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ABSTRACT: We successfully conducted electrochemical and online mass
spectrometric measurements on commercial carbon felt electrodes with a
differential electrochemical spectrometry setup. Its capability is demonstrated by
simultaneous mass spectrometric and electrochemical measurements. Half-cell
tests, such as cyclic voltammetry, and coulometry of the redox couples can be
performed under stopped flow of the electrolyte. We use different potential
windows, and two types of electrolytes while monitoring potential dependent H2,
O2 and CO2 formation. At oxidizing potentials, we did not observe oxygen
evolution, only carbon corrosion. An increase in CO2 and H2 formation at high
and low potentials in the presence of vanadium is observed.
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Carbon fibers in the form of paper or felts are the most
common electrode material for vanadium redox flow

batteries (VRFBs). Their physical and chemical properties
strongly influence the overall cell performance, and their
degradation due to unwanted side reactions (carbon corrosion
and oxygen and hydrogen evolution) is partially responsible for
the performance losses.1,2

Differential electrochemical spectrometry (DEMS) has been
proven to be suitable characterizing carbon materials, mainly in
the context of fuel cell research.3−5 Recently, Taylor et al. used
DEMS to calculate the faradaic efficiency of the V3+ reduction
reaction on the oxidized edge and basal surfaces of graphite
discs in a model study on the activity and stability of the
negative electrode in VRFBs.6

Although DEMS is a straightforward technique to investigate
volatile components under potential control, it has not yet
been applied to study the corrosion of carbon felts under
reaction conditions, namely, in the presence of vanadium ions
and under continuous electrolyte flow. The latter issue is one
of the major obstacles for the long-term durability of carbon
felt electrodes, which are commonly used in the vanadium
redox flow batteries. In this study we present a modification of
a DEMS flow cell,7 which enables mounting of the commercial
carbon felts as a working electrode for conducting simulta-
neous electrochemical and online mass spectrometric experi-
ments. Furthermore, we will demonstrate that the vanadium
redox processes in the confined volume within the carbon felt
can be quantitatively assessed under the stopped electrolyte
flow, though the mass spectrometric detection of gaseous
products is no more possible under these conditions.

Shortly, the DEMS setup8 consists of a modified version of
the previously introduced dual thin-layer flow-through cell.7 By
employing a PTFE spacer, a cylindrical cut-out of the carbon
felt can be mounted in it. The carbon felts used in this study
are thermally treated as described previously in the
literature.1,9,10 The felts were first measured in sulfuric acid,
followed by the vanadium containing electrolyte. Each time the
felts were cycled until a stable voltammogram was achieved
and thus all volatile components in the felt were removed.
More experimental details are provided in the Supporting
Information.
The influence of the electrolyte composition on carbon

corrosion was investigated in an oxidative potential range.
Figure 1 shows the potential dependent CO2 formation (a), as
well as the corresponding cyclic voltammograms (b) in sulfuric
acid supporting electrolyte (red) and in the vanadium
electrolyte (blue) under conditions of continuous electrolyte
flow (solid lines), as well as without electrolyte flow (dashed
lines).
The CO2 formation in vanadium containing electrolyte

during the positive-going scan onset at ca. 0.9 V (see inset of
Figure 1a) together with the onset of V4+ oxidation to V5+ (see
inset of Figure 1b), indicating ca. 0.3 V earlier oxidation of
carbon felt in the vanadium containing electrolyte compared to
supporting electrolyte. With the further progress of electrode
potential, the CO2 formation remains faster in comparison,
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approaching an about one-third higher rate at the positive
potential limit applied. This clearly coincides with oxidation of
V4+ to V5+, as confirmed by the mass transport limited current
for vanadium oxidation of around 3 mA, which is reached at
1250 mV (Figure 1b). This is followed by a current increase
due to carbon corrosion at higher potentials, as evidenced from
the CO2 formation. Comparing the increase of the faradaic
current from ca. 1.3 to 1.6 V, they are approximately the same
in both, vanadium containing and supporting electrolyte,
although in the latter, the CO2 formation is significantly higher,
which could be tentatively attributed to V5+ (VO2

