
Masterarbeit

Tools and Algorithms on Real
Numbers

for Signal Machines

Jakob Dahlum

Abgabedatum: 30.04.2018

Betreuer: Dr. Thomas Worsch

Institut für Theoretische Informatik

Fakultät für Informatik

Karlsruher Institut für Technologie

Hiermit versichere ich, dass ich diese Arbeit selbständig verfasst und keine anderen

als die angegebenen Quellen und Hilfsmittel benutzt, die wörtlich oder inhaltlich über-

nommenen Stellen als solche kenntlich gemacht und die Satzung des Karlsruher Instituts

für Technologie zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen

Fassung beachtet habe.

Karlsruhe, den 30.04.2018

Abstract
Signal machines are a generalization of cellular automata which, in-

stead of using discrete cells, perform computations on the real number line

by sending dimensionless signals with varying velocities along the line. When-

ever multiple signals collide, we can delete them, change their velocity or

create new signals. We present algorithms using this computational model,

also called abstract geometrical computation, to perform a variety of tasks.

We manipulate and sort intervals, execute a range of arithmetic operators,

outline various number representations as well as techniques to switch be-

tween them and perform generalizations from the discrete to the continuous

realm in other areas like formal languages.

Zusammenfassung
Signalmaschinen sind eine Verallgemeinerung von Zellularautomaten,

welche Berechnungen auf dem reellen Zahlenstrahl durchführen, indem sie

dimensionslose Signale mit unterschiedlichen Geschwindigkeiten entlang

des Strahls senden, anstatt diskrete Zellen zu verwenden. Wenn mehrere

Signale kollidieren, können sie entfernt, ihre Geschwindigkeit verändert oder

neue Signale erzeugt werden. Wir präsentieren Algorithmen, die dieses

Berechnungsmodell, auch genannt abstrakte geometrische Berechnung, für

eine Vielzahl von Problemen benutzen. Wir manipulieren und sortieren In-

tervalle, führen eine Reihe arithmetischer Operatoren aus, entwerfen ver-

schiedene Zahlendarstellungen, sowie Techniken, um zwischen ihnen zu

wechseln und führen Verallgemeinerungen vom Diskreten in das Kontinu-

ierliche in anderen Bereichen wie formalen Sprachen durch.

Acknowledgements

I would like to thank Dr. Thomas Worsch for the opportunity to work on such a

fresh topic which at times felt more like solving entertaining puzzles than actual work.

I appreciate his patience and his input that raised all sorts of new ideas along the way,

as well as his useful ideas that helped solving some of the more challenging problems.

Contents

Contents

1 Introduction 8
1.1 Motivation . 8

1.2 Related Work . 9

1.3 Organization of this Thesis . 9

2 Preliminaries 10
2.1 Cellular Automata . 10

2.2 Signal Machines . 12

3 Basic Tools 17

4 Simulation of Cellular Automata 26

5 Arithmetic on Real Numbers 30
5.1 Addition and Subtraction . 30

5.2 Multiplication and Division . 34

5.3 Complex Arithmetic Operators . 57

6 Generalized Formal Languages 69

7 Numbers in Generalized Bases 76

8 Sorting Intervalls 88

9 Conclusion 97
9.1 Future Work . 97

5

List of Figures

List of Figures

1 Moving Intervals . 18

2 Stretch and Compress . 18

3 Binary Counter . 19

4 Storing Signals . 21

5 From Interval to Marking (1) . 22

6 From Interval to Marking (2) . 22

7 Generator . 23

8 Binary Representation . 25

9 Simulation of a one-dimensional cellular automaton 27

10 Simulation of a one-dimensional cellular automaton in constant space . . 29

11 Singularity during a simulation in constant space 29

12 Addition . 31

13 Flipping the sign . 32

14 Subtraction . 33

15 Gadgets . 34

16 Multiplicative Inverse (1) . 37

17 Multiplicative Inverse (2) . 38

18 Multiplicative Inverse (3) . 39

19 Singularity Problem . 40

20 Multiplication (1) . 43

21 Multiplication (2) . 44

22 Improved Multiplication (1) . 46

23 Improved Multiplication (2) . 46

24 Improved Multiplication (3) . 47

25 Improved Multiplication (4) . 49

26 Improved Multiplication (5) . 49

27 Improved Multiplication (6) . 50

28 Division (1) . 53

29 Division (2) . 54

30 Improved Division . 56

31 Integer Exponentiation . 58

32 Factor Decomposition . 60

33 Finding Common Factors . 61

34 Multiplication of Multiple Factors . 63

35 Square Root . 65

36 Logarithm . 68

37 Mirror Image . 70

38 Detecting Length-independent Palindromes 72

39 Detecting Length-dependent Palindromes 73

40 Word Exponentiation . 75

41 Interval Number . 77

42 Canonical Interval Numbers: Removing and Inserting Boundaries 77

43 Canonicalization First Phase . 79

44 Canonicalization Second Phase . 80

6

List of Figures

45 Canonicalization First Phase Iteration (1) 81

46 Canonicalization First Phase Iteration (2) 82

47 Compressing Canonical Numbers Further 86

48 Interval Comparison . 89

49 Comparison Con�ict (1) . 91

50 Comparison Con�ict (2) . 91

51 Comparison Con�ict (3) . 92

52 Comparison Con�ict (4) . 92

53 Bilateral Interval Sort (1) . 93

54 Bilateral Interval Sort (2) . 94

55 Hourglass Compression . 96

7

1 Introduction

1 Introduction

1.1 Motivation

In theoretical computer science cellular automata are a popular model for paral-

lel computation. In contrary to Turing machines which consist of one operating unit,

they are an array of many automata, called cells, which compute at the same time. For

this, each cell is provided with the information about other cell’s states that lie within

a certain neighborhood, based on which the next computational step is executed. This

allows the simulation of phenomena appearing in nature [10], in which a large number

of identical locally operating entities work together to perform complex tasks. Typical

examples of this self-organization are �ocks of birds or ant colonies, but also, with re-

gard to more primitive organisms, growth patterns of fungi or the growth of bacteria

colonies [6]. The domain of human life also provides dynamics like car tra�c which can

be mapped to and simulated by cellular automata [9].

One disadvantage of cellular automata is that both space and time are discrete. It is pos-

sible to let information move from cell to cell with varying speeds as so called signals,

but these signals become increasingly erratic the closer we look. There is no possibility

to achieve a �uent transition from one cell to the next, forcing the modeled system to be

discretized and making it less exact than the natural behavior. Thus, the next logical step

is to perform a generalization of cellular automata. There already exist a variety of gen-

eralizations like higher-dimensional cellular automata or parallel Turing machines [13],

though they do not alter the underlying discrete structure. We now go one step further

and replace the cellular structure with the continuous number line of the real numbers.

We also permit a continuous �ow of time. This allows us to send signals with arbi-

trary velocities along the number line without losing precision through discretization.

On the other hand, there exist no particular automata and there is no clearly de�ned

neighborhood. In addition, there is no singular computational step as the �ow of time

is continuous. On these grounds not the automata, but the signals themselves are the

entities which carry out the computation. One can mark arbitrary points on the number

line via stationary signals which do not move and based on their functionality are simi-

lar to automata. Because of the missing neighborhood, changes of states can only occur

when two or more signals meet at the same position at one point in time. We denote

this generalization of cellular automata as signal machines. Since existing works have

only sparsely dealt with actual algorithms for signal machines, we want to lay a ground

work and especially cover a range of important arithmetic operators.

8

1.2 Related Work

1.2 Related Work

The �eld of signal machines is still relatively unexplored. Signal machines were in-

troduced under the umbrella term abstract geometric computation by Durand-Lose [3], [4].

Their computing capabilities are further investigated in [5]. The works of Durand-Lose

restrict the underlying structure to rational numbers, however, the de�nitions can also

be applied to real numbers. Note, that in the works of Durand-Lose space time dia-

grams show time �owing from bottom to top whereas we have the time �ow from top

to bottom. One di�culty that emerges when working on the continuous number line

are accumulations of signals, so called singularities, which destroy information or force

signal machines to halt. Di�erent approaches to handle singularities can be found in the

works of Durand-Lose [3] and Wacker [12].

1.3 Organization of this Thesis

We introduce the relevant de�nitions for cellular automata and signal machines in

section 2. Basic tools which are frequently used for more complex tasks are described in

section 3. The proof that signal machines are truly a generalization of cellular automata

by demonstrating a simulation of cellular automata by signal machines is described in

section 4. A wide range of algorithms for arithmetic operators, from addition to loga-

rithm, are presented in section 5, followed by a generalization of formal languages in

section 6. We demonstrate an analogue to the usual positional notation system in the

real-valued domain in section 7 and sort intervals by their lengths in section 8. Lastly,

we come to a conclusion and present open questions for future work in section 9.

9

2 Preliminaries

2 Preliminaries

2.1 Cellular Automata

Signal machines are a generalization of cellular automata, so we de�ne the neces-

sary discrete properties of cellular automata �rst and then generalize them to real-valued

properties. For a detailed description of cellular automata, we refer you to the paper by

Codd [2].

De�nition 1. One-Dimensional Cellular Automaton  = (R, Q, N , �)

Let space R be the set ℤ of integers and neighborhood N be {−1, 0, 1}. Let Q be

a �nite set of states. Each value z ∈ R describes a cell which is a �nite automaton in a

state q ∈ Q. The neighborhood of z corresponds to the cells z−1, z, z+1. Let � ∶ Q
N
→ Q

be a local transition function where Q
N

is the set of all functions l ∶ N → Q. We call l

a local con�guration, which maps a neighborhood to its corresponding states. The local

transition function � assigns a new state to a cell based on the states of its neighborhood.

Cellular automata can be multidimensional and thus operate on other spaces. They

may also have other neighborhoods. For this paper it is su�cient to restrict cellular

automata to the de�nition above. All non-de�ned inputs for � shall not change a cell’s

state, in case � is only partially de�ned.

De�nition 2. (Global) Con�guration c ∶ R → Q

The global con�guration or just con�guration c of a cellular automaton assigns a

state to each cell in the space R. The con�guration given to the cellular automaton as an

input is called initial con�guration. When the calculation is completed, the automaton

reaches a so called �nal con�guration which does not change when applying the local

transition function to any cell.

De�nition 3. Global Transition Function Δ ∶ QR
→ Q

R

The global transition function Δ applies the local transition function � to each cell

of the space R simultaneously.

De�nition 4. Passive Set, Dead State

The passive set is a set P ⊆ Q such that for local con�guration l ∶ N → Q, if

l(n) ∈ P ∀n ∈ N it is true that �(l) = l(0). This means, that if the neighborhood of cell z

only consists of cells in states from the passive set, z will not change its state when Δ is

10

2.1 Cellular Automata

applied. A state d is considered dead, if �(l) = d for all local con�gurations l ∶ N → Q

with l(0) = d . That is, a cell in a dead state never changes its state.

Usually cellular automata have �nite inputs, that is, a �nite number of cells is in a

state that is not from the passive set. All other cells can initially be in a state from the

passive set or even in a dead state, if the computation is in-place.

De�nition 5. Space Time Diagram

The space time diagram shows a sequence ci , i = 0, ..., tmax of con�gurations, one

underneath the other, where c0 is the initial con�guration and ci+1 = Δ(ci). The �ow

of time in this paper will be from top to bottom. Note, that other papers may use the

opposite direction.

De�nition 6. (Discrete) Signal

A signal s ∶ ℕ → R describes information that is encoded in one or more states

and moves through space R. At time t ∈ ℕ, s is in position rt ∈ R. The speed of a signal

has an upper bound de�ned by the size of the neighborhood. Following our established

neighborhood of {−1, 0, 1}, a signal can move at most one cell when applying the global

transition function. A signal can have a rational speed spd =
u

v
∈ ℚ by moving a total

of u cells in v time steps. Rational speeds usually require multiple states to function. A

signal with a speed of zero is called a stationary signal or a marking.

De�nition 7. Register

Cells can have multiple states q1, ..., qn at once by de�ning the tuple (q1, ..., qn) as

one state q
′
∈ Q. We say that the automaton has n registers. One can imagine this as

parallel tapes the automaton can use for additional information.

One-dimensional cellular automata are Turing-complete [11]. For each Turing ma-

chine  there exists a one-dimensional cellular automaton  as de�ned above, such that

 simulates  without loss of time.

11

2 Preliminaries

2.2 Signal Machines

We now leave the discrete room ℤ of integers and consider the real number line ℝ.

Instead of mapping each number in ℝ to a state, we restrict ourselves to a �nite set of

signals that move along the number line. When two or more signals collide, they can

change their properties, be removed completely or new signals can be created. Analo-

gously to cellular automata, signals only act locally, that is, they do not know at which

part of the number line they are located at and can only interact with other signals upon

collision. This is the basis for our computations. Number values are intuitively encoded

on the number line by their distance to zero, where numbers left of zero are negative.

For this, zero has to always be marked on the number line. We will use copies of the

zero signal in some algorithms which we can move to perform calculations, that are de-

pendent on the zero, independently from the actual position of zero on the number line.

For this, let 0 be the actual number on the number line and Zero be the copy that can

be moved. Initially, Zero is located at position 0. One can consider Zero as the origin

of a subspace of ℝ, that de�nes the value zero at a new position for local calculations.

Analogously, 1 is the actual number on the number line and One is its copy.

De�nition 8. (Continuous) Signal

Let Data be a �nite set, Speeds be the real interval [0, 1] ∪ {Λ}, where Λ > 1 and

Directions be the set {−1, 0, 1}. We denote s = (dat, spd, dir), dat ∈ Data, spd ∈ Speeds ⧵

{Λ}, dir ∈ Directions, as a signal. The information dat carried by s is analogous to the

states q ∈ Q of a cell in cellular automata. A speed of spd means, that s moves spd spacial

units during the time Δt = 1.0 ∈ ℝ, where dir describes the direction. So −1 describes a

movement to the left and 1 a movement to the right. If dir = 0, spd must also be 0, as

the signal is stationary.

For simpli�cation, we will give signals unique names such that the declaration of

dat is not necessary. In addition, we will combine spd and dir by stating, that a signal

s moves with speed spd to the left or right or is stationary. A stationary signal can also

be called a marking or boundary. Boundary can also describe the outer-most signals of

a used partial algorithm, like in algorithm 4 (Storing Signals) or algorithm 12 (Addition
Gadget). If no de�nition of a signal’s speed is given, it will always be the default speed

of 1.

De�nition 9. Value of an Interval

Let x, y be two markings, where x ≤ y. The interval [x, y] can be interpreted as

the value y − x , which allows an encoding of a number independently from the relative

position to 0. We denote the value of the interval I = [x, y] as |I |. Note, that this does

not allow the encoding of negative numbers.

12

2.2 Signal Machines

De�nition 10. Collision, Collision Rule

A collision, also called an event, occurs when two or more signals meet at the same

position x ∈ ℝ at a point in time tcoll , except if all involved signals are stationary. Let S, T

be multisets of signals. A collision rule r = (S, T) at an arbitrary position x ∈ ℝ states

that when all of the signals of S collide in x , they are removed (also called destroyed)

and all signals of T are created at x . When a rule (S, T) is applied at time t , then the

signals in T cannot be the input for another rule at time t . If such a behavior is desired,

however, the two rules can be combined into a new rule. When more signals collide

than necessary for a rule, only the signals declared in the rule are destroyed. If no rule

�ts the signals of a collision, no signal is destroyed or created. There must not be def-

initions for multiple rules that use the same set S. If rules r1 = (S1, T1) and r2 = (S2, T2)

exist, where S1 ⊂ S2 and if a collision of all signals in S2 occurs, then rule r2 is applied,

as it requires a larger set of signals. If rules r3 = (S3, T3) and r4 = (S4, T4) exist, where

S3 and S4 are not disjoint, additional rules must be de�ned as follows. Let S∩ = S3 ∩ S4,

Sr = (S3 ∪ S4) ⧵ S∩ and let Spow = (S∩) be the power set of S∩. The additional rules are

r∩i
= (Sr ∪ S∩i , T∩i), S∩i ∈ Spow , |S∩i | > 0. Some of these additional rules may be omitted if it

is clear that the corresponding collisions never occur.

As an example, let s1 = (“s1”, 1, 1), s2 = (“s2”, 1, −1), s
⋆

1
= (“s1”, 0.5, 1) be signals and

r = ({s1, s2}, {s
⋆

1
}) be a collision rule. Let s1 be located at position 0 and s2 be located at

position 2 at the initial point in time t0 = 0. At time t1 = 1, s1 and s2 collide at position

1 and are both destroyed. At the same time, s
⋆

1
is created at position 1 and moves to the

right with a speed of 0.5. Since s1 and s
⋆

1
carry the same information, we will consider

them to be the same signal but its speed was reduced during the collision. If a collision

only occurs between two signals s, t , where t is stationary, we will synonymously say

that “s passes t”, “s reaches t”, “s touches t” and so on. Instead of “signal u is created

moving to the right or left” we will also say that “a signal u is sent to the right or left”.

If a collision ref l = ({(“s”, spd
s
, dir s), (“t”, 0, 0)}, {(“s”, spd s

, −dir s), (“t”, 0, 0)}) occurs, we

will say that “s is re�ected at t”.

De�nition 11. Kill Signal

A kill signal k is the only type of signal that has the speed Λ > 1. If a signal s

collides with k, then s is destroyed. If speci�c signals are not supposed to be destroyed

by k, they are de�ned as immune and do not interact with k. The 0-signal is always

immune.

Kill signals are used to remove signals that are no longer needed. Since signals may

move at speed 1, an even faster speed is necessary to reach them. We will exemplarily

describe kill signals in some algorithms. However, in general, they can be sent in both

directions when the �nal result is calculated, if necessary.

