile over the thickness of the bed as a 

function of the neutronic heating. Finally, the summary of the work is made in Chapter 6. 
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Chapter 2                                                         

Literature review  

In this chapter, a literature review of works on the thermo-mechanics of pebble beds is 

presented. In the first section, the existing DEM approaches to study the thermo-mechanical 

behavior of granular materials are described, while in the second section experimental, 

analytical and numerical results about investigations on thermo-mechanics of ceramic breeder 

pebble beds are reviewed. 

2.1 Discrete Element Method 

The Discrete Element Method (DEM) is an essential numerical tool to investigate the 

micro-response of granular materials together with the macro-response of the granular 

assembly. It is suitable to investigate the behavior of a wide variety of discrete matters such as 

rock mechanics, powders and granular flows. Therefore it is employed in several fields such 

as: pharmaceutical industry, powder metallurgy, mineral processing and civil engineering. 

Here, an overview of the DEM approach with related possible applications is given first. 

Methods for the representation of non-spherical particles and the evaluation of their 

mechanical behavior are reviewed, and then a survey of the modelling of the heat transfer in 

granular materials is reported.  

2.1.1 DEM overview 

The DEM approach was first introduced by Cundall and Strack (1979) [15] to study the 

mechanical response of assemblies of packed particles. In DEM an individual particle is 

defined by its position inside the assembly, the size, the shape and its orientation if the 

particle is not spherical. A dedicated contact algorithm can provide information about contact 

forces acting among particles. Newton's equations of motion are then used to update positions 

and velocities of the particles. Both dynamic and static analyses of granular media can be 

carried out by means of this method. In this regard, one of the first studies was carried out by 

Herrmann and Luding (1998) [16].As reported in [16] (Herrmann and Luding, 1998), [17] 

(Thornton et al., 1998) and [18] (C. L. Martin et al., 2003), particle deformation, size 

segregation and force distribution can be numerically obtained by means of DEM tool. In 

2000 Lu et al. [19] investigated the thermal creep in ceramic breeder pebble beds with a DEM 

code, while Clearly (2000) [20] performed a numerical campaign on the behavior of industrial 

particle flows. The DEM approach is crucial to study the macroscopic behavior of granular 
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media as a result of the interaction among particles gaining important information, such as the 

yield surface (Redaz and Fleck, 2001 [21]), particle rearrangement during compaction 

(Martin, 2004 [22]) and the crush probability (Marketos and Bolton, 2007 [23]). An et al. in 

2007a [24] and in 2007b [25] investigated the contact force distribution inside pebble beds for 

assemblies surrounded by rigid walls, while in the same year Gilarbert et al.[26] studied the 

behavior of assemblies of packed particles in a periodic configuration.  

In the same period, a DEM code was developed in KIT to study the mechanical behavior 

of ceramic breeder pebble beds under uniaxial compression (Gan, 2008 [27]; Gan and 

Kamlah, 2010 [28]; Gan et al., 2010 [29]; Zhao, 2011[30]; Annabattula et al., 2012a [31] 

2012b [32]; Zhao et al., 2013 [33]; Pupeschi et al., 2016 [34]). First, the mechanical behavior 

of monosized spherical packed particles in a periodic boundary configuration was investigated 

by Gan (2008) [27] and Gan and Kamlah (2010) [28]. The micro mechanical behavior was 

investigated and its influence on the macroscopic behavior of the whole assembly was studied 

[28] (Gan and Kamlah, 2010). The code was used to study the influence of relevant 

parameters such us packing factor [28] (Gan and Kamlah, 2010) [30] (Zhao, 2011) [31] 

(Annabattula et al., 2012a), friction coefficient [30] (Zhao, 2011) [31] (Annabattula et al., 

2012) and shear stiffness [30] (Zhao, 2011) as well as the effect of pebble failure in the 

macromechanical response [32] (Annabattula et al., 2012b) [33] (Zhao et al., 2013). With 

further extensions of the code, both the influence of the wall on the packing structure of the 

pebble beds [29] (Gan et al., 2010) and the particle size distribution on the mechanical 

behavior [31] (Annabattula et al., 2012a) were investigated. Recently, the KIT_DEM code 

was slightly modified [34] to investigate the cycling mechanical behavior of ceramic breeder 

pebble beds. Discussions about numerical results are reported in Section 2.2, which is 

dedicated to the overview of the numerical/experimental campaign carried out to characterize 

the behavior of ceramic breeder pebble beds. 

Together with mechanical DEM studies of packed spherical particles, DEM modelling of 

non-spherical packed particles has received significant attention over the last 20 years. The 

awareness of the strong influence of the particle shape on the dynamic of granular systems 

raised the interest of the community in these studies. In the next section, a summary of 

different approaches for the representation of non-spherical particles together with the 

algorithms for the contact detection are presented. 
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2.1.2 Non-spherical particles in a DEM code 

The numerical representation of the mechanical behavior of packed non-spherical particles 

requires an accurate analysis of both the contact algorithm and the method to determine the 

particles' orientation. While the contact algorithm strictly depends on the method chosen to 

represent the desired particle shape, the orientation is mainly defined by Euler angles 

(Goldstein et al., 2002) [35] or quaternions (Evans and Murad, 1977) [36]. The first approach 

suffers from the gimbal lock singularity. Therefore the second method is preferred for 

practical DEM implementations. In the following, common methods for the representation of 

non-spherical particles with the related contact algorithms are described. 

Ellipsoids 

The simplest non-spherical particle shape to be represented with a DEM code is the 

ellipsoid. Such particles can be generated using a parametric and/or an algebraic equation (Lin 

and Ng, 1995[37], 1997 [38]; Ouadfel and Rothenburg, 1999 [39]; Mustoe and Miyata, 

2001[40]; Donev et al., 2005 [41]; Wynn, 2009 [42]; Yan et al., 2010 [43]; Baram and Lind, 

2012 [44]; Zheng et al., 2013[45]). The individual pebble is characterized by its position in 

space and the length of the three principal axes. For non-spherical particles, the curvature of 

the contact surfaces and thus the contact area, changes with the position of the contact point. 

Therefore, the major challenge in modelling ellipsoids in DEM is the implementation of an 

efficient and stable contact detection algorithm. In 1999 Ouadfel and Rothenburg [39] 

developed an algorithm to determine the contact between two ellipsoids based on the 

intersection of their geometrical figures. An alternative to the geometrical intersection method 

is the geometric potential concept, which was developed, for three-dimensional geometry, by 

Lin and Ng in 1995 [37]. The approach is based on the geometric potential concept of 

ellipsoids. For two contacting ellipsoids, the two points with the lowest geometric potential 

mark the penetration in the related contacting particle. If the two points are inside the 

contacting particle, the two ellipsoids are in contact and the middle point of their connecting 

line identifies the contact point. In the same study [37], Lin and Ng (1995) developed another 

method called common normal method, which is based on two sets of equations: constraining 

equations guaranteeing that the contact point is on the particle surface and target equations 

that detect the minimum distance in the contact pair. An iterative method is used to solve the 

two sets of equations. This scheme entails high computational times frequently resulting in 

convergence problems. However, compared to the geometric potential method, the common 

normal method better defines the mechanics of the contact.  
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Super-quadrics 

A general approach to represent non-spherical particles is the so-called super-quadric 

equation. The super-quadric equation was introduced by Barr (1981) [46] to describe particles 

with convex and concave shapes. In the equation 

𝑓(𝑥, 𝑦, 𝑧) = ((
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)

2
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a, b and c are the half-lengths of the principal particle axes, while 𝜀1 and 𝜀2 control the shape 

of the particles’ cross section in the y-z and x-z planes, respectively. Figure 2–1 exemplarily 

shows different particle shapes obtained changing 𝜀1 and 𝜀2. 

 
Figure 2–1: Examples of different particle shapes obtained changing 𝜀1 and 𝜀2 in the super-

quadric equation, [49] (Lu et al., 2015). Image reused with the permission of Elsevier. 

Spheres and ellipsoidal particles are obtained setting 𝜀1 = 𝜀2 = 1 and varying the length of 

the three main axes. Using a continuous function to represent the surface of the particles, non-

linear iterative approaches are needed to detect the contacts among pebbles. The scheme is 

similar to the algorithm proposed by Lin and Ng (1995) [37] and described in the previous 

subsection on ellipsoids, therefore the same convergence problems are observed. In terms of 

contact detection, an alternative is represented by the so-called discrete function proposed by 

Williams and O’Connor on 1995 [47]. In this method, the surface of the particles, generated 

by the super quadratic method, are discretized by individual points. Using the geometric 

potential method, when a surface point of a particles lies inside the second particle, this is 

detected as contact (Hogue,1998) [48]. 
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The discretization can be uniform or adaptive. The uniform discretization is suitable for 

symmetrical particles since points are uniformly distributed and equally spaced, while the 

adaptive discretization guarantees a different point distribution for an accurate representation 

of corners and edges [49] (Lu et al., 2015). Examples of uniform and adaptive discretization 

are shown in Figure 2–2(a) and (b), respectively. Even if this is a promising approach, open 

issues such as the correct number of points to be used, their distribution on the surface to 

guarantee a sufficient accuracy and a more suitable method to efficiently detect contact points 

need to be addressed. 

 
Figure 2–2: Particle shape representation using the discrete function: (a) uniform 

discretization (b) adaptive discretization, after [49] (Lu et al., 2015). Image reused with the 

permission of Elsevier. 

Multi-Sphere 

The Multi-Sphere (MS) method is the most popular approach in the DEM community to 

represent non-spherical particles (Ning et al., 1997 [50]; Favier et al., 1999 [51], 2001[52]; 

Thornton et al., 1999 [53]; Kafui and Thornton, 2000 [54]; D. Markauskas et al., 2010 [55]). 

In the MS method several spheres called “primary spheres” are clustered to form the desired 

geometry. In particular, the size, the number and the overlap of the spheres can be tailored to 

obtain the desired shape. To keep the geometry fixed, the relative position between the 

primary spheres of the clustered particle must not change. In Figure 2–3 various ellipsoidal 

shapes consisting of different clusters of primary spheres are shown. The main advantage of 

this method is the possibility to apply the fast and robust contact detection algorithm for 

spheres to the contact between primary spheres constituting different particles. Indeed, forces 

and torques acting between non-spherical particles are detected between the primary spheres 

clustering the related particles. Then, they are vectorially added and applied in the center of 

mass of each clustered particle. Due to the possible overlaps among primary spheres, 

composing the individual non-spherical particle, the artificial excess of mass has to be 

removed and the moment of inertia adjusted. Ferellec and McDowell (2008 [56], 2010a [57], 

2010b [58]) adjusted the density of the primary spheres to correct the mass and moment of 

inertia of the composed particle. In 2013a [59]and 2013b [60], Parteli proposed a new 

(a) (b) 
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method. He divided the overlap between two primary spheres in two caps to remove the mass 

and the moment of inertia of the overlaps from the total amount of the respective quantity 

evaluated as the sum of the clustered primary spheres.    

 
Figure 2–3: Representation of ellipsoids with various aspect ratios combining a different 

number of primary spheres with a defined radius [55] (Markauskas et al., 2010). Image reused 

with the permission of Springer Nature. 

Depending on the desired level of surface smoothness, a different number of primary 

spheres are glued together. Since the contact between two composed particles is reduced to 

contacts between the primary spheres, it can happen that a primary sphere of a composed 

particle is in contact with two or more primary spheres of the contacting clustered particle. 

This, and more generally the lack of convexity of the composed particles raises a concern 

with respect to the MS method, namely the presence of multiple contact points between 

clustered particles and their detection. 

Kruggel-Emden et al. (2008) [61], demonstrated that such multiple contacts may generate 

an unphysical behavior of the assembly leading to large deviations between numerical and 

experimental results. To get rid of this problem, Kodam et al. (2009) [62] proposed to change  

the contact law by adjusting the value of the elastic contact stiffness, the damping coefficient 

and the force model according to the number of primary spheres composing a particle and 

their overlaps. An easier and effective method, without variations of the force model’s 

parameters was developed by Höhner et al. (2011) [63].  At each time step the incremental 

normal and dissipative force are divided by the number of multi contacts, while the increment 

of the tangential force is not directly updated. The tangential force is limited to the minimum 

value between the shear and the friction force. The friction force is already adjusted since it is 

evaluated as a function of the normal force. Therefore, only the increment of the shear force 

has to be divided by the number of the multi contact at each time step.  
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Other methods 

Non-spherical particles can be composed of non-spherical geometric elements. Recently, 

the so-called ‘spherosimplices’ method became established. With this method, complex 

geometries are generated defining a skeleton using linear segments, points etc. Then, the 

shape of the particle is generated moving a sphere around segments and points composing the 

skeleton (Alonso-Marroquín et al., 2009 [64]). In this case, the most suitable of the contact 

algorithms described above can be applied as a function of the simulated particle shapes.   

For non-spherical particles characterized by corners, edges and flat surfaces, the 

representation via polygons and polyhedrons is frequently proposed (Hart et al., 1988 [64]; 

Hopkins, 2014 [66]). As for the other methods, when non-spherical particles are used, the 

contact algorithm is the most difficult challenge to be faced. The contact detection algorithm 

has to account for all the combinations of elements such as corner–corner, corner–edge, 

corner–face, edge–edge, edge–face and face–face. The so-called ‘common plane’ (CP) 

algorithm was proposed (Cundall, 1988 [67]; Nezami et al., 2004 [68], 2006 [68]; Zhao et 

al.,2006a [70], 2006b[71]) to improve the computational efficiency of the algorithm. 

2.1.3 Heat transfer modelling for ceramic breeder pebble beds 

Pebble beds are multiphase materials in which both the solid and the gas phase filling the 

voids among particles coexist. The heat transfer inside pebble beds depends on the thermal 

properties of the two phases as well as on the overall system properties (e.g. gas pressure, 

temperature, mechanical state etc.). The solid to gas thermal conductivity ratio (𝑘𝑠/𝑘𝑔) 

influences the heat transfer distribution between the solid and the gas phase. The heat flows 

mainly through paths with higher thermal conductivity. Therefore, the heat transfer is 

uniformly distributed between the two phases when the ratio 𝑘𝑠/𝑘𝑔 is low; otherwise the heat 

flows mainly through the contacts between the particles [72] (Abou Sena et al., 2005). Thus, a 

variation of the compression state of the bed influences the heat transfer among particles 

especially when the ratio 𝑘𝑠/𝑘𝑔 is high. This is because varying the compression state, the 

number of contacts and the dimension of the existing contact areas change influencing the 

heat transfer and in turn the effective thermal conductivity of beds.  

Heat transfer models describing the interactions among particles taking also into account 

the gaseous contribution are needed to investigate the heat transfer in granular matters. In 

particular several mechanisms have to be considered: the conduction within the solid material, 

conduction through the contact area between contacting particles, conduction in the gas phase, 
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gas convection and radiation between particles. However depending on the application field, 

involved materials and boundary conditions, some of the heat transfer mechanisms can be 

considered secondary or even neglected.  

In the breeder beds, a purge gas flows among the packed pebbles with a low mass flow rate 

~0.4 kg/s in order to guarantee the tritium extraction [73] (Franza et al., 2013). Considering 

the low mass flow rate, the gas can be considered as quasi-stagnant and thus the gas 

convection neglected since it will just slightly contribute to the heat transfer in the ceramic 

breeder beds. Besides, the contribution of thermal radiation is also marginal due to the 

involved small particle sizes (~0.25-0.65mm, [11](Knitter et al., 2013)) and the high packing 

factor (~64%) characterizing the breeder pebble beds. The contribution of the heat radiation 

increases with the particle temperature and size [74] (Asakuma et al., 2014), while it reduces 

with the increase of the bed density [75] (Lu et al., 1995). A high packing factor increases the 

absorption of radiation in the packed structure reducing the radiative bed density [75] (Lu et 

al., 1995). In [74] (Asakuma et al., 2014) it has been reported that the thermal radiation in 

packed beds is negligible, in the temperature range of 0-1440 °C, for particles with a diameter 

less than 1 mm. In the same study, the contribution of thermal radiation was found to be 

appreciable above 400 and 150 °C for particles with a diameter of 10 and 100 mm, 

respectively. In 2016 Wu et al.[76] found a negligible influence of the thermal radiation 

below 130 °C for graphite spheres of 60mm in diameter with an average packing factor of 

61%. Therefore, the conduction within the solid material, through contact points and the 

conduction in the gas phase are expected to be the relevant mechanisms characterizing the 

heat transfer in ceramic breeder pebble beds. In the following, a related overview is given (see 

also Moscardini et al., 2018 [77]).  

Batchelor and O’Brien (1990) [78] developed a theory to evaluate the heat transfer in 

granular materials. They derived the effective conductivity of a stationary granular material 

through which a stationary transport of heat or electricity exists. They considered a granular 

assembly composed of randomly arranged spheres in contact, or nearly in contact, immersed 

in a uniform matrix. The heat transfer was evaluated accounting for two main types of 

contacts: particles touching each other or with a separation gap. In the theory, it is supposed 

that the main contribution to the heat flux occurs through a certain percentage of the surfaces 

of the two contacting particles. Several works reported in literature [79] (Yun and Evans, 

2010), [80] (Kanuparthi et al., 2008), [81] (Gan et al., 2014) use this theory to study the heat 

transfer in granular matters by means of a DEM code. Simulating the granular material as an 
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assembly of packed particles, each thermal contact is defined as a series circuit of three 

resistors. The three resistors identify the resistance to the heat transfer inside the two particles 

and in the contact region, which can be a separation gap or a contact area. Taking contacting 

particles as nodes, this defines a 3D random network model that describes the heat transfer in 

the whole assembly accounting for the conduction inside the solid material, through the 

contact region and in the gas phase. In [79] (Yun and Evans, 2010) and [80] (Kanuparthi et 

al., 2008) the Gauss–Seidel method was used to compute the evolution of the temperature in 

the linear system, while in [81] (Gan et al., 2014) a transient method was employed applying a 

thermal diffusion time to describe the characteristic time to transfer the heat between pebbles. 

In this framework, neither of the existing studies reported in literature take into account the 

influence of the gas pressure on the heat transfer in granular materials. In granular materials, 

the filling gas is confined in small gaps among the packed particles. According to the kinetic 

theory of gases, the thermal conductivity of an unconfined gas is independent of its pressure, 

while for a confined gas the thermal conductivity of the gas decreases with the pressure when 

the mean free path of the gas molecule reaches the dimensions of the confining space. This is 

the so-called Smoluchowski effect and it strongly influences the thermal behavior of granular 

materials [82] (Smoluchowski, 1924). In particular, as the mean free path is inversely 

proportional to the gas pressure, the reduction of the gas pressure may lead to an increase of 

the mean free path up to the order of magnitude of the confining dimension. In turn, with 

reduction of the gas pressure, the gas becomes more rarefied and the interaction between the 

gas molecules becomes more sporadic. In the extreme case, the heat is just transferred by 

interaction of the gas molecule with the confining boundaries. A parameter representing the 

likelihood of the molecule interactions is the Knudsen number defined as 

𝐾𝑛 =  𝛬/𝐿 2.2 

where 𝛬 [m] and L [m] are the mean free path and the geometrical dimension of the confining 

space, respectively. When 𝐾𝑛 increases, the probability of interaction between gas molecules 

decreases defining three gas regimes [83] (Raed, 2013): 

 Continuum regime: For 𝐾𝑛 < 0.001 the heat in the gas is transferred by molecular 

interactions and the gas thermal conductivity as well as the thermal conductivity of the 

packed granular system is independent of the gas pressure. This is defined as the 

continuum regime, where the gas thermal conductivity is equal to its bulk value 

(unconfined gas).  
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 Transition regime: For 0.001 < 𝐾𝑛 < 10 the gas thermal conductivity and thus the 

effective thermal conductivity of the granular assembly drop as the gas pressure decreases. 

Decreasing the gas pressure the effective thermal conductivity of the bed drops, because 

the mean free path gradually reaches the order of magnitude of the dimension of the 

confining space, and the gaseous thermal transfer becomes less effective.  

 Free molecule regime: For 𝐾𝑛 > 10 the collision between molecules can be neglected, and 

the thermal energy is transferred by the interaction of the gas molecule with the confining 

surfaces (very rarefied gas). This regime is called free molecule regime. The thermal 

conductivity of the gas and thus the effective thermal conductivity of the assembly are low 

and again are independent of the gas pressure.  

The combination of the three regimes provides the well-known S-shape curve, which is the 

result of the reduction of the gas thermal conductivity with its pressure. Figure 2–4 

exemplarily shows some S-shape curves representing the nitrogen thermal conductivities at 

room temperature in function of the gas pressure, for different pore sizes enclosing the gas. 

The curves were reproduced according to the analytical studies reported in [83] (Raed, 2013). 

The plateau at high and low pressures identifies the continuum and the free molecule regimes, 

respectively, while for intermediate values of the gas pressure the transition region is found. 

Without the implementation of the Smoluchowski effect, the thermal conductivity of the 

gas is always overestimated determining an unrealistic temperature field in the bed. 

Therefore, in order to properly evaluate the heat transfer in the breeder beds, the 

implementation of the gas pressure dependence is required. 

 
Figure 2–4: Smoluchowski effect for the nitrogen thermal conductivities at room 

temperature in function of the gas pressure and for different pore sizes. Reproduced according 

to results reported in [83] (Raed, 2013). 
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2.2 Overview of the experimental/numerical studies on the 

thermo-mechanics of ceramic breeder pebble beds 

The thermo-mechanical behavior of pebble beds is affected by several parameters such as 

the mechanical state, packing factor, gas type, solid material, gas pressure, temperature etc. 

Therefore, the effective mechanical and thermal properties of a granular material cannot be 

derived from the properties of a single pebble or its base material. For this reason, 

experimental and numerical investigations of pebble beds are both essential to understand the 

pebble bed thermo-mechanics. In this section, an overview of the related experimental and 

numerical investigations to characterize the thermo-mechanics and the effective properties of 

ceramic breeder pebble beds is given. 

2.2.1 Studies of mechanics in ceramic breeder pebble beds 

Aiming to characterize the mechanical response of breeder beds, Uniaxial Compression 

Tests (UCT) have been carried out on assemblies of packed particles by using different 

experimental set-ups, materials and boundary conditions [34] (S. Pupeschi et al.,2016), [84]-

[91] (Ying et al., 1998; Lu et al., 2000; Reimann and Wörner, 2001; Piazza et al., 2002; 

Reimann et al., 2002; Buhler and Reimann, 2002; Dell’Orco et al., 2016; Zhang et al., 2016). 

In the UCT, the pebbles are placed in a cylindrical container with a 𝐻/𝐷 ratio less than 1. This 

is to avoid that the increase of the effective constraints at the cylindrical wall (due to friction) 

leads to a non-uniform compression state along the bed’s thickness. Moreover, the radial 

dimension of the container should be much larger than the diameter of the individual pebbles 

in order to assure negligible wall effects on the packing structure and to obtain a mechanical 

response of the bed governed by its bulk behavior. Furthermore, a sufficient number of 

particles has to be used to guarantee a representative behavior. 

During the UCT, the pebbles contained in the cylindrical cavity are compressed in the axial 

direction by a piston connected to a testing machine. As result of the test, the macroscopic bed 

strain, corresponding to the variation in percentage of the pebble bed height, is determined as 

a function of the macroscopic stress applied axially on the bed cross-section. The 

characteristic mechanical behavior of a pebble bed exhibits non-linear elasticity and in 

addition with an irreversible residual strain after the unloading, which is the result of a 

significant rearrangement of the particles inside the bed. Figure 2–5(a) shows the stress-strain 

curves obtained from UCT experiments carried out with metatitanate breeder pebble beds at 

room and high temperature [88] (Reimann et al., 2002). When the ceramic breeder is 
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compressed at high temperature (over 600 ºC), thermal creep becomes evident determining an 

increase of the strain under a constant stress.  

 

Figure 2–5: Typical stress-strain curves obtained from UCT experiments. a) Experiments 

carried out with fusion pebble beds at different temperatures, [88] (Reimann et al., 2002). b) 

Cyclic behavior of lithium orthosilicate at high temperature, [91] (Zhang et al., 2016). Both 

images reused with the permission of Elsevier. 

UCT experimental campaigns have been carried out in [91] (Zhang et al., 2016) and [34] 

(S.Pupeschi et al., 2016) to investigate the mechanical behavior of pebble beds under cycling 

loading. Figure 2–5(b) exemplarily shows the mechanical behavior of a ceramic breeder 

material under cyclic loading at 750°C [91] (Zhang et al., 2016). When a granular material is 

cyclically loaded, the largest part of the irreversible residual strain is generated during the first 

few cycles [91] (Zhang et al., 2016); then smaller increments of the bed compaction occur as 

the cycling proceeds [34] (S.Pupeschi et al., 2016). 