+) promoted
oxidation of carbon.
During the reverse sweep, a current plateau of around 2 mA

is reached, with the mass transport current superimposed by a
broad capacitive feature of the carbon felt electrode. This is
followed by a small reduction peak of −0.4 mA at 990 mV,
which can be attributed to the reduction of V5+ residue that
remained inside the felt, as confirmed by the measurement at
stopped flow (dashed blue line). A higher flow rate or slower
potential scan rate might reduce this effect.
During the oxidation of hydroquinone to quinone at 500

mV, a low rate of CO2 formation can be observed in both
electrolytes. However, there is no vanadium redox activity in

this potential range, as expected and evidenced by both flow
and stopped flow measurements.
Under the stopped flow conditions, two distinct redox peaks

in the vanadium containing electrolyte can be observed. This
corresponds to the V4+/V5+ redox with peak potentials of ca.
1.13 and 0.98 V for anodic and cathodic peaks (peak
separation ΔE = 147 mV), respectively, a anodic to cathodic
peak current ratio (IA/IC) of 0.86, and a charge ratio (CA/CC)
of 1.03 (see Table 1). In the confined volume within the

carbon felt electrode, this indicates a high reversibility of the
redox reaction. Finally, for the sulfuric acid supporting
electrolyte, stopping the electrolyte flow did not alter the
cyclic voltammogram, since all the features depend only on the
electrode surface, which suffers from the electrochemical
oxidation at potentials more positive than ca. 1.3 V at a similar
amount as that under the electrolyte flow.
Figure 2 shows the potential dependent (a) CO2, (b) H2

and (c) O2 formation, as well as the corresponding cyclic
voltammogram (d) in sulfuric acid (red) and in the vanadium
electrolyte (blue) in the potential range extended to the
hydrogen evolution under continuous flow of electrolyte. The
dashed voltammograms in Figure 2d represent the measure-
ments without the electrolyte flow.
After scanning the electrode potential to −0.4 V in the

vanadium-free supporting electrolyte, in the positive-going
scan an earlier onset and larger amounts of CO2 formation can
be observed around the hydroquinone oxidation at approx-
imately 400 mV, compared to the measurement with the lower
potential limit of 0.0 V (Figure 1a). At higher potentials, the
CO2 formation increases exponentially, starting from ca. 1200
mV (see Figure 2a and its inset). Both indicate that the
reduced carbon surface at lower potentials is more easily
oxidized, and at the positive potentials, where the CO2
formation rate is ca. 30% higher compared to the measurement
using the low potential limit not exceeding 0.0 V. In the
vanadium containing electrolyte, CO2 formation sets in at
around 100 mV, reaches a plateau, followed by the second
increase with the onset of the V4+ oxidation and then increases
exponentially positive of 1200 mV, exhibiting a rather similar
CO2 formation rate at the upper potential limit as that in the
sulfuric acid solution. The differences between the onset
potentials of CO2 formation can be explained by the oxidative
nature of V5+ (which is present in the form of VO2

+), as

Figure 1.MS signals of CO2 (a) and the cyclic voltammograms (b) in
the oxidative range. The insets show a close-up of the quinone/
hydroquinone redox peak region. The potential scan was 10 mV/s;
the electrolyte (5 mM VOSO4 in 2 M H2SO4) flow rate was about 6
μL/s.

Table 1. Electrochemical Data of the V4+/V5+ (A1, Anodic;
C1, Cathodic) and V2+/V3+ (A2, Anodic; C2, Cathodic)
Redox Reactions in the Oxidative (ox.; 0.0−1.6 V), Full
(−0.4−1.6 V), and Reductive (red.; −0.4−0.0 V) Potential
Range without Flowa

range peak E (V) I (mA) C (mC) ΔE (mV) IA/IC CA/CC

ox. A1 1.128 1.26 23.59 147 0.86 1.03
ox. C1 0.981 −1.47 −22.83

full A1 1.153 3.11 42.03 163 2.16 1.96
full C1 0.990 −1.44 −21.54
full A2 −0.286 1.01 8.46 0.30
full C2 −28.12

