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ABSTRACT

The evaluation of advanced land system models is critical
for accurate assessments of global change scenarios. How-
ever, model evaluation is a complex task, especially in the
case of agent-based and similar modelling approaches that
provide flexible descriptions of land use decision-making.
Machine learning has the potential to become a powerful
technique for calibrating and evaluating these models, bring-
ing large datasets to bear while exploring large areas of
parameter space. We present an initial application of ma-
chine learning to land use model development, quantifying
correspondence between simulated European land uses from
a model (CRAFTY-EU) and remotely sensed MODIS land
cover. We used grid searching and a more efficient searching
algorithm to calibrate three behavioural parameters of the
model on the basis of agreement in the spatial properties of
land cover. The computational cost of the grid searching was
high (n=486), while the searching algorithm yielded similar
results with approximately 5% of the runs. We use our find-
ings to propose a calibration and evaluation framework that
holds promise for improving the accuracy, utility and trans-
parency of land use decision models, and identify important
areas for further work, including the design of more rigorous
stopping rules and convergence statistics.

Index Terms— model evaluation, model calibration, ma-
chine learning, Model-Based Optimisation

1. INTRODUCTION

Understanding the likely and potential roles of land use in
future global change is key to integrated assessments sup-
porting international policy development [1, 2, 3, 4]. How-
ever, relatively few models are capable of simulating land use
over the spatial and sectoral scales required, and these may
include unrealistic representations of land system dynamics
[5, 6, 7]. Furthermore, different models produce widely diver-
gent projections, for reasons that are not entirely understood
[8]. As a result, a broader range of rigorously-specified mod-
els is needed to deepen our understanding of potential land
use change.

Behavioural or ‘process-based’ models such as agent-
based models (ABMs) have received increasing attention
because they allow the simulation of emergent social and
economic conditions from underlying behavioural processes
[9]. Unlike other models, ABMs do not attempt to achieve
tractable aggregate model outcomes but represent land users
as heterogeneous, boundedly-rational agents who act and in-
teract according to characteristic protocols of communication
and decision-making [10]. Thus, ABMs have a distinct and
important role to play in complex land resource policy anal-
ysis. Nevertheless, the flexibility of these models means that
they can be especially hard to calibrate and evaluate, because
a great deal of data is required to constrain their parame-
ter values without over-fitting to limited, unrepresentative or
aggregate outcomes [11].

The development of satellite technology may provide a
significant step towards satisfying these data requirements.
In recent years, more sensors have become operational with
higher spatial and spectral detail, and with shorter acquisi-
tion intervals. We propose to take advantage of these de-
velopments through a satellite-based evaluation framework
for assessing land use models. In this study, we conduct an
initial comparative analysis between simulated and remotely
sensed land cover in order to explore the methodological and
practical benefits of such a framework. Land use simula-
tions were carried out using an ABM of European land use
change (CRAFTY- EU) [12, 13]. For the reference data, we
used a satellite-based land cover product. We then compared
information contained in the simulated and remotely-sensed
datasets concerning the spatial properties of different land
covers. By using robust metrics, we try to overcome dis-
crepancies in classification schemes and spatial resolutions
between the two datasets. We then used grid searching and
a Bayesian stepwise optimisation algorithm to identify the
computationally feasible strategy of model calibration.

2. CALIBRATION EFFORTS IN LAND USE
MODELLING

The calibration of land use models is challenging both con-
ceptually and practically. As representations of complex
human-environment systems, land use models invariably



have a relatively limited, artificially delineated area of focus,
even within which they must make extensive simplifications.
The great diversity of relevant theories in social, ecological
and land use sciences allows the development of numer-
ous alternative models of single aspects of study systems
[11, 14], while the various contingencies and fundamentally
behavioural nature of land use change makes the gathering
and use of calibration data extremely difficult [15, 16, 11].