13

2 Preliminaries

De�nition 12. Con�guration

The con�guration c = {(s, x) | s ∈ Sigs, x ∈ ℝ} with the set Sigs of signals describes

the position of all existing signals on the number line at the time t . Let Conf be the set

of all con�gurations. If a collision rule r = (S, T) is applied at t , the impacted signals in S

are not listed in c, whereas the signals in T are listed. Analogously to cellular automata

we call the con�guration at time t0 = 0 the initial con�guration. When a con�guration cf

is reached, such that no more collisions can occur except for destructions caused by kill

signals, we call cf a �nal con�guration. Let cf be a �nal con�guration, k1, ..., kn, n ∈ ℕ,

be kill signals and s1, ..., sm, m ∈ ℕ, be signals that are destroyed at later points in time.

We call the set cr , a subset of cf without the tuples containing k1, ..., kn, s1, ..., sm the result
con�guration. If cf is reached at time tf , cr is also reached at tf . Even though cf can still

change due to kill signals, we consider tf to be the run time of the algorithm, since all

later events do not contribute to the calculation and the speed Λ of the kill signals can

be arbitrarily high.

De�nition 13. Signal Machine

A signal machine  = (Sigs, Rul) consists of the �nite set Sigs of possible signals

and the �nite set Rul of collision rules. The input for  is an initial con�guration and

the algorithm’s run time is de�ned by the moment, the result con�guration is reached.

De�nition 14. Time Flow Function f l ∶ Conf × ℝ+
→ Conf

The time �ow function f l transfers a con�guration c1 at time t1 into a con�gura-

tion c2 at time t2, when t2 − t1 is the second input parameter. If collisions occur in the

time interval (t1, t2], then collision rules are applied if possible.

De�nition 15. Transition Function Δ ∶ Conf → Conf

Let c be a con�guration at time t1 and time t2 > t1 be the time the �rst collision

occurs after t1. The transition function Δ(c) applies f l(c, t2 − t1), that is, all signals are

moved throughout the time interval (t1, t2) without collision and at the moment t2 of the

next collision, collision rules are applied if possible. The resulting con�guration is re-

turned.

De�nition 16. Proxy Signal

A proxy signal is a marking, that carries the information about a former marking

that has been destroyed. If no problems occur, the proxy signal may be destroyed at

a later time without being used at all. However, if a con�ict arises, it can be used to

reconstruct the original marking and thus reset a local section of the con�guration.

14

2.2 Signal Machines

In some algorithms, accumulations of signals can develop, which lead to an in�nite

number of events within a �nite amount of time, even though only a �nite number of

signals is involved. An easy example goes as follows: Two slow signals are approaching

each other and a third signal moves back and forth between the two. When applying

the transition function n times for an arbitrarily large n ∈ ℕ, the point in time when

the slow signals collide, will never be reached. A second kind of singularity can occur

when there are in�nitely many signals in a �nite space, which we try to avoid. There are

multiple possibilities to handle such singularities. The work of Durand-Lose [3] uses the

so called Black Hole Model, while the work of Wacker [12] de�nes functions to handle

singularities of higher orders, that is, accumulations of accumulations. In this paper we

will use the following de�nition of singularities that is based on limit values.

De�nition 17. Singularity

Let the initial con�guration of a computation consist of a �nite number of signals.

Let tc = {tc,i}i∈ℕ be an in�nite, strictly monotonically increasing sequence of collision

times within the �nite time interval [tbegin, tend]. If multiple collisions occur at a time tc,i ,

then that collision time is only included once in tc , thus tc,i ≠ tc,j , if i ≠ j. Since tc is

strictly monotonically increasing and bounded by tend , there exists a limit tlim =
lim

i→∞
tc,i ,

which we denote as the moment a singularity occurs. A singularity occurs at position

xlim at time tlim, if there exists a sequence of collision points x = {xi}i∈ℕ at times tc,i with

the properties

lim
i→∞

xi = xlim

and lim
i→∞

tc,i = tlim.

Let a singularity S occur at position xlim at time tlim and let sk , k = 1, ..., m, be all the sig-

nals involved in S, that is, for each position interval I = [xlim−�, xlim+�], � > 0, each signal

sk collides an in�nite number of times in I within every time interval [tlim − �, tlim], � > 0.

At time tlim, all signals sk are located at xlim. The speed spd, direction dir and potentially

also the carried data dat of any such signal sk = (dat, spd, dir) is not de�ned at time tlim.

We say that the information about these properties dat, spd, dir of signals sk , k = 1, ..., m,

is destroyed in S. If an algorithm requires any of these properties beyond the singularity,

the signal machine halts at time tlim. However, if the point xlim is all the information an

algorithm requires, we can continue the computation beyond the singularity by applying

the following function. Let Δlim be a new transition function that, given a con�guration

cbegin at a time tbegin, processes the next singularity if it exists. It returns the con�guration

clim at time tlim of the next singularity, where all signals involved in the singularity are

destroyed and a stationary signal at position xlim marks the result of the computation. If

multiple singularities occur at tlim in di�erent places, then each singularity uses its own

limit value xlim,j . If there is no upcoming singularity, then Δlim just applies Δ.

15

2 Preliminaries

In this paper, only algorithms 14 (Multiplicative Inverse), 15 (Multiplication) and 16

(Division) and all more complex algorithm that use these can produce singularities. We

provide versions of these algorithms that only produce singularities which we only need

to know the position of in order to �nish or continue the computation. A possible way

to determine when to apply the new transition function is to set a minimal time step

Δtmin, such that if the next collision occurs earlier than after Δtmin time, a singularity is

likely to occur.

16

3 Basic Tools

3 Basic Tools

In this chapter we introduce basic algorithms to manipulate intervals, store signals

or transform them into di�erent representations. These algorithms are building blocks

that later algorithms use frequently.

Algorithm 1. Moving Intervals (Fig. 1)

(i) Moving towards a point p (Fig. 1, right).
Let p be to the right of interval x = [a, b]. Moving x to the right until b and p are

in the same place is equivalent to interchanging the intervals x = [a, b] and [b, p]. We

do this by sending a signal in both directions starting at b and having the signals re�ect

on the stationary signals a, p. When the re�ected signals collide in point c, then interval

x = [c, p] ends exactly in p. Analogously, if p is to the left of x, the signals emerge from

a instead of b and move point a to point p
(ii) Moving beyond a point p (Fig. 1, left, middle).

Let p be to the right of x = [a, b]. We want to move x to the right until a and p are

in the same place. We send two signals to the right starting from a, one signal s with

speed 1 and one signal t with speed 1 − �, � ∈ (0, 1). When s passes b, its speed reduces

to 1 − �. When t passes p, its speed increases to 1. When s and t collide in point c, we

moved x = [p, c] to the desired location. The case of p being to the left of x is analogous.

Algorithm 2. Stretch and Compress (Fig. 2)

For any point p to the right of 0, we can construct 2p by sending a signal s from p
towards 0 with speed 1, that is re�ected at 0, and a signal t to the right with speed

1

3
.

The signals collide exactly in point 2p. We can use this technique to multiply all station-

ary signals inside the interval [0, p] by a factor of two. Whenever a stationary signal is

passed by s, it starts moving to the right with speed
1

3
and stands still when passed by

the re�ected s.
For any point p to the right of 0, we can construct

1

2
exactly like 2p by sending t to the

left instead of to the right. To divide all stationary signals inside the interval [0, p] by 2,

they start moving to the left with speed
1

3
when passed by s and stand still when passed

by its re�ection.

To achieve a general stretch by a factor of a, a > 1, de�ne the speed of t as
a−1

a+1
to the

right instead of
1

3
. For a general compression by a factor of a, a < 1, de�ne the speed of

t as |
a−1

a+1
| to the left instead of

1

3
.

17

3 Basic Tools

x

x

p

1

1

1− ǫ

1− ǫ

x

p

x

x

p

x

x

p

x

Figure 1: Moving Intervals

1

1

1

3

1

3

1

3

x y z

2x 2y 2z

0 x y z0

1

1

1

3

1

3

1

3

x

2

y

2

z

2

Figure 2: Stretch and Compress

18

3 Basic Tools

1

1
0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

Figure 3: Binary Counter

Algorithm 3. Binary Counter (Fig. 3)

Let [l, r] be an interval with stationary boundaries l, r and n stationary signals in-

side. These n signals will function like bits of a binary number. They can be in the state

0 (gray) or state 1 (blue). A signal s travels between l and r with speed 1. Whenever it is

re�ected at r , it changes its state to blue. When s is blue and passes a stationary signal

in state 0, s returns to the base state and the stationary signal switches to 1. When s is

blue and passes a stationary signal in state 1, s changes to a red state (carry bit) and the

stationary signal switches to 0. Whenever the red signal s passes a stationary signal in

state 1, that signal switches to 0. When the red signal s passes a stationary signal in state

0, s returns to the base state and the stationary signal switches to 1.

This algorithm can be used to count an exponential number of steps by using only a lin-

ear amount of stationary signals. We can also count a linear amount of steps by letting

s mark one unmarked stationary signal per trip. One can easily expand this to counting

n
k

steps by using k di�erent markings for the stationary signals.

19

3 Basic Tools

Algorithm 4. Storing Signals (Fig. 4)

Real numbers allow the storage of an arbitrary �nite amount of signals in a constant

amount of space. We initialize a signal storage by placing two signals l, r as boundaries

and de�ning an entrance direction. In the �gure, signals can enter the storage from the

right side through r. When inside, signals re�ect each other and are also re�ected by l

and r , so stored signals will continue to move inside the storage but their order will be

secured. One can use this storage gadget as either a stack or a �rst-in-�rst-out queue,

depending on from which side signals can be taken out of the storage. By default, all

signals entering the storage move at speed 1. When an outer signal collides with an in-

ner signal upon entering the storage, the outer signal’s speed will be reduced to
1

2
until

it collides again, where it changes its speed back to 1. The only exception is when three

signals collide simultaneously. In that case, the signal in the middle becomes stationary

and starts moving again after the next collision, unless it is a collision of three signals

again. Collisions of four or more signals cannot occur within the storage. The bound-

aries l, r do not need to be stationary. The entrance boundary (e.g. r in the �gure) can

have a speed spd ∈ [−1,
1

2
) with regard to the entrance direction, while the other bound-

ary can have any speed other than −1. A negative speed is interpreted as a speed in the

opposite direction with the absolute value.

Algorithm 5. From Interval to Marking (Fig. 5, 6)

Since we can describe a real number as an interval or a marking we want to be

able to switch between the two. While it is trivial to switch from a marking m,m ≥ 0 to

an interval, since [0, m] is exactly that interval, switching from an interval to a marking

depends on the interval’s position with regard to the 0. Note that markings can describe

negative values while intervals always represent positive values. Let x = [a, b] be the

interval that we want to transform into the marking x . Both a and b send signals in both

directions. We refer to them as a’s and b’s left or right signal. The signals emerging from

a are shown as solid lines, those of b are shown as dashed lines.

First, consider the left boundary a. The left signal al is either re�ected at 0 or moves

towards negative in�nity. Let the re�ected signal be al,0. The right signal ar is re�ected

at b or 0 or is destroyed by a negative signal (red). When ar is re�ected at 0, it becomes

a negative signal and sends a kill signal to the right. When ar is re�ected at b, the sta-

tionary signal b is replaced by a proxy signal b
′

(green). Let the re�ected signal be ar ,b.

When al,0 and ar ,b collide, destroy both, set the marking x and send a signal to the right

(green dashed) that destroys the proxy signal. Upon destruction, send a kill signal to the

right. If the negative signal collides with a, use algorithm 1 (Moving Intervals) to move

interval x to the right of the 0. It may be necessary to use the proxy signal as the inter-

val’s right boundary. That is the case when x is to the left of 0 and |[b, 0]| ≥
1

2
|x|. Also,

when initiating algorithm 1, send a kill signal to the left.

Now, consider the right boundary b. The left signal bl will be destroyed by ar . If bl

reaches 0, send a negative signal to the left and a kill signal to the right. If the right

signal br reaches 0, send a negative signal to the left.

20

3 Basic Tools

1

2

1

1

2

1

Figure 4: Storing Signals

21

3 Basic Tools

0

x

x

0

x

x

x

0

x

1− ǫ

1− ǫ

Figure 5: From Interval to Marking (1)

0

x

x

0

x

x

1− ǫ

1− ǫ

1− ǫ

1− ǫ

Figure 6: From Interval to Marking (2)

22

3 Basic Tools

0 1

Figure 7: Generator

Algorithm 6. Generator (Fig. 7)

(i) Stationary generator

Two stationary signals with a distance of
1

2
f form the generator’s boundaries. A sig-

nal moves between the two and is re�ected at each boundary. Each time it is re�ected,

a signal is sent in that boundary’s direction. These signals are generated in time inter-

vals of length f , which we call the generator’s frequency. If generated signals are only

needed on one side of the generator, simply remove the corresponding collision rules for

the other side’s boundary.

(ii) Moving generator

A generator can create signals in one direction with frequency f while moving in

the opposite direction with the speed
1

3
. Let the side of the generator it is moving to-

wards be called the outer side. The generator’s boundary on the outer side is moving

with speed
1

3
. That boundary starts at point p. Initially, there is a stationary signal at p

and a second one with a distance of
1

2
f to p on the inner side. A signal s moves from p

towards the inner side. Whenever s reaches a stationary signal while moving towards

the inner side, it is re�ected and destroys the stationary signal. When s reaches the outer

boundary, it is re�ected and creates a stationary signal. Whenever s reaches a stationary

signal from any side, a signal is generated that moves towards the inner side.

23

3 Basic Tools

Algorithm 7. Binary Representation (Fig. 8)

We can represent a positive integer in binary by storing signals representing bits in

a signal storage. Let k be the integer we want to represent in binary. Create a generator

with a left boundary at 0 and a frequency of 1 that only generates signals that move to

the right. We will use the inside of the generator as the signal storage. Initially, 0 sends

a signal x to the right and k sends a signal y to the left. When x and y pass each other,

create a signal z that moves to the left with speed
1

2
. When z is re�ected at 0, it becomes

x . Signal y is also re�ected at 0. When x reaches k, it is replaced by a red-green signal

that moves to the left and k is destroyed. This is a signal with two main states, red and

green, and which is initially red. When a signal generated by the generator hits the red-
green signal, it changes its color. When y collides with the red-green signal, the red-green
signal keeps its current color. Also, y is re�ected if the signal was green, or re�ected and

replaced by a signal y
′

if it was red. When the red-green signal reaches the generator, it

is stored there. Red stands for k mod 2 = 1, green stands for k mod 2 = 0. If y collided

with the green signal and thus k mod 2 = 0, a new stationary signal is created represent-

ing k ← k/2. In this case, the algorithm repeats itself with a halved input. However, if

y collided with the red signal and thus k mod 2 = 1, we need to round down the new

value of k. To do this, we create the new stationary signal for k when the next generator

signal hits the red signal. Now we encounter another problem, since the signals x and

y
′

are not in sync, so we need to reset the algorithm for the new input. When x collides

with y
′
, x is destroyed since we do not have any use for it anymore. Upon creation of y

′
,

we also create a signal y
′′

that moves with speed
1

2
to the left. Signal y

′
is re�ected at 0.

Since y
′

collides with k at exactly the same time as y
′′

hits zero, we use this moment to

initiate the next iteration of the algorithm. If k/2 = 0.5, which means that y collides with

the red-green signal on the right boundary of the generator, the algorithm ends. In the

�gure, we show the computation for k = 12, which is 1100 in binary. The signals stored

inside the generator are green, green, red, red from left to right, so the highest bits are

on the right-hand side. Note that the highest bit will always be a 1, so it is not necessary

to store it and it can be omitted.

Processing the �rst digit of an input of size k takes the time 2k, if the digit is zero,

whereas the processing of the next digit already starts at time
3

2
k. If the digit is a one,

the processing requires
5

2
k. After each iteration, the size of the input is reduced by its

half at the least. Therefore, the total run time is (5
2
k +

5

4
k + ⋯) = (5k ∑

i

1

2
i
) = (5k).

24

3 Basic Tools

0
1

2 k = 12

1

2

6

t

t

6

3

3

2

1

1

2

x y

x

z

y

y0

y00

Figure 8: Binary Representation

25

4 Simulation of Cellular Automata

4 Simulation of Cellular Automata

We stated multiple times that signal machines are a generalization of cellular au-

tomata and now propose the following algorithm as a proof that every cellular automa-

ton can be simulated by a signal machine. We only need to simulate cellular automata

following de�nition 1, as these can simulate more complex types of cellular automata

themselves, since they are already Turing-complete.

Algorithm 8. Simulation of a one-dimensional cellular automaton (Fig. 9)

Let  be a one-dimensional cellular automaton with the neighborhood {-1,0,1} and

input alphabet A. Let w = w1w2⋯wn, wi ∈ A, be the input given to  and � be the local

transition function of . We construct a signal machine  that simulates  as follows.

The input w is encoded in n equidistant markings that represent the wi , i = 1, ..., n. Each

of the markings simultaneously spawns a signal to both sides which contain the mark-

ing’s information. Let c ∈ A be the information encoded in one of the markings. The

next marking on the left carries the information b ∈ A, while the next marking on the

right carries the information d ∈ A. When the simulation starts, marking c sends signals

c to both sides and so do its neighboring markings with their corresponding signals.