red. A2 −0.293 1.58 18.48 57 0.93 0.94
red. C2 −0.350 −1.70 −19.62

aE, potential; I, current; C, charge.
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discussed previously. However, at low potential, reduced
carbon is facile for electrochemical oxidation as it could be
seen from nearly equal CO2 formation rates at the positive
potential limit.
For the hydrogen evolution (Figure 2c), we observe an

influence of the respective vanadium species similar to that for
the carbon corrosion: The reduction of V4+ to V2+ ions (see
Table 1 and related further discussion) leads to a more
pronounced hydrogen formation, which implies that some
water gets reduced by the oxidation of V2+. This confirms the
observation by Sun et al.,13 who stated that V2+ electrolytes
form H2 in the presence of carbon felts under open circuit
conditions, which implies the formation of a mixed
potential.14.15 However, this is in contrast to the findings
reported by Taylor et al.,6 where the suppression of hydrogen
evolution in the presence of ca. 1.5 M of V3+ was found, which
could be related to much higher vanadium concentration and

the different carbon electrode materials. In addition, in our
experiments V4+ rather than V3+ solution was used.
The electrochemical current at low potentials in the V4+

containing electrolyte under continuous electrolyte flow is
much higher, compared to the supporting electrolyte under the
same conditions, which indicates the reduction of V4+ to a
lower oxidation state, since no V4+ reduction current is
observed in the potential range from 0.9 to 0.1 V. It must be
noted here that the mass transport limited current for the low
potential reduction of V4+ cannot be reached going to even
lower potential due the exponential increase of hydrogen
evolution.5,11 Otherwise, the height of mass transport limited
current could simply indicate how many electrons are
transferred in the reduction of V4+: for one electron reduction
to V3+ the absolute current should be equal to the mass
transport limited current for V4+ oxidation to V5+, whereas for
two-electron reduction of V4+ to V2+ the current should be
twice as high. The mass transport limited current of the
oxidation of V4+ to V5+ is similar to that obtained in the
oxidative potential (Figure 1b), which indicates that it is not
significantly affected by the lower potential limit applied.
In addition, the lower solubility of gaseous hydrogen

compared to carbon dioxide results in bubble formation,
which in some cases can disturb the MS data, as it is visible in
Figure 2b in the vanadium containing electrolyte.
Interestingly, we do not observe any significant oxygen

evolution at high potentials (Figure 2c), which contradicts
earlier presumptions in the literature.11,12 At low potentials,
some consumption of oxygen can be attributed to the
reduction of trace amounts delivered by the flowing electrolyte.
Due to the lack of the mass transport current for the

reduction of V4+ under continuous flow of electrolyte because
of the interference with H2 evolution, the electrochemical
measurements were performed under the stopped flow
conditions. Here, the trapped constant amount of vanadium
ions in the confined space within the carbon felt can be
sequentially reduced or oxidized at the defined potentials,
allowing for the coulometric analysis of corresponding redox
pairs. The dashed blue line in Figure 2d depicts the cyclic
voltammetry profile of a carbon felt electrode in V4+ containing
electrolyte under stopped flow conditions in a wide potential
range from −0.4 to 1.6 V. The reduction current reached at the
lower potential limit is similar to that under continuous flow
(solid blue line, Figure 2d), but in the backward scan an
oxidation peak at ca. −0.3 V appears under the stopped flow
conditions.
Going further positive, after passing a small hydroquinone

oxidation peak at ca. 0.6 V, which is slightly higher for the
reduced carbon felt, an expressed oxidation peak appears at ca.
1.15 V under the stopped flow conditions. Its peak current is
significantly higher compared to the V4+ oxidation to V5+ when
applying the low potential limit of 0.0 V (Figure 1b), whereas
the reduction peak of V5+ to V4+ is similar, irrespective of the
lower potential limit, which would be expected for the same
amount of vanadium trapped in the confined space. However,
the difference of the oxidation peak depending on the lower
limit could be explained by considering that not only V4+ is
oxidized but also the lower oxidation state ions, formed upon
the reduction of V4+ at low potentials. If V4+ is at low potentials
reduced to V3+, it is reoxidized to V4+ at −0.3 V, and thus this
would not lead to an increased oxidation current to V5+, in
contrast to results of Figure 1b and Figure 2d. For the case of
reduction of V4+ to V2+ at low potentials, the latter will be