Many land use models, including many of the most es-
tablished, overcome these problems to some extent by adopt-
ing tightly constrained approaches. Assumptions about the
equilibrium of demand and supply or economic optimisation
greatly increase model tractability and reduce the data and
computational requirements of calibration. They also usually
imply an interest in aggregate trends or patterns that repre-
sent clear ‘targets’ for calibration to reach. However, such
approaches still face problems ranging from the identification
of suitable observational data to the risk of over-fitting to his-
torical trends that may not be relevant in the future [17].

The challenges of calibration are even greater for ABMs
and similar models. These models include more detailed rep-
resentations of underlying processes of land use change and
therefore, in principle, can be more directly calibrated from
real-world analogues [9, 17]. However, such models tend to
have large numbers of parameters, not all (or any) of which
necessarily have clear real-world counterparts, and can po-
tentially be calibrated against numerous potentially unclear
criteria. This makes spurious fits to observations easy to gen-
erate, and multiple observations and calibration methods nec-
essary to avoid over-fitting and tease apart different processes
[18, 17].

Currently, the dominant practice across land use mod-
elling is to tune models to replicate specific observations, with
limited exploration of alternative parameterisations or their
implications for understanding of the modelled system [16,
19]. However, recognition of the need for greater behavioural
realism along with advances in the computational efficiency
of behavioural models such as ABMs has meant that new
methods for robust model calibration are being sought. These
methods must be capable of exploring large areas of parame-
ter space efficiently, and can therefore benefit from statistical
methods as well as those applied in other scientific fields. Of
particular relevance may be techniques from economic mod-
elling, in which ABMs and other models have been calibrated
through various advanced computational techniques [20, 21,
22]. Perhaps most promising are calibration techniques based
on machine learning. These techniques utilise recent develop-
ments in artificial intelligence to rigorously test alternative pa-
rameterisations, generating detailed understanding of model
behaviour as well as allowing models to be tuned to repli-
cate a range of different observations. Such techniques do not
overcome the more conceptual questions of where ‘sensible’
or informative parameterisations are located, or how closely
and reliably model outputs should approach particular obser-

vations [17, 23], but they arm the modeller with a great deal
of information with which to tackle these questions.

Machine learning has been used to a limited extent in eco-
nomic agent-based modelling [22]. It has also been used more
extensively to derive land cover maps from satellite data and
to establish simple land use models from these [24, 25, 26, 27,
28, 29]. However, the transfer of these techniques beyond rel-
atively simple cellular automata models has been slow, with
no previous examples of large-scale or agent-based land use
models being calibrated in this way. We present an initial step
towards the full utilisation of machine learning in land use
modelling by performing a limited calibration of an ABM of
European land use change.

3. MATERIALS AND METHODS

3.1. Land use simulation using CRAFTY-EU

The model CRAFTY-EU simulates the interplay among land
use agents to represent land use decision-making processes.
Land ownership is allocated via competition based on ‘bene-
fit’ values that express the societal value of ecosystem service
provision through agents’ land uses. The model simulates
EU-level land use represented by 17 agent functional types
(AFTs) (Table 1). Initial AFT information was derived from
the CORINE 2006 land cover data [30]. Full details of the op-
eration of the CRAFTY modelling framework can be found in
[12, 23, 31]

Table 1. Agent Functional Types (AFTs) in CRAFTY-
EU[32]

Agent Functional Type CODE Description

Intensive arable farming IA Intensively farmed area
Intensive pastoral farming IP Intensively grass
Intensive agro-forestry mosaic Int AF Intensively farmed, intensively grass, managed forest
Intensive farming Int Fa Intensively farmed, intensively grass
Managed forestry MF Managed forest
Mixed farming Mix Fa Intensively farmed, intensively grass, extensively grass
Mixed pastoral farming Mix P Intensively grass, extensively grass, very extensively grass
Mixed forest Mix For Managed forest, unmanaged forest
Extensive pastoral farming EP Extensively grass
Extensive agro-forestry mosaic Ext AF Extensively grass, very extensively grass, managed forest
Very extensive pastoral farming VEP Very extensively grass
Multifunctional Multifun Four or more land uses in uncommon combination
Minimal management Min man Very extensively grass, unmanaged forest, unmanaged land
Unmanaged land UL Unmanaged land
Unmanaged forest UMF Unmanaged forest
Peri-urban P-Ur Any combination with > 40% urban area
Urban Ur Urban