When the signals b and d collide with the marking c, we destroy all three and create

a marking c
′
, where c

′
= �(b, c, d). Also, signals c

′
are sent to both sides. This simu-

lates one application of � on the local con�guration (b, c, d) in . In order to simulate

the global transition function Δ of , we need to consider the outer boundaries of . If

the input of  is bounded by dead states, we can use stationary kill signals in  as an

equivalent. If  requires a larger amount of space, we need to create more stationary

signals at the outer boundaries. First, we slow down the simulation by a factor of two.

This can be achieved by introducing sleeping states. For each state x ∈ A, we de�ne a

sleeping state x̃ such that whenever a collision of three signals occurs, a marking in a

sleeping state x̃ will only switch to the state x . When a collusion of three signals oc-

curs, where a marking is not in a sleeping state, the new state is immediately switched

to its corresponding sleeping state after applying � . Now that the simulation is slowed

down, we can create new stationary signals by having the initial outer markings send

a creation signal away from the other markings with a speed of
1

2
. Every second time,

the creation signal is hit by a signal coming from the outermost markings, we create a

new marking. To compensate for the slowdown of the simulation we can simply halve

the initial distance between markings. We showed that signal machines can simulate

one-dimensional cellular automata with neighborhood {-1,0,1}. Since these are Turing-

complete, signal machines are Turing-complete as well.

Since the space between signals can be arbitrarily small, it makes sense to alter al-

gorithm 8 in a way, that it only requires a constant amount of space independent from

the required space of the cellular automaton. We present an asynchronous approach to

handle the varying distances between signals. Sadly, the modi�ed algorithm 8
′

is not

able to simulate cellular automata that require an unbounded amount of space as this

26

4 Simulation of Cellular Automata

δ

a b c d e

a
0

b
0

c
0

d
0

e
0

a b c d e

a
0

b
0

c
0

d
0

e
0

Figure 9: Simulation of a one-dimensional cellular automaton

leads to a singularity that forces the signal machine to halt. It is unclear, if it is possible

to simulate all cellular automata in a constant amount of space without running into

singularities.

Algorithm 8
′. Simulation of a one-dimensional cellular automaton with bounded required

space in constant space (Fig. 10, 11)

Let the cellular automaton , the input alphabet A, the input w = w1⋯wn and the

local transition function � be de�ned like in algorithm 8, but with the sole di�erence that

 requires only a bounded amount of space. We construct a signal machine  that sim-

ulates  in constant space as follows. Let I be an interval of constant size �. Subdivide I

into n+1 equally sized intervals. The inner n markings represent the input characterswi .

The left and right boundary of I represent the cells in passive states that encompass the

input of . Signals originating from the outer boundaries can create additional signals

which corresponds to awakening a cell from its passive state. The state s = (l, v, r) of a

signal consists of three components. The value v corresponds to the state of the corre-

sponding cell of . The information about the neighboring signal’s states l and r need to

be collected through collisions. Not yet received information is displayed by �. Initially,

each inner marking sends a signal (�, wi ,�) to the left, the right outer boundary sends

(�, R,�) to the left and the left outer boundary sends (�, L,�) to the right. We denote

the outer markings of I and the signals originating from them as boundary signals and

all other signals as non-boundary signals. Consider the collision of two non-boundary

signals during which a transfer of information about the signal’s states occurs. When

a signal collects the information about both neighbor’s states, the transition function �

can be applied. In concrete terms, the collision rules have the following forms.

{
⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗
(�, a,�), ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖(�, b,�)} ⇒ {

⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖
(�, a, b), ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗(a, b,�)}

{
⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗
(a, b,�), ⃖⃖ ⃖⃖⃖⃖⃖⃖⃖⃖⃖(�, c,�)} ⇒ {

⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖
(�, �(a, b, c),�), ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗(b, c,�)}, analogously for{⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗(�, a,�), ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖(�, b, c)}

{
⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗
(a, b,�), ⃖⃖ ⃖⃖⃖⃖⃖⃖⃖⃖⃖(�, c, d)} ⇒ {

⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖
(�, �(a, b, c),�), ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗(�, �(b, c, d),�)}

If three non-boundary signals collide, � can always be applied for the center signal and it

will turn stationary. Stationary non-boundary signals continue to move when they col-

27

4 Simulation of Cellular Automata

lide with the next signal (�g 10, center, gray circle). Now consider collisions of boundary

signals (�g 10, left), without loss of generality the signal originating at the left boundary.

The signal corresponding to the input w1 (green) initially moves to the left, collides with

the boundary signal (blue), is re�ected and collects the information L of its left neighbor.

If the collision awakens a cell from its passive state in C , a new stationary signal is cre-

ated (red), which has the value v = �(, L, w1), where stands for an arbitrary state or

�, as it is not relevant here. If the collision with the boundary signal does not awaken a

cell from its passive state, no new signal is created. The boundary signal returns to the

boundary marking after each collision (blue dashed), where it is re�ected. If a boundary

signal collides with two non-boundary signals simultaneously (�g 10, right, upper gray
circle), the left non-boundary signal becomes stationary and the newly created signal

moves to the left with the speed of
1

2
. When three non-boundary signals collide (lower

gray circle), this is not necessary. Since collisions of four or more signals cannot occur,

all edge cases are dealt with.

Let us discuss the problem that occurs when the cellular automaton requires an un-

bounded amount of space. This happens for the exemplary cellular automaton with the

states {0, 1}, the input of one 1 and only zeros otherwise and the transition function that

moves the 1 one cell to the left. Figure 11 shows the corresponding signal machine. Each

movement of the signal in  corresponds to a collision of the red signal (1) of  with

the left boundary signal. As can be seen, the signal machine speeds up the more signals

are created. When observing the path of the red signal, a repeating pattern can be seen

starting at the second collision. Let the initial size of I be 1 without loss of generality.

The second collision occurs at the time
3

4
at position

1

4
. The red signal then moves to

the left with the speed of
1

2
for

1

3
time units, pauses for

1

3
time units, then moves to the

left for
1

9
time units, pauses for

1

9
, moves for

1

27
, an so on. It follows, that at the time

3

4
+ 2∑

∞

i=1

1

3
i
=

3

4
+ 2 ⋅ (

1

1−
1

3

− 1) = 1
3

4
a singularity occurs. The signal machine cannot

handle the singularity and therefore halts. For this speci�c signal machine, it is possible

to destroy signals at the right boundary and thus simulate  without a singularity, as

 only requires a constant amount of space when ignoring outer cells in passive states.

However, we can alter  so that a second signal is sent to the right, making the singu-

larity in  unavoidable.

It is possible to generate in�nitely many signals in a constant amount of space with-

out creating a singularity in any speci�c point, for example by repeatedly bisecting an

interval and all of its subdivisions. In some circumstances, it may even be possible to

simulate all cellular automata in a constant amount of time. This may lead to a point

in time when an in�nite amount of signals exist in I without having a singularity in

any particular position. This entirely di�erent kind of singularity would require new

de�nitions to handle the situation. As of now, such an algorithm is unknown.

28

4 Simulation of Cellular Automata

−−−−−−!

(�; L;�)
 −−−−−−

(�; w1;�)

−−−−−−!

(�; L;�)

−−−−−−!

(L;w1;�)

(�; δ(; L; w1);�)

−−−−−−−−−−−−−!

(L; δ(; L; w1);�)

1

2

Figure 10: Simulation of a one-dimensional cellular automaton in constant space

10 0

Figure 11: Singularity during a simulation in constant space

29

5 Arithmetic on Real Numbers

5 Arithmetic on Real Numbers

Every computation model should be able to perform a number of arithmetic calcu-

lations. We propose algorithms for the basic operations addition, subtraction, multipli-

cation and division, which use real-valued inputs, as well as more complex calculations

like the reduction of fractions, rational exponentiation and logarithms. We de�ne two

important gadgets that allow us to sum up results as �nite or in�nite sequences of real

numbers. This can lead to singularities, some of which require special on demand algo-

rithms and some of which we can handle as described in de�nition 17. Note, that a few

algorithms like algorithm 22 (Square Root) produce approximate results.

5.1 Addition and Subtraction

Algorithm 9. Addition x + y, x, y ∈ ℝ(Fig. 12)

If |x| = |y|, destroy y and double the value of x using algorithm 2 (Stretch and
Compress). If y = 0, destroy y and analogously if x = 0. Let |y| < |x| without loss of

generality. Both x and y send a signal l to the left and a signal r to the right. When l

collides with 0, destroy l, send l
′

to the left and l
′′

to the right. When r collides with 0,

destroy r , send r
′

to the left and r
′′

to the right. If r passes x , r becomes sr , changes its

speed to
1

3
and destroys x . If r

′′
collides with l, r

′′
becomes sr with the speed

1

3
, while l is

unchanged. If l
′′

collides with sr , destroy both and create the result marking x + y (this

is the case x, y > 0 or y < 0 < x). If l passes x , l becomes sl , changes its speed to
1

3
and

destroys x . If l
′

collides with r , then l
′

becomes sl with the speed
1

3
. If sl and r

′
collide,

destroy both and create the result marking x + y (this is the case x < y < 0 or x < 0 < y).

Whenever a result marking is created, send kill signals to both sides.

Algorithm 10. Flipping the sign (Fig. 13)

Given a marking x , we want to create a marking with the value −x . Choose a

number y, y > |x|, y ∈ ℝ
+
. The marking x sends two signals towards 0, one with speed 1

which slows down to speed
|x|

y
when passing 0, and one with speed

2|x|

|x|+y
. When the two

signals collide, destroy both and create the marking −x .

Algorithm 11. Subtraction x − y, x, y ∈ ℝ (Fig. 14)

In general there are three di�erent cases depending on the position of the input

markings. For each of the cases, there exists an analogous case which is mirrored at 0,

so counting these as well, the total is six. For the edge cases x = y, x = 0, y = 0 one can

easily de�ne additional signals for a faster computation. In any case, upon the creation

of the result marking, kill signals will be sent to both sides to get rid of useless signals.

Case 0 < y < x :
The subtraction is equivalent to the interchanging of intervals [0, y] and [y, x] as seen

in algorithm 1 (Moving Intervals). The case x < y < 0 is analogous.

30

5.1 Addition and Subtraction

0 y x x+ y

1
1

1

1

3

1

1

1

1

3

0 x-y x+ (−y)

0 y−x (−x) + y

1

1
1

1

1

11

> 1
> 1

1

3

l

l

l00

l00

l

l0

r r

r

r0

r00

sr
sr

sl

Figure 12: Addition

31

5 Arithmetic on Real Numbers

0x −x

x x

x

y

1

jxj
y

2jxj
jxj+y

Figure 13: Flipping the sign

Case 0 < x < y :
Starting at x , a signal is sent in both directions. The left one slows down to the speed

1

3

when passing the 0, the right one is re�ected by y. When the slowed down signal and

the re�ected signal collide, x − y is reached. The case y < x < 0 is analogous.

Case y < 0 < x :
Starting at y, a signal is sent to the right that slows down to the speed

1

2
when passing

the 0. Starting at x , a signal is sent to the left which is re�ected by y . When the slowed

down signal and the re�ected signal collide, x − y is reached. The case x < 0 < y is

analogous.

To cover all cases simultaneously, we need to combine their collision rules. For example,

when x ’s left signal passes the 0, there will be a signal with speed 1 and a signal with

speed
1

3
, both going left.

32

5.1 Addition and Subtraction

0 y xx− y

1

1

1

1

0 yxx− y

1 1

11

3

0 xy x− y

1

1

1

1

2

0x yx− y

1
1

1
1

2

Figure 14: Subtraction

33

5 Arithmetic on Real Numbers

a

k·a

(k ·a+1)

1

3

1

3

1

3

1

1

1

1

1

1

a

a

2

Figure 15: Gadgets

5.2 Multiplication and Division

Algorithm 12. Addition Gadget (Fig. 15)

With the gadget with breadth a shown on the left side of the �gure one can itera-

tively add the value a. The right boundary moves with speed
1

3
to the right and initially

sends a signal s with speed 1 to the left which is re�ected by both boundaries. When s

collides with the left boundary for the �rst time, the left boundary starts moving to the

right with the speed
1

3
. The distance between collision points of s and the right boundary

is always a.

Algorithm 13. Halving Gadget (Fig. 15)

With the gadget shown on the right side of the �gure one can halve the breadth

of the addition gadget. The right boundary remains stationary. When the signal s (see

algorithm 12) is re�ected at the left boundary and collides with the right boundary again,

the right boundary continues to move to the right with the speed
1

3
. The left boundary

(dashed) remains unchanged.

34

5.2 Multiplication and Division

The algorithms for the multiplicative inverse, multiplication and division each con-

sist of two partial algorithms A and B. A is approaching a speci�ed limit value and sends

activation signals to B which accumulates the end result. Depending on the input, A

may produce an in�nite amount of signals in a �nite amount of time. It is not possible to

store in�nitely many signals within the �nite expanse of B. An explanation of the prob-

lem will follow algorithm 14 (Multiplicative Inverse). To avoid this scenario, we integrate

A into B, such that A only computes as far as necessary and that B can request new

signals. This way, B will be able to process the incoming signals su�ciently fast. As the

resulting algorithms are rather complex, we show them in two parts to ease comprehen-

sion. We �rst specify the base algorithms for multiplicative inverse, multiplication and

division (algorithms 14, 15, 16) which can run into the singularity problem. Afterwards,

we present the improved versions for multiplication and division that avoid the problem

(algorithms 15
′
, 16

′
). Even though the multiplicative inverse can be calculated via the di-

vision algorithm, the dedicated algorithm is a better introduction to the idea behind the

base algorithms as it is simpler. However, to compute the multiplicative inverse without

the singularity problem, we use the improved version of the division algorithms. Note

that advanced algorithms which use the multiplication and division algorithm may only

refer to algorithms 15 and 16 instead of 15
′

and 16
′

and show rough �gures of the base

algorithms. It is recommended to still use the improved versions in these cases.

Algorithm 14. Multiplicative Inverse of x ∈ (0, 1] (Fig. 16, 17, 18)

Partial Algorithm A (�g. 16, 18 left):
Use the interval [0,x] as the breadth of an addition-gadget. Whenever its signal s

collides with its right boundary, a stationary signal is created. Whenever s collides with

the left boundary, a signal k (black, dashed) is sent to the left which destroys such a

stationary signal. The stationary signals are necessary to reset the addition-gadget to

an earlier state. After each complete addition process, an addition signal (blue) is sent

to the right which partial algorithm B will collect. If the right boundary of the addition-

gadget collides with the 1 at the same time an addition process completes, the addition

signal will also be a halting signal for B. If the gadget’s right boundary collides with the

1 before an addition process completes, a reset signal is sent to the left which uses the

last two stationary signals so restart the addition-gadget there. At the moment of this

collision with the 1, a halving signal (red) will be sent to the right to B. Upon resetting

the addition-gadget it will halve its breadth via the halving-gadget before continuing the

addition process.

Partial Algorithm B (�g. 17, 18 right):
This partial algorithm uses an addition-gadget with a breadth of 1. The addition

process starts when the �rst signal of A reaches its right boundary (at 1). In the case of

an addition signal (blue) the usual addition will proceed. In the case of a halving sig-

nal (red), a halving-gadget will be used instead. While a gadget is performing its task,

another signal of A can be caught at the right boundary of the gadget such that the

next gadget can begin immediately after the current one �nished. If yet another signal

reaches the gadget’s right boundary while it is already occupied, the new signal will be

re�ected. We use the inner part of the gadgets as a signal storage for signals sent by A

35

5 Arithmetic on Real Numbers

as described in algorithm 4 (Storing Signals), with the di�erence that the left boundary

of the storage is initially the 1, until the gadget’s left boundary passes the 1. If a gad-

get �nishes its computation without having any signals left for the next gadget, both

boundaries become stationary signals until they are reactivated by more signals sent by

A. When the halting signal reaches the right boundary of the gadget, the gadget will

destroy itself after �nishing the remaining computations and leave its right boundary as

the stationary signal of the result
1

x
.

Figure 18 shows the case that several halving-gadgets are used before the �rst

addition-gadget. The left side shows algorithm A, the right side shows B (with a faint A

underneath). Each red dot represents a halving signal that immediately reaches B. Since

B is always fast enough to process signal sequences with leading halving signals, there

is no need to store signals. Once an addition signal (blue) reaches the 1, the algorithm

proceeds as described above.

Singularity Problem (Fig. 19)

Consider a signal storage with a �nite breadth, which is entered by an in�nite

amount of signals (si)i∈ℕ0
in the �nite time interval � = [t0, t1]. Let � and the si be de�ned,

such that for each interval �� = [t0, t1 − �], � > 0, only �nitely many signals enter the

storage. It follows that a singularity occurs at t1. We assume that no collision rules are

applied at t1 and move all signals forward as if there was no collision in the �rst place.

In addition, we de�ne a signal named super signal which enters the storage exactly at

t1, so it is the last signal entering it. Consider the rightmost signal within the storage

(red). It is re�ected at the right boundary and then collides with the next signal to the

left. That signal is then re�ected to the left and collides with its left neighbor and so on.

This impulse (red dashed) moves to the left until it reaches the super signal. At this point

in time, a collision should occur that re�ects the leftmost signal to the left, which then

moves to the left boundary (purple). However, since every collision with the super signal

results in a singularity, there is no leftmost signal (excluding the super signal). Thus, the

purple signal is not de�ned and the signal machine cannot continue its computation.

Side note: If the super signal had reached the right boundary, the required compu-

tation would have been equivalent to the reversal of an in�nite sequence. In the �gure,

a singularity of order two would have occurred at that moment, that is, a singularity

of singularities. If the computation had been possible and the storage’s boundaries ap-

proached each other, their collision would have even resulted in a singularity of order

three.