In order to reproduce numerically the mechanical behavior of pebble beds, the Discrete 

Element Method (DEM) and continuum approaches can be used. In the continuum approach, 

the effective properties of the beds are implemented in a Finite Element Method (FEM) code 

to simulate its macro-response. In [90] (Dell’Orco et al., 2016) the developed code was 

validated with experimental results obtained with the HELICA and HEXCALIBER mock-

ups. In [92] (Ying et al., 2012) the continuum approach was found to adequately represent the 

macroscopic thermomechanical behavior of breeder beds. The continuum approach allows 

simulating large volumes giving information about the behavior of the whole investigated 

structure. However, the individual components of the investigated structure have to be 

simulated as continuum materials. Therefore, when pebble beds are simulated as continuum 

materials, the knowledge of the effective properties of the bed and how they are affected by 

the micro-mechanisms generated during the operation, is essential for a correct estimation of 

(a) (b)  
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the bed behavior.  In this sense the DEM tool is necessary to evaluate the effective properties 

and the behavior of the bed as result of the interaction among particles accounting for all 

micro thermo-mechanical mechanisms. Simulating the individual interactions at the particle 

scale, it is possible to investigate the influence of parameters such as the compression state, 

packing factor, friction coefficient, particle size distribution and particle shape. In this sense, 

in addition to the macroscale stress-strain response of the assembly, relevant information 

about crush probability, void fraction distribution, yield surface, and force distributions are 

achievable.  

The DEM approach for fusion relevant applications was first used by the University of 

California Los Angeles (UCLA) to study the micro mechanics of breeder beds [85] (Lu et al., 

2000). In this work, the thermal stress induced by the thermal expansion of the particles 

composing a constrained bed was modelled and compared with experimental data. The 

variation of the effective modulus of deformation was determined as a function of the thermal 

cycles and compared with the experimental results. In the first cycle, numerical results were 

found quite in line with the experiments. However, due to the breakage of particle during the 

experiments a large error between simulations and experiments occurred in the successive 

cycles. Later on, in [24] (An et al., 2007a) and [25] (An et al., 2007b), the mechanical 

behavior of rigid spheres packed inside containers with elastic walls and compressed in axial 

direction was investigated. In [24] (An et al., 2007a) the mechanical performance of breeder 

pebble beds under the thermal creep deformation was investigated. Results demonstrated that 

the creep strain rate of pebble bed is higher than bulk material at stationary. In [25] (An et al., 

2007b) it was found that both the packing factor as well as the bed geometry can influence the 

mechanical response of the bed. For the simulated bed geometries, the wall effect on the 

mechanical behavior of the pebble beds was found to be negligible compared to the inner 

structures of the pebble force chains. Furthermore, from statistical data of the internal contact 

forces, it was found that the coordination number of the pebbles, which is defined as the 

average number of contacts per particle, determines the main variations in the overall 

behaviors of the pebble beds.  

In more recent works at UCLA, an open-source DEM code was used to study the 

mechanical behavior of monosized packed assemblies with PBC under uniaxial compression 

[93], [94] (Van Lew et al., 2014 and 2015). In particular, in [93] Van Lew et al. (2014) 

studied the thermo-mechanics of breeder beds experiencing pebble failure. It was found that 

the effective thermal conductivity rapidly decreases when the percentage of failed pebbles in 

https://www.sciencedirect.com/science/article/pii/S0920379615300582#!
https://www.sciencedirect.com/science/article/pii/S0920379615300582#!
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the bed increases. As pebbles fail, the inter-particle forces drop leading to an increase of the 

temperature in the neighboring pebbles, which results in a reduction of the effective thermal 

conductivity. In [94] Van Lew et al. (2015) investigated the influence of Young’s modulus on 

the mechanical behavior of pebble beds. Due to the different fabrication processes, pebbles 

show different microstructures and thus different mechanical behaviors. In this study, the 

authors carried out crushing experiments on different pebbles determining a wide range of 

crush loads. The different crush loads were associated to different Young’s moduli, which 

were defined as a reduction of the highest value reported in literature for highly sintered 

pellets of the same material. The obtained values were applied into the DEM simulation. 

When the Young’s modulus is reduced, a more compliant behavior of pebble beds with 

smaller peak contact forces in beds and thus fewer crushed pebbles are predicted.  

At KIT, an in-house DEM code is under development since 2008 to investigate the 

mechanical behavior of ceramic breeder pebble beds. In 2008, Gan[27] and in 2010 Gan and 

Kamlah [28] implemented the Random Close Packing (RCP) algorithm for the generation of 

random and densely packed assemblies of monosized spherical particles. The method is a 

purely geometric approach based on the RCP described in [95] (Jodrey and Tory, 1985) with 

a periodic boundary configuration. The approach guarantees reaching a Packing Factor (PF) 

of approx. 64%, being consistent with the reference value of the actual European breeding 

blanket design. The generated PF is defined as the fraction of the total volume occupied by 

the particles over the volume of the virtual box in which particles are packed. With the 

implementation of periodic boundary conditions, the packed state of the assembly refers to the 

bulk zone of pebble beds. In the same study [28] (Gan and Kamlah, 2010), the DEM method 

to compress in uniaxial direction the generated assemblies was presented. The uniaxial 

macroscopic strain ε is gradually applied up to the maximum value, then ε is gradually 

removed until the stress approaches zero. The DEM simulations conducted with this code 

accurately reproduced the characteristic bulk mechanical behavior of fusion ceramic breeder 

pebble beds giving results in good agreement with the UCT experimental outcomes [28] (Gan 

and Kamlah, 2010). During their studies Gan [27] (2008) investigated the microscopic 

behavior of the assemblies in terms of internal force distributions defining correlations to 

determine the average normal force, maximum force and average number of contacts as a 

function of the hydrostatic pressure. In 2010 Gan et al. [29] further extended the code in order 

to study the influence of the walls on the packing structure of pebble beds. Rigid wall 

conditions were simulated and particles were packed into a cylindrical container to compare 

the numerically obtained packing structure with X-ray tomography results [29] (Gan et al., 

https://www.sciencedirect.com/science/article/pii/S0920379615300582#!
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2010). In Figure 2–6, the packing factor distribution obtained with the numerical simulation 

(red line) for a highly packed assembly of monosized particles along the main axes of the 

cylinder container is compared to the packing structure obtained in the experiments (gray 

dots). The numerically result was found to accurately reproduce the packing structure 

obtained with the X-ray tomography. In the upper and bottom regions, the large fluctuations 

of the void fraction show the influence of the walls on the packing factor which stabilizes in 

the bulk region. The fluctuations are generated due to the ordered packing structure developed 

near the walls. 

In 2010 Zhao [30] and then in 2013 Zhao et al. [33] further extended the code to 

investigate the influence of friction coefficient, shear stiffness and pebble failure on the 

macroscopic mechanical behavior of assemblies of packed spheres. A strong influence of the 

friction coefficient and shear stiffness was discovered. A high friction coefficient results in a 

stiffer behavior while, when the shear stiffness decreases, a softer mechanical behavior was 

determined. It was found that the crushing events of pebbles induced instabilities in the 

overall stress–strain responses. Furthermore, no significant localization of crushed pebbles 

during the failure propagation was observed.  

 

Figure 2–6: Comparison between numerical (red line) and experimental results (gray dots) of 

the packing factor distribution of a highly packed assembly of monosized particles along the 

main axes of the cylinder container, [29] (Gan et al., 2010). Image reused with the permission 

of Elsevier. 

In 2012 Annabattula et al. [31] further extended the code in order to simulate assemblies of 

packed particles with different radius. The obtained results showed a stiffer behavior of 

assemblies composed of monosized particles compared to binary and polydispersed 
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assemblies with the same initial PF. As for monosized particles, the initial PF was found to 

strongly influence the behavior of the bed. Assemblies with higher PF show a stiffer behavior 

with a smaller residual strain after unloading. Results of this numerical campaign are reported 

in Figure 2–7. Figure 2–7(a) shows the influence of the packing factor “ƞ” on binary 

assemblies. In Figure 2–7 r* is the ratio between the radius of the smaller particle over the 

radius of the larger particle, while V* is the ratio between the volume occupied by larger 

particles over the volume occupied by all particles. The behavior of monosized binary and 

polydispersed assembly with a similar initial PF is compared in Figure 2–7(b). 

 

Figure 2–7: Average stress–strain response of: (a) binary pebble assemblies at different 

packing factors, (b) mono size, binary and polydisperse pebble assemblies with a similar 

packing factor. Packing factors are reported in the legend, [31] (Annabattula et al., 2012). 

Image reused with the permission of Elsevier. 

Recently the KIT-DEM code was slightly modified by Pupeschi et al. [34] (2016) to 

estimate the mechanical behavior of ceramic breeder pebble beds under a cyclic mechanical 

loading. Figure 2–8(a) shows the influence of the cyclic loading on the residual strain foundin 

[34] (Pupeschi et al., 2016) after the 1
st
 and 30

th
 cycle for the material 20 LMT (Li4SiO4 + 20 

mol% Li2TiO3), while in Figure 2–8(b) the variation of the residual strain after two 

consecutive cycles as a function of the cycle number is reported. In the legend of the graphs, 

LMT means lithum metatitanate, 20 indicates the mol% of Li2TiO3, 30 distingues the cases 

investigated up to 30 cycles while 2, 4 and 6 is the maximum applied load in MPa.  Numerical 

results show a progressive compaction of the bed due to the cyclic loading. It was found that 

the largest part of the irreversible strain is determined by the first 10–15 cycles, and then a 

progressive smaller increment of the compaction occurs.  

Recently, the influence of a considerable number of cycles on the behavior of packed 

assemblies was investigated [96][98] (Wang et al., 2015; Zhang et al., 2017a-2017b). Results 

show a progressive compaction of the bed with the cycling loading, resulting in an increase of 
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the effective bed stiffness. In [96] (Wang et al., 2015) the compaction was found to obey a 

stretched exponential evolution law. This means that the large compaction of the bed initially 

observed then decreases with the cycle number. As a consequence of the induced irreversible 

deformation of the bed, the packing fraction rapidly increases during the first cycles to then 

level off obeying to the same evolution law. In [97] (Zhang et al., 2017a) UCT experiments 

were conducted along with DEM numerical simulations to investigate the macro and 

micromechanical response of breeder beds subjected to cyclic loading. The distribution of the 

internal forces shows no influence of the mechanical cycling, while the coordination number 

clearly shows a major rearrangement of the particles during the first cycles. 

 

Figure 2–8: (a) Stress-strain curves for the 1st and the 30th loading/unloading cycles with 

different maximum compressive load, after [34] (Pupeschi et al., 2016). (b) Variation of the 

residual strain after two consecutive cycles as a function of the cycle number, after [34] 

(Pupeschi et al., 2016). Both images reused with the permission of Elsevier. 

2.2.2 Effective thermal conductivity of ceramic breeder pebble beds 

In order to study the thermal behavior of the breeder zone of a solid breeder blanket, the heat 

transfer inside pebble beds has to be investigated. To this end, the characterization of the 

effective thermal conductivity of the pebble beds is strongly required as this is an important 

parameter for the thermal design of the breeder zone. Due to discrete nature of a packed bed, 

its thermal conductivity is affected by the thermal properties of both the solid and the gas 

phase. In literature, experimental and numerical investigations on the effective thermal 

conductivity of pebble beds are reported [99] (Abou-Sena et al., 2005). In the following, a 

review of the main works characterizing the effective thermal conductivity of certain ceramic 

breeder pebble bed materials is presented, organized in separate passages for different breeder 

materials.  

Lithium-orthosilicate, Li4SiO4 

 In 1990, Dalle Donne and Sordon [100] measured the effective conductivity of Li4SiO4 

pebbles bed in stagnant helium at 1 bar. A temperature range of 50-350°C was considered and 

(a) 

(b) 
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monosized pebbles of 0.5 mm packed at ~60% were investigated. Results are reported in 

Figure 2–9(a). The effective thermal conductivity increases with the temperature about from 

0.7 to 0.9 [W/mK]. In 1994, the study was further extended for polydispersed Li4SiO4 pebbles 

with a diameter range of 0.35-0.6 mm [101] (Dalle Donne et al., 1994). In the experiments, a 

packing factor of 64.4% was reached and the temperature range of 40-720°C was 

investigated. The experimental results were correlated by means of the equation 

𝑘 = 0.708 +  4.51 ∗ 10−4𝑇 + 5.66 ∗ 10−7𝑇2, 2.3 

where 𝑘 is in [W/(m K)] and 𝑇 is in [°C]. The results are reported in Figure 2–9(a) and 

compared to results obtained in [100] (Dalle Donne and Sordon, 1990). The increase of the 

effective thermal conductivity with temperature was confirmed. Then, in 2000 Dalle Donne et 

al. [102] performed experiments using a pebble size range of 0.25-0.63mm with a packing 

factor of ~65%. The effective thermal conductivity was correlated to the bed temperature by  

𝑘 = 0.768 + 0.496 ∗ 10−3𝑇, 2.4 

where 𝑘 is in [W/(m K)] and 𝑇 is in [°C]. The results are presented in Figure 2–9(a) by a solid 

line. The effective thermal conductivity increases with temperature, as well, however the 

slope of the fitting line is lower compared to the dashed line fitting the experimental results 

obtained in [101] (Dalle Donne et al., 1994). During the experimental campaign carried out in 

[102] (Dalle Donne et al., 2000), the influence of the helium pressure (1 to 3bar) used as 

filling gas was studied. The results are plotted in Figure 2–9(b). The experiments showed that 

for the investigated pressures, the effective thermal conductivity doesn’t change. In 2001, 

Enoeda et al. [103] measured the effective conductivity of Li2TiO3, Li4SiO4, Li2ZrO3 and 

Li2O pebble beds varying the gas pressure from 0.001 to 0.2 MPa at about 520 °C. 

Furthermore, the temperature dependence was measured in the range of 425-775 °C for 

Helium at 0.1 MPa. Regarding Li4SiO4, pebbles with a size range of 0.25-0.63 mm were 

packed at ~61%. The experimental results for the thermal conductivity of Li4SiO4 pebble beds 

as a function of temperature and gas pressure are reported in Figure 2–9(a) and Figure 2–9(b), 

respectively. While a negligible dependence on temperature was observed, a strong influence 

of the gas pressure was found.  

In Figure 2–9(b) the experimental results and the analytical values determined in [103] 

(Enoeda et al., 2001) from the correlations derived by Bauer and Schlunder (SBZ) [104] 

(Bauer and Schlunder, 1978) and Hall and Martin (HM) [105] (Hall and Martin, 1981), 

respectively, are compared. These correlations are both based on a mathematical model that 
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describes heat transfer in a basic cell. A strong dependence on the gas pressure was found. 

The thermal conductivity decreases with the gas pressure depicting the typical S-shape, which 

is representative of the Smoluchowski effect. 

 

Figure 2–9: (a) Effective thermal conductivities of Li4SiO4 reported in literature, 

(b)Smoluchowski effect obtained analytically and with experiments. After [99] (Abou-Sena et 

al. 2005) and [103] (Enoeda et al., 2001), respectively. Both images reused with the 

permission of Taylor & Francis. 

In 2002, Reimann and Hermsmeyer [106] measured the effective thermal conductivity of 

compressed ceramic breeder pebble beds investigating the influence of the interstitial filling 

gas. Pebbles of Li4SiO4 produced at KIT with a size range of 0.25-0.65 mm and packed at 

64% were studied in helium and air for a maximum bed deformation of 4.5% and 

temperatures up to 800°C. Figure 2–10 shows the influence of the bed strain on the measured 

effective thermal conductivity for different combination of solid material, gas type and 

average bed temperature. In this study, the increase of the effective thermal conductivity with 

temperature was confirmed. A strong influence of the gas type was observed. Changing the 

filling gas from helium to air, a reduction greater than 50 % was detected.  A slight increase 

of the effective thermal conductivity with the strain was observed.  

 
Figure 2–10: Thermal conductivity of Li4SiO4 in helium and air at different temperatures as a 

function of the bed strain evaluated with UTC experiments, [106] (Reimann and Hermsmeyer, 

2002). Image reused with the permission of Elsevier. 
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The results obtained in helium atmosphere at elevated temperatures confirmed the 

correlation of Dalle Donne et al. [102]. The correlation reads as 

𝑘 = 0.768 + 0.496 ∗ 10−3𝑇 + 0.045 ε, 2.5 

where 𝑘 is in [W/(m K)], 𝑇 is in [°C] and ε is the uniaxial strain in [%]. Eq. 2.5 reduces for 

uncompressed beds to Eq. 2.4. 

In 2015, Feng et al. [107] investigated the effective thermal conductivity of monosized 

pebbles of 1.0 mm with a packing factor of about 63%. During this experimental campaign, 

the thermal conductivity, thermal diffusivity 𝛼𝑑 and specific heat capacity 𝑐𝑝 were determined 

in the temperature range of RT-600°C. It was found that the thermal diffusivity decreases 

when the temperature increases while the other two properties increase with temperature. The 

following correlations as a function of temperature were found for the effective conductivity, 

thermal diffusivity and specific heat capacity, respectively: 

𝑘 = 0.97198 + 5.04496 ∗ 10−4𝑇 + 3.30432 ∗ 10−7𝑇2, 2.6 

𝛼𝑑 = 0.5476 − 4.08679 ∗ 10−4𝑇 + 1.95265 ∗ 10−7𝑇2, 2.7 

𝑐𝑝 = 1.57753 + 0.00179 𝑇 + 2.22244 ∗ 10−6𝑇2   . 2.8 

Recently, Pupeschi et al. [108] (2017) investigated the effective thermal conductivity of the 

EU Reference (EU Ref.) and advanced lithium orthosilicate materials. The current European 

reference breeding material consists of two phases, namely about 90 mol% lithium 

orthosilicate (Li4SiO4) and 10 mol% lithium metasilicate (Li2SiO3). Due to the fabrication 

process (melt-spraying method developed by Pannhorst et al. in 1998 [109]), pores are 

generated inside the pebbles influencing the rupture strength. To improve the mechanical 

performances, by reducing the process related defects, a new experimental facility was 

developed at KIT to produce Advanced Ceramic Breeder (ACB) pebbles by a melt-based 

method [110] (Kolb et al., 2011). To further enhance the mechanical properties, lithium 

metatitanate (Li2TiO3) was introduced as a second phase. In this study, three types of 

advanced compositions were investigated: 20LMT (20 mol% Li2TiO3), 25LMT (25 mol% 

Li2TiO3) and 30LMT (30 mol% Li2TiO3). The experiments were carried out in a temperature 

range of RT–700 °C. Both helium and air were used as filling gas at a pressure range of 0.12–

0.4 MPa. In addition, the bed was compressed up to 6 MPa to study the influence of the 

compressive load on the bed’s effective thermal conductivity. Figure 2–11 shows the results 

obtained in [108] (Pupeschi et al., 2017). These results confirmed the severe reduction of the 
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effective thermal conductivity when changing the filling gas from helium to air as observed in 

[103] (Enoeda et al., 2001). In both atmospheres, the effective thermal conductivity was found 

to increase with the temperature, while no significant effect of the compressive load was 

found. The chemical composition of the solid materials slightly influenced the effective 

thermal conductivity, while a clear dependence on the gas pressure was observed in helium 

atmosphere.  

 

Figure 2–11: Thermal conductivities of EU Ref. material pebble beds in helium and air 

obtained from experiments carried out in [108] (Pupeschi et al., 2017). Images reused with the 

permission of Elsevier.  

Lithium-metazirconate, Li2ZrO3 

In 1991, Sullivan et al. [111] measured the effective thermal conductivity of Li2ZrO3 

pebble bed in helium at 0.1 MPa in the temperature range of 70-500°C. Monosized pebbles 

with a diameter of 1.2 mm and a packing factor of 60% were investigated. Results of this 

work are shown in Figure 2–12. An increase of the effective thermal conductivity with 

temperature was observed.  

In 1995, Lorenzetto [112] determined the effective thermal conductivity of Li2ZrO3 pebble 

beds in helium at 0.1 MPa for monosized pebbles of 1.2 mm in diameter packed at 63%.  In 

the investigated temperature range of 100-1175°C, the correlation  

𝑘 = 0.66 + 1.17 ∗ 10−7𝑇2.2 2.9 

was proposed to describe the effective conductivity as a function of the temperature [112] 

(Lorenzetto, 1995). Here 𝑘 is in [W/(m K)] and 𝑇 is in [°C]. In this experimental campaign, 
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the increase of the effective thermal conductivity with temperature was confirmed, see Figure 

2–12.  

In 1998, Earnshaw et al. [113] performed experiments with monosized particles of Li2ZrO3 

with a diameter of 1.2 mm and a packing factor ranging from 63 to 65%. The effective 

thermal conductivity was evaluated in the temperature range of 75-1170°C. The effect of the 

helium pressure, used as filling gas, was determined in the pressure range 0.01-300 KPa. At 

100KPa, the data were fitted with the relation 

𝑘 = 0.69 + 2.2 ∗ 10−10𝑇3. 2.10 

 

Figure 2–12: Effective thermal conductivity of Li2ZrO3 in helium reported in literature. After 

[99] (Abou-Sena et al., 2005). Image reused with the permission of Taylor & Francis. 

 
Figure 2–13: Effective thermal conductivity of Li2ZrO3 in helium as a fuction of the gas 

pressure at different bed’s temperatures, [113] (Earnshaw et al., 1998). Image reused with the 

permission of Taylor & Francis. 

The effective thermal conductivity of the bed was found to increase with both the temperature 

of the bed and the helium purge gas pressure. The variation of the effective thermal conductivity 

 Enoeda et al. (2001) 

Lorenzetto (1995) 

Sullivan et al. (1991) 

Earnshaw et al. (1998) 
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with the temperature is reported in Figure 2–12 , while the dependence from the pressure is 

shown in Figure 2–13. The effective thermal conductivity of Li2ZrO3 in helium was 

investigated by Enoeda et al.  in 2001 [103]. Measurements were carried out in the pressure 

range of 0.0001-0.1 MPa with polydispersed particles (diameter range of 0.8-1.2mm) packed 

at ~53.4% in the temperature range of 425-775°C. In Figure 2–12 the measured thermal 

conductivities are reported and compared to the previous studies described above. The studies 

show a consistent increase of the effective thermal conductivity with temperature and they are 

in good agreement with each other.  

Lithium-methatitanate, Li2TiO3 

The effective thermal conductivity of Li2TiO3 pebble beds in helium atmosphere was 

investigated by Enoeda et al. in 2001 [103]. Measurements were made with polydispersed 

pebble diameters of 0.8-1.2mm packed at ~59% in helium at 0.1 MPa. It was found that the 

effective thermal conductivity increases from about 1 to1.2 [W/mK]. Results of this study are 

compared with other studies in Figure 2–14.  

In 2003, Hatano et al. [114] published their study on the effective thermal conductivity of 

Li2TiO3 pebble bed. In a temperature range of 420-775 °C measurements were performed for 

single and binary size beds in helium varying the gas pressure from vacuum to 0.2 MPa. A 

packing factor of 60 and 80 % was reached for monosized pebbles (diameter of 1.91 mm) and 

for binary size pebbles (0.28-1.91 mm), respectively. In Figure 2–14 the results of this study 

are reported and compared to the results obtained in [103] (Enoeda et al., 2001). While 

monosized pebbles at 60 % of PF show a poor dependence on temperature, the effective 

thermal conductivity of the assembly composed of binary size pebbles increases with 

temperature in agreement with results obtained in [103] (Enoeda et al., 2001). 

In 2002, during the experimental campaign carried out to study the effective thermal 

conductivity of Li4SiO4 mentioned before, Reimann and Hermsmeyer [106] measured the 

effective thermal conductivity of compressed Li2TiO3 investigating, in addition, the influence 

of the interstitial gas. Different kinds of pebbles, provided from different associations with 

different characteristics, were investigated. They were designated as follow: Ti-D and Ti-E 

from CEA with a pebble diameter range of 0.8-1.2mm. Ti-J and Ti-J-bin from JAERI, 

monosized (2 mm) and binary (0.2 - 2 mm) pebbles, respectively. Ti-D and Ti-E were packed 

at 63% and 63.2%, respectively while Ti-J at 64.3% and Ti-J-bin at 81.2%. In Figure 2–15, 

the obtained results at different temperatures as a function of the bed strain are reported. As 

for the experiments with Li4SiO4, the effective thermal conductivity in helium was found to be 

much higher than in air or argon and it slightly increases with strain.  
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Figure 2–14: Effective thermal conductivities of Li2TiO3 in helium reported in literature. After  

[99] (Abou-Sena et al., 2005). Image reused with the permission of Taylor & Francis. 

In 2007, Abou Sena et al. [115] measured the effective thermal conductivity of Li2TiO3 

pebble beds as a function of the bed temperature in the temperature range 50-500 °C. Pebbles 

with diameters of 1.7-2 mm were packed at 61% with helium as interstitial gas at atmospheric 

pressure. A decrease of the effective thermal conductivity with increasing temperature from 

1.4 (at 500°C) to 0.94 (at 50°C) W/mK was reported. 

 
Figure 2–15: Effective thermal conductivities of different Li2TiO3 pebbles evaluated in 

helium, air and argon at different temperatures and strain levels,) [106] (Reimann and 

Hermsmeyer, 2002. Image reused with the permission of Elsevier. 

In 2016, Panchal et al. [116] investigated the effective thermal conductivity of Li2TiO3 

pebble beds in stagnant helium by means of the Finite Element Analysis (FEA) code COMSOL 

[117]. Different uniform packing structures (simple cubic, body centered cubic and face 

centered cubic arrangement) and random close packing (RCP) structures were considered. 

The random packing structure was generated with a DEM code. The heat transfer through 

pebble beds was simulated through both solid and fluid conduction while thermal radiation 

was ignored. The comparison among results obtained with this FEM code, available 

 
Hatano et al. (2003), PF=60% 

Hatano et al. (2003), PF=80% 

Enoeda et al. (2001), PF=59% 
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experimental data and values obtained with the numerical correlation of Zehner-Schlunder is 

reported in Figure 2–16. The results predicted an increment of the effective thermal 

conductivity with both temperature and packing factor. For randomly close packed Li2TiO3 

pebble beds the numerical results were found to be in agreement with the available 

experimental data and the numerical correlation of Zehner-Schlunder.  