We focus on three major behavioural parameters that
play important roles in the allocation process (Table 2). The
‘Giving-in (GI)’ threshold controls how easily an agent re-
linquishes land ownership to another agent in a competition.
Second, the ‘Giving-up (GU)’ threshold represents how eas-
ily an agent abandons land ownership if its benefit value (akin
to profit level but also incorporating non-monetary reward)
becomes small. Thus these two parameters affect the speed,
extent and nature of land use change. Third, we vary the
‘Service Level Noise Maximum (SLN)’ parameter, which
controls the variation in levels of ecosystem service provi-
sion between individual agents. Each agent transforms their



land holding’s ‘capitals’ to ‘services’ according to a defined
production function, to which some noise is added [12]. The
parameter ‘Service Level Noise Maximum (SLN)’ indicates
the magnitude of the noise added in this step. The service
level feeds back to the AFT allocation competition, thus
indirectly affecting land ownership changes.

Table 2. Target parameters in the calibration. The thresh-
old parameters directly control the land use allocation. The
noise parameter indirectly affects the allocation by increas-
ing uncertainty to the stochastic land use decision-making
process[31]. Negative values of the thresholds indicate agent
persistence even in the theoretical case of receiving disbenefit
from land management.

Parameter Description Potential range Target range

Giving-in threshold (GI) Tendency of changing land use (-inf, inf) [-2, 2]
Giving-up threshold (GU) Tendency of abandoning land (-inf, inf) [-2, 2]
Service Level Noise Maximum (SLN) Noise in evaluating the value of land use [0, 1] [0, 1]

3.2. Model Evaluation using Mutual Information and
Fractal Dimension

For EU-28 countries, we simulated AFT dynamics under
static climatic and socio-economic conditions and compared
resultant land use changes with MODIS Land Cover Type
(2006–2013) (Fig. 1). We used the MODIS MCD12Q1 an-
nual land cover product at 500 m resolution. Among the
land cover type information enclosed in this product, we
retrieved the IGBP 17-class land cover information. This
land cover (LC) data was reprojected into a 1 km base grid
using the nearest neighbor algorithm. The AFT data was pro-
jected into a 15-km base grid in ETRS89/ETRS-LAES space
(EPSG:3035). The CRAFTY and MODIS datasets therefore
differ in pixel size (15 km vs. 1 km) and land cover schemes
(CRAFTY 17 AFTs vs. IGBP 17 land cover classes) (Fig. 1),
which makes it difficult to use a traditional contingency table
for comparison. Instead, we used Mutual Information (MI)
[33], which is robust to such differences. MI is a general
measure of dependency between random variables and used
here to measure ‘information’ between the simulated and the
observed land uses regardless of their unequal classification
schemes [34]. Additionally, we calculated fractal dimension
[35] of the land use datasets to measure the spatial complexity
of it, and here we try to match these complexities between the
two datasets.

3.3. Stepwise calibration of the land use model using
Bayesian optimisation algorithm

Grid searching is generally infeasible for land use models due
to its computational cost, especially at large scales. In this
study, we also used an efficient parameter space searching al-
gorithm to see whether it produced the same calibration re-
sult, and therefore whether we can safely replace a costly grid
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An agent-based land use model CRAFTY[2] annually 

allocates agent functional types (AFTs) per cell (i.e., 

land use)

In the allocation process, three major behavioural 

parameters need to be set-up properly. 

Giving-in threshold: how easily an agent 

relinquishes land ownership to another agent

Giving-up threshold: how easily an agent abandons 

land ownership if its benefit is smaller than its cost

Service Level Noise: magnitude of the uncertainty 

in the ecosystem service production by each AFT

Research goals: 
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Evaluation and calibration of an agent-based model of European 
land use change using historical land use and land cover datasets 
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Simulated land use using an agent-based land use model vs. MODIS land cover 

Results and future outlook

Research questions:
Model calibration/evaluation is a crucial issue in land use (LU) projection

However, annual ground land use data is often non-existent.