36

5.2 Multiplication and Division

0 1x =
3

8

t

t

+1

+
1

2

+
1

8

Figure 16: Multiplicative Inverse (1)

37

5 Arithmetic on Real Numbers

0
1

x
=

8

31

21

8

8

3

Figure 17: Multiplicative Inverse (2)

38

5.2 Multiplication and Division

1x 1x

Figure 18: Multiplicative Inverse (3)

39

5 Arithmetic on Real Numbers

Figure 19: Singularity Problem

Theorem 1. Algorithm 14 (Multiplicative Inverse) is correct, if no singularity problem oc-
curs.

Proof. The algorithm �rst �nds a maximum k ∈ ℕ0, such that k ⋅x ≤ 1 and k ≤
1

x
< k+1,

where k is the number of leading addition gadgets. It follows that 1−kx < x and the �rst

halving gadget reduces the step size of partial algorithm A to
x

2
, as well as the step size

of B to
1

2
. If kx +

x

2
= 1, then k +

1

2
=

1

x
and the next addition gadget of B determines the

end result. If kx +
x

2
< 1, then B adds the value

1

2
to the intermediate result and the step

sizes for A and B are halved again. If kx +
x

2
> 1, the step sizes are halved without adding

to the intermediate result. After n halvings we arrive at the following relationship.

kx + �1

x

2

+ �2

x

4

+ ⋯ + �n

x

2
n

⎧
⎪
⎪

⎨
⎪
⎪
⎩

=

<

>

⎫
⎪
⎪

⎬
⎪
⎪
⎭

1 ⇔ k +

�1

2

+

�2

4

+ ⋯ +

�n

2
n

⎧
⎪
⎪

⎨
⎪
⎪
⎩

=

<

>

⎫
⎪
⎪

⎬
⎪
⎪
⎭

1

x

or

kx + ∑

i

�i

x

2
i

⎧
⎪
⎪

⎨
⎪
⎪
⎩

=

<

>

⎫
⎪
⎪

⎬
⎪
⎪
⎭

1 ⇔ k + ∑

i

�i

2
i

⎧
⎪
⎪

⎨
⎪
⎪
⎩

=

<

>

⎫
⎪
⎪

⎬
⎪
⎪
⎭

1

x

,

where �i ∈ {0, 1}, k ≤
1

x
< k + 1, k ∈ ℕ0 and �i = 1, if the addition gadget of A after the

i-th halving can �nish its computation. It follows, that if the right boundary ofA reaches

the marking 1 and no singularity problem occurs, the right boundary of B reaches the

desired result of
1

x
.

40

5.2 Multiplication and Division

Theorem 2. The run time of algorithm 14 (Multiplicative Inverse) is(1
x
), if no singularity

problem occurs.

Proof. The run time of the whole algorithm is only dependent on partial algorithm

B, since A terminates when it sends its last signal to B and B only terminates after pro-

cessing said signal. Let the �rst gadget of the sequence be an addition gadget. As seen

in �gure 17, the left boundary of B moves to the right with the constant speed of
1

3
from

leaving the 0 onward. Partial algorithm B terminates at the latest if the left boundary

reaches the value
1

x
. However, as this case leads to a singularity problem, B terminates

at an earlier point in time based on the assumption that no such problem occurs. The

left boundary of B starts to move at the latest at the time 3 + 1, resulting in the total run

time of (4 + 3

x
) ⊆ (1

x
).

Let us now consider the case that the �rst j gadgets of the sequence are halving gad-

gets. After the processing of each of the leading halving signals, B has to pause until

A sends the next signal. The individual waiting times are bounded by the lengths of

the interrupted addition gadgets of A. The largest possible interrupted gadget exists for

x ≈
1

2
, x >

1

2
. From the launch of the addition gadget to the launch of the following

halving gadget, less than
3

2
time units pass. Since the gadgets halve after each iteration,

the total length of the interrupted gadgets is less than
3

2
+

3

4
+ ⋯ = 3∑

i

1

2
i
≤ 3. It follows

that the total waiting time of B is bound by a constant and thus the run time for this

scenario is (1
x
) also.

Algorithm 15. Multiplication a ⋅ b, a, b ∈ ℝ
+ (Fig. 20, 21)

Let a ≤ b without loss of generality. If a = 1, destroy a and let b be the result.

∙ Case a > 1 (�g. 20)

Partial Algorithm A:
At �rst we compute min(a, b) = a by having both a and b send signals to both sides

(dashed). After the collision of two such signals, the one continuing to the left will reach

min(a, b), while the one continuing to the right will reach max(a, b), from which a kill

signal will be sent to the right.

Upon Determination of min(a, b) = a, the multiplication with the (possibly rounded

down) integer value of a begins. Beginning at a, a signal is sent to the left which, start-

ing at One, repeats the subtraction a ← a − 1 (turquoise boxes, according to algorithm

11 (Subtraction)). As long as a ≥ One is true after the subtraction, an addition signal

(blue) is sent to the right to partial algorithm B each time. If a = One after one such

subtraction, the original input value of a was an integer. In that case, an addition and

halting signal can be sent to B and A terminates. For the initial input a ∉ ℕ, its signal

will inevitably pass One during one of the subtractions. At that moment, a halving sig-

nal (red) will be sent to B and the value of One will be halved (gray triangle). Now the

real-valued multiplication begins. We repeatedly compare a and One. If a < One, which

we encounter when during halving of One, its right-moving signal passes a, a halving

signal is sent to B and One is halved once again. If a > One, which we encounter when

during halving of One, its signal with the speed
1

3
passes a, an addition signal is sent

to B. Furthermore, we calculate a ← a − One after the completion of One’s halving. If

41

5 Arithmetic on Real Numbers

a = One, the One-signal can be destroyed and a moves to the 0, where it is destroyed as

well and sends a halting signal to B.

Partial Algorithm B:
This algorithm functions like partial algorithm B from algorithm 14 (Multiplicative

Inverse), with the sole di�erence that the gadget’s initial breadth is max(a, b).

∙ Case a < 1 (�g. 21)

Whether this case is occurring can be determined when �nding min(a, b). If a’s left sig-

nal collides with 0 before reaching One, a < 1.

Partial Algorithm A:
Analogous to the case a > 1, but the integer multiplication is skipped.

Partial Algorithm B:
Since the partial algorithm’s initial breadth ofmax(a, b) surpasses the result’s value,

halving signals will be handled di�erently before the �rst addition signal reaches B. The

signal b will be halved and thus moves closer to 0. This will become the gadget’s right

boundary at a later point. When the �rst addition signal reaches b, there is no need

for the use of an addition gadget yet, as b is the exact value of the current intermediate

result. However, at this point the interval [0, b] is the initial breadth of the gadget and

the next addition or halving signal will initiate the usual gadget process. If signals sent

by A need to be stored before the gadget is initialized, they will be stored between the

boundaries b and max(One, a, 0), where destroyed signals are counted as 0.

Theorem 3. Algorithm 15 (Multiplication) is correct, if no singularity problem occurs.

Proof. Let ain and bin be the input values and ain = min(ain, bin) without loss of gen-

erality. Let ain = k + r, k ∈ ℕ0, r ∈ [0, 1). We denote a, b as the signals initialized with

the values ain, bin which change their position over time. The algorithm �rst computes

k ⋅ bin by repeating a ← a − 1 until the remainder a1 = r < 1 remains while B repeatedly

adds the value bin to the intermediate result. Then A and B halve their step sizes from 1

to
1

2
and bin to

bin

2
respectively. These values are also halved after each of the following

iterations. During the i-th iteration of the real-valued multiplication of r ⋅ bin, the algo-

rithm checks whether ai ≥
1

2
i
. Starting in the �rst iteration, if a1 ≥

1

2
, then ain ≥ k +

1

2
and

B adds
bin

2
to the intermediate result which is then (k +

1

2
) ⋅ bin. Meanwhile, A computes

a2 ← a1 −
1

2
. If a1 <

1

2
the intermediate result remains unchanged as (k +

1

2
) ⋅ bin > ain ⋅ bin

and let a2 ← a1.

Let resi be the intermediate result after the i-th iteration. If ai ≥
1

2
i
, then ain ≥

resi

bin

+
1

2
i

and B computes resi+1 = resi +
bin

2
i
. If ai <

1

2
i
, then resi+1 = resi . All in all, we arrive at the

following relationship:

If a = k + r = k + ∑
i

�i

2
i
, �i ∈ {0, 1}, where �i = 1, if ai ≥

1

2
i
, then B computes the value

(k + ∑
i

�i

2
i
) ⋅ bin = ain ⋅ bin.

42

5.2 Multiplication and Division

0 One a = 2:25 b = 3:5

a = 1:25

= 0:25

a = 0

a = min(a; b)

3.5

7

a · b

= 7:875

Figure 20: Multiplication (1)

43

5 Arithmetic on Real Numbers

a =
1

3
One b =

3

2
0

a · b=
1

2

1

4
·

3

2
=

3

8

3

8
+

1

16
·

3

2
=

15

32

Figure 21: Multiplication (2)

44

5.2 Multiplication and Division

Theorem 4. The run time of algorithm 15 (Multiplication) is(a+b+ab), if no singularity
problem occurs.

Proof. Let a = min(a, b) without loss of generality. Analogously to algorithm 14 (Multi-
plicative Inverse), the total run time depends solely on the run time of partial algorithm

B.

∙ Case a > 1

It takes the time 3b until the left boundary of B leaves the 0-marking with the con-

stant speed of
1

3
to the right. The result is determined at the latest if the left boundary

reaches the value a ⋅ b. However, this would go against the assumption that no singu-

larity problem occurs so the termination happens at some earlier point. The run time is

thus (3b + 3ab) ⊆ (a + b + ab).
∙ Case a < 1

Partial algorithm B starts its �rst halving after the time a + b. Since a > 0, the initial

gadget breadth of B is determined at the latest after another 3b time units. If A’s next

signal is re�ected at the right boundary of B slightly earlier, it takes at most 2 ⋅
b

2
time

units until it reaches the right boundary again, as well as at most
b

2
more units until

the left boundary of B leaves the 0-marking. Analogously to the case a > 1, the algo-

rithm then terminates after less than 3ab more time units resulting in a total run time

of (a + 5.5b + 3ab) ⊆ (a + b + ab).

Algorithm 15
′. Improved Multiplication a ⋅ b, a, b ∈ ℝ

+ (Fig. 22, 23, 24, 25, 26, 27)

The integer multiplication remains unchanged. Let again be a ≤ b without loss

of generality.

∙ Case a ≥ 1:

As soon as the value One is halved for the �rst time and thus the real-valued part

of the multiplication starts, partial algorithm A pauses until the now stationary signals

are reached by partial algorithm B’s �rst gadget. When this is the case, the computation

of A is sheared to the right by
1

3
, that is, each signal of A that is usually stationary now

moves with a speed of
1

3
to the right. The left boundary of B, which also moves to the

right with a speed of
1

3
, is used as the Zero for A (Fig. 22). Due to the shearing we need to

rede�ne how to compute the halving of One (if One > a) and a ← a − One (if a > One).

Figure 23 shows these new procedures. The black signal moving to the left is the signal

s inside the gadget of B that moves between its boundaries. This signal launches one of

the two procedures depending one whether it collides with a or One �rst. If it collides

with both at the same time, a and One can be destroyed. If a > One, an addition signal

is sent to the left that is re�ected at Zero and enters the storage inside B at that moment.

If One > a, a halving signal is sent instead. If a = One, an addition and halting signal is

sent. An exemplary execution of A is displayed in �gure 24. When B begins the process-

ing of the last remaining stored signal, it sends a demand signal (yellow dashed) which

launches the next procedure of A. In the image, blue signals are addition signals (+) and

red signals are halving signals (
1

2
, which does not represent a speed here).

45

5 Arithmetic on Real Numbers

a b

B

a b

Figure 22: Improved Multiplication (1)

Zero

One

a

a−One

1

3

1

3

1

1
1

Zero

a

One

One

2

1

Figure 23: Improved Multiplication (2)

46

5.2 Multiplication and Division

+

+

1

2

1

2

a · b

a > One

a < One

a = One

One a

Figure 24: Improved Multiplication (3)

47

5 Arithmetic on Real Numbers

We need to ensure that A remains inside of B at all times such that it computes each step

fast enough. For that we only need to consider B’s halving gadgets as they are getting

thinner and a and One are never getting larger. Per calculation step only one of the val-

ues a and One is decreased depending on which is larger at the beginning of the step. In

the case that both signals reside in the right half of the gadget (�g. 25, top, dashed line),
the signal with the lesser value will leave the gadget (red dots). Let us assume that both a

and One reside in the gadget’s left half at the beginning of the step. As seen in �gure 25,

bottom, there always exists a set of procedures such that the two signals reside in the

gadget’s left half when it �nishes and got thinner. If both signals reside in the second

quarter from the left at the beginning of the gadget, two consecutive procedures are nec-

essary. As can be seen in the image, there is enough time for them to be executed. Note,

that these cases always produce an addition and a halving signal and never two of the

same kind. Since both a and One must be in the left half of each gadget when it starts,

A may have to start the next procedure(s) even though no demand signal was sent. As

we proof after this algorithm description, there will at no time be an in�nite amount of

signals. Plus, the assumption for the initial positions of a and One when attaching to B

is correct. All in all, the singularity problem does not occur.

Partial algorithm B remains unchanged for the most part in comparison to algorithm 15.

The only di�erences are the demand signals and the marking of the two left quarters.

Figure 26 shows how the leftmost quarter can be marked initially (left �gure) and how

the marking is kept throughout the computation (right �gure) as an example.

∙ Case a < 1 (�g. 27):

It is true that a ⋅b < b, so we need to determine the initial breadth of B’s gadget. Par-

tial algorithm A begins its computation just like in algorithm 15. As soon as an addition

signal reaches B, its initial gadget breadth is de�ned. The �rst addition gadget is omitted

analogously to algorithm 15. When the gadget’s breadth is determined, B pauses. When

both a and One are in the left half of B, A pauses and B is reactivated. When the now

stationary signals of A reach the �rst gadget of B, they are sheared to the right by
1

3

like in the case above. Figure 27 shows the beginning of the computation for the cases

a < 1 ≤ b (left) and a ≤ b < 1 (center). The signals a (green) and One (orange) are com-

pared. If One > a, One is halved (gray triangles) and a halving signal is sent to B (red, the

1

2
does not stand for a speed here). If a ≥ One, a ← a−One is computed (tilted rectangle)

and an addition signal is sent to B (blue). Partial algorithm B starts at the input b and its

halvings are the violet triangles. The dashed lines show some exemplary markings for

the two left quarters. The �gure on the right-hand side shows the speeds required for

their establishment. In the shown case a < 1 ≤ b, a and One reside in the left half of B

so early, that B is paused and reactivated at the same time so it sends the �rst demand

signal immediately (yellow dashed).

48

5.2 Multiplication and Division

a

One

One
a

One

2

One

2

One

2
a−One a−One

a−One

Figure 25: Improved Multiplication (4)

1

3

Figure 26: Improved Multiplication (5)

49

5 Arithmetic on Real Numbers

· · ·

3

5

a One b

1

2

1

2

1

2

+

· · ·

a Oneb

1

2

+

1

2

3

5

7

9

Figure 27: Improved Multiplication (6)

50

5.2 Multiplication and Division

Theorem 5. Algorithm 15
′ (Improved Multiplication) is correct.

Proof. Let ain, bin be the input values and a, b be the corresponding signals that may

move over time. We �rst proof that the signals a and One reside in the left half of B

when A attaches itself to the left side of B. In the case ain < 1 this is true by construction

since A does not attach before the property is met. Let now be ain > 1. If bin ≥ 2, the

property is ful�lled, since after the integer multiplication, a is always smaller than 1 and

One =
1

2
. Let now be bin ∈ (1, 2). One still satis�es the requirement. If ain ∈ (1,

3

2
), a is less

than
1

2
after the computation a ← a − 1. If ain ∈ [

3

2
, 2), then a ∈ [

1

2
, 1) after subtracting

1. This more than halves the value of a and since ain ≤ bin, the desired property is met.

It follows that the signals a and One always reside in the left half of B at the time of the

attachment and they remain in the left half during the entire computation of B.

Next we show, that at no point in time will there be in�nitely many signals present.

Let us �rst consider the case ain < 1, before A attaches to B. Since ain > 0, One passes

a after a �nite number of halvings, so B also pauses after a �nite number of steps. It

follows that at most �nitely many further steps are required until a and One are to the

left of the stationary signal marking the middle of B. Now, let us consider the situation

that the number of signals increases after A attaches to B (for a general ain). Whenever

this happens, A creates two signals while B processes only one gadget, as seen in �g-

ure 25, bottom. One of the two signals is always an addition signal. When B processes

the addition gadget, A can pause, reducing the number of signals by one. As a result,

there cannot be an in�nite number of signals at any point in time during the execution

of algorithm 15
′
.

Lastly, the relationship between the values of signals of A and B are unchanged in com-

parison to algorithm 15, so B still terminates when creating the result marking at position

ain ⋅ bin. If a singularity occurs, the result marking is created upon collision of the two

boundaries of B following de�nition 17 (Singularity).

Theorem 6. The run time of algorithm 15
′ (Improved Multiplication) is (a + b + ab).

Proof. If a > 1, the run time is identical to the run time of algorithm 15, since the

run time of partial algorithm B is unchanged and A never terminates later. If a < 1, the

run time of B is insigni�cantly longer due to a possible pause of � > 0 time units before

the attachment of A.