 

Figure 2–16: Effective thermal conductivities of Li2TiO3 in stagnant helium evaluated with 

COMSOL and compared with existing experimental data and analytical values, [116] 

(Panchal et al., 2016). Image reused with the permission of Elsevier. 

Lithium-oxide, Li2O 

In 1994, Enoeda et al. [117] presented their results on the effective thermal conductivity of 

Li2O pebble beds. The effective thermal conductivity was measured in the temperature range 

150-650 °C. Monosized pebbles of 1 mm packed at 48% in helium at 1 atm were investigated. 

The effective thermal conductivity showed poor temperature dependence and it slightly 

decreases with the increase of temperature. The results of this study are reported and 

compared to the studies developed in [103] (Enoeda et al., 2001) for pebble beds of Li2O in 

Figure 2–17.  

In [103] (Enoeda et al., 2001), polydispersed pebble beds of Li2O with a size ranging 

from 0.85 to 1.18 mm were packed at 62.1%. The investigated temperature range was 425-

775 °C, while the interstitial filling gas was helium at 0.1MPa. In this experimental campaign 

the effective thermal conductivity show poor temperature dependence and some values tend 

to decrease. 

The experimental, numerical as well as analytical results show that the effective thermal 

conductivity of a packed bed is mainly influenced by the properties of the solid material and 

filling gas in addition to the PF, particle size, temperature,  gas pressure and compression  

state. Aside from few cases [103] (Enoeda et al., 2001), [114] (Hatano et al., 2003) and [117] 
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(Enoeda et al., 1994), the effective thermal conductivity of the bed was found to increase with 

the temperature. Among the ceramic Li-compounds candidated as breeder material, the Li2O 

has the highest thermal conductivity. Therefore, pebble beds of Li2O showed the highest 

thermal conductivity [99] (Abou-Sena et al., 2005) compared to the other beds. Results 

showed a strong influence of the of the filling gas pressure on the effective thermal 

conductivity of the bed [103] (Enoeda et al., 2001), [113] (Earnshaw et al., 1998). In the 

pressure range of 0.0001-0.1 MPa the effective thermal conductivity was found reducing with 

the pressure. For values above 0.1 MPa, the pressure dependence was found to be negligible 

[102] (Enoeda et al., 1994), [103] (Enoeda et al., 2001). A moderate increase of the thermal 

conductivity with the increase of the strain of the pebble bed was detected in the experimental 

campaigns [106] (Reimann and Hermsmeyer, 2002),[108] (Pupeschi et al., 2017).  

 
Figure 2–17: Comparison among experimental results of effective thermal conductivity of 

Li2O in helium. After [99] (Abou-Sena et al., 2005). Image reused with the permission of 

Taylor & Francis. 
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Chapter 3                                                                   

DEM for ellipsoidal packed particles 

The currently produced ceramic breeder pebbles are characterized by a spheroidal shape. 

The existing small deviation from a perfect sphericity can affect the overall mechanical 

behavior of the pebble bed. In this chapter the influence of the particles’ shape on the 

mechanical behavior of the bed is investigated by means of a dedicated extension of the 

existing in-house KIT-DEM code (see also Moscardini et al., 2017 [119]). First, the applied 

method to represent the currently produced pebbles as ellipsoidal particles is reported in 

detail. Then, the implemented algorithms to generate highly packed assemblies and to study 

the mechanical behavior under uniaxial compression are described, respectively. The 

particle’s orientation and the relation between macro and micro mechanics are discussed. 

Finally, sensitivity studies carried out by varying key parameters governing the mechanical 

behavior are reported. 

3.1 Generation of assemblies of ellipsoidal particles  
In this section the implementation of the Multi-Sphere (MS) method to represent the 

individual ellipsoidal particle is presented, first. Then, the modifications to the random close 

packing algorithm for ideal spheres to generate highly packed assemblies of ellipsoidal 

particles are described in detail.  

3.1.1 Multi-Sphere approach to generate ellipsoidal particles  

Among the available methods reviewed in the Chapter 2 to represent ellipsoidal particles, 

the MS method was selected. In the MS approach, several primary spheres are clustered to 

reproduce the desired particle geometry. The main advantage of the MS method is that the 

robust contact algorithm developed for spherical particles is still applicable between the 

primary spheres composing two contacting non-spherical particles. By tailoring the size and 

number of the primary spheres and adjusting their relative position (allowing overlaps among 

them), the desired shape is obtained.  

The studies reported in this thesis were performed on assemblies consisting of mono-sized 

ellipsoidal particles. The number of the particles Np [/] to be packed inside the assembly, their 

aspect ratio ar [/], the number of primary spheres Ns [/] composing the individual ellipsoidal 

particles and their radius are set as input parameters. The major axis of the ellipsoidal particle 

is fixed as a function of the aspect ratio, which is here defined as the ratio between the major 
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axis and the diameter of the central primary sphere. Each ellipsoidal particle is composed 

aligning the centers of the primary spheres. An odd number of primary spheres was used to 

generate the individual ellipsoidal particle matching its center of mass with that one of the 

central sphere. This simplifies the implementation of the equations of motion. Furthermore, if 

the primary spheres have different radii, the sphere with the maximum radius  𝑅𝑚𝑎𝑥 [m] is 

located in the middle of the major axis of the ellipsoid while the other spheres are aligned, in a 

symmetric way, outwards with decreasing radius. The overlap between the primary spheres δs 

[m] is related to the aspect ratio as well as to the number of the clustered primary spheres (Ns) 

and to their radius. In particular, 𝛿𝑠 = 𝛿 𝑅𝑠𝑚 [m] is calculated from the fraction 𝛿 [/] of the 

smaller radius 𝑅𝑠𝑚 [m] of any two consecutive primary spheres in overlap. The value of the 

fraction 𝛿 is determined in this work by 

𝛿 =
(2∑ 𝑅𝑖

𝑁𝑠
𝑖=1 ) − (2 𝑅𝑚𝑎𝑥𝑎𝑟)

(∑ 𝑅𝑖
𝑁𝑠
𝑖=1 ) −  𝑅𝑚𝑎𝑥

. 3.1 

Here, 𝑅𝑖 [m] is the radius of the i-th primary sphere composing the individual ellipsoidal 

particle. From Eq. 3.1, 𝛿 is a constant for an ellipsoidal particle and it is determined by means 

of a pure geometrical calculation, and, thus δs changes as a function of 𝑅𝑠𝑚 along the chain of 

primary spheres. Now, once the primary spheres are located inside the ellipsoidal particle, 

their relative position must not change to maintain the geometry. Figure 3–1 shows a scheme 

of an ellipsoidal particle composed of 5 primary spheres with different radius. 

 

Figure 3–1: Simplified scheme of an ellipsoidal particle composed of 5 primary spheres with 

different radius 

To explain the procedure to generate the required number of ellipsoidal particles inside a 

virtual box, the basic example of ellipsoidal particles composed of three monosized spheres is 

considered hereafter. Initially all primary spheres (Np* Ns) required to create the ellipsoidal 

particles are randomly generated in a cubic box with an edge length L [m]. In Figure 3–2(a) 

𝑑 = 𝑎𝑟𝑅𝑚𝑎𝑥/𝑅2 
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the virtual cubic box with the centers of the primary spheres is exemplarily shown. Therefore, 

to create, say, an assembly with N ellipsoidal particles, 3N primary spheres are randomly 

generated inside the virtual box. Each ellipsoidal particle and each sphere is numbered 

sequentially. According to the assigned number, the spheres are then classified in three 

groups, namely spheres “a” (from 1 to N), spheres “b” (from N+1 to 2N) and spheres “c” 

(from 2N+1 to 3N). Each ellipsoidal particle is formed by aligning three spheres belonging to 

the groups “a”, “b”, and “c” with a fixed distance and overlap depending on the desired aspect 

ratio. The spheres “a” and “b” become the external primary spheres of the ellipsoidal particle 

while the sphere “c” is placed in the middle of the line joining centers of “a” and “b” to form 

the ellipsoidal particle. In Figure 3–2(b), the composed ellipsoidal particle is shown. In 

particular, the ellipsoidal particle number 1 is created moving sphere “b” N+1 in the direction 

of sphere “a” 1. Thereafter, sphere “c” 2N+1 is moved in the middle (Figure 3–2(a) ).With the 

same method, the other ellipsoidal particles are generated (e.g., the ellipsoidal particle number 

i is composed of the spheres i, N+i and 2N+i belonging to the groups “a”, “b” and “c”, 

respectively). 

Figure 3–2: (a) Centers of the spheres in the virtual cubic box; (b) Composed ellipsoidal 

particle, [119] (Moscardini et al., 2017). 

The coordinates of the motion of a sphere “b” along the line shown in Figure 3–2-(a) are 

given by 

{

𝑥(𝑡𝑓) = 𝑥a + 𝑡𝑓(𝑥b − 𝑥a )

𝑦(𝑡𝑓) = 𝑦a + 𝑡𝑓(𝑦b − 𝑦a )

𝑧(𝑡𝑓) = 𝑧a + 𝑡𝑓(𝑧b − 𝑧a )

, 3.2 

where subscript a indicates the position of sphere “a”, while subscript b indicates the initial 

position of sphere “b”. The value tf [/] for the final position (x(tf) [m], y(tf) [m], z(tf) [m]) of 

sphere “b” is chosen such that a given aspect ratio ar is obtained. For the composite particle in 

Figure 3–2(b), the aspect ratio is given by: 

𝑎𝑟 =
𝑑 + 2𝑅

2𝑅
 , 3.3 

(a) 
(b) 
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where R [m] is the radius of a primary sphere and 

𝑑 [m] = √(𝑥(𝑡𝑓) − 𝑥a )2 + (𝑦(𝑡𝑓) − 𝑦a )2 + (𝑧(𝑡𝑓) − 𝑧a )2  , 3.4 

is the distance between the two external spheres in the final configuration. Plugging x(tf), y(tf), 

z(tf) into Eq. 3.4 the value of tf is obtained as 

𝑡𝑓 =
𝑑

√(𝑥b − 𝑥a )2 + (𝑦b − 𝑦a )2 + (𝑧b − 𝑧a )2
, 3.5 

where d is defined as a function of the aspect ratio from the Eq. 3.3. The final position of the 

center of sphere b is obtained from inserting the solution tf into Eq. 3.2. If more than 3 

primary spheres with the same or different radius have to be aligned, the explained procedure 

does not change and the additional spheres are added as a function of the overlap 𝛿𝑠.  

When all particles are formed, two different kinds of overlaps exist. The first one is 

between the primary spheres composing the same ellipsoidal particle δs, while the second one 

δp [m] occurs between the spheres of two different ellipsoidal particles in contact. This is an 

artifact due to placing primary spheres randomly and forming composite particles from them. 

The next subsection deals with the procedure to remove this second kind of unphysical 

overlaps from the assembly. 

3.1.2 Random Close Packing Algorithm for ellipsoidal particles obtained 

by the MS method 

The Random Close Packing Algorithm (RCP), first proposed by Jodrey and Tory (1985) 

[95] and successively used by Gan and Kamlah (2010) [28] to generate random and densely 

packed assemblies of spherical particles, was adapted in order to be consistent with the MS 

method previously described. The modified RCP iteratively removes the overlap δp between 

the primary spheres belonging to two different ellipsoidal particles in contact. The primary 

spheres are characterized by an outer radius ROi = ri*Rout [m] and an inner radius RIi = ri*Rin 

[m], where ri [/] = Ri/Rmax represents the ratio between the radius of the current primary 

sphere Ri to the radius of the central primary sphere Rmax. For monosized primary spheres, ri is 

always equal to 1. For both monosized and not-equal sized assemblies, Rout [m] and Rin [m] 

are two values valid for all primary spheres in the individual time step of the iteration, and, 

preserving the ratio ri, Rout and Rin are defined as follows:  

o Rout is initially set in order to make an ideal starting packing factor PF
(0)

 =1, which is 

evaluated as the ratio between the volume taken by the ellipsoidal particles and the 

volume of the virtual cubic box. Therefore, Rout characterizes overlaps between particles. 
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o Rin is defined as the half of the distance between the centers of the two closest primary 

spheres of two different ellipsoidal particles. It is the value for which no overlaps among 

ellipsoidal particles occur in the whole assembly.  

In Figure 3–3(a), a schematic view of two ellipsoidal particles in overlap is shown, while 

in Figure 3–3(b) Rout is shown together with Rin for the two closest primary spheres in contact 

in an individual iteration step. 

 
Figure 3–3: a) Ellipsoidal particles in overlap; b) Outer and inner radius of monosized 

spheres, [119] (Moscardini et al., 2017). 

Rout and Rin are adjusted to approach each other step by step by removing the worst overlap 

of the current iteration. When (Rout - Rin)/ Rout falls below a certain threshold, the assembly is 

considered to be free of overlaps and the start configuration for the subsequent mechanical 

simulation is reached. 

The initial configuration to begin the RCP procedure is defined as follows. First, the 

spherical particles are generated randomly into the virtual cubic box as described in the 

previous subsection. Afterwards, the initial value of Rout is set to get an ideal starting packing 

factor PF
(0)

 [/] equal to 1 and preserving the ratio between radius of primary spheres. PF
(0) 

is 

given by 

𝑃𝐹(0) =
𝑉p 𝑁p

𝑉
= 1 , 3.6 

where Vp [m
3
] and Np are the volume and the number of the composed ellipsoidal particle 

contained in the volume V [m
3
] of the virtual box, respectively. The volume of the composed 

ellipsoidal particle is calculated as difference between the total volume of the primary spheres 

and the total volume of the spherical caps in overlap as 

𝑉p = (∑𝑉𝑠,𝑖

𝑁𝑠

𝑖=1

) − (∑ 𝑉𝑠𝑐,𝑖 + 𝑉𝑠𝑐,𝑖+1

𝑁𝑠−1

𝑖=1

) , 3.7 
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where Ns, 𝑉𝑠,𝑖  and (𝑉𝑠𝑐,𝑖 + 𝑉𝑠𝑐,𝑖+1) [m
3
] are the number of the primary spheres clustered to 

form the individual ellipsoidal particle, the volume of the i-th primary sphere and the total 

volume of the spherical cap defined from the sphere i and i+1, respectively. 𝑉𝑠𝑐,𝑖 + 𝑉𝑠𝑐,𝑖+1 and 

𝑉𝑠,𝑖 are given by 

𝑉𝑠𝑐,𝑖 + 𝑉𝑠𝑐,𝑖+1 = π ℎ𝑖
2 (𝑅out r𝑖 −

ℎ𝑖
3
) + π ℎ𝑖+1

2 (𝑅out r𝑖+1 −
ℎ𝑖+1
3
) 3.8 

𝑉𝑠,𝑖 =
4

3
π ( 𝑅out  r𝑖)

3, 3.9 

As shown in Figure 3–4, ℎ𝑖 and ℎ𝑖+1[m] are the heights of the two spherical caps of two 

consecutive primary spheres in overlap of the same ellipsoidal particle and evaluated as 

ℎ𝑖 = 𝑋 𝑅out r𝑖𝛿 ;   ℎ𝑖+1 = (1 − 𝑋) 𝑅out r𝑖𝛿 3.10 

where 

𝑋[/] =
2 r𝑖+1 −  r𝑖𝛿

2 r𝑖+1 + 2 r𝑖 − 2 r𝑖𝛿
 3.11 

is the fraction of the distance in overlap defining the height of the spherical cap of the 

smallest particle between two consecutive spheres. Plugging ℎ𝑖 and ℎ𝑖+1 into Eq. 3.8 and then 

𝑉𝑠𝑐,𝑖 + 𝑉𝑠𝑐,𝑖+1 into the Eq. 3.7 the volume of the ellipsoidal particle is defined as a function of 

Rout. Substituting Vp into the Eq. 3.6, Rout is defined as a function of PF
(0)

. Finally, the primary 

spheres in the ellipsoidal particles are scaled considering Rout as starting radius. Now the 

initial configuration is ready and the iteration process to remove overlaps starts. 

 
Figure 3–4: Geometric scheme for the evaluation of the volume of the spherical caps of two 

consecutive primary spheres in overlap belonging to the same ellipsoidal particle. 

The initial value of Rout defines the largest overlap between any two particles in the 

assembly. During each of the following iteration steps, the code detects the overlaps between 

hi 

hi+1 
ri 

ri+1 

bi+1= ri+1-hi+1 

 

bi= ri-hi 



DEM for ellipsoidal packed particles 

57 

 

primary spheres of contacting particles and creates a list starting from the largest overlap. The 

inner radius is then calculated as function of the worst overlap as defined above. The primary 

spheres in contact are moved away from each other equally by a distance of Rout-Rin along the 

line that connects the two centers. Then the other primary spheres composing the ellipsoidal 

particles in contact are accordingly moved to maintain the particle’s shape and spatial 

orientation. Afterwards, as described in [27] (Gan, 2008) the outer radius is contracted 

according to 

𝒳𝑐
i+1[/] = 𝒳𝑐

i
(1/2)j 𝐶𝑟

𝑁p
 , 3.12 

where 𝒳𝑐
i[/] = 𝑅out

(i)
/𝑅out

(0)
 and j [/] = [− log10 ∆ƞ

(i)]. Here, i is the iteration number, and 

∆ƞ [/] is the difference between the packing factors calculated by the scaling radii Rout and 

Rin. More details are reported in [27] (Gan, 2008) for random packing of spherical particles. 

The parameter 𝐶𝑟 [/] is the contraction rate, and it is the input parameter that controls how 

much the outer radius is contracted in each iteration step. As reported in [27] (Gan, 2008), for 

assemblies of packed spheres, the resulting packing factor can be roughly controlled by 𝐶𝑟. In 

order to check this property for ellipsoidal particles, three assemblies of 5000 monosized 

ellipsoidal particles were generated for each value of 𝐶𝑟. Each ellipsoidal particle has an 

aspect ratio of ~1.12 (rounded to the second digit) and it is composed of 3 monosized primary 

spheres. In Figure 3–5 the obtained packing factors for the selected values of 𝐶𝑟 are reported.  

 
Figure 3–5: Packing factor obtained from selected values of contraction rate 𝐶𝑟 for assemblies 

of 5000 ellipsoidal particles with an aspect ratio of ~1.12, [119] (Moscardini et al., 2017).  

First, we observe that for the same value of the contraction rate nearly the same packing 

factor is obtained for different assemblies. Second, the trend of an increase of the packing 

factor with decreasing contraction rate can clearly be recognized. This together confirms that 

also for ellipsoidal particles the packing factor of an assembly can roughly be controlled by 
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the contraction rate. Figure 3–6 exemplarily shows one of the generated assemblies of 

ellipsoidal particles having an aspect ratio of ~1.12 and an overlap between the primary 

spheres of ~1.88R. The assemblies are visualized with a dedicated script in Mathematica 10.3 

[120] (http://www.wolfram.com/). Figure 3–7 shows the intersections between the directions 

representing the particles’ orientation and a sphere with a unit radius. Each direction is 

oriented in space by means of the direction cosine and determines two intersection points with 

the sphere’s surface. The quasi-uniform distribution of the points on the spheres’ surface 

indicates the randomness of the particles’ orientation. 

 
Figure 3–6: Assembly of 5000 mono-sized ellipsoidal particles composed of 3 equal-sized 

spheres in overlap, [119] (Moscardini et al., 2017). 

 
Figure 3–7: Projection of the particles’ orientation on the surface of a sphere with a unitary 

radius 

3.2 Discrete Element Method for ellipsoidal particles 

In order to study the mechanical behavior of assemblies of ellipsoidal particles, uniaxial 

compression tests (UCT) are simulated by applying a prescribed deformation in a series of 

load steps separated by time increments t. After each change of the prescribed deformation, 

the equations of motion are solved until an equilibrium state is reached. Artificial damping 

[28] (Gan and Kamlah, 2010) is introduced to gradually remove all kinetic energy from the 

system to reach the quasi-static condition. During such a physical process of relaxation 

http://www.wolfram.com/
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towards equilibrium, the equations of motion are solved numerically by an explicit time 

stepping scheme.  

As previously described, the ellipsoidal particles are generated by means of the MS method 

and the contact detection is carried out between the primary spheres composing different 

particles. Therefore, the contact detection algorithm developed for spherical particles in [28] 

(Gan and Kamlah, 2010), is still applicable. The deformation of the primary spheres is 

considered to be purely elastic with normal and tangential interactions. The normal force is 

evaluated by the Hertzian contact law [121] (Johnson, 1985) 

𝒇N,j
(In,Qm)[N] = −

4

3
 𝐸∗√𝑅rd (𝛿j)

3/2 𝒏j . 3.13 

Here, 𝒇N,j
(In,Qm)is the normal force between the two primary spheres n and m constituting 

two different ellipsoidal particles I and Q defining the contact j. Furthermore, 𝛿j is the overlap 

in the contact j defined between the two primary spheres constituting the two different 

particles I and Q, while 𝒏𝑗 is the outward normal at the primary spheres in contact j. Finally, 

since the particles in contact are made of the same material in our case, the effective Young’s 

modulus 𝐸∗ [Pa] is expressed as 𝐸∗ = 𝐸/2 (1 − 𝜈2), while the reduced radius  𝑅rd[m]  is 

defined as  𝑅rd = 𝑅Qm𝑅In/(𝑅Qm + 𝑅In) . The tangential force acting between In and Qm is 

taken as the minimum between the friction and the shear force according to [122] (Bicanic, 

2004) as 

𝒇T,j
(In,Qm)[N] = −

∆𝒙̇T,j

|∆𝒙̇T,j|
min ( 𝜇 |𝒇N,j

(In,Qm)| ;  𝐾s 𝑟𝑐 |∆𝒙̇T,j| ∆𝑡) , 3.14 

where ∆𝐱̇T,j [m/s] is the sliding velocity in the contact j that occurs between the two 

primary spheres constituting different particles, i.e. the difference in velocities of the surfaces 

of the corresponding primary spheres in this contact. The parameters μ [/] and  Ks [Pa] are the 

friction coefficient of the contacting surface and the shear stiffness, respectively. Last, 𝑟𝑐 is 

the radius of the contact area, which is expressed as 𝑟𝑐  [m]=√(
1

𝑅Qm
+

1

𝑅In
) 𝛿𝑝 [121] (Johnson, 

1985). The contact forces acting on In are applied to Qm with the same magnitude but opposite 

orientation to satisfy the principle of action and reaction.  

As shown in Figure 3–8, due to the shape approximation introduced by the MS method, 

more than one contact can occur between two particles. This phenomenon is called multi 
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contact (MC). This means that the code can detect more than one contact acting on the 

particle I from the same primary sphere of the particle Q. The number of the multi contacts 

𝑁IQ
MC [/] between two particles I and Q depends on the number of the primary spheres, on the 

overlap between them and on the relative position of the two contacting particles. For 

example, for two particles in contact each being composed of three primary spheres, the 

maximum number of multiple contacts is 9. The possibility of multiple contacts is an intrinsic 

feature of the MS geometry, which does not happen between true ellipsoids due to their 

convexity. However, since we want to approximate real ellipsoids by MS particles, we need to 

deal with artifacts due to multiple contacts such as overestimation of the resulting stresses. 

 
Figure 3–8: Multiple contacts between two particles I and Q at some time step n,) [119] 

(Moscardini et al., 2017. 

To approach the ellipsoid situation by reducing the effect of the multiple contacts, it was 

suggested in [63] (Höhner, 2011) to divide the increment of both normal and tangential force 

at each time step n by the current number 𝑁IQ,ni
MC  of multiple contacts between particles I and 

Q. Thus, the contact forces are updated based on the previous value of time step n-1. The 

normal force is updated according to 

𝑓N,kq,n
(I,Q)

= 𝑓N,kq,n−1
(I,Q)

+ 
∆𝑓N,kq,n

(I,Q)

𝑁IQ,n
MC

 ;     𝑘q = 1,… , 𝑁IQ,n
MC   ,  3.15 

where 𝑓N,kq,n
(I,Q)

 represents the adjusted magnitude of the normal force at time step n in a 

multiple contact 𝑘q [/], which particle I has with particle Q. Furthermore, the increment 

∆𝑓N,kq,n
(I,Q)

 is the difference between 𝑓N,kq,n
(I,Q)

  and 𝑓N,kq,n−1
(I,Q)

,which are the corresponding 

magnitudes of Eq. 3.13 at time steps n and n-1, respectively.  