Figure 2. Potential dependent (a) CO2, (b) H2, and (c) O2
formation, as well as the corresponding cyclic voltammogram (d) in
sulfuric acid (red) and the vanadium electrolyte (blue). The dashed
voltammograms represent the measurement without electrolyte flow.
The potential scan was 10 mV/s; the electrolyte (5 mM VOSO4 in 2
M H2SO4) flow rate was about 6 μL/s. The inset in panel d shows a
stable cyclic voltammogram of the V2+/V3+ redox couple in the low
potential range at a stopped flow.
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oxidized to V3+ at −0.3 V, still residing in the carbon felt under
the stopped flow conditions, until V3+ will be oxidized together
with V4+ to V5+, which would result in about double current,
compared to only V4+ oxidation to V5+.15

To support this hypothesis, the results of quantitative
evaluation of the electrochemical data are listed in Table 1. In
the oxidative (ox.; plot shown in Figure 1b, dashed line)
potential region the oxidation and reduction charge is nearly
identical for the V4+/V5+ redox couple. In the wide (full; plot
shown in Figure 2d, dashed line) potential window, however,
the oxidation charge for the peak at ca. 1.15 V is about twice
higher than the V5+ reduction charge, the latter being identical
to that in the oxidative potential region. This clearly indicates a
two-electron transfer in oxidation reaction to V5+, after the
excursion to −0.4 V, where V4+ is reduced to V2+ during the
negative-going scan and reoxidized to V3+ in the backward
scan, which is further oxidized to V5+ at higher potentials.
However, since the reduction of V4+ to V2+ at a low potential is
overlapping with hydrogen evolution, the charge for oxidation
of V2+ to V3+ is ca. 3-fold lower than that for the cumulative
reduction. To isolate the V2+ to V3+ redox couple for avoiding
further oxidation to V5+, the upper potential limit was set to 0.0
V. As a consequence, the reduction current was gradually
decreasing, and the oxidation counterpart correspondingly
increasing, finally resulting in a stable voltammetric redox pair
(inset in Figure 2d) resulting in an equal charge for the
reduction and oxidation reactions, which is close to the charge
of V4+/V5+ redox pair in the oxidative region. Based on the
redox processes being around −0.30 and −0.35 V under these
conditions they can be assigned to a reversible V2+/V3+ redox
pair developed in the confined space at a stopped flow.
In this study, we were able to successfully conduct

electrochemical and online mass spectrometric measurements
on commercially available carbon felt electrodes with a DEMS
setup under continuous electrolyte flow conditions. At
oxidative potentials a mass transport limited current for V4+

oxidation V5+ is reached under continuous flow of electrolyte,
followed by the increase of current due to carbon oxidation to
CO2, whereas no oxygen evolution can be detected. By
comparing the electrochemical behavior in sulfuric acid base
electrolyte and in vanadium containing electrolyte, we
demonstrated that the presence of vanadium ions has a
profound effect, leading to 50% higher CO2 formation and a
lower onset potential in the oxidative potential regions. This
implies that the previously oxidized V5+ acts as an oxidizing
agent versus the carbon electrode. A small reduction peak
during the anodic scan during flowing vanadium electrolyte
indicates the presence of residual V5+ inside the felt, which
could be reduced by a higher flow rate. The increased H2

formation in the presence of V2+ ions suggests that some water
gets also reduced by the oxidation of V2+. In addition, the
electrochemical half-cell tests, such as cyclic voltammetry and
coulometry of the redox couples, can be performed under
stopped flow of the electrolyte, where the respective vanadium
redox pairs demonstrate a reversible behavior for the
electrolyte trapped in the confined volume in the carbon felt
electrode.
Further investigations with DEMS using different felt types

can enable a more extensive understanding of the degradation
mechanisms of the felt and therefore aid the development of
improved materials for the VRFB.
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