Algorithm 16. Division a/b, a, b ∈ ℝ
+
, b ≠ 0 (Fig. 28, 29)

∙ Case a ≥ b (�g. 28):

Partial Algorithm A:
As the role of numerator and divisor is de�ned by the input, we do not need to

calculate min(a, b) like in algorithm 15 (Multiplication). As long as a ≥ b we perform an

integer division. For this we repeatedly compute a ← a−b (turquoise boxes). All signals

for partial algorithm B will emerge from the 0 when a signal is re�ected at it. When a

passes b, b is halved (violet, gray triangles) and the corresponding halving signal is sent

51

5 Arithmetic on Real Numbers

to B, when the violet signal is re�ected at 0. When the �rst halving is happening, the

real-valued division starts and this partial algorithm follows A from algorithm 15 (Mul-
tiplication), with the exception that a is compared to b instead of One (and instead of

halving One, we halve b) and the signals for B originate at 0 as mentioned above.

Partial Algorithm B:
The result signal begins at 0 and moves to 1 (initially marked) when the �rst addition

signal of the integer division is created and immediately destroyed at 0 (blue dot). Upon

reaching 1, the interval [0, 1] is the initial breadth of the gadget collecting A’s addition

and halving signals and computing the result analogously to algorithm 14 (Multiplicative
Inverse).
∙ Case a < b (�g. 29):

To di�erentiate between the two cases, b initially sends a signal to the left. If it

collides with a, then the case a < b is executed, or if it collides with 0 �rst, the case a ≥ b

is executed. It is true that 1 is too large as the initial breadth of the gadget for partial

algorithm B, as it surpasses the result’s value. As long as a < b, b and the result signal

(initially at 1) are halved. As soon as b ≤ a, an addition signal will be sent to B such that

the current intermediate result value can be used as the initial gadget’s breadth for B.

Notice, that B is closer to the 0 in the �gure (green).

Theorem 7. Algorithm 16 (Division) is correct, if no singularity problem occurs.

Proof. Let ain, bin be the input values and a, b be the corresponding signals that may

move over time. Let
ain

bin

= k + r, k ∈ ℕ0, r ∈ (0, 1). The algorithm �rst computes k by

repeating a ← a−bin until a remainder a−kbin < bin is left, while adding up 1 each time.

The execution of the real-valued division is very similar to the real-valued multiplica-

tion of algorithm 15, but a and b are compared instead of a and One. Additionally, the

initial gadget breadth of B (if ain > bin) is 1 instead of bin. Analogously to algorithm 15,

b is halved after each iteration. During the �rst iteration, the algorithm checks whether

ain−kbin ≥
bin

2
. If true,

1

2
is added to the intermediate result, as k+

1

2
≤

ain

bin

⇔ kbin+
bin

2
≤ ain.

Meanwhile, A computes a ← a −
bin

2
. If ain − kbin <

bin

2
, the intermediate result stays the

same, as k +
1

2
>

ain

bin

⇔ kbin +
bin

2
> ain. Considering all the subsequent iterations, we

end up with the following relationship: ain − kbin −∑i
�i

bin

2
i
= 0 ⇔ k +∑

i

�i

2
i
=

ain

bin

, where

�i ∈ {0, 1}, k ∈ ℕ0 and �i = 1, if a >
bin

2
i

during the i-th iteration. Consequently, if signal

a reaches 0 and no singularity problem occurs, B marks the correct result of
ain

bin

.

52

5.2 Multiplication and Division

0 b = 3 a = 101

a = 1

3

0 1 3

3

3:25

3.3125

3
1

3

Figure 28: Division (1)

53

5 Arithmetic on Real Numbers

0 1 b = 3

a = 0:75

0.25

Figure 29: Division (2)

54

5.2 Multiplication and Division

Theorem 8. The run time of algorithm 16 (Division) is (a + b + a

b
), if no singularity

problem occurs.

Proof. Analogously to algorithm 14 (Multiplicative Inverse), the total run time depends

solely on the run time of partial algorithm B.

∙ Case a > b:

Let us �rst �nd an upper bound for the run time of A. The �rst halving of b during the

real-valued division starts at the latest at time 2(a − b). The total time required for the

halvings of b is bounded by 3b, the total time required for diminishing a (during the

real-valued part) is bounded by b+
b

2
+
b

4
+⋯+

b

n
< 2b for some n ∈ ℕ. Thus, A terminates

earlier than at time t = 2a + 3b. Let a signal be sent from A to B at time t . If B processes

incoming signals su�ciently fast, this signal reaches B’s right boundary earlier than at

t +
a

b
, whereupon B requires an insigni�cant amount of time for the remaining compu-

tation. In this case, the total run time is (2a + 3b + a

b
). If B processes incoming signals

slower than A sends them, the run time of B for the real-valued part can be estimated

by 3
a

b
. The left boundary of B leaves 0 at the latest at time 3b + 2, so in total we get

(3b + 2 + 3 a
b
). In each scenario, the run time can be described as (a + b + a

b
).

∙ Case a < b:

Note that partial algorithm B is completely enclosed in the interval [0, 1). If 1 < b, the

total run time is approximately the run time of A (plus an � > 0 for the last steps of B

after A terminates). The �rst halving in A occurs at the latest at time 2b, the following

procedure takes at most 5b like in the case a > b, resulting in a total of (7b). If b < 1,

the total run time can be bounded even stricter by a constant. All in all, the division

algorithm has a run time of (a + b + a

b
).

Algorithm 16
′. Improved Division a/b, a, b ∈ ℝ

+
, b ≠ 0 (Fig. 30)

∙ Case a > b (�g. 30):

Partial algorithm A has a breadth of b and B a breadth of 1 at the beginning of the

real-valued division. Since A may calculate faster than B, the singularity problem can

occur. We embed A into B similar to the multiplication algorithm, but have to deal with

the additional challenge, that B (green) may already move to the right before the integer

division is completed. For that purpose, B is paused after �nishing the processing of the

integer division. We can de�ne a stationary signal
1

2
(gray dashed) to mark half of B’s

gadget’s breadth. Partial algorithm A continues its computation until both a and b are

to the left of the
1

2
-marking as well as to the left of B. When this is the case, a movement

of the signals Zero, a and b to the right with speed
1

3
is initiated (orange). The movement

ends when Zero reaches the left boundary of B. Now A is integrated into B as desired

and a reactivation signal can be sent to B (black dashed). Afterwards, we proceed just

like in the �rst case of algorithm 15
′
, when A is already attached to B.

∙ Case a < b:

The execution of this case is close to identical to the multiplication a ⋅b with a < 1 <

b. The only di�erence is that the signals One and b switch roles. We proceed analogously

to algorithm 15
′
.

55

5 Arithmetic on Real Numbers

1

2
b 1 a

Figure 30: Improved Division

56

5.3 Complex Arithmetic Operators

Theorem 9. Algorithm 16
′ (Improved Division) is correct and has a run time of(a+b+ a

b
).

Proof. Since the relationship between signal values of A and B has not changed, B

still places the result marking at
a

b
. We still need to show that at no point in time are

there in�nitely many signals. In the case a < b, one can argue in the same way as in

the proof of correctness for algorithm 15
′

(case a < 1 < b). Now consider the case b < a

for which we can argue in the same way that A only produces �nitely many signals up

until the moment it pauses and moves towards the right. After A is embedded into B, the

two partial algorithms behave like in algorithm 15
′
, case a ≥ 1 (but with interchanged

names of some signals), so again, at any point in time there exist only a �nite amount of

signals.

The run times of the altered algorithms only di�er in the existence of added pauses which

have lengths bounded by (a + b). Thus, the total run time is still (a + b + a

b
).

5.3 Complex Arithmetic Operators

Algorithm 17. Integer Exponentiation xk , x ∈ ℝ
+
, k ∈ ℕ (Fig. 31)

Use algorithm 7 (Binary Representation) to store k in binary in the signal storage

[0, 0.5]. This storage will be used as a stack. We will take out bit signals one step at a

time. In the case of a 0 bit signal, we square the intermediate result. In the case of a

1 bit signal, we �rst square the intermediate result and then multiply it with x . This

matches the Exponentiation by Squaring Algorithm. The initial intermediate result of x

sends a fetch signal (pink) to the stack. Upon collision with the right-most bit signal

inside the stack, the bit signal leaves the stack to the right-hand side and moves to the

intermediate result. The fetch signal continues to move left and is destroyed if it collides

with another bit signal. If it reaches 0, the stack is empty, and a halting signal is sent

to the right. When a bit signal collides with the intermediate result, the squaring and

multiplying happens as described in algorithm 15 (Multiplication). In the �gure, gray

triangles represent the rough shape of its partial algorithms and are not to scale. When

the calculations induced by a bit signal are completed and a halting signal has not been

received, the next fetch signal is sent to the stack. When the halting signal reaches the

right boundary of the multiplication process, after completing the calculations induced

by the last bit signal, the result is marked as a stationary signal.

The number of multiplications in the exponentiation by squaring algorithm is (log(k)).
The run time of a multiplication x ⋅ x with algorithm 15 is (2x + x2), or linear in the

size of the result. Since (xk + x k

2 + x

k

4 + ⋯) = (xk), the total run time is dominated by

the last multiplication.

57

5 Arithmetic on Real Numbers

x
k = (1:5)5

0 1 x
0

x
0 = x

2

0 : x0 ! (x0)2

1 : x0 ! (x0)2 · x0

x
0 = xt

1

3

t x
0 = x

4

x
0 = x

5

Figure 31: Integer Exponentiation

58

5.3 Complex Arithmetic Operators

Algorithm 18. Factor Decomposition (Fig. 32)

Given a prime number fmax ∈ ℕ we de�ne for all prime numbers f = 2, ..., fmax

the speeds �f =
f −1

2f −1
. This algorithm �nds all prime factors of the input k that are less

than or equal to fmax and stores them in an ascending order on a stack (see algorithm 4

(Storing Signals)). We proceed similarly to algorithm 7 (Binary Representation). The right

boundary at k now does not send one signal y to the left with speed 1, but a variety of

signals with the prede�ned speeds �f . If the red-green signal, while in the green state,

simultaneously collides with a generator signal and a signal with speed �f , then k is di-

visible by f . When this happens, the red-green signal turns into a factor-f -signal (blue)
and continues to move to the left until it is stored inside the generator. Also, a stationary

signal representing k ← k/f is created. All other signals with speeds �f ′ , f
′
≠ f , will just

be destroyed upon collision with the red-green signal at the wrong time or collision with

the factor-f -signal. When a factor is found, we use the reset technique from algorithm

7 (Binary Representation) and search for a factor of the new value k. If no factor can be

found, that is, when either all prime factors are found or remaining factors are larger

than fmax , the red-green signal reaches the 0 and the algorithm terminates.

The run time of the algorithm is the longest when k is a power of two, as this causes

the most iterations. It takes the time
3

2
k to �nd the �rst factor and k additional time

units until the next iteration with half the size begins. In total, the run time is therefore

5

2
k +

5

4
k +

5

8
k + ⋯ = 5k ∑

i

1

2
i
∈ (5k).

Algorithm 19. Finding Common Factors (Fig. 33)

We use algorithm 18 (Factor Decomposition) to �nd the prime factors f ≤ fmax of

two integers and store them on a stack. On the stack, only factor signals corresponding

to the same input integer re�ect each other. There are two layers of stacks, so to speak.

In the �gure, the exemplary integers 84 = 2 ⋅ 2 ⋅ 3 ⋅ 7 and 30 = 2 ⋅ 3 ⋅ 5 are used. Within

the stack, the signals are in an inactive state at �rst (dashed). When an inactive signal

reaches the stack’s left boundary, it becomes active (solid line). As one integer’s factor

signals keep re�ecting themselves, there is at most one active signal per integer at any

given time. When two activated signals (of di�erent integers) collide, their values are

compared. If they are not equal, the signal with the lower value is destroyed (red circles).
If their values are equal, both signals are destroyed and a new signal with this value is

created on a third stack layer (green). The third layer collects all common factors of the

two integers. When a new factor signal is created on the third stack layer, it will move

to the stack’s right boundary (where it is re�ected) without interacting with any other

signals. Only from the collision with the boundary onwards will the signal interact with

other signals on the third layer, where all of them re�ect each other. This simulates

entering the stack from the right-hand side. When the red-green signal of algorithm 18

(Factor Decomposition) reaches the stack, then no more new factors of the corresponding

integer will enter the stack. These no-more-factors signals are shown in dark blue and

yellow in the �gure. When both integer’s signals reach the left boundary of the stack,

the end of the algorithm is initiated (Fig. 33, right). A halting signal, initially in a neutral

state (gray) moves from the left boundary to the right one. If it collides with one of the

59

5 Arithmetic on Real Numbers

0
1

2 k = 12

6

t1

t1

6

divisible by 2

1

2

4

1

3

2

5

3
divisible by 2

t2

t2

divisible by 3

Figure 32: Factor Decomposition

60

5.3 Complex Arithmetic Operators

2
2

2

3

5
3

7

2

3

3
2

no more
factors

no more
factors 3

2

Figure 33: Finding Common Factors

input integer’s factor signals while in the neutral state, it switches to a new state cor-

responding to the integer. In the �gure, the neutral signal (gray) collides with a factor

of the orange integer (orange dot) and switches to the “orange state”. If the signal then

collides with a factor of the other integer (blue dot), then the factor comparison has not

�nished yet. In that case the halting signal moves back to the 0, where it is re�ected and

switches to the neutral state. When the halting signal reaches the right boundary of the

stack, the computation is complete. The halting signal turns into a kill signal (red) that

moves across the stack to destroy the input integer’s factor signals, while releasing the

found common factors to the right-hand side of the stack when passing them.

Since the run time of this algorithm is heavily dependent on the breadth of the storage

(which can be arbitrarily thin), it is insigni�cant for other algorithms using it.

61

5 Arithmetic on Real Numbers

Algorithm 20. Multiplication of Multiple Factors (Fig. 34)

We use algorithm 19 (Finding Common Factors) to �nd common factors of two inte-

gers and now multiply them together to get one large common factor. After releasing the

factor signals out of the stack, they need to be turned into markings such that their posi-

tion corresponds to their value. For this we use one addition gadget per factor (breadth

of 1). Since fmax is �nite, we can de�ne signals to count down the number of required

additions to simplify when the gadget can stop adding. Notice, that the computations of

markings for higher factors start slightly earlier due to their arrangement in the stack.

Signals of di�erent factor’s gadgets are not allowed to in�uence each other so we de�ne

gadget signals for each prime number f = 2, ..., fmax .

One problem remains, as multiple factors can have the same value. In this case only the

�rst of these factors initiates an addition gadget. If another factor of that value reaches

this gadget at a later point, it switches to an inactive state and is stored inside the gad-

get. Analogously to algorithm 14 (Multiplicative Inverse), the signal s moving between

the boundaries of the gadget creates a stationary signal when colliding with the right

boundary and destroys such a signal when colliding with the left boundary, except for

when the gadget �nishes. In the case of factor f , this leaves the stationary signals f − 1

and f . These two markings form a signal storage for all additional signals of factor f .

When a factor f is used for a computation, the right-most stored signal can occupy the

right boundary of the storage to be used for the next multiplication. If two signals of

factor f are required for the computation, another signal can be taken out of the storage.

When the storage is empty, its stationary signals can be destroyed.

Back to the main algorithm. Since all factors on the stack from algorithm 19 (Finding
Common Factors) leave at di�erent times and are sorted, the smallest (green) and largest

(red) factor can be marked. The green factor, when computing the location of its mark-

ing �nished, begins the multiplication with a factor of the same value or the next in

size using algorithm 15 (Multiplication). The partial algorithms of the multiplication are

hinted at with gray areas in the �gure (not to scale). The green mark follows the right

boundary of the result computation. If it passes a factor, the mark will be transferred to

it as it is the new smallest factor. If the right boundary passes the red mark, the red mark

follows the boundary as the result will be the new largest factor. The multiplication can

be sped up for smaller factors by precomputing all products less than or equal to f
2

max
, by

de�ning appropriate signals and speeds. When a multiplication is completed, it sends a

signal to the left. When it reaches the green mark, the next multiplication starts. When

the green and red mark coincide at the end of a multiplication, the �nal factor is found

and the computation terminates.

As already seen in algorithm 17 (Integer Exponentiation), the run time is dominated by

the last multiplication, making it linear in the size of the result.

62

5.3 Complex Arithmetic Operators

0 1

2 · 3 · 3 · 5 · 7

2

3
2

7

6

15

t

t

42

630

1

3

1

3

6 · 7

15 · 42

Figure 34: Multiplication of Multiple Factors

63

5 Arithmetic on Real Numbers

Algorithm 21. Reducing Fractions

Let u, v be two markings that form the fraction
u

v
, u, v ∈ ℕ. Use algorithm 18

(Factor Decomposition) to �nd all prime factors f ≤ fmax of u and v. Proceed with algo-

rithm 19 (Finding Common Factors) to �nd common factors of the two integers. Then

continue with algorithm 20 (Multiplication of Multiple Factors) to combine the common

factors into one large common factor of u and v. Finally, use algorithm 16 (Division) to

divide u and v by this factor to receive the fraction
u
′

v
′
=

u

v
, u

′
≤ u, v

′
≤ v.

Finding the factors takes time (5max(u, v)). The largest possible common factor of u

and v is min(u, v). The �nal divisions, which are executed in parallel, require the time

(u + min(u, v) + u

min(u,v)
) for dividing u and time (v + min(u, v) + v

min(u,v)
) for divid-

ing v. Let M ∶= max(u, v) and m ∶= min(u, v). The total run time of the algorithm is

(5M+m+max(u+m+
u

m
, v+m+

v

m
)) = (5M+2m+max(u+

u

m
, v+

v

m
)) = (6M+2m+

M

m
) ⊆

(M + m +
M

m
).