The procedure to scale the tangential force on the multi contacts number requires a further 

observation. At each time step, the magnitude of the tangential force is defined as the 

minimum value between the friction force and the shear force, as reported in Eq. 3.14. At this 

point, the magnitude of the friction force, which depends on the normal force, is already 

I 

Q 

𝑁IQ,n
MC  = 3 
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updated by means of Eq. 3.15. Therefore to avoid a further adjustment of the friction force 

during the same iteration, the code scales only the magnitude of the shear force according to 

𝑓𝑇𝑠,kq,n
(I,Q)

= 𝑓𝑇𝑠,kq,n−1
(I,Q)

+ 
∆𝑓𝑇𝑠,kq,n

(I,Q)

𝑁IQ,n
MC

 ;     𝑘q = 1,… , 𝑁IQ,n
MC   .  3.16 

In Eq. 3.16, 𝑓𝑇𝑠,kq,n
(I,Q)

 represents the adjusted magnitude of the shear force at time step n in a 

multiple contact 𝑘q, which particle I has with particle Q. ∆𝑓𝑇𝑠,kq,n
(I,Q)

 is the difference between 

𝑓𝑇𝑠,kq,n
(I,Q)

  and 𝑓𝑇𝑠,kq,n−1
(I,Q)

 , which are the magnitudes of the shear force  𝐾s 𝑟𝑐 |∆𝒙̇T,j| ∆𝑡 at time 

steps n and n-1 respectively. Afterwards the minimum value between the friction and the 

shear force is evaluated. The adjusted magnitude of the normal force from Eq. 3.15 is then 

multiplied by the normal unit vector giving 

𝒇̂N,j
(In,Qm) = 𝑓N,kq,n

(I,Q)
 𝒏j 3.17 

On the other hand, the adjusted magnitude of the tangential force, which is the minimum 

value between 𝜇𝑓N,kq,n
(I,Q)

  and 𝑓𝑇𝑠,kq,n
(I,Q)

, is multiplied by the tangential unit vector yielding 

𝒇̂T,j
(In,Qm) = = −

∆𝒙̇T,j

|∆𝒙̇T,j|
min ( 𝜇 𝑓N,kq,n

(I,Q)
 ; 𝑓𝑇𝑠,kq,n

(I,Q)
) , 3.18 

The principle of action and reaction is satisfied, as the same adjusted contact force 

magnitudes are taken to act on particle Q. Details related to this approach are reported in [63] 

(Höhner, 2011). Once the normal force 𝒇̂N,j
(In,Qm)and tangential force 𝒇̂T,j

(In,Qm) are determined 

for each contact j between In and Qm , their vectorial sum is used to evaluate the total force  

𝑭 TOT
I  [N] =∑(𝒇̂N,j

(In,Qm) + 𝒇̂T,j
(In,Qm))

𝐣

 3.19 

acting on the particle I, as well as the external torque 

𝑴TOT
I [Nm] =∑𝐫𝐣 × (𝒇̂N,j

(In,Qm) + 𝒇̂T,j
(In,Qm))

𝐣

 3.20 

where 𝒓j is the position vector between the contact point j and the center of mass of the 

ellipsoid. The resulting forces 𝑭TOT
I  evaluated as the vectorial sum of the all forces acting on 

the three primary spheres clustered to form the ellipsoidal particle and the torques 𝑴TOT
I  

acting on the particles determine their motion in the assembly. In classical mechanics, the 

motion of a rigid body is described by a translational and a rotational motion. The 
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translational motion is independent of the particle shape and it is defined by means of 

Newton's second law as 

𝑚I 𝒙̈I =  𝑭 TOT
𝐈   , 3.21 

where 𝑚I [kg] and 𝒙̈I [m/s
2
] are the mass and the acceleration determined by the position 

vector of the center of mass of particle I, respectively.  

3.2.1 Equations of motion 

Unlike the translational motion, the rotation is affected by the particle shape. For a non-

spherical particle, the implementation of the moment of inertia in the global coordinate 

system is cumbersome. In order to simplify the implementation of the tensor of the moment of 

inertia, the rotational motion is expressed in a local coordinate system instead of the global 

coordinate system fixed to the assembly’s cubic box. The origin of the local coordinate 

system is located at the center of mass of the particle with the axes oriented along the main 

axes of inertia as shown in Figure 3–9.  

 
Figure 3–9: Global and local coordinate system, [119] (Moscardini et al., 2017). 

Due to the particle’s symmetry, the inertia tensor becomes in this coordinate system 

diagonal containing only the principal moments of inertia Ixx, Iyy and Izz [kg m
2
]. In this work, 

Ixx, Iyy and Izz are assumed to be equal to the principal moments of inertia of a real ellipsoid 

charactherized by the same axis of the ellipsoidal particles here generated.  

The rotational accelerations in the local frame are then evaluated by means of the Euler 

equations [123] (Truesdell, 1991) 

{

𝑀x,L
I = 𝜔̇x,L

I  𝐼xx + (𝐼zz − 𝐼yy)𝜔y,L
I 𝜔z,L

I

𝑀y,L
I = 𝜔̇y,L

I 𝐼yy + (𝐼xx − 𝐼zz)𝜔x,L
I 𝜔z,L

I

𝑀z,L
I = 𝜔̇z,L

I 𝐼zz + (𝐼yy − 𝐼xx)𝜔y,L
I 𝜔x,L

I

 , 3.22 

where 𝜔𝑥,𝐿
𝐼 , 𝜔y,L

I ,  and 𝜔z,L
I  [1/s2]are the components of the vector 𝝎L

I  of angular velocity 

in the local coordinate system L, while 𝑀x,L
I , 𝑀y,L

I , and 𝑀z,L
I  are the  components of the vector 
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of the resulting torque 𝑴TOT
I  acting on particle I in the local coordinate system. Eq. 3.22 can 

be solved for the vector of rotational acceleration, which can then be transformed into the 

global coordinate system G to calculate the velocities and the positions of the particles by 

means of the Verlet Algorithm for the integration of the ordinary differential equations of 

motion [124][125] (Swope et al.,1982; Verlet,1967). The transformations between the two 

coordinate systems are performed via a rotation matrix. The rotation matrix can be expressed 

in terms of Euler angles or in terms of quaternions. However, the first approach suffers from 

the gimbal lock singularity. Therefore, due to the absence of singularities, the unit quaternion 

is the most suitable approach to be implemented in the DEM code.  

3.2.2 Particle orientation 

Quaternions were introduced in the nineteenth century by Hamilton [126] (Hamilton, 

1844) and successively used to describe the rotational motion of a particle defining its 

orientation in space [127]-[131] (Kosenko, 1998; Celledoni and Sӓfstrӧm, 2006; Hairer and 

Vilmart, 2006; Zhao and vanWachem, 2013; Withmore and Hughes, 2000). A quaternion 𝑞 is 

composed of a scalar 𝑞0 and a vector part 𝒒 

𝑞 [/] = [𝑞0, 𝒒], 3.23 

where 

𝒒 = 𝑞1𝒊 + 𝑞2𝒋 + 𝑞3𝒌  . 3.24 

Here, 𝑞0, 𝑞1, 𝑞2 and 𝑞3 are real numbers and i, j and k are unit vectors along to the x, y and 

z axis in the global coordinate system, respectively. By means of so-called unit quaternions 

the pure rotation of a vector is described by two geometrical quantities: the angle of rotation 

𝛼𝑟 [rad] and the unit vector 𝒒̌ about which the rotation takes place. Accordingly, such unit 

quaternion is defined as 

𝑞 = [𝑐𝑜𝑠
𝛼𝑟
2
, 𝑠𝑖𝑛

𝛼𝑟
2
  𝒒̌] , 3.25 

where 

‖𝒒̌‖ = 1. 3.26 

After prescribing a load step, the numerical integration of the equations of motion during a 

relaxation process towards equilibrium is based on time steps. At time step n, by means of the 

angle of rotation 

𝛼𝑟,𝑛 = ‖𝝎𝑛‖∆𝑡 3.27 

 and the normalized vector 
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𝒒̌𝑛 =
𝝎𝑛

‖𝝎𝑛‖
 3.28 

about which the rotation takes place, the unit quaternion 𝑞̂𝑛 describing the particle rotation 

from time step n-1 to time step n is expressed as 

𝑞̂𝑛 = [𝑐𝑜𝑠
‖𝝎𝑛‖∆𝑡

2
, 𝑠𝑖𝑛

‖𝝎𝑛‖∆𝑡

2
 
𝝎𝑛

‖𝝎𝑛‖
]  .   3.29 

Here, 𝝎𝑛 is the angular velocity at time step n and ∆𝑡 is the time increment between time 

steps, meaning that 𝑞̂n represents the variation of the orientation in a time step ∆𝑡. To 

represent the change from the initial orientation of a particle to the current orientation at time 

step n, the direct multiplication method was implemented. In this approach [130][131] (Zhao 

and vanWachem, 2013; Withmore and Hughes, 2000), the unit quaternion to enter in the 

current time step n is evaluated by 

𝑞𝑛 = ∏ 𝑞̂𝑛−𝑚
𝑛
𝑚=1 . 3.30 

Then, the unit quaternion for the next time level 𝑞𝑛+1 is determined by 

𝑞𝑛+1 = 𝑞̂𝑛𝑞𝑛 , 3.31 

where 𝑞̂𝑛  is the unit quaternion between the time steps n-1 and n, while 𝑞𝑛 is the product of 

the unit quaternions between t=0 and the time step n-1. Therefore 𝑞𝑛 represents the total 

rotation from the original orientation at t=0 to the orientation at time step n-1. The non-

commutative multiplication of quaternions is defined as 𝑝𝑞 = [𝑝0𝑞0 − 𝒑𝒒, 𝑝0𝒒 + 𝑞0 𝒑 + 𝒑 ×

𝒒], which can also be represented by a matrix operation [130] (Zhao and vanWachem, 2013). 

In this updating method, the typical approach based on Taylor series is avoided and the 

multiplication replaces the addition operator in the time integration. The multiplication 

between unit quaternions preserves their unit length and the further re-normalization, usually 

adopted after the addition operation, can be avoided. Once the components of quaternion 𝑞𝑛 

are defined in the global coordinate system, the rotation matrix 

𝑅 = (
1 − 2(𝑞2

2 + 𝑞3
2)

2𝑞1𝑞2 + 2𝑞0𝑞3
2𝑞1𝑞3 − 2𝑞0𝑞2

      

 2𝑞1𝑞2 − 2𝑞0𝑞3
1 − 2(𝑞1

2 + 𝑞3
2)

2𝑞0𝑞1 + 2𝑞2𝑞3

     

 2𝑞0𝑞2 + 2𝑞1𝑞3
2𝑞2𝑞3 + 2𝑞0𝑞1
1 − 2(𝑞1

2 + 𝑞2
2)
) 3.32 

can be obtained. By means of the rotation matrix, the transformations between the global and 

the local coordinate systems L and G can be carried out as  
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(

𝑉𝑥,𝐿
𝑉𝑦,𝐿
𝑉𝑧,𝐿

) = 𝑅(

𝑉𝑥,𝐺
𝑉𝑦,𝐺
𝑉𝑧,𝐺

) 3.33 

(

𝑉𝑥,𝐺
𝑉𝑦,𝐺
𝑉𝑧,𝐺

) = 𝑅𝑇 (

𝑉𝑥,𝐿
𝑉𝑦,𝐿
𝑉𝑧,𝐿

) 3.34 

Here, 𝑅𝑇 is the transposed rotation matrix, while the column matrices 𝑉𝐿 = (𝑉𝑥,𝐿 , 𝑉𝑦,𝐿 ,

𝑉𝑧,𝐿)
𝑇and 𝑉𝐺 = (𝑉𝑥,𝐺 , 𝑉𝑦,𝐺 , 𝑉𝑧,𝐺)

𝑇  consist of the Cartesian components of some vector 𝑽 in 

local and global coordinates, respectively. In the present study, the rotation matrix is used to 

transform the column matrix 𝑀𝑇𝑂𝑇,𝐺
𝐼  of the torque, Eq. 3.20, and the column matrix of the 

rotational velocity 𝜔𝐺
𝐼  from the global to the local coordinate system through Eq. 3.33. Based 

on these local components, the components of the rotational acceleration in the local 

coordinate system are obtained from Eq. 3.22. Afterwards, the transposed rotation matrix is 

used to transform the column matrix 𝜔̇𝐿
𝐼  of the rotational accelerations from the local to the 

global coordinate system by means of Eq. 3.34. This has to be done for each ellipsoidal 

particle at each time step n. Furthermore, the quaternion and the rotation matrix of every 

particle need to be updated at each time step. 

3.3 Numerical simulations 

In this section, numerical results obtained with the above described DEM code are reported 

and discussed. Uniaxial compression of assemblies composed of ellipsoidal particles is 

simulated and the micromechanics and the macro-response of the assemblies are studied. The 

influence of the particles’ size and shape was investigated. The effect of the MC was 

estimated. 

3.3.1  Boundary conditions and material parameters 

In order to represent the bulk behavior of the pebble bed in the blanket, periodic boundary 

conditions were applied all around a virtual box consisting of packed ellipsoidal particles. 

Using periodic boundary conditions, any wall effect on the packing structure is avoided, while 

the bulk behavior of the pebble bed in the blanket is reproduced with a reasonably low 

number of  particles. Periodic boundaries were already implemented for spheres in the 

existing KIT-DEM-code [27][28] (Gan, 2008; Gan and Kamlah, 2010). For ellipsoidal 

particles, the implementation was slightly modified to consider each ellipsoidal boundary 
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pebble as a cluster of spheres. Further details about the implementation of periodic boundary 

conditions for packed spheres are reported in [27] (Gan, 2008). 

The assemblies are gradually compressed applying a constant strain increment (1.25e-3% 

for simulations with ellipsoidal particles and 2.5e-3% for simulations with spheres) in the 

axial direction up to the maximum strain of 1.25%. The applied strain increments are chosen 

to represent quasi-static loading conditions. The maximum macroscopic axial strain of 1.25% 

is used in accordance with a previous study [28] (Gan and Kamlah, 2010). To represent the 

so-called uniaxial compression test (UCT), the assembly is kept at fixed width in the other 

two space dimensions perpendicular to the direction of uniaxial loading, while the periodicity 

of the system is maintained. When the maximum strain is reached, the assembly is gradually 

unloaded until the stress σ33 approaches zero. For each iteration, the stress is evaluated by the 

interaction forces acting between pebbles [28]. The assemblies generated by means of the 

RCP contain 5000 mono-sized ellipsoidal particles of Li4SiO4 packed in a virtual cubic box. 

The physical and mechanical properties used are given in Table 3–1. In this work the shear 

stiffness is 𝐾𝑠 = 16/3𝐺𝑒𝑓𝑓 [33] (Zhao et al., 2013), where  𝐺𝑒𝑓𝑓[Pa] = 𝐸/4(1 + 𝜈)(2 − 𝜈). 

Simulations with a starting PF ranging from ~62.5% to ~64.27% were carried out to study 

its impact on the assemblies’ mechanical behavior. High starting packing factors are reached 

by means of the developed RCP without the use of artificial gravity or preloading generating 

assemblies free of overlaps with a low number of contacts. During the very first few 

compression steps the number of contacts among particles rapidly increases to then approach 

a much reduced rate of growth. However, the variation of the PF during these very first few 

compression steps is negligible. Therefore the starting packing factor is representative of the 

initial bulk packing structure. The influence of the particle shape was examined by varying 

both the radius of the primary spheres composing the individual ellipsoidal particle and the 

aspect ratio in the range of 0.2-0.25mm and ~1.03-1.12, respectively. The investigated range 

is consistent with the sphericities of the currently produced pebbles. The reported aspect ratios 

have been rounded at the second digit. 

Table 3–1: Physical and mechanical properties of pebbles 

Parameter Value 

Density of bulk material  ρ 2260 kg/m
3
 [132] (Löbbecke and Knitter, 2007) 

Young’s modulus  E 90 GPa [133] (Zaccari and Acquaro, 2007) 

Poisson Ratio  ν 0.25 [133] (Zaccari and Acquaro, 2007) 

Friction coefficient  µ 0.1 [28] (Gan et al., 2010) 

Shear Stiffness  Ks ~55 GPa 



DEM for ellipsoidal packed particles 

67 

 

3.3.2 Mechanical response 

Influence of the packing factor 

In order to investigate the influence of the packing factor on the stress-strain curves, 

assemblies of monosized ellipsoidal particles with an aspect ratio equal to ~1.12, individually 

composed of three monosized spheres with a radius of 0.25mm, were generated. Numerical 

results are shown in Figure 3–10(a). In agreement with the previous studies carried on 

assemblies of spherical pebbles [28] (Gan and Kamlah, 2010), the initial PF was found to 

noticeably affect the mechanical response of the investigated assemblies. A slight 

modification of the initial PF results in a considerable variation of the generated stress state, 

which has potential impact on the overall thermo-mechanical properties of the beds. Reducing 

the initial PF the assemblies exhibit a more compliant behavior showing a larger residual 

strain after unloading. In particular, the assembly characterized by the highest PF shows the 

stiffer behavior (higher stress for a given strain), and at the same time the lowest residual 

strain of about 0.8% after the unloading. The generated stress at the end of loading reaches 

about 3.5 MPa. At the other end, the loosely packed assembly (PF≈62.5%) shows a lower 

stress build-up for the same maximum imposed strain. This assembly reaches a maximum 

stress of 0.35 MPa at the end of loading while showing a residual strain of 1.16% after 

unloading. This indicates a massive rearrangement of the elastic particles contained in the 

assemblies during compression. Using the in-house DEM code previously developed [27] 

(Gan, 2008), assemblies of monosized spheres with initial PFs similar to those used for Figure 

3–10(a) for assemblies of ellipsoidal particles have been generated and successively 

investigated. The sphere radius is set to 0.25mm. The obtained stress-strain curves are shown 

in Figure 3–10(b).  

 
Figure 3–10: Stress-strain curves for assemblies (a) of ellipsoidal particles with ar ~1.12 and 

(b) equal-packed spheres with R=0.25mm, [119] (Moscardini et al., 2017). 

(a) (b) 

R=0.25
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The assemblies composed of mono-sized spheres show a much stiffer mechanical response 

than the equivalently packed assemblies of ellipsoids with a relatively small or even 

negligible residual strain after unloading. This evidences that assemblies of mono sized 

spheres are more close to their maximum achievable PF in comparison to assemblies of 

ellipsoids with the same initial PF. Therefore, even if the initial packing factor is the same, the 

assemblies of ellipsoidal particles are less dense in this sense of being more far away from the 

theoretical maximum PF. In this regard, Donev et al., in 2004 [134] demonstrated that 

compared to the maximum packing factor obtained with spheres ordered in the face centered 

cubic configuration (≈ 0.7405), laminate crystal packing of ellipsoids in face-centered layer 

reaches higher density for a wide range of aspect ratios. In particular, for prolate ellipsoids a 

maximum packing factor of ~0.77 is reached with an aspect ratio of about 1.7. Therefore, 

since for face-centered structures ellipsoidal particles reach higher packing factors compared 

to spheres, it is reasonable to expect a similar behavior for random structures. Results suggest 

that a slight deviation from a perfectly spherical shape can remarkably influence the packing 

behavior of a pebble bed, shifting the maximum obtainable PF to higher values. Furthermore, 

during the compression (or packing) the ellipsoidal particles have a higher mobility in the 

assembly (in comparison with spherical pebbles) due to the extra degree of freedom 

associated to the rotation. Particles can change their orientation finding more easily a new 

equilibrium configuration compared to spherical pebbles. This, together with the assembly 

being further away from its maximum PF, explains the softer mechanical behavior of the 

investigated assemblies. 

Influence of the shape 

Firstly, sensitivity studies were performed on assemblies of monosized ellipsoidal particles 

with the same initial packing factor of about 63.65-63.66% varying the aspect ratio in the 

range ~1.03-1.12.  Particles are individually composed by three monosized spheres with a 

radius of 0.25mm. Numerical results are reported in Figure 3–11. The curves exhibit a strong 

dependence of the mechanical behavior on the particle shape. A small reduction of the aspect 

ratio results in a remarkable increment of the maximum stress and in a distinct reduction of 

the residual strain after unloading. Decreasing the aspect ratio from around 1.12 to 1.03, the 

behavior of the investigated assemblies becomes stiffer approaching the curve of the spherical 

particles of 0.25mm of radius. This is an evidence of the proper implementation of the method 

for non-spherical particles presented in this paper. The increase of the maximum stress at the 

end of loading was found to be nonlinear with the reduction of the particles’ aspect ratio. As a 
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consequence of the results reported in Figure 3–11, the influence of the particle shape on the 

pebble packing behavior can be stated such that even if the assemblies are generated with very 

similar PF, assemblies with higher aspect ratio in the simulated range are further away from 

the corresponding maximum obtainable PF. 

  
Figure 3–11: Stress strain curves of assemblies of ellipsoidal particles with an initial 

PF~63.66% and aspect ratios in the range 1, … , ~1.12, [119] (Moscardini et al., 2017). 

The more compliant mechanical behavior of the assemblies consisting of ellipsoidal 

particles, compared to the equivalent packed assembly of spheres is due to two reasons. The 

first one is that structures generated with ellipsoidal particles are further away from their 

respective maximum obtainable PF in comparison to assemblies of spheres with same PF, in 

particular for the assemblies with higher aspect ratio. The second reason is the higher mobility 

of the ellipsoidal particles, due to additional degrees of freedom in rotation, compared to 

spheres. The slightly different mechanical behavior between spheres and ellipsoidal particles 

with an aspect ratio of ~1.03 is mainly due to the higher mobility of the ellipsoids in the 

assembly, while we associate the softer behavior at higher aspect ratios to these structures 

being further away from their maximum PF, mostly. These statements are further validated by 

the graphs reported in Figure 3–12 and in Figure 3–13. Figure 3–12 shows the coordination 

number (CN) evaluated for the loading path, in function of the hydrostatic pressure. For 

ellipsoidal particles, CN is evaluated as the ratio between the effective number of contacts in 

the whole assembly and the number of ellipsoidal particles. The effective number of contacts 

is evaluated counting eventual multiple contacts between a pair of particles as a single 

contact. For a fixed value of hydrostatic pressure, the coordination number increases with 

increasing aspect ratio. This confirms that ellipsoidal particles with a higher aspect ratio 

rearrange more easily with the result of increasing their contacts with the neighbours. As a 

consequence, a higher coordination number is reached at the same level of hydrostatic 

pressure. 

R=0.25mm 
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Figure 3–12: Coordination number vs hydrostatic pressure for assemblies of particles with a 

PF ~63.66% and aspect ratios in the range 1, …,~1.12, [119] (Moscardini et al., 2017). 

Figure 3–13 exemplarily displays the oedometric modulus during the unloading path as 

function of the uniaxial strain for different aspect ratios. The oedometric modulus (E) was 

continuously calculated as Ei=Δσ33,i/Δε33,i during the unloading until the stress in the assembly 

approaches zero. Here Δε33,i is the difference of the strain between two consecutive time steps 

while Δσ33,i is the respective stress change. In order to smooth out numerical oscillations of Ei, 

the value of the oedometric modulus to be plotted in Figure 3–13 at each strain step is 

obtained by averaging 5 consecutive values of Ei for spheres and 10 for the ellipsoidal 

particles according to the different applied strain increment discussed in Section 3.3.1. The 

calculated values were then plotted in Figure 3–13 as function of the mean values of the strain 

evaluated in the corresponding range. A decrease of E with releasing the compressive load is 

observed for all investigated aspect ratios. For a fixed value of strain, the oedometric modulus 

decreases with increasing the aspect ratio. This confirms that assemblies of ellipsoidal 

particles have a more compliant mechanical behavior and this effect is enhanced with higher 

aspect ratios. All these observations together suggest that it is easier to impart deformation in 

systems of ellipsoidal particles compared to spheres. 

 
Figure 3–13: Oedometric modulus vs hydrostatic pressure for assemblies of 5000 particles, 

PF~63.66% and aspect ratios in the range 1, … , ~1.12, [119] (Moscardini et al., 2017). 
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A further sensitivity study was carried out varying the radius of the spheres composing 

each ellipsoidal particle assigning a different size of the radius along the major axis. Four 

assemblies consisting of 5000 monosized ellipsoidal particles with an aspect ratio of 1.1 were 

generated with a PF of ~63.6%. In the first assembly, the ellipsoidal particles are composed of 

three monosized spheres with a radius of 0.25mm, thus the ratio between the size of the 

central sphere over the size of the two external spheres is Re/Rc=1. In the other three 

assemblies the central sphere has always a radius of 0.25mm, while the ratio Re/Rc is equal to 

0.95, 0.91 and 0.8, respectively. A representation of the four types of ellipsoidal particles with 

the related assemblies is shown in Figure 3–14, while the corresponding numerical results are 

presented in Figure 3–15.  

 

Figure 3–14: Four assemblies consisting of 5000 monosized ellipsoidal particles with same 

aspect ratio of 1.1 and PF~63.6% , composed by primary spheres with different radii. 

 

 
Figure 3–15: Stress-strain curves for assemblies of monosized ellipsoidal particles composed 

by primary spheres with different radii. The right graph is the magnified part at high stresses. 

The stress-strain curves reveal an influence of the ratio Re/Rc on the mechanical behavior 

of the assemblies. A reduction of ~5% of the radius of the external spheres determines a 

reduction of the maximum stress of ~14%. Further reductions of the radius of the external 

spheres have no effects on the macro mechanical behavior of the assembly. Therefore, even at 

a minimum value of the ratio Re/Rc, the increase of the mobility of the particles in the 

assembly due to the reduction of the external particle’s radius is limited. 

Re/Rc =0.91 Re/Rc 

=0.95 

Re/Rc=1 Re/Rc =0.8 
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Multi-contact effect 

The results described above have been obtained by implementing in the code the method 

described in the Section 3.2.1 to reduce the influence of MCs. For a broader understanding of 

the issue, the influence of MCs was investigated whether counting or not MCs for the same 

assembly first. Then, keeping fixed the aspect ratio, the mechanical behavior of assemblies 

composed by ellipsoidal particles of 3, 5 and 7 spheres was investigated. 