Discrepancies exist in classification schemes and spatial resolutions

Can we use heterogeneous data sources for evaluating/calibrating agent-

based land use models?

Evaluate a simulated land use projection 

against the MODIS land cover[1]

Utilise heterogeneous data sources

Develop metrics robust to difference in 

classification schemes and spatial scales
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Fig. 4 A schematic diagram for a more 
efficient parameter searching procedure 
using gradient descending

(1) Grid searching for the agent-behaviour parameters

For the 8 years (2006—2013), we calculated Mutual Information (MI) 

(i.e., cross entropy) between MODIS land cover types and CRAFTY AFT 

(Fig. 2) at the 1 km grid.

High MI found around Giving-Up = 1, Service Level Noise = 0.3 or 1 

When service level noise is high, Giving-Up = 0 yielded a good result 

(2) Toward efficient and wise calibration strategies

Avg. fractal dimension of the 17 CRAFTY AFTs for the eight years (Fig. 3) 

were generally lower than that of the MODIS data (=1.015)

Relatively high values found around Giving-Up > 1.5, Service Level Noise

< 0.6

Evaluation strategy

Summary
Calibrated agent-based a land use model using 

historical remote sensing data

New types of correspondence metrics were 

informative on the model performance

Need to use computationally efficient searching 

algorithms with multi-objective optimization 

Competition for Resources between Agent 
Functional Types (CRAFTY)

Reference and simulated land use data

Fig. 1 MODIS MCD12Q1 Land 
Cover (upper) and Simulated AFT 
(lower) (2013)

“Rationality”

Time constraints 

The 3-parameter grid searching 

took 48 hours in a single node 

(Nbatch=486).

Adding parameters multiplies the 

searching time substantially 

High Performance Computing 

(HPC) may not always solve the 

problem.

Need to use more efficient searching 

algorithms: adaptive tuning[5], 

proposal/rejection sampling[6], 

Bayesian framework[7]

Multi-attribute goal function needs to 

be optimized

Fig 3. Land cover change in 2050
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Fig. 2 Mutual Information between MODIS Land 
Cover (MCD12Q1) and the simulated land cover 
(avg. for 2006–2013) 
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Fig. 3 Fractal dimension of the simulated 
CRAFTY land cover (avg. for 2006–2013 and the 
17 AFTs) 
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For EU-28 countries, we simulated land use 

(i.e., AFT) and compared that with MODIS 

MCD12Q1 Land Cover Type (2006—2013).

The CRAFTY and MODIS datasets are 

different in pixel size (15 km vs. 1 km) and 

land cover classes (Own 17 AFTs vs. IGBP 

17 land cover classes) (Fig. 1)

“Observability”

Consistency (Mutual Information[3]): a good 

model generates consistent land use projections 

types w.r.t. the observed land use data.

Spatial complexity (Fractal Dimension[4]) : a 

good model reproduces similar spatial 

complexities to that of the real world data.

Fig. 1. MODIS MCD12Q1 Land Cover (upper) and simulated
AFT (lower) for EU-28 countries

search with this algorithm. We used a Model-Based Opti-
misation (MBO) algorithm proposed in [36], designed to re-
place ‘expensive’ black-box functions. To minimize the cost
of exploring a high-dimensional parameter space, the algo-
rithm uses a specially designed Bayesian parameter proposal
function, which identifies the parameter regions with higher
probabilities of containing optimal parameter combinations.
In its iterative process, the algorithm samples a new param-
eter proposal based on the ‘infill criterion (i.e., a sampling
strategy designed to offer improvement)’ [37] and the recent
evaluation metrics. Then the proposed parameter set is evalu-
ated and the result used to update the MBO model.