Algorithm 22. Square Root (Fig. 35)

We compute an approximate solution

√

x through iterative halving of an interval

containing the solution. Select the number I of iterations.

Case x ≥ 1:
Mark the 0 (orange) and x (blue). Determine the middle of the candidate interval

[0, x] (green). This value is denoted as the �rst candidate w1. Use algorithm 15 (Multipli-
cation) to compute w

2

1
. The partial algorithms are hinted at by gray areas (not to scale).

Ifw
2

1
= x , thenw1 =

√

x is the exact result. If the multiplication’s right boundary reaches

x before �nishing, then w1 >

√

x and the multiplication can be interrupted. The right

boundary of the candidate interval (blue) takes the position of w1 and the new middle

of the interval represents the next candidate w2. If the right boundary of the multipli-

cation never reaches x before �nishing, then w1 <

√

x . We set the left boundary of the

candidate interval (orange) to the position of w1 and destroy the former marking. Also,

w2 is again computed by determining the middle of the new interval. While checking

the candidate w1, we reduce I by one. If I > 0 afterwards, we compute w
2

2
and continue

analogously to w1. We repeat this process until I = 0 and return the approximate result

wI +1.

Case x < 1:
We proceed analogously to the previous case but initialize the right boundary of

the candidate interval (blue) at 1 instead of x .

Theorem 10. Algorithm 22 (Square Root) computes
√

x with an error less than or equal to
1

2
I +1
|x −

√

x| in the time (I x + x), where I is the number of iterations performed.

Proof. The run time can be broken down to the three parts halving the interval of can-

didates, squaring the candidates and signals telling the interval of candidates which half

to cut. The halvings require
3

2
x+

3

4
x+⋯ < 3x time units in total. Each squaring procedure

can be terminated when it leaves the interval [0, x], so we can use an upper bound of

64

5.3 Complex Arithmetic Operators

0 I = 4 x = 5

t

t

1

3

3

1

3

1

3

w1 = 2:5

w1 >

p

x

w2 = 1:25

w2 <

p

x

w3 = 1; 875

w3 <

p

x

w4 = 2:1875

w4 <

p

x

w5 = 2:34375

w
2

1

Figure 35: Square Root

65

5 Arithmetic on Real Numbers

6x for each of them. The remaining signals require time less than x per iteration. Since

decreasing the number I of remaining iterations happens in parallel to the rest of the al-

gorithm, it is not relevant to the run time. In total, we have (I ⋅6x +I ⋅x +3x) ⊆ (I x +x).
The error of the intermediate results is halved during each iteration and one additional

time at the very beginning. After I iterations, the error is therefore less than or equal to

1

2
I +1
|x −

√

x|.

Algorithm 23. Rational Exponentiation

This algorithm computes x

u

v =
v

√

x
u

, u, v ∈ ℕ. Reduce the fraction
u

v
to

u
′

v
′

by ap-

plying algorithm 21 (Reducing Fractions). We compute
v
′
√

x
u
′

as follows. Determine the

binary representation of v
′

using algorithm 7 (Binary Representation) to allow a faster

exponentiation with the exponent v
′

(see algorithm 17 (Integer Exponentiation)). We

proceed analogously to algorithm 22 (Square Root), except for exponentiating the candi-

dates wi with v
′

instead of squaring them. We use algorithm 17 for the exponentiation

but do not need to repeatedly determine the binary representation of v
′
, as we already

precomputed it. After calculating
v
′
√

x , we use algorithm 17 to exponentiate it with u
′
.

Reducing the fraction takes the time (max(u, v) +min(u, v) + max(u,v)

min(u,v)
) ∶= (M +m+

M

m
)

and the binary representation of v
′
takes the time(5v′). As seen in algorithm 22 (Square

Root), when calculating
v
′
√

x , an exponentiation can be terminated when it leaves the in-

terval [0, x], so the run time for the v
′
-th root is also (I x + x), where I is the number

of iterations. The �nal exponentiation with u
′

takes the time (v
′
√

x
u
′

). In total, we end

up with a run time of (M + m +
M

m
+ 5v + Ix + x +

v
′
√

x
u
′

).

Algorithm 24. Mantissa Representation

LetB ∈ ℝ
+
, B > 1, be the base for a mantissa representation. If the input x < B, x ∈ℝ

+
,

return x . If x ≥ B, we want to display x in the form of x = m⋅B
e

with mantissam ∈ [1, B),

base B and exponent e ∈ ℕ. Let e = 0 be marked initially. Use algorithm 16 (Division)

to repeatedly divide x by B until x < B. Increase e by 1 during each division. When

x < B, set m ← x . Move the interval [0, e] to the right of m using algorithm 1 (Moving
Intervals). The result now consists of the markings m and m + e.

The run time of the algorithm is dominated by the �rst division, thus being in(x+B+ x

B
).

66

5.3 Complex Arithmetic Operators

Algorithm 25. Logarithm (Fig. 36)

To determine log
B
(x), we �rst use algorithm 24 (Mantissa Representation) to switch

x into its mantissa representation. Now log
B
(x) = log

B
(m ⋅ B

e
) = e + log

B
(m), where

log
B
(m) ∈ [0, 1). We proceed similarly to algorithm 22 (Square Root). Select the number

I of iterations. Mark 0 (orange) and 1 (blue) as the boundaries of the candidate inter-

val and determine the middle k1 of the interval as the �rst candidate. We need to test

whether B
k1
> m or B

k1
< m (if they are equal, then w1 is the exact result). For that we

display k1 as a fraction. Use the auxiliary markings ui and vi such that ki =
ui

vi

during

each iteration i. Let vi = 2i be 2 initially and double it after each iteration. Determine ui

as follows. Let ℎi =
1

2
i

be
1

2
initially and compute ℎi+1 by halving. Compute ui =

ki

ℎi

using

algorithm 16 (Division). As ki is now displayed as a fraction, we can use algorithm 23

(Rational Exponentiation) to compute B
ki

, but can skip the reduction of
ui

vi

, as it cannot

be reduced further. Analogously to algorithm 22 (Square Root), we set the left boundary

of the candidate interval (orange) to ki , if B
ki
< m or the right boundary (blue) to ki if

B
ki
> m. After I iterations, the approximate result kI +1 is returned.

The run time analysis is similar to that of algorithm 22 (Square Root). At �rst, x is trans-

formed into its mantissa representation in (x + B + x

B
). The halvings of the candidate

interval take the time (3m) and the signals that initiate the halvings require the time

(Im). The calculation of the rational exponentiation B
ki

with ki =
ui

vi

consists of �nd-

ing ui , vi ((I)), the binary representation of vi ((5vi) = (10I)), the vi-th root of B

((Im + m)) and the exponentiation with ui ((Im + m) due to the enclosure in [0, m]).

All in all, we arrive at a run time of (x + B + x

B
+ 3m + Im + I ⋅ (11I + 2(Im + m))) =

(x + B + x

B
+ 3m + Im + 11I

2
+ 2I

2
m + 2Im) ⊆ (x + B + I 2 + I 2x + Ix).

Regarding the error � , when initializing the candidate interval, it is true that � ≤ |1 −

log
B
(m)|. Since the interval is halved during each iteration, the error after I iterations is

� ≤
1

2
I +1
|1 − log

B
(m)|.

67

5 Arithmetic on Real Numbers

0 1 m B

k1

k2

k3

k4

B
k1
< m

B
k2
> m

B
k3
> m

Figure 36: Logarithm

68

6 Generalized Formal Languages

6 Generalized Formal Languages

One important �eld of theoretical computer science is that of formal languages. This

section deals with a generalization of words, giving each symbol a continuous length.

Some properties of words become ambiguous under this prospect, like the de�nition of

the palindrome. We provide detection algorithms for two di�erent kinds of generalized

palindromes.

De�nition 18. Generalized Words

Given an input alphabet A = {a1, ..., an}, n ∈ ℕ a generalized word w = w
l1

1
⋯w

lm

m

consists of symbols wi ∈ A of lengths li ∈ ℝ
+
. The value m is called the discrete length

of w and the value ∑
m

i=1
li is called the continuous length of w . Elements wi , wj of lengths

li ≠ lj can be treated as distinct symbols, that is, words u = a
1

1
a
2

1
and v = a

2

1
a
1

1
are consid-

ered di�erent even though both their discrete symbols, discrete lengths and continuous

lengths are identical.

Algorithm 26. Mirror Image (Fig. 37)

De�ne four signals for each pair (x, y) of possible input symbols: One that moves to

the left, one that moves to the right and a re�ected version of both. For example, if the

input alphabet A = {a, b}, the possible labels for interval boundaries are aa, ab, ba, bb.

At the beginning, each inner interval boundary sends two of the aforementioned signals,

one in each direction, which are re�ected at the outer boundaries. When two re�ected

signals with the same label xy collide, a new interval boundary yx is created (yellow).

If two such re�ected signals with the same label collide simultaneously with such an

interval boundary, the boundary will be destroyed. When the algorithm starts, the outer

boundaries send a signal towards the other side (black) which is re�ected there and turns

into a kill signal for all non-stationary signals. When the kill-signals meet in the mid-

dle, they destroy each other and the algorithm terminates. If the input has length n, the

algorithm terminates at time
3

2
n.

Theorem 11. Algorithm 26 (Mirror Image) is correct.

Proof. First, consider one isolated inner boundary. It bisects the input into two in-

tervals. The algorithm then proceeds two swap these intervals in exactly n time. We

now need to show that all other signals, that are created, are destroyed again. Consider

an arbitrary pair X, Y of inner boundaries which have a distance of Δ to each other. Let

the distance between the left outer boundary and X be l and the distance between the

right outer boundary and Y be r . The left signal of X moves l units to the left, is re�ected

and moves a distance l
′

to the right until an unwanted marking is created. Meanwhile,

the right signal of Y moves r units to the right and then a distance r
′

to the left. At the

time t1 = l + l
′
= r +r

′
, the collision occurs. We now have a look at the remaining signals.

69

6 Generalized Formal Languages

a ab b b

#b b#ba ab bb ba ab

b

#b b#baba ab abbb

b b b baa

a

aa

aa

a

Figure 37: Mirror Image

70

6 Generalized Formal Languages

The left signal of Y moves l +Δ units to the left, then l
′′

units to the right, while the right

signal of X moves r + Δ units to the right, then r
′′

units to the left. Ignoring the �rst Δ

time units of their travel, their pathways are identical to those of the earlier two signals

and they meet at the same spot with a delay of Δ at time t2. It follows that l
′
= l

′′
, r
′
= r

′′

and t2 = l + Δ + l
′
= r + Δ + r

′
. For each pair of interval boundaries there exist four

relevant collisions. Two of these create the wanted boundaries of the mirror image, the

other two cancel each other out as described above.

Algorithm 27. Detecting Length-independent Palindromes (Fig. 38)

This algorithm ignores the lengths of intervals representing input symbols and ac-

cepts a word as a palindrome, if the discrete word consisting of the concatenation of

the input symbols is a palindrome. For example, the word a
1.7
b
0.9
b
0.1
a
1.1

is a length-

independent palindrome as it turns into the discrete palindrome abba. As in algorithm 26

(Mirror Image), each interval sends signals in both directions that carry the information

about the boundary they originated from. The outer boundaries each send a kill signal

towards the middle. All of the signals created at inner or outer boundaries move un-

hindered in their speci�ed direction until they collide with a kill signal. Whenever two

such signals collide, we call that point a crossing. A crossing only exists at the moment

the signals pass each other.

We now de�ne the notion of diamond signals. Initially, each inner interval boundary

with the label xy, x, y ∈ A, x ≠ y sends red signals in each direction which are re�ected

at the next crossing. When the re�ected red signals collide, they close o� a rectangle in

the space time diagram which we call a red diamond. Also, all inner boundaries with the

label xx, x ∈ A send green signals in both directions that behave like red signals. The

rectangle in the space time diagram closed o� by green signals is called a green diamond.

Red and green signals are called diamond signals. In addition, at each crossing the in-

formation carried by the colliding non-diamond signals is compared, unless kill signals

are involved. If the signals are carrying mirrored information, that is, they carry the

information xy and yx, x, y ∈ A, we call the crossing a green crossing. If that is not the

case, we call it a red crossing. Each red crossing sends red diamond signals. Each green

crossing sends green diamond signals, if it is not the end point of a red diamond, and

red diamond signals otherwise. In �gure 38, on the right side, the purple diamond is a

red diamond that originates at a green crossing, which itself is the end point of a red

diamond. If the kill signals collide with each other in the end point of a green diamond,

the input word is a palindrome. If they collide in the end point of a red diamond, the

input word is not a palindrome.

71

6 Generalized Formal Languages

a a ab b b b a a ab b b

Figure 38: Detecting Length-independent Palindromes

Theorem 12. Algorithm 27 (Detecting Length-independent Palindromes) is correct.

Proof. We proof by induction, that an input x1⋯xn is a length-independent palindrome

if and only if the last diamond is green. Let w = x1x2 be an input. If x1 = x2, a green

diamond is created by construction, if x1 ≠ x2, a red diamond is created by construction.

Now consider the crossing at the end of a green diamond and the input x1⋯xn. In the

crossing, the signals of the inner boundaries x1x2 and xn−1xn collide. The word x2⋯xn−1

is a length-independent palindrome (induction hypothesis). If x1 = xn, the crossing is

green and a green diamond is created. If x1 ≠ xn, the crossing and created diamond are

red. Now consider the crossing at the end of a red diamond. The word x2⋯xn−1 is not

a palindrome (induction hypothesis). Independent from whether x1 = xn or not, a red

diamond is created.

Algorithm 28. Detecting Length-dependent Palindromes (Fig. 39)

In contrast to algorithm 27 (Detecting Length-independent Palindromes), we now

only consider input words as palindromes if the input word and its mirror image co-

incide with both the sequence of their labels, as well as with their interval lengths. For

that we modify algorithm 27 as follows. Each inner boundary with the label xx, x ∈ A

and each green crossing that is not the end point of a red diamond, create an additional

green stationary signal. If a sole re�ected green diamond signal passes this stationary

signal, the rectangle in the space time diagram closed o� by the diamond signals be-

comes a red diamond instead of a green diamond. Only if the stationary signal collides

with both re�ected diamond signals at once, the diamond keeps its green color. The de-

cision whether the input is a palindrome or not is analogous to algorithm 27.

72

6 Generalized Formal Languages

a b c c b a a b c c b a

Figure 39: Detecting Length-dependent Palindromes

Theorem 13. Algorithm 28 (Detecting Length-dependent Palindromes) is correct.

Proof. We perform an induction analogously to algorithm 27. Inputs which were non-

palindromes following algorithm 27 are non-palindromes for this algorithm also. Let

x1⋯xn be an input. Consider the crossing at the end of an emerging diamond in which

the signals s1,2, sn−1,n of the inner boundaries x1x2 and xn−1xn collide and which succeeds a

green diamond. The word x2⋯xn−1 is a length-dependent palindrome (induction hypoth-

esis). We only need to investigate the case x1 = xn. If the interval lengths |x1| ≠ |xn|, the

stationary green signal does not collide with s1,2, sn−1,n simultaneously and the emerging

diamond turns red. If |x1| = |xn|, the three signals meet at the same time and the emerg-

ing diamond remains green. Now consider a diamond succeeding a red diamond. The

word x2⋯wn−1 is not a length-dependent palindrome (induction hypothesis). Indepen-

dent from the labels x1, xn and their lengths, the emerging diamond is red.

Algorithm 29. Word Exponentiation wk
, k ∈ ℕ (Fig. 40)

Let w = w1w2⋯wn, wi ∈ A and k ∈ ℕ be the input for the algorithm and let

Zero and One be markings initially. When we calculate k ← k − 1 using algorithm 11

(Subtraction), we use Zero instead of 0 and One instead of 1. This way, we can move the

location of the computation and shorten the distances some signals need to travel.

If k = 0, the left boundary at 0 sends a kill signal to the right, that destroys all markings

corresponding to w , as well as the Zero, One and k-signal.

If k = 1, the left boundary at 0 sends a kill signal to the right, that only destroys the Zero,

One and k-signal.

If k ≥ 2, we start by computing k ← k − 1 as described above. When the new value is

determined, a signal s is sent to the left which is re�ected at Zero and is destroyed upon

collision with w’s right outer boundary. When s is re�ected at Zero, Zero begins to move

to the right with the speed 1 − �, � ∈ (0, 1). When s collides with One (or k), One (or k)

also moves to the right with the speed 1−�. At the re�ection of s, another signal l is cre-

ated that moves to the right with the speed 1 − � and which carries the information #w1.

When s collides with an inner boundary or the right outer boundary of w , a copy of that

boundary is created and moves to the right with the speed 1 − �. When the Zero signal

73

6 Generalized Formal Languages

collides with the right outer boundary of w , it becomes stationary and sends a signal t

with speed 1 to the right. Since l lays directly on Zero, at the time of that collision, l

is destroyed and the marking wn# is replaced with wnw1. When signal t collides with a

signal with speed 1 − �, that signal becomes stationary again. Destroy t when it collides

with the right outer boundary of w . Note, that the right outer boundary is also moving

to the right during the exponentiation. When t collides with One, the next computation

of k ← k − 1 is initiated. As long as the result is k > 1, continue analogously to the

previous iteration. However, after the �rst iteration, l carries the label wnw1 instead of

#w1. If k = 1, Zero, One and k are destroyed and the copy of w produced afterwards is

the last one. Essentially, this algorithm is a repeated application of algorithm 1 (Moving
Intervals), applied to every interval of w .