In Figure 3–16, three stress–strain curves are shown: the solid line is related to the 

assembly of spheres with a radius of 0.25mm, the dotted and the dashed lines refer to 

assemblies of ellipsoidal particles with an aspect ratio of ~1.03 accounting for MCs and not, 

respectively. The initial PF is ~63.66% in all three cases. Accounting for the additional 

contact forces introduced by the MCs, an overestimation of the stress is observed. The 

simulated curve gets even over the stress-strain curve of the sphere assembly. This was judged 

as an unrealistic behavior compared to true ellipsoids. The effect of the MCs on the 

coordination number, as a function of the strain, is shown in Figure 3–17. 

The method implemented in the code to reduce the influence of the MCs introduces an 

asymptotic approximation towards the results of sphere assemblies, as Höhner et al. (2011) 

highlights in [62]. Moreover, to represent a more realistic contact model, a non-linear contact 

law was applied in this work, unlike the linear contact model implemented in [63](Höhner et 

al., 2011). This non-linearity is assumed to lead to a larger difference between results 

obtained leaving the MCs and removing the MCs. Therefore, the correction introduced by the 

method to remove the effect of the MCs is expected to be more important compared to the 

linear contact model especially when a large number of multi contacts are detected.   

  
Figure 3–16: Comparison between mechanical behavior of equal-packed assemblies 

(PF~63.66%) of spheres (R=0.25mm) and of ellipsoidal particles (ar~1.03), accounting for 

MCs and not, [119] (Moscardini et al., 2017). 
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Figure 3–17: The evolution of coordination number for given values of strain whether 

counting or not the MCs, [119] (Moscardini et al., 2017). 

Sensitivity studies were conducted to investigate the effectiveness of the implemented 

method to remove the MCs. To this end the mechanical behavior of three assemblies 

consisting of monosized particles with an aspect ratio of 1.12 composed of 3, 5 and 7 

monosized primary spheres was studied. The radius of the primary spheres is 0.25mm; the 

three assemblies have a similar PF of about 63.6%. The assemblies were subjected to uniaxial 

compression. Figure 3–18 shows the obtained stress-strain curves, while in Figure 3–19 the 

MCs number in function of the imposed strain on the three assemblies is presented. Results 

for the assemblies of ellipsoidal particles composed of 3 and 5 primary spheres show a 

negligible influence of the number of the primary spheres on the mechanical behavior. In this 

case, the code is able to properly remove the effect of the overestimation of the stress induced 

by MCs. However, when 7 primary spheres are used to generate the ellipsoidal particles, a 

stiffer behavior is observed. Each contact generates a contact area between primary spheres 

belonging to two different ellipsoidal particles. When MCs occur, multi-contact areas are 

detected between two contacting ellipsoidal particles. These multi-contact areas can overlap 

in part each other generating a redundancy, which increases when for a given aspect ratio 

more primary spheres are used. It is assumed that the generated redundancy of the contact 

area in overlap together with the use of the non-linear contact law determine a limit for the 

applicability of the method  to remove the MCs. Indeed, when more primary spheres are used 

for a given aspect ratio, larger deviations from the correct result are generated. This suggests a 

relation between the number of primary spheres used to compose an individual ellipsoidal 

particle and its aspect ratio. In particular, while a low number of primary spheres has to be 

avoided to guarantee a sufficient smoothness of the particles’ surface, a high number of 

primary spheres can generate an eccessive redundancy of the multi-contact area in overlap. 
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Figure 3–18: Stress-strain curves obtained with three assemblies of monosized ellipsoidal 

particles (a=1.12) composed of 3, 5 and 7 monosized spheres (R=0.25mm), respectively.  

  
Figure 3–19: MCs number in function of the imposed strain on three different assemblies of 

monosized ellipsoidal particles (a=1.12) composed of 3, 5 and 7 monosized spheres 

(R=0.25mm). 

For the chosen aspect ratio of 1.12, the ellipsoidal particles composed of 3, 5 and 7 spheres 

exhibit an overlap between two consecutive primary spheres of ~1.88R, ~1.94R and ~1.96R, 

respectively. Therefore, moving from 5 to 7 primary spheres the overlap between two 

consecutive spheres increases by 2 percentage points(from 194 to 196% of the radius)  against 

an increase of 6 percentage points between 3 and 5 primary spheres (from 188 to 194% of the 

radius). This suggests that, for the investigated aspect ratio, the increase from 3 to 5 primary 

spheres lead to an effective improvement of the smoothness of the particle surface limiting the 

redundancy of the multi-contact area in overlap. When more than 5 spheres are used for the 

investigated aspect ratio of 1.12, the improvement of the smoothness of the particle surface is 

negligible, while the redundancy of the multi-contact area in overlap strongly increases as the 

number of the MCs. This lead to an unrealistic behavior due to the pileup of the stress 

determined from the approximation introduced by the applied method. From these 

preliminary studies it can be concluded that the implemented method is able to properly 
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remove the effect of MCs reducing the effect of the redundancy, until an effective 

improvement of the smoothness of the surface is achieved for the investigated aspect ratio. 

3.3.3 Statistical analysis 

By means of the DEM simulations, the micro response at the pebble scale can be studied. 

The probability distribution of the normal contact forces as well as the dependence of the 

contact forces on the macroscopic stress was investigated for assemblies of ellipsoidal 

particles. Results were then compared to values obtained from assemblies of packed spheres.  

The normal force fave is the mean value of all normal interactions inside the assembly, 

while the maximum normal force fmax is the maximum absolute value among all the normal 

forces acting on the considered particle. Figure 3–20(a) shows the probability distributions of 

the normalized normal forces f/fave, while Figure 3–20(b) illustrates the distribution of the 

normalized maximum normal forces fmax/fave. Results refer to five assemblies of monosized 

ellipsoidal particles with different aspect ratios and one assembly of monosized spheres with 

the same initial packing factor of 63.66% at the strain rate of 1.25%. As shown, both 

probability distributions are substantially unaffected by the investigated aspect ratios of the 

packed particles. For both probability distributions, the assemblies composed of ellipsoidal 

particles with different aspect ratios show similarities. They all perfectly overlap with each 

other and with the probability distributions of spheres. In agreement with previous studies 

carried out for assemblies of monosized spheres with different initial packing factors [28] 

(Gan and Kamlah, 2010), the peak of the distribution is located at f/fave< 1.0. However, the 

peak of the probability distribution of the normalized maximum contact force is located at 1.5, 

suggesting that most of particles inside the assembly have a maximum contact force larger 

than fave. 

 
Figure 3–20: Probability distribution of normalized normal (a) and maximum (b) contact 

forces for assemblies of ellipsoidal particles with different aspect ratios and spheres. 

(a) (b) 

PF=63.66% 

ε33=1.25% 
PF=63.66% 

ε33=1.25% 
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Figure 3–21 shows the variation of the average normal force (a), maximum normal force 

(b), and scaled coordination number (c) as a function of the hydrostatic pressure for 

assemblies composed of monosized ellipsoidal particles with different aspect ratios. Results 

are compared to the assembly of monosized spheres with the same initial packing factor.  

As shown in Figure 3–21(a), data points are well fitted with the linear correlation 

𝑓𝑎𝑣𝑒[𝑁] = 0.213 𝑝ℎ , 3.35 

where, 𝑝ℎ is the hydrostatic pressure. Therefore, knowing the hydrostatic pressure, the 

average normal force acting on the packed particles is determined by means of the Eq.3.35 

regardless of the particle shape. On the contrary, as already shown in Figure 3–12, there is not 

a unique correlation linking the CN of ellipsoidal particles with different aspect ratios to the 

hydrostatic pressure. However, as shown in Figure 3–21(b), by scaling the value of CN with 

the parameter 

Σ [
N

mm3
] =

PF 𝑓𝑎𝑣𝑒 
3
4𝜋 𝑉𝑝

 3.36 

a unique linear correlation is found: 

CN ∗ Σ [N/𝑚𝑚3] = 49.85 𝑝ℎ. 3.37 

Here, knowing the PF, the particle volume 𝑉𝑝 and evaluating 𝑓𝑎𝑣𝑒  by means of Eq.3.35, CN is 

determined as a function of the hydrostatic pressure regardless of the particle shape of 

monosized packed particles. The way to calculate the quantities in Eqs. 3.36 and 3.37 is 

described in detail below. Starting from the definition of hydrostatic pressure [27] (Gan, 

2008) 

𝑝ℎ [𝑀𝑃𝑎] =
𝜎11 + 𝜎22 + 𝜎33

3
=
1

3𝑉
(∑𝛿(𝐼,𝐽)𝑓𝑁

(𝐼,𝐽)

𝐼<𝐽

), 3.38 

where, 𝛿(𝐼,𝐽) [mm] is the distance between two contacting particles I and J and  𝑓𝑁
(𝐼,𝐽)

[N] is the 

related normal force, further parameters have to be introduced. First, the distance  

𝛿∗[𝑚𝑚] = (∑𝛿(𝐼,𝐽)𝑓𝑁
(𝐼,𝐽)

𝐼<𝐽

) /∑𝑓𝑁
(𝐼,𝐽)

𝐼<𝐽

 3.39 

of the particles weighted by the normal force is defined. Then, the average normal force is 

evaluated as the ratio between the sum of the all normal forces acting among particles in the 

assembly counted twice and the total number of contacts (𝐶𝑁 ∗ 𝑁𝑝):  
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𝑓𝑎𝑣𝑒[𝑁] =
2∑ 𝑓𝑁

(𝐼,𝐽)
𝐼<𝐽

𝐶𝑁 𝑁𝑝
. 3.40 

With the help of Eq. 3.39 and Eq. 3.40,  ∑ 𝛿(𝐼,𝐽)𝑓𝑁
(𝐼,𝐽)

𝐼<𝐽  and ∑ 𝑓𝑁
(𝐼,𝐽)

𝐼<𝐽  , respectively can be 

eliminated from Eq. 3.38, such that 𝑝ℎ becomes 

𝑝ℎ [𝑀𝑃𝑎] =
𝑁𝑝 CN 𝑓𝑎𝑣𝑒 𝛿

∗

6𝑉
. 3.41 

Using the definition of the packing factor as the ratio of the volume of all particles over the 

box volume, i.e. PF = 𝑁𝑝𝑉𝑝/𝑉,  𝑝ℎ is written as 

𝑝ℎ [𝑀𝑃𝑎] =
PF CN 𝑓𝑎𝑣𝑒 𝛿

∗

6𝑉𝑝
. 3.42 

Now, approximating 𝑉𝑝 by the volume of a real ellipsoid, in which the two minor axes are 

equal to the radius of the primary spheres and the major axis is evaluated as a function of the 

aspect ratio of the ellipsoidal particles (𝑉𝑝 =
4

3
𝜋𝑅3𝑎𝑟), Eq. 3.42 becomes 

𝑝ℎ [𝑀𝑃𝑎] =
PF 𝐶𝑁 𝑓𝑎𝑣𝑒 𝛿

∗

8𝜋𝑅3𝑎𝑟
. 3.43 

Grouping the parameters derivable from experiments which are PF, 𝑅3,  𝑎𝑟 and fave,, Σ is 

obtained as 

Σ [
N

mm3
] =

PF 𝑓𝑎𝑣𝑒 
𝑅3𝑎𝑟

=
PF 𝑓𝑎𝑣𝑒 
3
4𝜋 𝑉𝑝

 3.44 

and the Eq. 3.43 now reads as 

𝑝ℎ [𝑀𝑃𝑎] =
𝛿∗

8𝜋
 Σ 𝐶𝑁. 3.45 

Comparing Eq. 3.45 with the equation of the linear interpolation shown in Figure 3–21(b), 

one gets 
𝛿∗

8𝜋
= 49.85 giving 𝛿∗ = 0.5 𝑚𝑚 as constant value. This suggests that the weighted 

distance in the investigated assemblies is approximately equal to the minimum distance 

between two ellipsoidal particles, which minor axis is equal to the radius of the primary 

spheres of 0.25mm.  

Figure 3–21(c) shows the maximum forces inside the assembly with respect to the 

hydrostatic pressure. Neglecting scatter in data due to few particles inside the assembly with a 

very high maximum force, an accurate estimation of the data is given by the correlation 

𝑓𝑚𝑎𝑥 = 1.2081 𝑝ℎ
0.9233 3.46 
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Together with numerical results obtained for the investigated assemblies, a solid blank line 

is shown in Figure 3–21(c). The line is the representation of the relation founded by Gan 

(2008) [27] ( 𝑓𝑚𝑎𝑥 = 5.47+0.474 𝑓𝑎𝑣𝑒) for assemblies of monosized spheres with different 

initial packing factors. In agreement with the previous study [27] (Gan, 2008), the founded 

correlation fits perfectly also assemblies of ellipsoidal particles with different aspect ratios. 

The evaluation of the maximum force together with the distributions of the normal contact 

forces is an essential input to estimate the crash probability of pebbles. With the equations 

reported in this section it is possible to access to micromechanical information of the 

investigated assembly just knowing the hydrostatic pressure and parameters derivable from 

experiments.  

 

Figure 3–21: Average normal force (a), maximum normal contact force (c) and scaled 

coordination number (b) over hydrostatic pressure for assemblies of monosized spheres and 

ellipsoidal particle.

(b) (a) 

(c) 
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Chapter 4                                                                   

DEM for heat transfer in packed spheres 

Pebble beds are multiphase materials in which both the solid and the gas phase filling the 

voids between particles coexist. The heat transfer inside pebble bed depends on the effective 

thermal properties of the bed, thus on the thermal properties of the two phases as well as on 

the system properties (e.g. gas pressure, temperature etc.). In particular, the pressure of the 

system is a key parameter for the heat transfer in a packed granular assembly since the 

thermal conductivity of a confined gas decreases with decreasing pressure (known as 

Smoluchowski effect). In this chapter, an innovative thermal Discrete Element Method is 

presented. The method allows simulating the heat transfer inside packed spheres accounting 

for the influence of the gas pressure on the effective thermal conductivity, for the first time in 

a DEM code. First, the 3D thermal network model implemented to simulate the heat transfer 

among particles will be described in detail. Then the calibration and the validation of the code 

by comparison with existing experimental literature data will be presented. 

4.1 3D thermal network model 

In this section, the 3D thermal network model based on the theory proposed by Batchelor 

and O’Brien [78] and later used in [79] (Yun and Evans, 2010) and [80] ( Kanupharti et al., 

2008) was implemented to determine the heat exchange in packed systems under an imposed 

thermal gradient (see also Moscardini et al., 2018 [77]). The particle interconnection is 

defined by thermal resistors, which are the nodes of the network simulating the resistance to 

the heat transfer between two contacting particles as function of the thermal contact type. The 

further extension implemented to include the influence of the interstitial gas pressure by 

including the Knudsen number in the thermal contact conductance model is reported in detail. 

This decisive step allows to study, for the first time by means of a DEM code, the influence of 

the interstitial gas pressure on the heat transfer and thus on the effective thermal conductivity 

in the gas flow transition region named Knudsen domain. 

4.1.1 Global thermal model  

To investigate the heat transfer in a granular system and to determine the effective thermal 

conductivity of the packed assembly, an in-house thermal-DEM code was developed. A 3D 

thermal resistor network model was implemented to determine the heat exchange in packed 

systems under an imposed thermal gradient. Monosized and polydispersed packed granular 
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systems were generated by means of a modified version of the Random Close Packing (RCP) 

algorithm described in [28] (Gan and Kamlah, 2010) and [31] (Annabattula et al., 2012). The 

RCP presented in [28] (Gan and Kamlah, 2010) and [31] (Annabattula et al., 2012) generates 

assemblies of packed spheres in periodic configuration. As already explained in Chapter 3, 

with the implementation of periodic boundary conditions (PBCs), the generated assemblies 

represent the bulk region of the pebble beds. In order to apply a thermal gradient along the 

height of the assemblies, the RCP was slightly modified as in [29] (Gan et al., 2010). The 

PBCs in the upper and bottom boundaries were replaced by rigid walls. As thoroughly 

explained in the previous chapter and in [29] (Gan et al., 2010), during the iterations the 

desired packing factor is approached reducing the radius of the spheres. The diameter of the 

particles is equal to the desired value only if the objective packing factor is reached. 

Otherwise if a slight variation between the objective and the obtained PF occurs, the radius of 

the particles is scaled to match the objective PF with the desired particle size.  

In a granular system two phases coexist. Pebbles as a whole identify the solid phase 

composing the skeleton of the system, while the interstitial gas represents the matrix of the 

system. In the implemented thermal contact conductance model, the pebbles are 

interconnected by thermal resistors defined by the different type of thermal contact. Thermal 

resistors represent the nodes of the thermal network. The heat 𝑞𝑖𝑗 transferred between the two 

particles i and j is 

𝑞𝑖𝑗 = 𝐶𝑖𝑗
𝑒𝑓𝑓
(𝑇𝑖 − 𝑇𝑗). 4.1 

Here, 𝑇𝑖 and 𝑇𝑗 are the temperatures of particle i and j, respectively. An individual 

temperature is assigned to each particle. 𝐶𝑖𝑗
𝑒𝑓𝑓

 [W/K] is the local effective conductance, which 

is evaluated as a function of the type of the thermal contact. Equations defining 𝐶𝑖𝑗
𝑒𝑓𝑓

 will be 

reported in Section 4.1.2. Then, 𝑞𝑖𝑗 [W] can be evaluated at each time step for each contact in 

the whole assembly. The rate of temperature change 𝑇̇𝑖 of the i-th pebble is updated as 

𝑇̇𝑖 =∑
𝑞𝑖𝑗

𝑚𝑖  𝑐𝑝
 𝑗

 , 4.2 

where mi [kg] and cp [J/kg K] are the mass and the heat capacity of the solid material, 

respectively. When a particle inside the assembly is in contact with a boundary particle, which 

is the periodic neighbor obtained as particle-image from the rigid translation of the pebble 

located inside the box to the opposite surface, the adiabatic condition 𝑞𝑖𝑗 = 0 is applied. For 

an imposed thermal gradient, the calculation ends when the assembly reaches the steady state 

configuration according to  
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∑ 𝑚𝑖𝑐𝑝𝑇𝑖
𝑛 − ∑ 𝑚𝑖𝑐𝑝𝑇𝑖

𝑛−1 𝑖𝑖

∑ 𝑚𝑖𝑐𝑝𝑇𝑖
𝑛−1 𝑖

< TOL, 4.3 

where TOL is set to 10−10 for a typical time steps of ~0.01-1sec. The convergence criterion in 

Eq. 4.3 is formulated in analogy to a variation of the thermal energy in the assembly between 

two consecutive iterations. However, the chosen value for TOL refers to T expressed in 

degree Celsius. The thermal diffusion time defined as 

𝛿𝑡 =
𝜌 𝑐𝑝 𝑅𝑚𝑖𝑛

2 𝜏2

𝑘𝑠
 4.4 

determines the time step required to achieve the solution for the explicit scheme used in the 

simulation [81] (Gan et al., 2014). Here, the ratio  (
𝜌 𝑐𝑝 

𝑘𝑠
)
−1

 [m2/s] represents the thermal 

diffusivity of the solid material, which determines the heat transfer rate in the particles. 

𝜌 [kg/m3] and 𝑘𝑠  [W/mK] are the density and the thermal conductivity of the solid material, 

respectively. The minimum thermal diffusion time in the assembly is defined by dividing the 

square of the minimum radius in the assembly 𝑅𝑚𝑖𝑛
2  [m2] by the thermal diffusivity of the 

solid material. The parameter 𝜏 [/] is introduced to ensure stability of the calculation for 

several conditions (e.g. different gas pressure, gas type, solid materials, radius of the particles 

etc.). A value of 𝜏 =0.5 ensured the stability and the convergence of the simulations in every 

condition. However, under certain conditions such as low gas pressure or small pebble 

diameters 𝜏=0.5 turned out to be too restrictive resulting in a long computation time. In these 

circumstances 𝜏 can be increased (e.g. to 1, 2, 4) to reduce the computational time as long as 

the convergence is assured without affecting the results of the simulation. Once that the steady 

state configuration is reached, the effective thermal conductivity of the assembly is evaluated 

as  

𝑘𝑒𝑓𝑓 =
∑ 𝑞𝑖,𝑏𝑤𝑖  𝐻

𝐴 (𝑇𝑡𝑜𝑝 − 𝑇𝑏𝑜𝑡𝑡𝑜𝑚)
 , 4.5 

where ∑ 𝑞𝑖,𝑏𝑤𝑖   [W] is the total heat transferred between pebbles and the bottom wall. H 

[m] and A [m2] are the height and the cross sectional area of the assembly, respectively. 

𝑇𝑡𝑜𝑝 − 𝑇𝑏𝑜𝑡𝑡𝑜𝑚 is the imposed thermal gradient between the top and the bottom wall, set to1K 

in this work. 

4.1.2 Effective thermal contact conductance 

In the 3D thermal network, each contact is defined as a series circuit consisting of three 

resistors. As exemplarily shown in Figure 4–1, the three resistors represent the resistance to 

the heat transfer in the two solid particles and in the thermal contact region. The respective 
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thermal conductances are namely 𝐶𝑖
𝑠, 𝐶𝑗

𝑠 and 𝐶𝑖𝑗
𝑐𝑡 [W/K]. This basic configuration defines the 

local effective thermal conductance of the contact pair as 

𝐶𝑖𝑗
𝑒𝑓𝑓

= [
1

𝐶𝑖
𝑠 +

1

𝐶𝑖𝑗
𝑐𝑡 +

1

𝐶𝑗
𝑠]

−1

. 4.6 

To evaluate 𝐶𝑖
𝑠, 𝐶𝑗

𝑠 and 𝐶𝑖𝑗
𝑐𝑡, the theoretical derivation developed in [78] (Batchelor and 

O’Brien, 1977) and applied in [79] (Yun and Evans, 2010) and [80] (Kanupharti et al., 2008) 

was adopted. 

 
Figure 4–1: Contacts defined as a series circuit of three resistors: solid-contact-solid, [77] 

(Moscardini et al., 2018). 

The thermal contact is assumed to be a contact area between touching particles (overlap type 

contact, Figure 4–2(a)) or a separation gap (gap type thermal contact, Figure 4–2(b)). When 

the distance between the centers of the two particles 𝐷𝑖𝑗 [m] is greater than the sum of their 

radii, the thermal contact is defined as a separation gap with a characteristic distance of  

 ℎ𝑖𝑗 = 𝐷𝑖𝑗 − (𝑅𝑖 + 𝑅𝑗).  4.7 

Otherwise, according to Hertzian contact theory, a contact area defined by a contact radius as 

𝑟𝑐 = √|ℎ𝑖𝑗| 
𝑅𝑖𝑗 

2
  4.8 

between the two pebbles exists. Here, 𝑅𝑖𝑗 =
2𝑅𝑖𝑅𝑗

𝑅𝑖+𝑅𝑗
 [m] is the equivalent radius. Thermal 

contact pairs are included in the computation if  ℎ𝑖𝑗 < ɛ𝑅𝑖𝑗, where ɛ is the cut-off range limit. 

In this work a value of 0.5 was adopted according to [79] (Yun and Evans, 2010) and [80] 

(Kanupharti et al., 2008). Batchelor and O’Brien [78] (1977) demonstrated analytically that 

the heat transport between two spheres mainly occurs across the particle surface closest to the 

contact region, where the contact region can be either a contact area or a separation gap. It is 

therein assumed that the heat is transferred through a cylindrical zone of radius 𝑅𝑖𝑗
𝑒 = 𝜒𝑅𝑖𝑗 

[m], as shown in Figure 4–1. The axis of the cylinder is aligned with the centers of the two 

particles and the effective radius 𝑅𝑖𝑗
𝑒  is defined as a fraction 𝜒 [/] of the equivalent radius 𝑅𝑖𝑗. 

𝜒 gives the fraction of the sphere curvature involved in the heat transport. In literature this 

parameter is set to match experimental [79] (Yun and Evans, 2010) or numerical [80] 

(Kanupharti et al., 2008) results carried out by other numerical tools. This parameter strongly 
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influences the results of the DEM simulation, thus an initial calibration of the code is 

necessary. The code calibration will be reported in detail in Section 4.2.1. 

 
Figure 4–2: Types of thermal contact regions: a) Contact area for touching particles (overlap 

type contact), b) Separation gap for particles nearly in contact (gap type thermal contact), [77] 

(Moscardini et al., 2018). 