4. RESULTS

4.1. Parameter tuning using grid searching and stepwise
calibration

We ran CRAFTY-EU for the eight-year period (2006–2013)
and compared the simulated land uses under different param-
eterisations with the MODIS LC. For each year, we calcu-
lated MI between the two datasets at the MODIS 1 km grid
and then averaged across cells. The total number of individ-
ual runs was 486 and it took 48 hours in a single node (Intel
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Fig. 2. Flow diagram of the stepwise calibration using a
Bayesian Model-Based Optimisation (MBO) algorithm

Core i7 2.8Ghz). As shown in Fig. 3, the impacts of chang-
ing GU and SLN were pronounced in the Mutual Information,
whereas the changes of GI did not seem to affect the Mutual
Information systematically. This implies that land managers’
individual production levels (SLN) and willingness to aban-
doning their land holdings (GU) are more important parame-
ters than the tendency for changing land use (GI) in calibrat-
ing CRAFTY-EU. At the same time, a relatively wide range of
parameter values had comparable levels of accuracy (Fig. 4).
High MI was found around GU= 1, suggesting that moder-
ate irrationality in GU is reasonable (i.e. agents abandon land
even though they derive benefit from it). The multiple optima
in the Figure indicate, though, that when SLN is high, perfect
rationality (GU= 0) yielded good results.

To propose parameter values considering all three dimen-
sions, we took the top-10 combinations with the highest Mu-
tual Information and summarised them in Fig. 4. The pa-
rameter combination scoring the highest MI was GI=0.50,
GU=0.50, and SLN=0.20. The mean parameter values of the
top-10 samples were GI=1.15, GU=0.70, and SLN=0.48.

To minimize the cost of exploring a high-dimensional
parameter space, we applied MBO algorithm to find the
CRAFTY parameters maximising the Mutual Information
between the simulated land use and the remotely sensed land
cover (Fig. 2). At the beginning, 10 randomly sampled runs

Fig 3. Land cover change in 2050
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Fig. 3. Average Mutual Information (MI) between MODIS
Land Cover (MCD12Q1) and the simulated land cover for
2006–2013 and the 17 AFTs with respect to the three param-
eters: GI, GU, and SLN. The contours are estimated based on
the runs from the grid searching (n=486).

from the batch runs (n=486) were used to initialise the opti-
misation algorithm. The algorithm ran over 200 iterations and
summarised the suggested parameter values based on the last
50 iterations. The proposals were evolved to converge to the
those of the grid searching after approximately 30 iterations
(Fig. 5). The proposed parameter values (GI=0.54, GU=0.75,
and SLN=0.30) overlap well with the parameter values sug-
gested by the grid searching (Fig. 4). The computing time
was around 5(= 30/486)% of the time required for the grid
searching.

4.2. Spatial complexity of the simulated land use

The fractal dimension of the simulated land use is calculated
for the eight years of the comparison (2006–2013). Note
that this complexity measure is calculated independently in
the MODIS LC. The average fractal dimension of the 17
CRAFTY-EU AFTs for the eight year (Fig. 6) were generally
lower than that of the MODIS data (= 1.015). Although it
is indecisive to say that the simulated land cover is spatially
simpler than the MODIS land cover because the intrinsic
spatial resolution were different (1 km MODIS vs. 15 km



●●

●

GivingIn GivingUp ServiceLevelNoise

−0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

Suggested parameter values

Va
lu

e
Top−1 batch run
Top−10 batch runs
MBO suggested

Fig. 4. Optimal parameter values suggested using the
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The MBO-based values are the mean values from the last 50
iterations (Fig. 5).

CRAFTY-AFTs). The fractal dimension was affected by
the parameters but with little variation, perhaps because the
results account for the eight-year means. Once again, the
GIparameter had especially small effects, and did not change
fractal dimension systematically. Nevertheless, there are vis-
ible patterns: relatively high agreement was found around
GU¿ 1.5 and SLN¡ 0.6. SLNmade interesting patterns in frac-
tal dimension as it significantly increased fractal dimension
when moderate (0.2-0.6); i.e., when SLNwas too high or too
low, the landscape became simpler.

To examine the effect of parameter calibration on spatial
complexity, the average fractal dimension of the model runs
using calibrated parameters were compared (Fig. 7. The av-
erage fractal dimension of the Top-1 batch run was around
the 75th percentile of the fractal dimension of all batch runs
(blue square). The fractal dimension of the MBO-suggested
model run (red square) was above the median fractal dimen-
sion as well as the average fractal dimension of the Top-10
batch runs.