74

6 Generalized Formal Languages

#a b c

k

One

a b c a b c a b c

k − 1

Zero

s

l
s

t
s

l
s

t

Figure 40: Word Exponentiation

75

7 Numbers in Generalized Bases

7 Numbers in Generalized Bases

Regarding numbers as the lengths of intervals leads to the issue that the lengths

grow linearly with the value of the number, making large numbers cumbersome in this

representation. For that reason, we introduce an analogy to the positional notation of

decimal and binary numbers, but with a real-valued base B. We restrict the de�nition to

bases B ≥ 2, as smaller values can lead to undesired behaviors in certain algorithms (an

explanation is presented at the end of this section).

De�nition 19. Interval Number to the Base B ≥ 2

An Interval Number R = r0, ..., rn, n ∈ ℕ, to the base B ∈ ℝ, B ≥ 2, consisting of

the intervals ri , i = 0, ..., n, has the value R̄ = ∑
n

i=0
ri ⋅ B

i
and the length |R| = ∑

n

i=0
|ri |.

Interval numbers are not allowed to consist of an in�nite amount of intervals ri , even if

their value R̄ is �nite, as it can result in an in�nite run time for some algorithms.

We denote intervals I with Ī = |I | as unary or uncompressed. Following the de�-

nition above, an interval number I
⋆

to the base B can be found, such that
̄I
⋆
= Ī and

|I
⋆
| << |I |. In the following, we also use |I | to describe intervals which have the length

|I |. The context should make it clear, whether |I | describes a length or an interval. A

problem of the de�nition above is that for each interval I there exists an in�nite number

of di�erent interval numbers Rj to the base B, such that Ī = R̄j . For example, the unary

interval r with |r | = 6, can be described in base B = 2.5 with the intervals r0r1 where

|r0| = 2.5, |r1| = 1.4, or the intervals r
′

0
r
′

1
r
′

2
where |r

′

0
| = 0.5, |r

′

1
| = 1, |r

′

2
| = 0.48 (see �g. 41).

To map each unary interval to a unique interval number to the base B, we introduce a

standardized form, the so called canonical (interval) number.

De�nition 20. Canonical (Interval) Number

Given a unary interval I or an interval number I to the base B, the correspond-

ing canonical (interval) number is I
′
= i

′

0
, ..., i

′

n
, n ∈ ℕ, where |i

′

j
| = B for j = 0, ..., n − 1 and

|i
′

n
| ≤ B, such that Ī

′
= Ī .

In �gure 41, the interval number in the middle is the canonical representation of

the unary interval r , as all but the last intervals are �lled up to length B.

76

7 Numbers in Generalized Bases

r = 6

with B = 2:5

1:4 · B
1

2:5 · B
0

r0 r1

0.5 1 0.48

Figure 41: Interval Number

r0 r1 r2 r3

B

r0 r1 r2 r3

Figure 42: Canonical Interval Numbers: Removing and Inserting Boundaries

Algorithm 30. Canonical Interval Numbers: Removing and Inserting Boundaries (Fig. 42)

A canonical number to the base B is distinctly de�ned by its length. Therefore, inner

interval boundaries can be removed and inserted at will. To remove all inner boundaries,

create kill signals at the outer boundaries that move towards the middle and destroy all

inner boundaries and each other. To insert the inner boundaries again, utilize an addi-

tion gadget with breadth B, that creates a stationary signal after each complete addition.

When the gadget’s right boundary reaches the number’s right boundary, the gadget is

destroyed.

77

7 Numbers in Generalized Bases

Algorithm 31. Canonicalization (Fig. 43, 44, 45, 46)

Let R = r0, ..., rn be an interval number to the base B. We want to transform R

into the canonical number R
′
= r

′

0
, ..., r

′

m
, such that |r

′

i
| = B, i = 0, ..., m − 1, |r

′

m
| ≤ B. The

process of canonicalization consists of two phases.

First Phase (Fig. 43):
In the �rst phase, we start by dividing r0 by B and moving the result to r1 to create

a larger interval of signi�cance B
1
. Afterwards, that interval will also be divided by B

and moved to r2 to create a larger interval of signi�cance B
2
. We continue until, after

n iterations, R is transformed into one sole interval r
⋆

of signi�cance B
n
. During the

i-th iteration, i = 1, ..., n, we also compute
B

B
i

and align it with the left boundary of the

current con�guration of R. Starting from that left temporary boundary, the intervals

|B
1−i
|, |B

1−i+1
|, ..., |B

1
| are aligned next to each other. After the n iterations, we computed

r
⋆

with ̄r
⋆
= R̄ and if the sequence of the |B

�
|, � = −n + 1, ..., 1, is shorter than |r

⋆
| we

perform more iterations k = n + 1, ..., j until we reach a new interval r
⋆

with

|r
⋆
| ≤

1

∑

�=−j+1

|B
�
|

Second Phase (Fig. 44):
In the second phase we use the B

�
to divide r

⋆
into m intervals and replace each

interval of length |B
�
|, � ≤ 0, with an interval of length B. The overlapping part of |B

1
| and

r
⋆

forms the interval r
′

m
of the canonical number, which can be shorter than B. First, we

mark the left boundary of r
⋆

as Zero and with distance of B to the right of Zero, create the

marking B̃. The interval [Zero, B̃]will be moved to the left, beyond r
′

m
, using algorithm 1

(Moving Intervals). The left boundary of |B
0
| is the �rst signal left of r

′

m
to collide with

a movement signal and it will follow the movement signal upon collision. It is then

re�ected at Zero and moves back to the left boundary of r
′

m
. The Zero follows the �rst

movement signal and both will become stationary at the left boundary of r
′

m−1
, which is

the right-most interval of length B. When Zero reaches that left boundary, signals s and

t are created. Signal s will be stationary forever, while t follows an interval movement’s

second signal. The execution of the following iterations i = 2, ..., j is as follows. When

the moving left boundary of |B
1−i
| collides with the left boundary of r

′

m
, a copy of the

interval [s, B̃] moves to the left beyond r
′

m+1−i
. The left marking of |B

1−(i+1)
| follows the

�rst movement signal of the copied interval, occupies it and is re�ected at s. That �rst

movement signal, which reduces its speed to 1 − � when passing s, drags Zero with it

until the end of the interval movement. The second movement signal, which increases

its speed to 1 when passing t , drags t until the end of the interval movement. When the

interval movement initiated by the left boundary of |B
1−j−1

| �nishes, R
′

is constructed

and can be moved as a whole such that its left boundary is at 0.

78

7 Numbers in Generalized Bases

r0

r1 r2 r3 r4B = 2

B
0

B
−1

B
−2

B
−3

B
−2

B
−1

B
0

B
1

Figure 43: Canonicalization First Phase

Detailed description of an iteration in the �rst phase (Fig. 45, 46):
We �rst de�ne the following term Γi .

Γi =

r
0

B
+r
1

B
+r2

⋯
+ ri−1

B

Initially, Zero (purple), One (blue) and Base (green) are marked. At the beginning of iter-

ation i, |B
1−i
| (red, light blue) and Γi (orange) are computed in parallel using algorithm 16

(Division). The interval [Zero, Γi] is moved to ri (gray box), such that Γi + ri is ready for

the next iteration. The left movement signal, upon collision with Zero, creates a signal f

that moves to the right until it reaches the right boundary of |B
1
|, which is at the end of

the sequence |B
1−i
|, |B

1−i+1
|, ..., |B

0
|, |B

1
|. Additionally, after the movement of Γi , a station-

ary marking g (orange) is created at its left boundary. Signal f initiates a movement of

all colliding signals to the right, including Zero but excluding g and the boundaries of

ri+1, ..., rm. When the moving Zero signal collides with g, it becomes stationary, destroys

g and sends a signal ℎ with speed 1 to the right, as well as a signal e with the slower

movement speed 1 − � to the right. The signals One, Base and |B
1−i
| become stationary

when they collide with ℎ. Signal e increases its speed to 1 when colliding with |B
1−i
|.

All remaining moving signals of |B
1−i+1

|, ..., |B
1
| become stationary when colliding with e.

This way, we arrange the sequence |B
1−i
|, ..., |B

1
| to the right of Zero. The next iteration

can start with a slight o�set: as soon as |B
1−i
| becomes stationary, the computation of

|B
1−i

|

Base
= |B

1−i−1
| can begin. As soon as Base becomes stationary, the computation

Γi+ri

Base
can

begin.

79

7 Numbers in Generalized Bases

Zero ~B

r
0
4
= r

0
m

r
0
3
= B

r

jB0j

t

t

jB�1 j

Figure 44: Canonicalization Second Phase

80

7 Numbers in Generalized Bases

Zero One

B
0

r0

B Base

r1

B
0

B
1

Zero One Base

Start computing B
0

B

Start computing
r0

B
+r1

B

e

Figure 45: Canonicalization First Phase Iteration (1)

81

7 Numbers in Generalized Bases

Zero One

B
0 r0

B
+r1

B Base

B
0

B
1

Zero One Base

Start computing B
−1

B

Start computing

r0
B

+r1

B
+r2

B

B
0+B

1
B

−1

B
−1

r2

e

Figure 46: Canonicalization First Phase Iteration (2)

82

7 Numbers in Generalized Bases

Theorem 14. Algorithm 31 (Canonicalization) transforms the input R into a canonical
number R′, such that R̄ = R̄′.

Proof. The �rst phase of the algorithm performs the following conversion.

R̄ = r0B
0
+ r1B

1
+ ⋯ + rnB

n

= (

r0

B

+ r1)B
1
+ r2B

2
+ ⋯ + rnB

n

= (

r0

B
+ r1

B

+ r2)B
2
+ r3B

3
+ ⋯ + rnB

n

= ⋯ = (

r
0

B
+r
1

B
+r2

⋯
+ ⋯ + rn−1

B

+ rn)B
n

=

r
0

B
+r
1

B
+r
2

⋯
+⋯+rn−1

B
+ rn

B
j−n

B
j
= ̄r

⋆

After the �rst phase we arrive at r
⋆

with R̄ = ̄r
⋆
. The second phase then performs the

following conversion.

̄r
⋆
= (B

−j+1
+ B

−j+2
+ ⋯ + B

0
+ (|r

⋆
| −

0

∑

i=−j+1

B
i
))B

j

= B ⋅ B
0
+ B ⋅ B

1
+ ⋯ + B ⋅ B

j−1
+ (|r

⋆
| −

0

∑

i=−j+1

B
i
) ⋅ B

j
= R̄

′

with (|r
⋆
| −

0

∑

i=−j+1

B
i
) ≤ B by construction

All in all, we get a canonical number R
′

with R̄ = R̄
′
.

Theorem 15. Turning the interval number R = r0, ..., rk to the base B into the canonical
number R′ = r ′

0
, ..., r

′

k
′ using algorithm 31 (Canonicalization) takes the time (max(|R′|, k ⋅

max(B, |R|)).

Proof. Each of the �rst phase’s k iterations consists of three parts. The divisions
Γi+ri

B
and

B
�

B
, which happen in parallel, and the movement of intervals in preparation for the next

iteration. The division
Γi+ri

B
requires the time (Γi + ri +B + Γi+ri

B
), the division

B
�

B
requires

the time (B� + B + B
�

B
) = (B), since B

�
≤ B. The movement of intervals takes the time

(∑B
�
) ⊆ (|R|). Since Γi+ri ≤ |R|, the total run time of the �rst phase is(k⋅max(B, |R|)).

Now onto the second phase. The movements of the copies of the �lled intervals start with

a delay of 2B between each and require the time (k′B) ⊆ (|R′|) each, as well as in total.

The �nal alignment of the canonical number with the 0 requires the time (|R′|). All in

all, the run time of the canonicalization algorithm is (max(|R′|, k ⋅ max(B, |R|))).

83

7 Numbers in Generalized Bases

Regarding a unary number r = ∑
k

i=1
B
i

and its canonical form r
′
, the ratio of their

required spaces is as follows.

r
′

r

=

kB

∑
k

i=1
B
i

=

k

∑
k

i=0
B
i

=

k

B
k
−1

B−1

=

k(B − 1)

B
k
− 1

The length of the canonical number is roughly the logarithm of the unary number’s

length.

Algorithm 32. Basic Arithmetic with Canonical Numbers

Let R1 = r1,0, r1,1, ..., r1,n and R2 = r2,0, r2,1, ..., r2,m be canonical numbers of base B

and R1 ≤ R2 without loss of generality. The left boundaries of both numbers are at 0.

(i) Addition R1 + R2
Analogously to the �rst phase of algorithm 31 (Canonicalization), transform R1 into

one interval r
⋆

1
of signi�cance B

m
. Move r

⋆

1
to the right, such that its left boundary coin-

cides with the left boundary of r2,m and for the next step, treat this boundary as if it was

Zero. Add up r
⋆

1
and r2,m using algorithm 9 (Addition). If the resulting interval is longer

than B, divide the interval into one interval of length B and one interval c with the re-

maining length. Divide c by B and treat the left boundary of c as Zero for the division

using algorithm 16 (Division).

(ii) Subtraction R2 − R1
Compute r

⋆

1
analogously to (i) and subtract it from r2,m. If r

⋆
> r2,m, a negative num-

ber is created to the left of the temporary Zero. Treat this interval c̃ as a positive number,

multiply it with B and subtract the result from r2,m−1.

(iii) Multiplication R1 ⋅ B
Copy the interval r1,0 and move all intervals r1,0, ..., r1,n to the right by B beyond the

copy of r1,0. The resulting interval number has the value |R1| ⋅ B + B, so we need to use

(ii) to subtract B from it.

(iv) Division R1/B
Move the intervals r1,1, ..., r1,n to the left by B to reach 0. The original interval r1,0 is

destroyed. The resulting interval number has the value |R1|/B − B, so we need to us (i) to

add B to it.

(v) General Multiplication and Division
Compute r

⋆

1
and r

⋆

2
of signi�cance B

k
such that both numbers only consist of one

interval each. Use these intervals as input for algorithms 15 (Multiplication) and 16 (Di-
vision) and use algorithm 31 (Canonicalization) to turn the result into a canonical num-

ber. Note, that through the calculation of r
⋆

1
and r

⋆

2
, the sequence |B

−k
|, ..., |B

1
| is already

present and can be reused for the canonicalization.

The run times of (i),...,(v) are dominated by the required conversion following the

�rst phase of the canonicalization and thus lie in (k ⋅ max(B, |Ri |)).

84

7 Numbers in Generalized Bases

Algorithm 33. Compressing Canonical Numbers Further (Fig. 47)

This algorithm replaces the �lled up intervals of length B with intervals of length

� ∈ (0,
B

4
]. Initially, � and B are marked and the left boundary l of rn “knows” that to

the right of it lies the last interval of the canonical number R = r1, ..., rn. The interval

[0, �] is used as an addition gadget. Each inner interval boundary of R sends a signal to

the left that is interpreted by the gadget as an addition signal, analogously to algorithms

14, 15, 16, but with an entrance from the right-hand side. The left signal of l does not lead

to another addition but becomes a stationary signal s1 when colliding with the gadget

and sends a signal t to the right. In the �gure, � has its maximum value so the signal

collides with the gadget exactly at the time it �nishes its computation. Additionally, l

sends a signal to the right at the beginning, which is re�ected at the right boundary of R

and destroys the boundary. When the re�ected signal collides with t , both are destroyed

and a stationary signal s2 is created.

For decompression, the addition gadget from above repeats its addition process until its

right border reaches s1. At the beginning of the process and after each complete addition

except for the last one, an addition signal is sent to the right that is collected by another

addition gadget with a breadth of B. This second gadget places a stationary signal af-

ter each addition. When the gadget �nishes its computation, the interval [s1, s2] can be

moved behind the last stationary signal it created.

The de�nition of interval numbers allows the use of empty intervals, for example

R = ∑
k

i=0
riB

i
, ri = 0 for i = 0, ..., k − 1, rk > 0. If each empty interval is represented by

a stationary signal, the processing of a sequence of empty intervals requires an in�nite

amount of collision rules, one of for each possible length of the sequence. We present

a more elegant representation of empty intervals by allocating a constant amount � of

space which consists of as many intervals as the sequence of empty intervals is long.

Choose � smaller than the length of the smallest non-empty interval of the interval num-

ber. As an example, let R̄ = 2 ⋅ B
0
+ 0 ⋅ B

1
+ 0 ⋅ B

2
+ 0 ⋅ B

3
+ 0 ⋅ B

4
+ 1 ⋅ B

5
. Ignoring the

empty intervals, this interval number consists of the intervals [0, 2] and [2, 3]. We now

add another interval [2, 2 + �], � < 1. To encode the four empty intervals, we subdivide

this interval into the subintervals [2, 2 +
1

2
�], [2 +

1

2
�, 2 +

3

4
�], [2 +

3

4
�, 2 +

7

8
�], [2 +

7

8
�, 2 + �],

or in the general case at position x with n empty intervals [x + (1 −
1

2
i
)�, x + (1 −

1

2
i+1
)�]

for i = 0, ..., n − 2 and [x + (1 −
1

2
n−1
)�, x + �]. Since we forbid an in�nite sequence of

empty intervals, the empty intervals can be processed one after the other without any

singularities. When an algorithm reaches the point x + �, it has to move back to x , as

this is where the next non-empty interval begins.

There are other possible canonical representations of interval numbers than the one

we described in de�nition 20 and some may be more useful in some contexts than others.

We now describe two other possibilities.

85

7 Numbers in Generalized Bases

0 ǫ

k · ǫ

ǫ BB rnl

s1

t

s2

Figure 47: Compressing Canonical Numbers Further

86

7 Numbers in Generalized Bases

De�nition 21. Squared Canonical (Interval) Number to the Base B ≥ 2

Let R̄ = ∑
n

i=0
riB

i
be the value of an interval number to the base B. The squared

canonical (interval) number R′′ corresponding to R has the form R̄
′′
= ∑

m

i=0
r
′′

i
B
2i

with

|r
′′

i
| = B

1−i
, i = 0, ⋯ ,m − 1, |r

′′

m
| ≤ B

1−m
and R̄ = R̄

′′
.