According to Batchelor and O’Brien [78] (1977) 𝐶𝑖
𝑠, 𝐶𝑗

𝑠 and 𝐶𝑖𝑗
𝑐𝑡 are evaluated as:  

a. Conductance of the solid particles 

𝐶𝑛
𝑠 = 𝜋 𝑘𝑠 

𝑅𝑖𝑗
𝑒

𝑅𝑛

2

, 𝑛 = 𝑖 or 𝑗 4.9 

b. Conductance of the thermal contact  𝐶𝑖𝑗
𝑐𝑡 

 contact area between touching particles: 

=

{
 
 

 
 𝜋 𝑘𝑔𝑅𝑖𝑗 [

2𝜂𝑖𝑗

𝜋
− 2 ln 𝜂𝑖𝑗 + ln 𝛼

2]                                                             if 𝜂𝑖𝑗 > 100

𝜋 𝑘𝑔𝑅𝑖𝑗[0.22 𝜂𝑖𝑗
2 − 0.05𝜂𝑖𝑗

2 + ln 𝛼2]                                                  if 𝜂𝑖𝑗 < 1

𝜋 𝑘𝑔𝑅𝑖𝑗 {[0.17 + ((
200

𝜋
− 2 ln100 − 0.17) ∗

𝜂𝑖𝑗 − 1

99
)] + ln𝛼2}

otherwise linear
 interpolation

 
4.10 

 separation gap: 

=

{
 

 

                   
 𝜋 𝑘𝑔𝑅𝑖𝑗 ln 𝛼

2                  if 𝜉𝑖𝑗 < 0.1

𝜋 𝑘𝑔𝑅𝑖𝑗 ln [1 +
𝑅𝑖𝑗
𝑒 2

𝑅𝑖𝑗ℎ𝑖𝑗
] otherwise

 
4.11 

Here, 𝑘𝑔 [W/m K]  and 𝛼 = 𝑘𝑠 /𝑘𝑔  [/]  are the thermal conductivity of the interstitial gas 

and the solid to gas thermal conductivity ratio, respectively. 𝜂𝑖𝑗 =  𝛼 𝑟𝑐/𝑅𝑖𝑗 [/]  and  𝜉𝑖𝑗 =

 𝛼2 ℎ𝑖𝑗/𝑅𝑖𝑗  [/] are two non-dimensional parameters defining the conductance in the contact 

area and in the separation gap, respectively. The cut-off values for 𝜂𝑖𝑗 and 𝜉𝑖𝑗 reported in Eqs. 

4.10 and 4.11 were estimated according to [78] (Batchelor and O’Brien, 1977). A further and 

innovative step introduced in this work is the implementation of the influence of the gas 

pressure, i.e. the Smoluchowski effect, on the heat transfer in a DEM code. To this end the 

theory of Batchelor and O’Brien [78] (1977), was modified as reported in the following 

section.  

(a) Contact area (b) Separation gap 
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4.1.3 Implementation of the Smoluchowski effect  

As previously explained in Chapter 2 - Section 2.1.3, for an unconfined gas the thermal 

conductivity is independent of its pressure, while it decreases with the pressure when the gas 

is confined in small gaps. This is the so-called Smoluchowski effect [82], which determines 

the well-known S-shape curve while plotting the effective conductivity of the packed bed with 

respect to the gas pressure. The S-shape curve can be divided in three zones: continuum, 

transition and free molecule regime. The three regimes define the mechanism of the heat 

transfer as a function of the Knudsen number, thus of the gas pressure (see Chapter 2, Section 

2.1.3). In 1969 Kaganer [135] proposed a correlation for the estimation of the thermal 

conductivity 𝑘𝑔
𝑐 of a confined gas as a function of the Knudsen number as 

𝑘𝑔
𝑐 =

𝑘𝑔

1 + 2 𝛽 𝐾𝑛
 , 4.12 

with 

𝐾𝑛 = 
𝛬

𝐿
=

𝒦 𝑇

√2 𝜋 𝑑𝑚2  𝑝 𝐿
. 4.13 

Here, 𝒦 = 1.38 ∙ 10−23 [J/K] is the Boltzmann constant, 𝑇 [K] is the temperature, 𝑑𝑚 [m] 

is the kinetic molecule diameter and 𝑝 [Pa] is the gas pressure. Furthermore, 𝑘𝑔  [W/m K] is 

the bulk thermal conductivity of the interstitial gas and 𝛽 [/] represents the amount of energy 

transfer between the gas molecule and the solid material. It depends on the gas type, the solid 

material and the temperature of the system. Different correlations were proposed for the 

estimation of 𝛽. In this work, the correlation 

𝛽 =
2 − 𝛼𝑐
𝛼𝑐

. 4.14 

proposed by Wakao and Kagnei [136] (1982) was used. Here the thermal accommodation 

coefficient 𝛼𝑐 [/] represents the effectiveness of the energy transfer between molecule and 

wall. It depends on the two phases composing the assembly as well as on the gas temperature. 

In this work the correlation 

𝛼𝑐 =
𝐶 𝑚𝑟 

(1 + 𝑚𝑟)2
   4.15 

derived by Baule [137] (1914) and later modified by Goodman [138] (1980) was used, where 

𝑚𝑟 = 𝑚𝑔/𝑚𝑠  [/] is the ratio of the gas (𝑚𝑔) to solid (𝑚𝑠) atomic masses [g/mol]. 

Furthermore, 𝐶 = 2.4 [/] is an empirical constant used by Goodman to better reproduce the 

experimental results. Eq. 4.15 reduces to the Baule formula for 𝐶 = 2 [/]. The theory of 

Batchelor and O’Brien [78] (1977), described above, was here modified to implement the 

Smoluchowski effect. To this end 𝑘𝑔 was substituted by 𝑘𝑔
𝑐   [W/m K] in Eqs. 4.10, 4.11 and in 
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the parameter 𝛼. This innovative step allows taking into account the reduction of the gas 

thermal conductivity due to the reduction of the gas pressure. Plugging the Knudsen number, 

previously defined in Eq. 4.13 as 𝛬/𝐿, 𝑘𝑔
𝑐 becomes 

𝑘𝑔
𝑐 =

𝑘𝑔

1 + 2 𝛽(
𝛬

𝑑𝑎𝑣𝑒 + ℎ𝑖𝑗
)
 

4.16 

For each contact, the geometrical dimension L is replaced by the mean gap size 𝑑𝑎𝑣𝑒 + ℎ𝑖𝑗. 

When ℎ𝑖𝑗 < 0, the thermal conductance is evaluated according to Eq. 4.10 (contact area 

between touching particles) and ℎ𝑖𝑗 in Eq. 4.16 is set equal to 0, otherwise, i.e. for ℎ𝑖𝑗 > 0, 

Eq. 4.11 (separation gap) is used. The evaluation of 𝑑𝑎𝑣𝑒 is based on the contact 

configurations reported in Table 4–1 and in Table 4–2. 

Table 4–1: Evaluation of the gap size 𝑑𝑎𝑣𝑒 for the two configurations between two spheres, 

[77] (Moscardini et al., 2018). 

Geometrical configuration of the contact  𝒅𝒂𝒗𝒆  

 
Two spheres touching at a contact area of 

radius rc (𝑅𝑖 < 𝑅𝑗 ) 

𝛾𝑚𝑖𝑛  < 𝛾 < 𝛾𝑚𝑎𝑥 ;   𝜃𝑚𝑖𝑛 < 𝜃 < 𝜃𝑚𝑎𝑥 

𝛾𝑚𝑎𝑥 = sin
−1(𝑅∗/𝑅𝑖) ;   𝜃𝑚𝑎𝑥 = sin

−1(𝑅∗/𝑅𝑗) 

𝛾𝑚𝑖𝑛 = sin
−1(𝑟𝑐/𝑅𝑖) ;   𝜃𝑚𝑖𝑛 = sin

−1(𝑟𝑐/𝑅𝑗) 

𝑖𝑓 𝑅𝑖 < 𝑅𝑖𝑗
𝑒    𝑅∗ = 𝑅𝑖     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   𝑅

∗ =  𝑅𝑖𝑗
𝑒  

𝑑𝛾 =
∫ 𝑅𝑖  (1 − cos 𝛾) 𝑑𝛾
𝛾𝑚𝑎𝑥
𝛾𝑚𝑖𝑛

∫ 𝑑𝛾
𝛾𝑚𝑎𝑥
𝛾𝑚𝑖𝑛

 
 

𝑑𝜃 =
∫ 𝑅𝑗  (1 − cos 𝜃) 𝑑𝜃
𝜃𝑚𝑎𝑥
𝜃𝑚𝑖𝑛

∫ 𝑑𝜃
𝜃𝑚𝑎𝑥

𝜃𝑚𝑖𝑛
 

 

𝑑𝑎𝑣𝑒 = 𝑑𝛾 + 𝑑𝜃 

 

separation gap  (𝑅𝑖 < 𝑅𝑗 ) 

As for the above case of two touching 

spheres with the exception of the following 

changes: 

0 < 𝛾 < 𝛾𝑚𝑎𝑥 ;  0 < 𝜃 < 𝜃𝑚𝑎𝑥 

𝑟𝑐 = 0 

𝑑𝑎𝑣𝑒 = 𝑑𝛾 + 𝑑𝜃 
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Table 4–2: Evaluation of the gap size 𝑑𝑎𝑣𝑒 for the two configurations between sphere- wall, 

[77] (Moscardini et al., 2018). 

Geometrical configuration of the contact 𝒅𝒂𝒗𝒆  

 
Sphere - wall with a contact area of radius rc 

 (𝑅𝑗 → ∞) 

𝛾𝑚𝑖𝑛 < 𝛾 < 𝜋/2 

 𝛾𝑚𝑖𝑛 = sin
−1(𝑟𝑐/𝑅𝑖) 

𝑑𝑎𝑣𝑒 = 𝑑𝛾 =
∫ 𝑅𝑖 (1 − cos 𝛾) 𝑑𝛾
𝜋/2

𝛾𝑚𝑖𝑛

∫ 𝑑𝛾
𝜋/2

𝛾𝑚𝑖𝑛
 

 

The wall is considered as a sphere with an 

infinite radius, thus 𝑑𝜃 approaches zero. 

 
Sphere – wall with separation gap  (𝑅𝑗 → ∞) 

As for the above case of a spheres touching 

a wall with the exception of the following 

changes: 

0 < 𝛾 < 𝜋/2  

𝑟𝑐 = 0 

𝑑𝑎𝑣𝑒 = 𝑑𝛾 

The two tables refer to the particle-particle and the particle-wall contacts, respectively. In 

the Bachelor and O’Brien theory [78] (1977), the contribution of the gas conduction in the 

zone nearby the contact area or in the separation gap (ℎ𝑖𝑗), is taken into account in the heat 

transport. The cylindrical zone, with radius 𝑅𝑖𝑗
𝑒 = 𝜒𝑅𝑖𝑗, defines the fraction of the sphere 

curvature involved in the heat transport. Therefore,  𝑑𝑎𝑣𝑒 is the sum of the integrated distances 

𝑑𝛾 and 𝑑𝜃 over the specified portions of the sphere surface. 

4.2 Code calibration and validation 

In this section, the simulations carried out with the above described KIT thermal-DEM 

code are presented. In Section 4.2.1, the code calibration is reported. The parameter  𝜒 was set 

to match the experimental results carried out in KIT [108] (Pupeschi et al., 2017). Then, with 

the selected 𝜒, several simulations were run to validate the code under different system 

conditions and with different materials. In particular, in Sections 4.2.2, 4.2.3, and 4.2.4 the 

experimental results obtained in [103] (Enoeda et al., 2001) and [108] (Pupeschi et al., 2017) 

were simulated varying the gas type, the gas pressure and the compression state, respectively. 

Finally, in Section 4.2.5 the comparison between numerical and experimental literature results 

for different solid breeder materials will be reported. The physical characteristics of the 
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studied solid materials and gases are summarized in Table 4–3 and Table 4–4, respectively. In 

Table 4–3 the densities of the ceramic materials are given as function of the porosity 𝑝𝑟. The 

thermal conductivities of the solid and gas materials were evaluated, by means of the 

correlations reported in Table 4–3 and in Table 4–4, at the investigated temperature of each 

simulation. 

Table 4–3: Physical characteristics of the used solid materials 

Material Parameter Value 

EU Ref.  

(Li4SiO4 + 

10 mol% 

Li2SiO3)  

𝑘𝑠 [W/m K] Correlation fitting values reported in [139] (Löbbecke et al., 2009) for 

89% TD (Theoretical Density): 7.317 ∗ 10−12𝑇4 − 1.302 ∗

10−8 𝑇3 + 8.712 ∗ 10−6 𝑇2 − 0.002876 𝑇 + 2.62 ; T in °C 

𝑐𝑝  [J/kg K] (−5.33 ∗ 10−7 𝑇2 + 0.001925 𝑇 + 1.238) ∗ 1000 
[140] (Knitter, 

2017);T in
 °C 

ρ [kg/m
3
] 2400(1- 𝑝𝑟); 𝑝𝑟=0.05 

𝑚𝑠   [g/mol] 119.85 

Li2TiO3 

𝑘𝑠 [W/m K] [(1 − 𝑝)2.9](5.35 − 4.78 ∗ 10−3 𝑇 + 2.87 ∗ 10−6 𝑇2)  [141] 

(Gierszewski, 1998), T in K 

[(1 − 𝑝)/(1 + (1.06 − 2.88 ∗ 10−4 𝑇)𝑝)](4.77 − (5.11 ∗ 10−3 𝑇) +

(3.12 ∗ 10−6 𝑇2)) [142] (Saito, 1998); T in K 

𝑐𝑝 [J/kg K] 355 ( 𝑇 − 100)1.1/(1 + (0.3 𝑇1.05)) 
(Gierszewski, 1998), T in K 

(0.73 + (8.44 ∗ 10−4 𝑇) − (1.67 ∗ 10−7 𝑇)) ∗ 1000 [142] (Saito, 

1998); T in K 

ρ [kg/m
3
] 3430 (1- 𝑝𝑟); 𝑝𝑟~0.08  

𝑚𝑠   [g/mol] 109.76 

Li2ZrO3 

𝑘𝑠 [W/m K] (1 − 𝑝)5/3[(3.643/(1 + 0.00155 T)) + 7.579 ∗ 10−10𝑇3] [143] 

(Gierszewski, 1993); with T in K 

𝑐𝑝  [J/kg K] (1.022 − (3.696 ∗ 10−5 𝑇) − (2.791 ∗ 10+4 𝑇−2)) ∗ 1000 

[144](Moore, 1989); with T in K 

ρ [kg/m
3
] 4150(1- 𝑝𝑟); 𝑝𝑟 =0.2  

𝑚𝑠   [g/mol] 153.1 

Table 4–4: Physical characteristics of the used gas types 

Material Parameter Value 

Helium 

𝑘𝑔 [W/mK] 3.366 ∗ 10−3 𝑇0.668 [99] (Abou-Sena et al., 2005); T in K. 

𝑑𝑚 [m] 2.15e-10 [145] (Lide, 2004) 

𝑚𝑔 [g/mol] 4  

Air 

𝑘𝑔 [W/mK] Correlation fitting values reported in [146]( 

http://www.engineeringtoolbox.com) : 

−1 ∗ 10−11 𝑇3 −  4 ∗ 10−8 𝑇2  + 8 ∗ 10−5 𝑇 + 0.0241 
; T in

 °C 

𝑑𝑚 [m] 3.66e-10 [145] (Lide, 2004) 

𝑚𝑔 [g/mol] 28.96 

http://www.engineeringtoolbox.com/
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With application to breeder beds, several experimental campaigns have been carried out to 

characterize the thermal properties of the various ceramic breeder material candidates. In 

literature different correlations for the estimation of   𝑘𝑔 and 𝑐𝑝 for the same breeding 

material are reported [99] (Abou-Sena et al., 2005). In the present work, the influence of the 

thermal conductivity of the solid material on the effective thermal conductivity was 

investigated. For the EU Ref. the most recent and reliable thermal conductivity values were 

considered [139] (Löbbecke et al., 2009). They refer to a porosity of ~11%, while the pebbles 

used in the experiments [108] (Pupeschi et al., 2017) have a porosity of around 6%.  

In Section 4.2.5 the investigation of the two other solid breeder materials Li2TiO3 and 

Li2ZrO3 is reported. The simulations with Li2TiO3 pebbles were carried out implementing the 

correlations reported in [141] (Gierszewski, 1998) and [142] (Saito, 1998). In the present 

work both monosized and polydispersed assemblies were studied. In Figure 4–3, the pebble 

size distribution used in the experiments carried out in KIT [108] (Pupeschi et al., 2017) is 

reported together with the produced assembly used for the numerical simulations. All 

assemblies consist of 5000 perfectly spherical particles packed in virtual box using the 

Random Close Packing (RCP) algorithm described before. The height of the assemblies was 

set to 20 mm while the dimension of the square cross section of the assemblies was evaluated 

as a function of pebble size and packing factor as 𝑙2 =
𝑉𝑡𝑜𝑡,𝑠

𝐻 ∗ 𝑃𝐹
. Here, 𝑉𝑡𝑜𝑡,𝑠 and H are the total 

volume of the spheres and the height of the assembly, respectively. 

 

Figure 4–3: (a) Assembly generated with the size distribution showed in (b) of the EU Ref. 

[108] (Pupeschi et al., 2017), different colours represent different pebble size, [77] 

(Moscardini et al., 2018). 

In Section 4.2.1, 4.2.2, 4.2.3 and 4.2.4 when the compression state is not specified, the 

reported results are the average value between uncompressed and compressed bed at 6 MPa in 

agreement with the experimental results reported in [108] (Pupeschi et al., 2017). This is 

justified by the small variation of the effective thermal conductivity with the compression 

(a) 

(b) 
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observed in [108] (Pupeschi et al., 2017) and in the numerical results discussed in Section 

4.2.4.  In the Section 4.2.5 uncompressed beds were used. Furthermore, in [108] (Pupeschi et 

al., 2017) a mechanical conditioning of three loading/unloading cycles up to 6 MPa was 

applied to obtain a well-defined mechanical state of the bed, while for the simulation the 

second loading cycle was considered representative of a consolidated bed. Indeed, considering 

the first four compressive loading-unloading cycles of the DEM simulation reported in Figure 

4–4, a large residual strain is observed after the first unloading, while in the consecutive 

cycles the additional compaction of the bed is strongly reduced. For all assemblies, the 

uncompressed configuration refers to a very low compression level of about 20KPa.  Due to 

the pure geometric method adopted to generate the assemblies by the RCP, few contacts 

among particles initially exist. Therefore, to increase the number of contacts bringing the 

starting configuration closer to real conditions, the slight compression of 20 KPa is needed. 

 
Figure 4–4: Uniaxial compression loading cycles, [77] (Moscardini et al., 2018). 

4.2.1 Influence of χ parameter and code calibration 

The parameter χ influences the value of the effective thermal conductivity since it 

determines the effective radius of the cylindrical zone involved in the heat transfer (Figure 4–

1). In literature, χ is chosen to match experimental or analytical results. In Figure 4–5 the 

comparison between experimental and numerical results varying χ is shown, where χ was 

varied in the range 0.6-0.8 to study its influence on the bed’s thermal conductivity. Numerical 

simulations and experiments were carried out with pebbles of EU Ref. in helium at ~64.2% 

packing factor with the polydispersed size distribution presented in Figure 4–3. As shown in 

the figure, the effective thermal conductivity decreases with decreasing χ according to the 

reduction of the fraction of the sphere surface considered for the heat transport. Nevertheless, 

the variation of χ does not change significantly the trend of the effective thermal conductivity 

vs. the temperature, shifting the curve to higher or lower values with the reduction or increase 
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of χ, respectively. For a given χ value, the temperature-dependent behavior is brought from 

the value of 𝑘𝑠 and 𝑘𝑔
𝑐 at the investigated temperature, quantitatively matching the 

experimental results of the effective thermal conductivity without additional fitting. In this 

work a value of 0.71 was used to match the experimental results performed in KIT [108] 

(Pupeschi et al., 2017). Note that in the present study χ is set only once in order to calibrate 

the code and then kept fixed for all the other simulations (e.g. different solid materials, gas 

pressures/type and compression state). The choice of χ may differ for systems with differently 

sized particles, however due to the limited available data, χ=0.71 was used in this work for a 

size range from 0.25 to 1.9 mm, corresponding to experimental data from various sources 

[105] (Hall and Martin, 1981), [108] (Pupeschi et al., 2017) and [112] (Lorenzetto et al., 

1995), which is the relevant size range in fusion applications. 

 

Figure 4–5: Influence of the χ parameter on the effective thermal conductivity (polydispersed 

assembly of EU Ref. in helium) and comparison with experimental results carried out in [108] 

(Pupeschi et al., 2017). [77] (Moscardini et al., 2018). 

4.2.2 Influence of the gas type  

In this section the influence of the gas type on the effective thermal conductivity was 

numerically investigated. Numerical simulations were carried out with the above mentioned 

polydispersed assembly of EU Ref. in helium and air at 4 bar. The investigated temperature 

range between room temperature and 700 °C is consistent with the expected operating 

temperature range of the ceramic breeder material and the experiments conducted in [108] 

(Pupeschi et al., 2017).  

In Figure 4–6 the comparison between numerical and experimental results is shown. A 

good agreement with the experimental outcomes is observed. The DEM simulations 

accurately capture the different thermal behavior of the granular assembly in helium and air. 

An increase of the effective thermal conductivity with the temperature was found for all 
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investigated compositions in both atmospheres in agreement with experimental observations. 

As experimentally observed, a pebble bed in air shows a reduction of the effective thermal 

conductivity of about 45-55% compared to simulation for helium. This difference is 

determined by the different thermal conductivities of the two gases. In particular, in the 

considered temperature range, the thermal conductivity of unconfined helium is about five 

times higher than the thermal conductivity of unconfined air.  

 

Figure 4–6: Comparison between numerical and experimental results [108] v for 

polydispersed assembly of EU Ref. pebbles in air and He. [77] (Moscardini et al., 2018). 

4.2.3 Influence of the gas pressure  

In this section, the influence of the gas pressure on the effective thermal conductivity of 

pebble beds is analyzed. Simulations were carried out with the above mentioned 

polydispersed assembly of EU Ref. In Figure 4–7, the comparison between numerical 

simulations and experimental results reported in [108] (Pupeschi et al., 2017) is shown.  

 

Figure 4–7: Influence of the pressure for different compression states. Comparison between 

numerical [77] (Moscardini et al., 2018) and experimental results [108] (Pupeschi et al., 

2017).  
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The experimental results refer to the average value between compressed and uncompressed 

bed of EU Ref. in helium at 1.2, 2 and 4 bar as expressed by the correlations reported in [108] 

(Pupeschi et al., 2017). In the simulation the gas pressure was varied in the range 0.0001 to 10 

bar to cover all the gas regimes. Moreover, the simulation results are shown for compressed (6 

MPa) and uncompressed beds to show the influence of the compressive state at different gas 

pressure. The S-shape curve characteristic of the Smoluchowski effect is reproduced, meaning 

that the continuum, transition and free molecule gas regimes are numerically obtained. In the 

pressure range between 1 and 4 bar, a good agreement with experimental outcomes was 

found. In this pressure range, both theoretical (according to Eqs. 4.12 and 4.13) and 

experimental results show an increase of the effective thermal conductivity of the bed with the 

gas pressure. The effective thermal conductivity increases up to ~5 bar, then an asymptotic 

pressure dependence is observed. This indicates that, in the range 1-5 bar, the filling gas is in 

the upper part of the transition region. The influence of the compressive load was found to be 

more pronounced at very low pressures (free molecule regime) decreasing with the increase of 

the pressure in the transition regime to almost vanishing difference in the continuum regime 

where the breeder beds are supposed to operate. The influence of the compressive load is 

more evident at very low pressures where the heat transfer mainly occurs through touching 

particles, while the contribution of the gas is negligible. At high pressure, due to the small 

value of the ratio ks/kg (~20 for unconfined helium at room temperature) of the analyzed 

breeder bed, the heat is mainly transferred by the gas, thus even if contact areas increase 

under the compression load, negligible variations are detected. The DEM results are 

compared with literature data in Figure 4–8. The results reported in [103] (Enoeda et al., 

2001) cover the low gas pressure range down to 0.0001 MPa, while in [102] (Dalle Donne, 

2000) experiments were conducted in the pressure range 0.1-0.3 MPa. The figure is 

reproduced from [103] (Enoeda et al., 2001) where the experimental results were also 

compared with the correlations derived by Bauer and Schlünder (SBZ) [104] (1978) and Hall 

and Martin (HM) [105] (1981). The numerical values obtained in this study are overlaid as a 

solid red line. Both numerical and experimental results show a strong influence of the filling 

gas pressure in the pressure range 0.0001-0.1 MPa.  The dependence on the helium pressure is 

drastically reduced, although still present, for pressures above 0.1 MPa. In contrast to the 

outcomes of [103] (Enoeda et al., 2001) and of the present study, no influence of the helium 

pressure on the thermal conductivity of the pebble bed is found in [102] (Dalle Donne, 2000). 

For a pressure above 0.05 MPa, the numerical results are in good agreement with the 

experimental values obtained in [103] (Enoeda et al., 2001). The observed difference between 
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the experimental and simulation values is less than 10%. Lower thermal conductivity values, 

especially between numerical simulations and experiments, were numerically obtained at 

lower gas pressures. Thermal radiation is not implemented in the present numerical model. 

Accounting for thermal radiation, the effective thermal conductivity values are expected to 

slightly increase in the low pressures region where radiation is the predominant heat transfer 

mechanism. A good agreement between numerical and HM analytical results is obtained in 

the studied pressure range while, the SZB model gives higher values. In Figure 4–9 and 

Figure 4–10 the influence of gas type and temperature on the bed effective thermal 

conductivity as a function of the gas pressure is shown, respectively. The simulations were 

carried out for an uncompressed bed. The effective thermal conductivities presented in these 

figures are normalized with respect to the effective thermal conductivity of the unconfined 

gas. For a given gas type and temperature, the thermal conductivity decreases with decreasing 

pressure showing the characteristic S-shaped curve. Compared to helium atmosphere, the 

onset of the transition regime is shifted to lower pressures in air. 