5. DISCUSSION

In this study, we proposed the use of new types of corre-
spondence metrics for calibrating a complex land use model,
and showed that these metrics can be used to identify best-
performing values for behavioural parameters of the model.
The machine learning approach adopted here holds consid-
erable promise for the calibration and evaluation of land use
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Fig. 5. Changes of the suggested parameter values using
MBO algorithm. The parameter suggestion for ‘GI’ thresh-
old (black) converges to its stationary value (=0.5) after 30
iterations, approximately.

Fig 3. Land cover change in 2050

−2 −1 0 1 2

−2

−1

0

1

2

−2 −1 0 1 2

0

0.2

0.4

0.6

0.8

1

−2 −1 0 1 2

0

0.2

0.4

0.6

0.8

1

Mutual	Information	(avg.)

0.16

0.165

0.17

0.16

0.165

0.17

0.16

0.165

0.17

GivingIn

GivingIn

GivingUp

G
iv
in
g
U
p

S
e
rv
ic
e
L
e
v
e
lN
o
is
e

S
e
rv
ic
e
L
e
v
e
lN
o
is
e

−2 −1 0 1 2

−2

−1

0

1

2

−2 −1 0 1 2

0

0.2

0.4

0.6

0.8

1

−2 −1 0 1 2

0

0.2

0.4

0.6

0.8

1

Mutual	Information	(avg.)

0.16

0.165

0.17

0.16

0.165

0.17

0.16

0.165

0.17

GivingIn

GivingIn

GivingUp

G
iv
in
g
U
p

S
e
rv
ic
e
L
e
v
e
lN
o
is
e

S
e
rv
ic
e
L
e
v
e
lN
o
is
e

−2 −1 0 1 2

−2

−1

0

1

2

−2 −1 0 1 2

0

0.2

0.4

0.6

0.8

1

−2 −1 0 1 2

0

0.2

0.4

0.6

0.8

1

Fractal	Dimension	(avg.)

1.00725

1.0075

1.00775

1.00725

1.0075

1.00775

1.00725

1.0075

1.00775

GivingIn

GivingIn

GivingUp

G
iv
in
g
U
p

S
e
rv
ic
e
L
e
v
e
lN
o
is
e

S
e
rv
ic
e
L
e
v
e
lN
o
is
e

−2 −1 0 1 2

−2

−1

0

1

2

−2 −1 0 1 2

0

0.2

0.4

0.6

0.8

1

−2 −1 0 1 2

0

0.2

0.4

0.6

0.8

1

Fractal	Dimension	(avg.)

1.00725

1.0075

1.00775

1.00725

1.0075

1.00775

1.00725

1.0075

1.00775

GivingIn

GivingIn

GivingUp

G
iv
in
g
U
p

S
e
rv
ic
e
L
e
v
e
lN
o
is
e

S
e
rv
ic
e
L
e
v
e
lN
o
is
e

Mutual
Information

Fractal
dimension

Fig. 6. Average fractal dimension of the simulated CRAFTY
land cover for 2006–2013 and the 17 AFTs

models, allowing the application of large remotely-sensed
datasets (or, in principle, other ‘big’ data concerning indi-
vidual or social behaviour relevant to land system dynamics)
to refine model parameterisations. Developing statistically
sounds methods for utilising these data sources is a necessary
step for rigorous understanding of land system dynamics, and
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so for designing achievable policy objectives and interven-
tions for the land system.

In the case of our example model, we made both method-
ological and practical findings. Methodologically, we inves-
tigated two alternative approaches to searching parameter
space–grid searching and a more efficient searching algo-
rithm. The MBO algorithm converged to the optimum pa-
rameter values derived by the expensive grid searching after
a small number of iterations (approx. 30). The algorithm
is designed to exhaustively search parameter space, thus
represents a highly credible and efficient alternative to grid
searching [36]. However, it still lacks a rigorous ‘stopping
rule’, making our findings about convergence time only tenta-
tive. This issue is related to the important concept of ‘budget’
in data science [38]. Bayesian frameworks such as Approx-
imate Bayesian Calculation [39] have been developed to use
various convergence statistics on multiple Markov chains. It
is important that such approaches are now investigated fur-
ther to consolidate a formal calibration procedure with strong
theoretical support.