Given a squared canonical number R
′′

to the base B, it is true that |R
′′
| ≤ ∑

1

i=−∞
B
i
=

∑
∞

j=−1

1

B
i
= B + 1 + ∑

∞

j=1

1

B
i
= B + 1 +

1

B−1
, so R

′′
can be displayed in a constant amount of

space independent from its value R̄
′′

. If R is already canonical, the new coe�cients can

be calculated by r
′′

i
=

r
′

i

B
i
. A non-canonical number can be transformed into a squared

canonical number similarly to algorithm 31 (Canonicalization) by performing divisions

by B
2

instead of B.

De�nition 22. Minimal Canonical (Interval) Number to the Base B ≥ 2

Let R̄ = ∑
n

i=0
riB

i
be the value of an interval number to the base B. The minimal

canonical (interval) number R− corresponding to R has the form R̄
−
= ∑

m

i=0
r
−

i
B
i

with

|r
−

i
| = 0, i = 0, ⋯ ,m−1, 0 < |r

−

m
| ≤ B, so R̄

−
= r

−

m
⋅ B

m
= R̄. The empty intervals are encoded

in the interval [0, �] as described above.

We now give an explanation why we only allow bases B ≥ 2 for interval numbers.

When adding two numbers, one expects the sum to have at most one more digit than

the larger of the two numbers. Thus, when adding two canonical interval numbers, we

do not want to have the e�ect, that two or more intervals of higher signi�cance are

created. Consider two canonical numbers consisting of k +1 �lled-up intervals of length

B. When adding up the two numbers, a new interval of signi�cance B
k+1

is created. We

forbid that this carryover is larger than B ⋅ B
k+1

as this would lead to the creation of yet

another interval of signi�cance B
k+2

. We therefore stipulate that ∑
k

i=0
B ⋅ B

i
≤ B ⋅ B

k+1
.

k+1

∑

i=1

B
i
=

B
k+2

− 1

B − 1

− 1 =

B
k+2

− B

B − 1

=

B
k+2

− B

B
k+2

− B
k+1

B
k+1

≤ B
k+2

⇔

B
k+2

− B

B
k+2

− B
k+1

≤ B

⇔ B
k+2

− B ≤ B
k+3

− B
k+2

⇔ B
k+3

− 2B
k+2

+ B ≥ 0

⇔ B
k+2

− 2B
k+1

+ 1 ≥ 0

⇔ (B − 2)B
k+1

≥ −1

⇔ B − 2 ≥ −B
−(k+1)

It is apparent, that the requirement is ful�lled for B ≥ 2, independent from k. If B < 2,

there exist numbers with k intervals that do not ful�ll our requirement.

87

8 Sorting Intervalls

8 Sorting Intervalls

Sorting numbers is a popular problem in computer science as having a sorted input can

speed up a large number of algorithms. Comparison-based sorting algorithms like Quick

Sort or Heap Sort cannot be faster than the time (n log n), while sorting integers is pos-

sible in (n) with algorithms such as LSD Sort. In this chapter we describe how to sort

intervals by lengths and exploit the properties of real numbers to compress large inputs

of intervals such that the time required to sort the compressed input becomes in�nites-

imally small.

De�nition 23. Red Activation Signal

When a red activation signal reaches a separating marking between two intervals,

a comparison of the intervals starts using algorithm 34 (Interval Comparison), if the ad-

jacent intervals have not been compared before and the marking is still in its initial

position.

De�nition 24. Green Activation Signal

When a green activation signal reaches a separating marking between two inter-

vals, a comparison of the intervals starts using algorithm 34 (Interval Comparison).

Both red and green activation signals are destroyed when colliding with the signals

of a comparison that close o� a rectangle in the space time diagram.

Algorithm 34. Interval Comparison (Fig. 48)

We compare the lengths of two neighboring intervals x and y , where x is to the

left of y , and want to have the larger interval to be at the right side afterwards. The

marking m between x and y sends a signal a to the left and a signal b to the right. Both

are re�ected at the other boundaries of x, y. The collision point of the re�ected signals

describes the marking between x, y if they switched places. If |x| = |y|, m collides with

both re�ected signals at once. Since no permutation is necessary, red activation signals

are sent to both sides. If |x| < |y|, the re�ected signal a passes m. At the time of the

collision, a red activation signal is sent to the left and when a and b collide, both are

destroyed and a red activation signal is sent to the right. If |x| > |y|, signal b passes m.

The marking m will be replaced by a proxy signal m̃, which may be necessary for a reset

of the permutation (see algorithm 35 (Bilateral Interval Sort)). When a and b collide, a

new marking m
′

is created that separates the interchanged intervals x, y. Additionally,

green activation signals are sent in both directions. When the right one collides with the

proxy signal m̃, then m̃ is destroyed.

88

8 Sorting Intervalls

x > y < =x xy y

Figure 48: Interval Comparison

Algorithm 35. Bilateral Interval Sort (Fig. 49, 50, 51, 52, 53, 54)

The input is a sequence of unsorted intervals and we want to sort them by length in

an ascending order. In the beginning, both outer boundaries send red activation signals

towards the middle. Upon collision with inner boundaries, the adjacent intervals are

compared using algorithm 34 (Interval Comparison) and are potentially interchanged.

If no permutation is necessary, red activation signals are sent to both sides, so only

neighboring intervals are compared that de�nitely have not been compared before. If

a permutation is necessary, green activation signals are sent to both sides to compare

the neighboring intervals. The algorithm ends when only stationary signals remain.

Alternatively, an ending signal can be used like the one in algorithm 36 (Hourglass Com-
pression).

Due to the parallelism of the comparisons, a number of con�icts can arise, which we now

solve. Consider the case, that the rectangles in the space time diagram of two adjacent

comparisons overlap. In �gure 49, left side, the large rectangle overlaps the red one. In

the example, the overlap begins at the upper red circle. The right comparison’s signal a

is re�ected in the center red circle, leading to an error. The two left-most intervals are

supposed to be interchanged but a’s re�ection occurs before the permutation �nishes,

thus creating intervals of wrong lengths. Additionally, a green activation signal collides

with a proxy signal (lower red circle) which is not allowed to start a new comparison, as

it does not describe the actual interval boundary. To avoid such problems, we give prior-

ity to the left comparison and reset the right one. Figure 49, right side, shows the same

scenario, but when the comparison rectangles begin to overlap, the right comparison

is interrupted and reset. The right comparison’s �rst attempt is shown in blue. When

the comparison signals collide, a reset signal (orange) is sent to the right that initiates

a new comparison when reaching the marking between the two intervals on the right-

hand side. Even though the rectangles are now disjoint, a problem remains, as the left

comparison’s proxy signal does not reach the corresponding green activation signal (red

89

8 Sorting Intervalls

circle). If the left comparison has to be reset after that point, the proxy signal would be

necessary to recreate the original intervals. It follows, that the right comparison has to

wait until the left comparison �nishes its computation and destroys its proxy signal if

one was created. Let us now have a look at the proxy signal’s purpose. In �gure 50, left

side, we see the reset from above that did not require a proxy signal to work properly.

This is the case when the length v of the right interval is larger or equal to the distance

u between the interval boundary and the collision point of the rectangles. However, if

u > v and we do not use a proxy signal, the error shown in �gure 50, middle, occurs.

If the right comparison leads to a permutation of its intervals and we just remove the

old boundary, the reset signal cannot �nd it anymore (red circle). If we create the proxy

signal, though, the reset signal can �nd the original interval boundary location, replace

the proxy signal with the boundary signal and attempt the comparison again (see �g. 50,

right side). Let us now consider the scenario, where the right comparison collides with

the proxy signal of the left comparison (see �g. 51, right side, red circle). Since we cannot

be certain that the left comparison will not be interrupted, the “right yields for left” rule

also applies to the proxy signal, that is, the right comparison resets upon colliding with

the left comparison’s proxy signal. If the left comparison does not lead to a permutation

of its intervals, there is no issue with the rectangles having direct contact (see �g. 51,

left side). An exemplary input that leads to a collision with a proxy signal can be seen

in �gure 52.

Figures 53, 54 show a complete execution of the sorting algorithm.

Theorem 16. The run time of algorithm 35 (Bilateral Interval Sort) for an input of length
n consisting of k intervals is ((2k − 1)n).

Proof. Consider two intervals a, b that are to be compared and which have the lengths

|a|, |b|. If |a| ≤ |b|, the intervals are not interchanged and the comparison ends after the

time t ≤
3

2
(|a| + |b|) (equality when |a| = |b|), when the red activation signals reach the

neighboring boundaries. If |a| > |b|, the intervals need to be interchanged. Due to the use

of proxy signals the comparison takes longer and ends after the time t < 2(|a|+|b|) (closer

to the maximum for |b| ≈ 0). A worst case input of length n with k intervals consists of

an interval n1 of length |n1| ≈ n at the very left and k − 1 intervals n2, ..., nk , |ni | > 0, to the

right of it. The algorithm has to compare and interchange n1 with the other k − 1 inter-

vals, which takes (2n) each. At the end, n1 is compared with its neighboring interval

once more in the time n, but the two are not interchanged. The run time is therefore

((k − 1)2n + n) = ((2k − 1)n) in total.

90

8 Sorting Intervalls

Figure 49: Comparison Con�ict (1)

u v u v

Figure 50: Comparison Con�ict (2)

91

8 Sorting Intervalls

Figure 51: Comparison Con�ict (3)

Figure 52: Comparison Con�ict (4)

92

8 Sorting Intervalls

t1

t1

t2

Figure 53: Bilateral Interval Sort (1)

93

8 Sorting Intervalls

t2

Figure 54: Bilateral Interval Sort (2)

94

8 Sorting Intervalls

Algorithm 36. Hourglass Compression (Fig. 55)

We want to exploit the properties of real numbers to solve problems more e�ciently.

Problems for which a signal machine requires at most an exponential amount of time,

proportional to the number of intervals of the input, can be solved in linear time, pro-

portional to the input length, through compression. We will show this on the example

of the sorting problem for intervals, but it can also be applied to other problems. At �rst

we will compress the input to an arbitrarily small size in time 2n, where n is the total

length of the input. We repeatedly use algorithm 2 (Stretch and Compress) to compress

by a factor of 2, while alternating the direction of the compression. In �gure 55, left side,

we see that the resulting funnel can shrink down to a single point if the compression is

repeated an in�nite amount of times. Since such a singularity destroys all of the encoded

information, we only allow a �nite amount of compressions. In the �gure, the number

of compressions is linear in the number m of intervals. To count to m, a signal moving

between the funnel’s boundaries marks one unmarked inner interval boundary per trip.

If all inner boundaries are already marked, the actual algorithm can start (gray area). To

compress exponentially, use algorithm 3 (Binary Counter) to count the compressions.

In �gure 55, right side, the sorting algorithm running on the compressed input is shown.

To determine the end of the algorithm, an ending signal (blue), emerging from the side

where the compression ended last, tries to move to the other side. It is halted when it

collides with proxy signals or interval boundaries involved in a comparison. Green ac-

tivation signals push the ending signal back towards the side it originated from. When

the ending signal reaches the other side, it is re�ected and moves back to its original

side without any obstruction, and initiates the decompression there. The decompres-

sion works analogously to the compression. Instead of a compression, a stretch occurs.

The counting mechanism is unchanged. The compressing and stretching requires linear

time proportionate to the total length of the input. The actual algorithm operating on

the compressed input only requires (1) time with su�cient compression. One can also

�nd counting mechanisms that allow for more than an exponential amount of compres-

sions, making it possible to solve even harder problems in linear time.

Theorem 17. The run time of algorithm 36 (Hourglass Compression) for an input of length
n is (4n).

Proof. The compression ends at the latest when the outer boundaries collide (in that case

a singularity occurs). Consider the signal with speed 1 that is re�ected at these bound-

aries. The traveled distance between two re�ections is n at �rst, then
n

2
, then

n

4
and so

on. Thus, the compression ends at the latest at time 2n. Since the expansion matches

the compression (just in reverse), the algorithm requires O(4n) time in total.

95

8 Sorting Intervalls

Figure 55: Hourglass Compression

96

9 Conclusion

9 Conclusion

We presented a range of e�cient algorithms which form a basis for operating signal

machines and allow to shift the focus on more complex computations. Besides the ma-

nipulation and sorting of intervals and arithmetic from basic operators up to logarithms,

we introduced a range of number representations between which one can switch to �t

the requirements. We generalized the base of the positional notation system from in-

tegers to real numbers. The special properties of real numbers, that elevate them from

the discrete domain of integers, allow algorithms to solve di�cult problems faster. By

using the hourglass compression, even problems that cellular automata require an expo-

nential amount of time for can be solved in linear time. Additionally, the signal storage

allows the sorted storage of an arbitrarily large �nite amount of signals in an arbitrarily

small constant amount of space. However, the real numbers also bring along new chal-

lenges like singularities, which do not occur in the discrete realm and which make some

computations impossible. We presented some techniques to avoid certain catastrophic

singularities, which force the signal machine to halt, by using on demand systems for

the multiplication and division algorithms. Also, we carried out generalizations in other

domains like formal languages.

9.1 Future Work

One question we already raised is whether all cellular automata can be simulated

within a constant amount of space. For this, new strategies need to be developed to

distribute the creation of signals and to avoid singularities. The work of Modanese et

al. [8] presents the model of shrinking and expanding cellular automata, which allows a

distributed creation of cells. Maybe a similar strategy can be found for signal machines.

It is possible to generate an in�nite amount of signals in a �nite amount of space, with-

out creating a singularity in any speci�c point, for example, by repeatedly bisecting an

interval and all subdivided intervals or by marking all points of the Cantor set. However,

this leads to an entirely di�erent kind of singularity that cannot be restricted to certain

positions. Apart from the simulation there are also many other open questions. Since we

mostly focused on the ground work, many problems that have been solved for cellular

automata, are unsolved for signal machines. An example is the �ring squad synchro-

nization problem, which exists in a number of variants. Considering signal machines

entirely new challenges emerge. One may want to synchronize a set of stationary sig-

nals, but it is also a possibility to synchronize a set of moving signals, which increases

the problem’s di�culty because of the additional dynamics. Another interesting thought

is the generalization of signal machines to the two-dimensional plane, which allows the

representation of complex numbers. On the contrary to the one-dimensional case, col-

lisions of signals with a size of zero is very unlikely, so the use of signals with a certain

expanse may be necessary. Some rudiments are the Billiard Ball Model of Computation
by Margolus [7] or the Collision-based Computing by Adamatzky et al. [1]. The last re-

maining topic we already touched on are generalized formal languages. Even a useful

de�nition of a grammar for such languages proves to be challenging, let alone recog-

nizing languages. The generalization to real-valued lengths of characters destroys some

properties of words, but may also add interesting other properties.

97

References

References

[1] Adamatzky, Andrew and Jérôme Durand-Lose: Collision-based computing. In

Handbook of Natural Computing, pages 1949–1978. Springer, 2012.

[2] Codd, Edgar F: Cellular automata. Academic Press, 2014.

[3] Durand-Lose, Jérôme: Abstract geometrical computation for black hole computa-
tion. In International Conference onMachines, Computations, and Universality, pages

176–187. Springer, 2004.

[4] Durand-Lose, Jérôme: Abstract geometrical computation: Turing-computing abil-
ity and undecidability. In Conference on Computability in Europe, pages 106–116.

Springer, 2005.

[5] Durand-Lose, Jérôme: The signal point of view: from cellular automata to signal
machines. In JAC 2008, pages 238–249. Izdatelstvo MCNMO, 2008.

[6] Ermentrout, G Bard and Leah Edelstein-Keshet: Cellular automata approaches
to biological modeling. Journal of theoretical Biology, 160(1):97–133, 1993.

[7] Margolus, Norman: Physics-like models of computation. Physica D: Nonlinear

Phenomena, 10(1-2):81–95, 1984.

[8] Modanese, Augusto and ThomasWorsch: Shrinking and Expanding Cellular Au-
tomata. In International Workshop on Cellular Automata and Discrete Complex Sys-
tems, pages 159–169. Springer, 2016.

[9] Nagel, Kai and Michael Schreckenberg: A cellular automaton model for freeway
tra�c. Journal de physique I, 2(12):2221–2229, 1992.

[10] Sipper, Moshe: Evolution of parallel cellular machines, volume 4. Springer Heidel-

berg, 1997.

[11] Smith III, Alvy Ray: Simple computation-universal cellular spaces. Journal of the

ACM (JACM), 18(3):339–353, 1971.

[12] Wacker, Simon: Signal Machine And Cellular Automaton Time-Optimal Quasi-
Solutions Of The Firing Squad/Mob Synchronisation Problem On Connected Graphs.
arXiv preprint arXiv:1706.05893, 2017.

[13] Worsch, Thomas: Parallel turing machines with one-head control units and cellular
automata. Theoretical computer science, 217(1):3–30, 1999.

98

	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Organization of this Thesis

	2 Preliminaries
	2.1 Cellular Automata
	2.2 Signal Machines

	3 Basic Tools
	4 Simulation of Cellular Automata
	5 Arithmetic on Real Numbers
	5.1 Addition and Subtraction
	5.2 Multiplication and Division
	5.3 Complex Arithmetic Operators

	6 Generalized Formal Languages
	7 Numbers in Generalized Bases
	8 Sorting Intervalls
	9 Conclusion
	9.1 Future Work