 
Figure 4–8: S-shape curves. Comparison between literature values and DEM results obtained 

in this work. After [103] (Enoeda et al., 2001) and [77] (Moscardini et al., 2018). 

 
Figure 4–9: Numerical results for polydispersed assembly in He and air normalized on 

unconfined values of thermal conductivity keff_0, [77] (Moscardini et al., 2018). 
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Figure 4–10: Numerical results for polydispersed assembly in He at 300, 500 and 700˚C 

normalized on unconfined values of thermal conductivity keff_0, [77] (Moscardini et al., 2018). 

According to Eq. 4.13, in the transition regime, both a lower kinetic diameter and a higher 

temperature result in a larger mean free path leading to a reduction of the gas contribution to 

the effective conductivity of the bed. The onset of the transition region is then shifted to lower 

pressures when the filling gas is characterized by a higher kinetic diameter dm and when the 

bed temperature decreases, respectively. 

4.2.4 Influence of the compressive load 

The solid to gas thermal conductivity ratio 𝑘𝑠/𝑘𝑔 affects the heat transfer in the bed. In 

pebble beds with comparably low 𝑘𝑠/𝑘𝑔 (e.g. in the order of 10  for ceramic breeder pebble 

beds) the heat flux is uniformly distributed among the solid and the gas phases, while in beds 

with a high ratio the heat flows mainly through pebbles and contact areas between particles, 

since these are the paths of higher thermal conductivity. Therefore, the effective thermal 

conductivity of beds with high 𝑘𝑠/𝑘𝑔 ratios (e.g. in the order of 1000 for the neutron 

multiplier pebble beds) is influenced by the bed deformation. In particular, a compressive load 

acting on a breeder bed results in an increase of both the number of the contacts between 

pebbles and the contact area dimension of existing contacts. In Figure 4–11, the numerical 

results on the effect of bed compression are compared with experimental results in [108] 

(Pupeschi et al., 2017). The numerical results refer to the above mentioned polydispersed 

assembly of EU Ref. in helium and air at 4 bar in the temperature range of 25 to 700ºC for a 

compressed and an uncompressed state. In helium, a good agreement with experimental 

values was obtained. The numerical results in air slightly underestimate or overestimate the 

experiments for the uncompressed and compressed states, respectively. However, considering 

the experimental uncertainty, a fairly good agreement with the experimental values was found 

also in air. An increase of the effective thermal conductivity with the applied compressive 
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load was observed in both atmospheres. The influence of the compressive load was found to 

be more pronounced in air consistent with the higher 𝑘𝑠/𝑘𝑔 ratio than in helium, since the 

thermal conductivity of air is 5 times lower than that of helium. The increase of the thermal 

conductivity due to the compressive load was found to be more expressed at low temperatures 

with the tendency to vanish at high temperatures according to the decrease of the 𝑘𝑠/𝑘𝑔 ratio 

with the temperature. 

 
Figure 4–11: Influence of the compressive load on the effective thermal conductivity for 

polydispersed assembly of EU Ref. pebbles in air and He, [77] (Moscardini et al., 2018). 

4.2.5 Influence of the solid material   

In order to further validate the KIT thermal-DEM code, experimental works reported in 

literature and referring to other breeding materials were numerically investigated. In 

particular, the effective thermal conductivity of Li2TiO3 and Li2ZrO3 pebble beds were 

studied. In Figure 4–12 the numerical and experimental results reported in [112] (Lorenzetto 

et al., 1995) for Li2ZrO3 beds are compared to simulations. In [112] (Lorenzetto et al., 1995) 

Li2ZrO3 pebbles with a diameter of 1.2 mm at 63% packing fraction were investigated in 

helium atmosphere at 1 bar. The simulations were run with the same pebble size, packing 

state, gas type and pressure as used in the experiment [112] (Lorenzetto et al., 1995). The 

physical properties of Li2ZrO3 used in the simulation are reported in Table 4–3. As shown in 

the figure, the experimental results were reproduced. In particular, the nonlinear trend 

obtained in [112] (Lorenzetto et al., 1995) was numerically obtained. In Figure 4–13 the 

comparison between experimental [114] and numerical results for Li2TiO3 pebbles is shown. 

In this figure, the experimental results are presented by diamonds while the simulations are 

plotted by solid and dashed lines. As indicated in Table 4–3, the simulations were carried out 
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with the thermal properties 𝑘𝑔 and 𝑐𝑝 reported in [141] (Gierszewski, 1998) and additionally 

with the 𝑘𝑔 and 𝑐𝑝 values found in [142] (Saito, 1998), respectively. In [114] (Hatano et al., 

2003) the thermal conductivity of Li2TiO3 pebble beds in helium gas at 1 bar was presented 

over the temperature range 400-800°C. The experiments were carried out with 1.91 mm 

pebbles at 60% packing fraction. The same conditions were used to run the simulations. Due 

to the scattering of the experimental results, both correlations used to estimate the thermal 

properties of the solid material give reasonable agreement when simulating the thermal 

conductivity of Li2TiO3 beds. It is obvious from this graph that the correlations implemented 

to define the thermal properties of the solid material play a major role in the evaluation of the 

effective thermal conductivity of the bed. Nevertheless, a good agreement between numerical 

and experimental results was obtained. 

 
Figure 4–12: Comparison between numerical simulation and experimental results (Lorenzetto 

et al., 1995) [112] for Li2ZrO3 pebbles in helium atmosphere, [77] (Moscardini et al., 2018). 

 
Figure 4–13: Comparison between numerical simulations with thermal properties reported in 

[141] (Gierszewski, 1998) and [142] (Saito et al., 1998) and experimental results according to 

[114] (Hatano et al., 2003) for Li2TiO3 pebbles in helium atmosphere, [77] (Moscardini et al., 

2018). 
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Chapter 5                                                           

Thermal-DEM code application to the breeder 

zone 

In the previous chapter, an innovative in-house thermal-DEM code, developed to estimate 

the heat transfer in packed beds, was presented. Through a comparison with experimental 

results reported in literature, the code was validated and the effective thermal conductivity of 

the ceramic breeder pebble beds as a function of several parameters was successfully 

predicted. For the work reported in this chapter, the code was slightly modified to evaluate the 

temperature profile generated in the ceramic breeder pebble beds from neutronic heating 

applied as internal heat source. The breeder zone of the HCPB blanket for DEMO was 

considered as the reference model implementing the same materials, applying the operating 

loads and simulating relevant bed’s thicknesses. The variation of the thermal conductivity of 

the gas and solid material with the temperature at the contact pair level was taken into 

account. In the first section, the modified method is presented and the boundary and loading 

conditions are described. In the second section, the temperature profile generated inside the 

breeder bed from the neutronic heating is shown and sensitivity studies are reported and 

discussed.  

5.1 Modified thermal-DEM code accounting for the neutronic 

heating as internal heat source. 

To evaluate the temperature field generated in the ceramic breeder pebble beds from 

neutronic heating, the thermal-DEM code presented in the previous chapter was slightly 

modified. Assemblies of monosized and polydispersed pebbles have been generated according 

to the method described in the Section 4.1.1. Particles are highly packed inside a box with a 

given height defined by an upper and a bottom wall, while the condition of periodicity was 

applied at the lateral sides which dimensions are determined as a function of the target 

packing factor. The assemblies are then heated up applying the neutronic heating as internal 

heat source. The heat 𝑞𝑖𝑗 transferred between two particles i and j is evaluated according to 

the Eq. 4.1 at each time step for each contact in the whole assembly. Eq. 4.2 was modified to 

evaluate the rate of temperature change 𝑇̇𝑖 of the i-th pebble accounting for the heat 

generation due to neutronic heating:  

𝑇̇𝑖 =
1

𝑚𝑖 𝑐𝑝
(∑𝑞𝑖𝑗

𝑗

+𝛹𝑉𝑖) . 5.1 
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Compared to Eq 4.2 the term 𝛹𝑖𝑉𝑖was added. Here,  𝛹 [W/m
3
] and 𝑉𝑖 [m

3
] are the power 

density due to the neutronic heating and the volume of the particle “i” (𝑉𝑖 =
4

3
 𝜋 𝑟𝑖

3), 

respectively. The values of 𝛹 will be reported in the next section. The upper and bottom wall 

are set to a constant temperature (blanket relevant) resembling the cooling structures of the 

breeder beds (details are reported in the next section), while adiabatic conditions were applied 

to the lateral sides as described in Chapter 4. The thermal diffusion time 𝛿𝑡 (see Eq. 4.4) as 

well as the condition to end the simulation (see Eq. 4.3) were not modified. 

The thermal resistor applied to evaluate the heat transfer in the individual thermal contact 

is the same as described in Section 4.1.2. Due to the large temperature gradient expected to be 

generated in the bed’s thickness from the neutronic heating, the temperature dependent 

thermal conductivity of both solid material and gas were here implemented. In Eq. 4.9, 𝑘𝑠 

[W/m K] is replaced by 𝑘𝑠,𝑖 [W/m K]. Here, 𝑘𝑠,𝑖 is the thermal conductivity of the solid 

material evaluated for each individual particle at its related temperature. Likewise, the thermal 

conductivity of the gas 𝑘𝑔 [W/m K] was replaced with 𝑘𝑔,𝑖𝑗 [W/m K], which is updated 

according to the temperature acting in the individual contact pair (Section 4.1.2). In particular, 

𝑘𝑔,𝑖𝑗 [W/m K] is calculated at the average temperature of the two particles involved in the 

thermal contact. 𝛼 = 𝑘𝑠 /𝑘𝑔
𝑐   [/]  was replaced by 𝛼𝑖𝑗 = 𝑘𝑠,𝑖𝑗 /𝑘𝑔,𝑖𝑗

𝑐  [/], where 𝑘𝑠,𝑖𝑗 [W/m K] is 

the thermal conductivity of the solid material evaluated as the average of the thermal 

conductivities of the two particles in contact, while 𝑘𝑔,𝑖𝑗
𝑐   is obtained by Eq 4.12 sobstituting 

𝑘𝑔 with 𝑘𝑔,𝑖𝑗. Finally, to adapt the implementation of the Smoluchowski effect for the 

evaluation of the heat transfer in a granular material with an internal heat source, the Knudsen 

number becomes 

𝐾𝑛 = 
𝛬

𝐿
=

𝒦 𝑇𝑎𝑣𝑒

√2 𝜋 𝑑𝑚2  𝑃 𝐿
, 5.2 

where, compared to Eq.4.13, 𝑇𝑎𝑣𝑒 [K] replaces 𝑇 [K] with 𝑇𝑎𝑣𝑒 as the average temperature of 

the two particles in contact.  

5.1.1 Boundary conditions and thermal properties 

As starting condition, the temperature of the particles composing the bed as well as the 

temperature of the upper and bottom wall is set to 500 °C. This temperature was selected 

according to the thermal analysis reported in [147], [148] (Hernández et al., 2011; Hernández 

et al., 2017). During the simulations, the temperature of the walls is kept constant to simulate 
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the cooling of the bed provided by helium flowing into the cooling plates of the HCPB 

breeding blanket [147], [148] (Hernández et al., 2011; Hernández et al., 2017). The 

temperature of the particles will increase according to the applied power density of the 

neutronic heating. Figure 5–1 shows the power density generated from the neutronic heating 

acting on the solid material Li4SiO4 as a function of the radial distance from the first wall. 

This data refers to the neutronic calculations presented in [149] (Hernández et al., 2016) and 

in [150] (Pereslavtsev et al., 2017) for an outboard blanket (OB) with Li4SiO4. 

 
Figure 5–1: Neutronic power density for Li4SiO4 in OB blanket as a function of the radial 

distance from the first wall, after [149]-[150] (Hernández et al., 2016; Pereslavtsev et al., 

2017). 

When different conditions are not specified, the standard conditions refer to assemblies of 

5000 polydispersed spheres (see Figure 4–3(b)) of EU Ref. material at 95% theoretical 

density (typical value of the EU Ref. produced pebbles [7] (Shikama et al., 2008)) at a 

packing factor of ~64%. A gas pressure of 2 bar was chosen as standard condition according 

to [148] (Hernández et al., 2017) and [149] (Hernández et al., 2016), where the helium purge 

gas pressure was reduced from 4 to 2 bar in favor of a reduction of the tritium permeation into 

the cooling plates. Indeed, the driving force behind the tritium permeation in the cooling 

plates and thus in the coolant fluid is the tritium partial pressure [151] (Hanchar et al., 1982), 

which depends on the pressure of the purge gas. In particular, when the pressure of the purge 

gas decreases the tritium partial pressure reduces determining a lower diffusion of tritium into 

the cooling plates. In view of this, the purge gas pressure is a key parameter to decrease the 

amount of tritium in the coolant and in the structural materials guaranteeing a high level of 

safety. Since the design of the DEMO HCPB blanket is constantly updated and not yet 

finalized [148] (Hernández et al., 2017) and [149] (Hernández et al., 2016), a bed thickness of 

15mm is here taken as representative. 

As the assemblies are generated under a periodic configuration for the lateral sides, the 

radial and toroidal heat transfer is neglected. The simulated assembly represents a column 
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cutout of the breeder bed bounded by the cooling plates at top and bottom. This simple 

geometry allows evaluating the temperature profile in the thickness of the breeder bed, where 

the temperature variation is more significant than in the other directions due to the small ratio 

between the bed thickness and the radial/toroidal extension. However, neglecting the heat 

exchange in the radial and toroidal direction, the predicted temperature is overestimated. For 

the simplified geometry, a constant power density (𝛹 in the Eq.5.1) referring to the 

investigated radial distance from the first wall is applied to the individual pebbles of the 

assembly (multiplying 𝛹 by the volume 𝑉𝑖 as reported in the Eq.5.1). For the reasons 

explained in the previous chapter (Section 4.2), a slight compression until 20 KPa is necessary 

to bring the starting configuration of the analyzed assembly closer to real conditions. 

Li2TiO3, Li2ZrO3, LiO2 and Li4SiO4 were considered as solid breeder materials to 

investigate their influence on the temperature profile of the bed. Figure 5–2 shows the thermal 

conductivity of Li2ZrO3, EU Ref., Li2TiO3 and LiO2 evaluated as a function of the temperature 

according to the correlation reported in [112], [139], [142] and [152], respectively.  

 

Figure 5–2: Thermal conductivity of the solid materials vs. temperature. Values obtained 

with correlations of [112] (Lorenzetto et al., 1995), [139] (Löbbecke et al., 2009), [142] (Saito 

et al., 1998) and [152] (Krikorian, 1985). 

The values refer to a porosity of 11%, which is the minimum percentage reached in the 

sintered pellets of EU Ref. (Li4SiO4 + 10 mol. % of Li2SiO3) [139] (Löbbecke et al., 2009). 

Since results observed in this chapter are related to steady state conditions, which are not 

influenced by the heat capacity, 𝑐𝑝 is kept constant at the value assumed at the starting 

temperature of 500 °C. The effective density and molecular mass are reported in Table 4–3 

and Table 5–1. While for the Li2ZrO3, LiO2 and Li2TiO3 the correlations reported in literature 

and obtained from different experimental campaigns give similar thermal conductivities, large 

deviations occur for Li4SiO4 between different studies. Therefore, three curves representing 

the thermal conductivities of Li4SiO4 (11% of porosity) are compared in Figure 5–3. The 
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related correlations are reported in Table 4–3 and Table 5–1. For the filling gas the 

implemented thermal properties are reported in Table 4–4. 

 
Figure 5–3: Thermal conductivity of Li4SiO4 vs. temperature. Values obtained with 

correlations of [139] (Löbbecke et al., 2009), [153] (Billone et al. , 1993) and [154] 

(http://www-ferp.ucsd.edu/LIB/PROPS/PANOS/li4sio4.html). 

Table 5–1: Physical characteristics of the solid materials 

Material Parameter Value 

LiO2 

𝑘𝑠 [W/m K] 
[(1 − 𝑝𝑟)

1.94](0.022 + 1.784 ∗ 10−4 𝑇)−1; T [K] [152] (Krikorian, 
1985) 

𝑐𝑝  [J/kg K] 
(2.5179 + (3.328 ∗ 10−4 𝑇) − (8.382 ∗ 104/ 𝑇2)) ∗ 1000;T [K] 

[152] (Krikorian, 1985) 
ρ [kg/m3] 2013(1- 𝑝𝑟)  

𝑚𝑠   [g/mol] 29.8814  

Li4SiO4 

𝑘𝑠 [W/m K] 
2.49 (1 − 𝑝𝑟)

5/3[(1 + 2.064 ∗ 10−3 𝑇)−1 + (1.85 ∗ 10−10 𝑇3)]; 
T[K] [153] (Billone et al. , 1993) 

𝑐𝑝  [J/kg K] 
(0.890 + (1.46 ∗ 10−3 𝑇) + (4.01 ∗ 103 ∗  𝑇−2)) ∗ 1000;T [K] 
[153] (Billone et al. , 1993) 

ρ [kg/m
3
] 2400(1- 𝑝𝑟) 

𝑚𝑠   [g/mol] 119.85 

Li4SiO4 

𝑘𝑠 [W/m K] 
1.98 + (

850

𝑇
) ∗ {(1 − 𝑝𝑟)/[1 + (𝑝𝑟 (2.14 − (7 ∗ 10

4 ∗ 𝑇)))]}; T [K] 

[154] (http://www-ferp.ucsd.edu/LIB/PROPS/PANOS/li4sio4.html.) 

𝑐𝑝  [J/kg K] 
939.9 + (1.4577 ∗  𝑇) − (4.011 ∗ 107/ 𝑇2) ; T [K] [154] 
(http://www-ferp.ucsd.edu/LIB/PROPS/PANOS/li4sio4.html.) 

ρ [kg/m
3
] 2400(1- 𝑝𝑟) 

𝑚𝑠   [g/mol] 119.85 

5.2 Temperature profile in the breeder zone 

In this section the temperature profile generated by neutronic heating along the thickness 

of the breeder bed of the DEMO HCPB blanket is evaluated. Starting from the simplified 

geometry described in the previous section and relevant conditions for a breeder pebble bed, 

different neutronic power densities were applied to resemble different radial positions of the 

bed. Afterwards, parametric sensitivity studies were carried out varying the bed thickness, the 

0

1

2

3

4

200 400 600 800 1000

k s
 [

W
/m

K
] 

T [°C] 

Li4SiO4
EU Ref.
Li4SiO4

[153] 

[154] 

[139] 

http://www-ferp.ucsd.edu/LIB/PROPS/PANOS/li4sio4.html


Thermal-DEM code for the breeder zone 

102 

 

filling gas type, the gas pressure, the solid breeder material and the packing factor. Then, the 

effect of the mechanical cycling load until the 30
th

 cycle is studied in order to evaluate the 

influence of the bed compaction on the temperature field of the bed. Finally the influence of 

the particles’ size is investigated.  

5.2.1 Influence of the neutronic power density 

Figure 5–4 shows the temperature profiles generated across the bed’s thickness for an OB 

HCPB breeding blanket with the conditions described in Section 5.1.1. The curves are 

generated dividing the assembly in 70 layers along the thickness and plotting the average 

temperature of the particles falling into the same layer at the center plane height of the layer. 

The different curves refer to different radial distances from the first wall. The radial distances 

correspond to a range from 50 to 450 mm resembling the radial extension of the breeder zone 

in the HCPB [147], [148] (Hernández et al., 2011; Hernández et al., 2017). A certain radial 

distance corresponds to a respective neutronic power density inside the solid breeder material. 

When the radial distance from the first wall increases, the neutronic power density decreases 

according to the plot shown in Figure 5–1. This generates the highest temperatures in the zone 

nearest to the first wall. Figure 5–5 exemplarily shows the obtained temperature field for 

different radial distances from the first wall. According to results shown in Figure 5–4 and 

Figure 5–5, the temperature field strongly changes with the radial position. The peak 

temperature of about 907°C is reached at the minimum distance of 50 mm considered in this 

study. This temperature is lower than the design limit of 920 °C, which is based on avoiding 

sintering of pebbles [155] (Hernández et al., 2012). Increasing the radial distance, the bed 

temperature strongly decreases reaching a maximum temperature lower than 580°C at 450 

mm from the FW. This affects the Tritium Residence Time (TRT), which is one of the 

important targets of the breeder blanket.  Indeed, the TRT strongly depends on the operating 

temperature of the breeder beds. Higher temperatures lead to a lower TRT, which is essential 

to minimize the tritium inventory inside the breeder zone avoiding a large tritium release in 

case of an accident. Therefore, even if the minimum temperature to avoid very low tritium 

diffusion is around 400°C, higher temperatures (but lower than the design limits) are aimed at 

to guarantee the minimum allowable TRT.  

The temperature profile generated in the breeder thickness of the HCPB blanket has been 

also reproduced by means of an analytical approach considering the bed as a continuum with 

effective thermal properties. The adopted method as well as the comparison between 

analytical and numerical DEM results are reported in the Appendix A. 
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Figure 5–4: Temperature profiles generated in the thickness of the breeder material at 

different radial distances from the first wall according to the nuclear heating reported in 

Figure 5–1. 

 
Figure 5–5: Temperature field predicted at several distances from the first wall (~50, 

150, 250, 350 and 450 mm) according to the nuclear heating reported in Figure 5–1. 

5.2.2 Influence of bed thickness 

In the past ten years, variations of the breeder bed thickness were proposed to optimize the 

temperature field in the breeder beds assuring an acceptable Tritium Breeding Ratio (TBR), 

tritium extraction and to guarantee the fulfillment of the temperature design limits [149] 

(Hernández et al., 2016). Starting from the standard conditions reported in Section 5.1.1, 

thicknesses of 10, 15 and 20mm were simulated to investigate the influence of the bed height 

on the temperature profile. In Figure 5–6, the obtained temperature profiles are compared. 

Results are plotted as a function of the normalized thickness and refer to a radial distance 

from the first wall of ~50 mm. As it has to be expected, due to the longer transport path, a 

larger bed thickness exhibits a higher peak temperature under the same imposed neutronic 

power density. For a thickness of 20mm, the maximum temperature overcomes the allowable 

limit by about 245 ºC, while in a 10 mm bed, the predicted maximum temperature is about 

240 ºC below the allowable limit for the ceramic breeder material.  This suggests that larger 

Radial distance from the FW 
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bed thicknesses are more suitable for zones with a lower neutronic power density and vice 

versa. Adjusting the thickness of the bed as a function of the neutronic power density, and 

thus of the radial distance from the plasma, a higher average temperature could be reached in 

the whole bed in favor of a lower TRT. 

 
Figure 5–6: Temperature profiles generated inside an OB blanket at ~50mm from the FW for 

three different bed thicknesses: 10, 15 and 20mm. 

5.2.3 Influence of the packing factor 

Figure 5–7 shows the temperature profiles generated along the thickness of the breeder bed 

under standard conditions (see Section 5.1.1) at ~50mm from the first wall and for different 

packing factors. Packing factors of about 62.5, 63, 64 and 65% were investigated. Increasing 

the packing factor means a proportional increase of the heat deposit per unit pebble bed 

volume. However, the results show a decrease of the maximum temperature with the increase 

of the packing factor. A maximum temperature of 913ºC is predicted for a PF of ~62.5%, 

while the peak temperature decreases to 892 ºC for a PF of 65%. The reduction of the peak 

temperature is due to the increase of the total number of thermal contacts (overlaps + gaps).  

Figure 5–8 shows the number of thermal contacts evaluated for the simulated assemblies as 

the sum of the contacts acting among particles (counted once for each contact pair) and 

between particles and the top/bottom wall. When the PF increases, the number of the thermal 

contacts for each particle inside the assembly increases, thus the number of possible heat flux 

paths from one particle to its neighbors also increases. This leads to an increase of the 

effective thermal conductivity of the bed determining a lower temperature.To demonstrate 

this effect, the code presented in [77] was used to evaluate the effective thermal conductivity 

of the investigated assemblies at an average temperature of about 770 ºC (the average 

temperature was estimated among the four investigated assemblies). Values of the effective 

thermal conductivities for the investigated assemblies characterized by different PFs are 

reported in Table 5–2.  
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Figure 5–7: Temperature profiles obtained inside an OB blanket at 50mm from the first wall 

for different PFs. 

 
Figure 5–8: Number of thermal contacts detected for different PFs. 

It can be seen that the relative increase of the effective thermal conductivity with the PF is 

larger than the relative increase of the heat deposit per unit pebble bed volume. Furthermore, 

Figure 5–8 suggests that the increase of the total number of thermal contacts with the packing 

factor is mainly due to the increase of the gap type thermal contacts involved in the heat 

transfer since the number of the overlaps is almost constant. This is due to the low initial 

stress level adopted (~20KPa) for the investigated assemblies. Therefore, for a given amount 

of particles with the same size distribution packed (according to the procedure described in 

Section 5.1) in a defined bed thickness with a fixed initial stress under a given neutronic 

power, assemblies exhibit a better heat exchange at higher PFs. This is due to the higher 

thermal conductivity determined by the larger amount of gap type thermal contacts involved 

in the heat transfer. 