In terms of model parameterisation, we found that con-
siderable heterogeneity and/or ‘irrationality’ within our mod-
elled agent population was necessary to improve agreement
between simulated and remotely-sensed data. Where the
ecosystem service production levels were homogeneous
across agents, a high Giving-Up threshold that increased the
rate of irrational land abandonment (abandonment even when
non-negligible levels of benefit were being derived) gave
the highest levels of agreement. Where production levels
were heterogeneous, a low or even zero value for the Giving-
Up threshold was superior. In both cases, a higher rate of
turnover between agents would be expected than under more

‘rational’ settings, although the former settings would favour
the most beneficial land uses in aggregate, while the latter
settings would favour a more diverse mix of land uses (at
least at the intermediate levels of heterogeneity that provided
the best match to fractal dimension) [40]. These findings
are intriguing, but are subject to confirmation in more de-
tailed, longer-term comparisons that are clearly necessary to
disentangle behavioural effects more fully.

Our analysis also raises more general issues. Clearly, the
rigorous parameterisation of a single model, while an im-
portant objective, does not address more fundamental ques-
tions about land use modelling. For instance, model struc-
ture uncertainty–both in terms of the processes represented
and the ways in which they are represented–is not consid-
ered here. Indeed, it remains very difficult to assess, not least
because it is hard to constrain the range of alternative con-
ceptualisations and representations of a given system. As a
result, investigations of structural uncertainty are usually re-
stricted to model comparisons, which are of limited robust-
ness [8, 41]. However, more formal methods may be brought
to bear, involving for example pedigree (independence) anal-
ysis, conceptual model analysis and sampled versus plausible
models comparisons [42]. Most pertinent is the potential for
structural uncertainty to be translated into alternative parame-
terisations, allowing it too to be investigated through machine
learning [43].

Even in such a case, there remain clear dangers of over-
fitting models to available data; dangers that may be increased
by easily applicable methods for maximising agreement be-
tween simulated and observed data. The balance between
ensuring that models can replicate observations and ensur-
ing that they can reveal unanticipated, novel dynamics (or
between process and pattern accuracy) is one that is generally
difficult to strike [11]. It is essential that technical advances in
machine learning approaches do not overshadow this essential
conceptual challenge, but contribute to appropriate handling
of it where possible.

One way in which new methods may make this more gen-
eral contribution is through the use of a wider variety of data
sources. Large-scale statistics, grey literature, information
on land management decision-making and social survey re-
sults should be used amongst others in improving, calibrat-
ing and evaluating land use models. Use of such supplemen-
tary data would allow modelling in finer resolution and give
new insight into land system dynamics. More importantly,
they will help to reveal a) how necessary behaviour (beyond
economic optimisation) is to explain land use changes, and
b) what forms and strengths behaviours take in different cir-
cumstances. Furthermore, the use of multiple goal functions
across these data is clearly necessary, and can in principle
help to disentangle the many processes at play in the land
system. Given these further developments, the exploitation of
novel data sources through machine learning could lead to a
step-change in our capacity to model–and hence understand



and direct–the global consequences of land use change.

6. CONCLUSIONS

This study demonstrates the calibration of an agent-based
land use model using machine learning and historical remote
sensing data. The consistency of land use classes and spatial
complexity between simulated and remotely sensed data were
found to be informative about model performance. Using an
efficient searching algorithm, it was possible to calibrate the
complex land use model within a relatively short period of
time. We therefore propose an operational framework for
calibrating high-dimensional models of decision-making, ca-
pable of improving the quality of land use projections over
large geographical extents. Further work is needed to develop
rigorous stopping rules and convergence statistics as well as
to provide broader theoretical support to the proposed frame-
work. Nevertheless, machine-learning based approaches of
this kind appear to hold great promise for supporting land
system model development.
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