Table 5–2: Effective thermal conductivities of the investigated assemblies with different PFs 

evaluated at a given average temperature of 770°C 

PF 0.625 0.63 0.64 0.65 

keff [W/mK] 1.0005 1.0278 1.0708 1.1239 
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5.2.4 Influence of the gas pressure and gas type 

In this section the influence of the gas pressure as well as of the filling gas type are 

analyzed. As explained in the Section 5.1.1, the tritium partial pressure is the driving force 

behind the tritium permeation into the cooling fluid [151] (Hanchar et al., 1982). Decreasing 

the purge gas pressure, the tritium permeation is consequently reduced in favor of a higher 

safety. However, even if the reduction of the purge gas pressure is beneficial for the reduction 

of the tritium permeation into the coolant, it also reduces the effective thermal conductivity of 

the breeder beds. It was reported that for pressures lower than 1.5 bar the Smoluchowski 

effect becomes important [156] (Yagi and Kunii, 1960) and [108] (Pupeschi et al., 2017). For 

this reasons, in the past years, the pressure of the purge gas was decreased from 4 to 2 bar 

[148] (Hernández et al., 2017) and [149] (Hernández et al., 2016), which is a trade-off 

between the minimization of the tritium and the maximization of the pressure to avoid the 

Smoluchowski effect. 

Figure 5–9 shows the influence of the helium pressure at 4, 2, 1 and 0.1bar on the 

temperature profiles generated for the same assembly under standard conditions (see Section 

5.1.1). As expected, an increase of the temperature is obtained when the gas pressure 

decreases. While slight increases of about 1.7 and 5% occur in terms of the peak temperatures 

when the gas pressure is reduced from 4 to 2 and 1 bar, respectively; the peak temperature 

increases by about 52% when the gas pressure decreases down to 0.1bar. At 1 and 0.1 bar, the 

temperature limit of 920°C is overcome reaching a maximum temperature of 933 and 1350°C, 

respectively. This behavior is due to the Smoluchowski effect, which determines a reduction 

of the thermal conductivity of the confined gas with the pressure. This leads to a reduction of 

the conductance in the thermal contacts, thus a lower heat flux is exchanged between 

particles.  

 
Figure 5–9: Temperature profiles inside an OB blanket at 50 mm for the first wall for 

different helium pressures.  
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Figure 5–10 shows the probability distributions of the effective thermal conductances 𝐶𝑖𝑗
𝑒𝑓𝑓

 

evaluated at 4, 2, 1 and 0.1 bar for the analyzed assembly. To evaluate the probability 

distribution reported in Figure 5–10, the thermal contacts among particles and between 

particles and the top/bottom wall were considered. As anticipated, the mean value of 𝐶𝑖𝑗
𝑒𝑓𝑓

 is 

shifted to lower values when the gas pressure decreases. 

 
Figure 5–10: Probability distributions of the effective thermal conductances 𝐶𝑖𝑗

𝑒𝑓𝑓
 evaluated 

at 4, 2, 1 and 0.1 bar for the same polydispersed assembly. 

Considering an accident scenario such as an ex-vessel LOCA determined by the failure of 

the main helium pipes forming the first confinement barrier [157] (Boccaccini et al., 2006), 

the subsequent evolution of the accident could lead to the entrance of air into the breeder 

zone. In Figure 5–11, the temperature profiles generated inside the breeder beds under 

standard conditions (see Section 5.1.1) at 50 mm from the first wall are reproduced changing 

the filling gas from helium to air. Furthermore the influence of the gas pressure at 2 and 1 bar 

is analyzed for both gases. Comparing the results obtained at a given gas pressure, an 

increasing of ~30-40% is observed in terms of peak temperature when the filling gas is 

changed from helium to air. This is due to the different thermal conductivities of the two 

gases, indeed the thermal conductivity of the air is of about 40% lower than the helium 

thermal conductivity. 

Figure 5–12 shows the probability distributions of the effective thermal conductances 

evaluated for thermal contacts considering only gap type thermal contacts. Since air has a 

lower thermal conductivity, for a fixed particle configuration and at a given pressure, the peak 

of the distribution is shifted to lower values compared to helium. Furthermore it has to be 

noticed that decreasing pressure from 2 to 1 bar, the peak temperature in air is reduced to 

about 1.6% vs. 3% in helium. This reflects the different reduction of the gas thermal 
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conductivity with the pressure. In Figure 5–13, the S-shape curves representing the reduction 

of the gas thermal conductivity with the gas pressure are reported for helium and air at 500 

°C. The curves are obtained by means of Eqs. 4.12-4.15, for a fixed gap size of 30 μm and the 

gas properties reported in Table 4–4. Both gas thermal conductivities shown in Figure 5–13 

are normalized to the respective gas thermal conductivity at unconfined condition. In air, the 

onset of the transition region is shifted to lower pressures resulting in a larger continuum 

region. This determines a lower slope of the curve between 1 and 2 bar in air than in helium. 

In particular, in the pressure range 1-2 bar, the helium thermal conductivity decreases by 

about 40%, while a reduction of ~3% is observed in air. Further details about the 

Smoluchowski effect inside packed beds are reported in Appendix B, where the variation of 

the S-shape curves as a function of temperature and gap size is evaluated according to Eqs. 

4.12-4.15. 

 
Figure 5–11: Temperature profiles generated at 50 mm from the FW with helium and air used 

as filling gas both at 2 and 1 bar. 

 
Figure 5–12: Probability distributions of the effective thermal conductances 𝐶𝑖𝑗

𝑒𝑓𝑓
 evaluated 

using helium and air at 2 bar as filling gas. 
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Figure 5–13: S-shape curves obtained for helium and air at 500 °C for a fixed gap size of 30 

μm by means of Eq. 68-71 applying values reported in Table 4–4 

5.2.5 Influence of the solid material 

In order to study the influence of the solid material, three different investigations have 

been carried out. First, sensitivity studies were performed varying the thermal conductivity of 

the solid material. Then, the temperature profiles generated using different tritium breeder 

materials have been compared and the influence of the porosity was investigated. Finally, the 

influence of different correlations reported in literature characterizing the thermal 

conductivity of the same solid material was analyzed. Simulations were carried out under the 

standard conditions defined in the Section 5.1.1 at 50mm from the first wall. 

For the first investigation, the thermal conductivity of the EU Ref. material was first varied 

by ±5% according to the uncertainty reported in [132] (Löbbecke and Knitter, 2007) to 

evaluate the influence of the experimental error on the simulated thermal behavior of the bed. 

Then the thermal conductivity was varied by ±10% to investigate the maximum acceptable 

deviation for the fulfillment of the temperature design limits.  

The results are summarized in Figure 5–14 (dashed and dotted lines) and compared to the 

temperature profile obtained with the reference thermal conductivity (solid black line). The 

results confirm that a decrease of the solid thermal conductivity leads to an increase of the 

temperature in the bed and vice versa. In particular, a variation of ±1.3% and ±3% in terms of 

peak temperature was predicted when the thermal conductivity is changed by ±5% and ±10%, 

respectively. While a reduction of 5% determines a peak temperature of about 917 °C, 

fulfilling the temperature limit of 920 °C, a reduction of 10% generates an unacceptable 

maximum temperature of 931°C in the simulated conditions. Increasing the thermal 

conductivity by about 5% and 10%, the peak temperature decreases without compromising 

the TRT. 
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Figure 5–14: Temperature profiles generated at 50 mm from the first wall varying the thermal 

conductivity of the EU Ref. material. 

As second step, the temperature profiles obtained using EU Ref., Li2ZrO3, LiO2 and 

Li2TiO3 as solid materials with the same porosity (11%) have been evaluated. Since the solid 

materials exhibit different thermal conductivities under different porosities (Löbbecke and 

Knitter, 2007 [132]; Saito, 1998 [142]; Gierszewski, 1993 [143]), the influence of the porosity 

was investigated, additionally, since the porosity of the currently produced pebbles ranges 

from ~ 5% [7] (Shikama et al., 2008) to ~13% [13] (Hoshino, 2013).  This sensitivity study 

was carried out for Li2TiO3 reducing the porosity from 11 to 5%. The results are shown in 

Figure 5–15. The solid lines refer to different solid materials with the same porosity of 11%, 

while the dashed line indicates the temperature profile of Li2TiO3 pebbles at 5% of porosity. 

The results demonstrate that materials with a higher thermal conductivity as LiO2, more easily 

transfer the heat generated by the neutronic heating reaching a lower temperature for the 

given thickness. According to thermal conductivities reported in Figure 5–2, a slight deviation 

occurs between results obtained using Li2TiO3 and EU Ref. materials. Comparing the solid 

and dashed red curve, the influence of the porosity can be estimated for Li2TiO3. The porosity 

dependent thermal conductivity was calculated with the correlation reported in [142] (Saito et 

al., 1998). Due to the reduction of the voids, when the porosity decreases the thermal 

conductivity of the solid material increases determining a lower temperature in the assembly. 

In this specific case a reduction of 6% in porosity leads to a reduction of about 2.6% in terms 

of peak temperature.  

Finally the influence of the implemented correlation used to evaluate the thermal 

conductivity of a solid material has been investigated. In Figure 5–16, three temperature 

profiles are shown. The three curves are generated using three different correlations to 

evaluate the thermal conductivity of Li4SiO4 at 11% of porosity presented in Figure 5–3. 

While a negligible difference occurs using the correlations reported in [139] and [154], the 
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temperature profile using the correlation given in [153] greatly differ. Due to the much lower 

thermal conductivity evaluated in [153], the peak temperature is well above the temperature 

limit for Li4SiO4 and the major part of the bed thickness experiences temperatures above 

920°C. 

 
Figure 5–15: Temperature profiles generated at 50 mm from the first wall using the EU Ref., 

Li2ZrO3, LiO2 and Li2TiO3 as solid materials. 

 
Figure 5–16: Temperature profiles generated at 50 mm three different correlations reported in 

literature for the thermal conductivity of the Li4SiO4 at 11% of porosity. 

5.2.6 Influence of the cycling load 

In order to investigate the influence of the compression level and particle rearrangement on 

the heat transfer in the breeder pebble beds, a cyclic load was applied on the standard 

assembly (see Section 5.1.1). Figure 5–17 shows the stress-strain curves resulting from the 1
st
, 

2
nd

, 5
th

, 10
th

 and 30
th

 cycle, which were considered for the analysis reported in this section. 

The assembly is cyclically loaded until 6MPa and unloaded up to ~20 KPa. In Figure 5–18 the 

temperature profiles at 50 mm from the first wall at ~20 KPa and ~6MPa for the listed cycle 

number are shown. For a given stress level, the results exhibit a negligible variation of the 

temperature profile with cycling. In terms of peak temperature, a reduction of about 0.5% is 

[152] [139] 

 
[142] 

[112] [142] 

[154] [153] [139] 
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detected after thirty cycles. For the given cycle, the peak temperature decreases by about 1% 

when the assembly is compressed from about 20KPa to 6MPa.  

 
Figure 5–17: Stress-strain curves resulting from the 1

st
, 2

nd
, 5

th
, 10

th
 and 30

th
 load cycle. 

 

Figure 5–18: Temperature profiles generated at 50 mm from the first wall at the compression 

state of the corresponding cyclic point reported in the legend. 

In Figure 5–19 and in Figure 5–20, the variation of the total effective thermal conductances 

and of the total contact number, given by overlap type contacts (red zone) and gap type 

thermal contacts (blue zone), are shown as a function of the compression state for the 

corresponding cyclic load, respectively. Here, total effective thermal conductance is defined 

as the sum of all thermal conductances of the thermal contacts detected, first, among particles 

in the assembly and, second, with the top and bottom walls. Peaks and valleys alternate when 

the assembly is loaded and unloaded, respectively. By loading the assembly, new contacts are 

generated, small gaps turn in overlaps and the existing contacts areas increase. This leads to 

an increase of the total thermal conductance given by overlaps associated to a reduction of the 
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gap total thermal conductance. The opposite occurs when the assembly is unloaded. 

Furthermore, after each unloading, the number of the particles rearranged into a permanent 

state of equilibrium slightly increases determining a higher number of contacts and thus a 

higher 𝐶𝑠𝑢𝑚_𝑜𝑣
𝑒𝑓𝑓

. This leads to an increase of the total heat flux exchanged among particles 

generating the slight reduction of the temperature field shown in Figure 5–18. 

 
Figure 5–19: Total effective thermal conductances 𝐶𝑠𝑢𝑚

𝑒𝑓𝑓
 of gaps and overlaps evaluated at the 

compression state of the corresponding cyclic load reported in the legend. 

 
Figure 5–20: Thermal contact number of gaps and overlaps evaluated at the compression state 

of the corresponding cyclic load reported in the legend. 

5.2.7 Influence of the particle size 

In this section, the influence of the particle size on the heat transfer in the breeder pebble 

bed was investigated. Temperature profiles generated in the bed thickness with assemblies of 

monosized and polydispersed particles were compared. In Figure 5–21, four temperature 

profiles obtained under standard condition (see Section 5.1.1) referring to a polydispersed 

(Figure 4–3) packed bed and three assemblies of monosized particles with different radius of 

0.13, 0.22 and 0.32 mm are shown. The three chosen radii refer to the maximum, minimum 

and the average value of the size distribution given in Figure 4–3. When the radius of the 

particles increases, the peak temperature reached inside the bed decreases. This occurs 

because larger contact areas are involved in assemblies composed of bigger spheres. As 

shown in Figure 5–22, when the radius of the particles increases, the mean contact area radius 

is shifted to higher values. Larger contact areas determine a higher effective thermal 
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conductivity of the bed leading to a lower temperature field in the bed. For the same reason, 

since the main value of the radius of the applied polydispersed size distribution is about 0.15-

0.16mm, the temperature profile of the polydispersed assembly falls between curves of 

monosized packed particle with a radius of 0.13 and 0.22mm. Therefore, under the simulated 

conditions if the peak of the size distribution of the currently produced pebbles is shifted to a 

lower size, it has to be expected that there is a slight increase of the maximum temperature 

generated in the bed that is beyond the design limits.  

 
Figure 5–21: Temperature profiles at 50 mm from the first wall with assemblies of 

polydispersed (see Figure 4–3) and monosized particles with different radius. 

 
Figure 5–22: Probability distribution of contact radii. Different curves refer to assemblies of 

polydispersed (see Figure 4–3) and monosized particles with different radius. 
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Chapter 6                                                    

Conclusions 

In the framework of the research studies dedicated to the design of the solid breeder 

blanket concept, the knowledge of the thermo-mechanical behavior of the ceramic breeder 

pebble beds at fusion relevant conditions is of primary importance. Designers are constantly 

supported by experiments and numerical simulations to establish an adequate design of the 

blanket. In this sense, the DEM is an essential tool to predict the behavior of fusion pebble 

beds as result of the interactions occurring in the bed such as particle-particle, particle-wall 

and particle-purge gas. Furthermore, modelling particles individually and studying the bed at 

the granular level phenomena otherwise inaccessible with other tools can be investigated. In 

this work, the DEM approach was used to investigate first the influence of the particles’ shape 

on the mechanical behavior of the breeder pebble beds and then the heat transfer inside these 

multiphase material systems. 

Starting from the existing in-house mechanical DEM code, developed to study the 

mechanical behavior of ceramic breeder pebble beds composed by perfectly spherical spheres, 

a new method was developed to study the influence of the particles’ shape. The slight 

deviation from a perfect spherical shape of the currently produced pebbles was simulated by 

means of ellipsoidal particles. Assemblies of monosized ellipsoidal particles highly packed in 

a virtual cubic box under a periodic configuration were generated and then compressed in the 

axial direction to study the mechanical response. The results show that the initial packing 

factor as well as the aspect ratio of the particles play an important role in the mechanical 

response to an external excitation. A softer behavior is observed for low packing factors and 

high aspect ratios. An irreversible macroscopic deformation of pebble beds is seen for the 

investigated assemblies, where only elastic particles are simulated. This suggests that the 

rearrangement of the particles composing the bed is an important mechanism for macroscopic 

irreversibility. It was found that particles with high aspect ratios rearrange more easily due to 

the higher mobility determining a larger residual strain after unloading. This behavior also 

suggests that these structures are further away from their maximum PF, compared to 

assemblies of spheres. Therefore, to avoid the generation of large gaps between pebbles and 

walls during the blanket operation, PFs higher than 64% should be considered as targets for 

particles with sphericities larger than 1. In this sense, further analyses are needed to extend the 

simulation to polydispersed assemblies of ellipsoidal particles with a relevant distribution of 

the sphericity. Analyzing the microscopic interactions, correlations linking the average and 
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maximum normal forces as well as the coordination number to the macroscopic hydrostatic 

pressure were found. These correlations together with the statistical analysis of the force 

distribution in the assemblies give important information as basis for the estimation of the 

crash probability of the particles, which is essential to evaluate the dust formation inside the 

bed. 

For the second aim of this work, an innovative in-house thermal DEM was developed to 

investigate the heat transfer in ceramic breeder pebble beds accounting for the Smoluchowski 

effect for the first time in a DEM code. This represents a step forward for thermal DEM 

simulations allowing the investigation of the gas pressure in granular beds. According to the 

Smoluchowski effect, when a gas is confined in small gaps, its thermal conductivity decreases 

with the gas pressure, affecting the effective thermal conductivity of the bed and, thus, its 

thermal behavior. In order to simulate the heat transfer among particles, a 3D resistor network 

model was implemented, where contacting particles and particles separated by relevant gaps 

up to half of their equivalent radius were considered as thermal contacts. 

First, the code was used to estimate the effective thermal conductivity of the bed under an 

imposed thermal gradient at a certain temperature. The code was calibrated and validated 

through a comparison to experimental results reported in literature. The numerical results 

perfectly resembled the experimental data with a good agreement for different gas types, 

ceramic materials, temperatures, gas pressures and compression states of the bed, confirming 

the predictive capability of the code. While a negligible influence of the compression state on 

the effective thermal conductivity of the bed was observed, a strong influence of the gas 

pressure was evaluated. The typical S-shape curve characteristic of the Smoluchowski effect 

was successfully reproduced indicating a strong reduction of the effective thermal 

conductivity of the bed for helium pressures lower than 1 bar. The solid materials as well as 

the gas type were found to play a major role in the heat transfer mechanism. 

Afterwards, the code was applied to estimate the temperature field generated by neutronic 

heating in the breeder zone of the DEMO HCPB blanket. The effect of relevant blanket 

parameters such as packing factor, pebble material/size, characteristics of the purge gas, 

compressive load and bed height were investigated. Generated under a periodic configuration 

for the lateral sides, the used assemblies represent a column cutout of the breeder beds 

bounded by an upper and bottom wall simulating the cooling plates. A strong influence of the 

neutronic heating acting along the radial length of the breeder zone was established. 

Increasing the radial distance from the plasma face, the neutronic heating decreases, 

determining a lower bed temperature for a given thickness. In particular, for a bed thickness 
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of 15 mm, a peak temperature of about 907 and 573°C was detected at 50 and 450 mm from 

the first wall, respectively. Under the simulated conditions, the predicted values satisfy the 

temperature limit of 920°C avoiding the sintering of the pebble. Sensitivity studies of the bed 

thicknesses showed that higher beds generate higher temperatures under the same imposed 

power density. While at 50mm higher bed should be avoided to be in agreement with the 

temperature limit, thicker beds for zones with a lower power density are suggested to further 

decrease the TRT. In order to reduce the tritium permeation in the cooling plates, a reduction 

of the purge gas pressure was recently adopted indicating 2 bar as suitable for the breeder 

zone of the HCPB blanket. This value is the best compromise between reducing the tritium 

permeation and avoiding a strong reduction of the effective thermal conductivity of the bed 

due to the Smoluchowski effect. Parametric sensitivity studies showed that reducing the gas 

pressure from 2 to 1 bar, an increase of the peak temperature by 5% is detected and the limit 

of 920°C is overcome. Simulating an accident scenario of an ex-vessel LOCA, air was used as 

filling gas. Due to the lower thermal conductivity of air compared to helium, the estimated 

peak temperature of the bed strongly increases exceeding 1100°C. Sensitivity studies 

demonstrate the importance of the size distribution of the produced pebbles. In particular, 

when the peak of the size distribution is shifted to higher diameters, a lower temperature is 

reached in the bed. A variation of 40% of the pebbles’ diameter determines a variation of 

about 3.4% of the peak temperature in the bed. Finally, the influence of the solid material was 

evaluated and the effect of the porosity was estimated. According to the obtained results, 

when the porosity increases, the thermal conductivity of the solid material decreases 

generating a lower temperature field in the bed. At the same time, studies revealed the 

necessity to create a reliable database characterizing the thermal properties of the solid 

materials with unique and valid correlations.  

The developed thermal DEM code presented in this chapter is a first approach to 

investigate the heat transfer inside the breeder material system for a fusion reactor. Due to the 

BB relevant conditions, the proposed model is a good approximation of the physical reality. 

However, in order to extend the applicability of the code to other fields and materials, 

phenomena such as the thermal radiation and thermal expansion need to be taken into 

account. 
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Appendix A 

Analytical estimation of the temperature profile in the breeder 

zone 

Here, the temperature profile generated from the neutronic heating along the pebble bed 

thickness is analytically calculated. To this end, starting from the heat conduction equation 

𝜌𝑐𝑝
𝜕𝑇

𝜕𝑡
− 𝛻 ∙ (𝑘 𝛻𝑇) = 𝑞̇𝑣 , 

where mass density 𝜌 [kg/m
3
], heat capacity 𝑐𝑝 [J/kg K], and thermal conductivity 𝑘 [W/mK] 

are the properties of the medium while 𝑞̇𝑣 [W/ m
3
] is the volumetric heat source. Under 

stationary condition, constant properties of the medium and one dimensional cross plane 

conduction through an infinite plate, the heat conduction equation reduces to 

𝑘 
𝜕2𝑇

𝜕𝑥2
+ 𝑞̇𝑣  = 0 . 

According to the conditions used in the DEM simulations, the equation was solved for an 

infinite plate with a thickness H of 15 mm and applying a constant temperature Tc of 500 ºC at 

x=0 and x=15 mm as boundary conditions. The analytical solution to evaluate the temperature 

of the bed in the thickness reads as  

𝑇 = −
𝑞̇𝑣 𝑥

2

2 𝑘
+ 
𝑞̇𝑣 𝐻 𝑥

2 𝑘
+ 𝑇𝑐 

The EU Ref. breeder bed packed at 64% is considered as a continuum, thus the power 

density acting on the solid material (reported in Figure 5–1) is multiplied by 0.64 and applied 

as volumetric heat source for the whole bed (pebbles+voids). Like in the DEM simulations, a 

constant temperature of 500 ºC was applied as boundary condition at x=0 and x=15 mm. In 

particular, an effective power density of 14.9 MW/m
3
 was applied to represent the thermal 

behavior of the bed at 50mm from the first wall. The effective thermal conductivity of the bed 

in helium and air at 2 bar is set according to the equations reported in [108] (S. Pupeschi et 

al., 2017), which are 

𝑘𝑒𝑓𝑓 = 0.902 + (0.000166 ∗ 𝑇[°𝐶]), 

and 

𝑘𝑒𝑓𝑓 = 0.378 + (0.000293 ∗ 𝑇[°𝐶]), 

respectively. 
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In Figure A–1 and in Figure A–2, the analytical results obtained using helium and air at 2 

bar as filling gas are compared to the temperature profile predicted by means of the DEM 

code for an assembly located at 50 mm, respectively. Different curves (dashed lines) refer to 

temperature profiles obtained by means of the analytical method applying the effective 

thermal conductivity at different average bed temperatures.  

 
Figure A–1: Comparison between the temperature profiles obtained with the DEM code and 

the analytical method at different average bed temperatures in helium at 50mm from the first 

wall. 

 
Figure A–2: Comparison between the temperature profiles obtained with the DEM code and 

the analytical method at different average bed temperatures in air at 50mm from the first wall. 

In Figure A–1, a good agreement between DEM results (solid black line) and analytical 

values obtained at 800ºC in helium is shown, while a negligible difference with the 

temperature profile obtained at 900 ºC is observed. In Figure A–2 analytical results in air at 

800 ºC perfectly match the temperature profile obtained with the DEM code. In terms of peak 

temperature, which has to be controlled to avoid the sintering of the pebbles, a difference of 

about 8% occurs between DEM results and analytical values at 1100 ºC. The difference is due 
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to the approximation introduced by the correlations to evaluate the effective thermal 

conductivity. Indeed an uncertainty of about 10% is declared in [108] (S. Pupeschi et al., 

2017) for the used equations and the error is lower than the uncertainty. The good agreement 

between the two approaches confirms the suitability simulating pebble beds as a continuum, 

and, thus, it confirms the possibility to determine accurate results about the thermal behavior 

of ceramic breeder pebble beds by means of FEM approaches.
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Appendix B 

Smoluchowski effect on the thermal conductivity of confined gases 

In this appendix the influence of the gas temperature and the size of the gas confining 

space on the Smoluchowski effect is presented. Applying the Eqs. 4.12-4.15 with the values 

reported in Table 4–4, the S-shape curves describing the variation of the thermal conductivity 

with the gas pressure were reproduced for helium. The influence of the gas pressure on the 

thermal conductivity of helium for different temperatures and gap sizes is shown in Figure B–

1 and Figure B–2, respectively. In Figure B–1 results refer to a constant gap of 30 μm, while a 

temperature of 500°C was used for values reported in Figure B–2. For a given gap size a 

temperature increase shifts the onset of the transition region to higher pressures, while for a 

given temperature the increase of the gap size shifts the onset of the transition region to lower 

pressures. 

 
Figure B–1: Variation of the helium thermal conductivity as a function of the gas pressure at 

different average temperatures for a given confining gap size of 30 μm. 

 
Figure B–2: Variation of the helium thermal conductivity as a function of the gas pressure for 

different values of confining gap size at 500°C.
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