
Symmetry-based Graph Clustering Partition
Stability

Fabian Ball and Andreas Geyer-Schulz

Abstract Stability of clustering partitions (e. g. Gfeller et al., 2005; von
Luxburg, 2010) and the problem of how to define good clusters (e. g. Hennig,
2015) are recurring topics in data analysis. We present a novel approach to
characterize the stability of graph clustering partitions that is based solely on the
graph’s automorphism group. All in all, three formally equivalent definitions are
given, each from a different point of view. Two of these conditions are exploited
for the design of an algorithm for fast stability detection of a graph clustering
partition. These characterizations can be perfectly combined with others in
terms of an additional constraint that a “good” clustering solution must fulfill.
Our propositions are likely to be generalized for other data formats than graphs,
provided the automorphism group is known.

Fabian Ball
Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, D-76131 Karlsruhe, Germany,
� fabian.ball@kit.edu

Andreas Geyer-Schulz
Karlsruhe Institute of Technology, (KIT), Kaiserstraße 12, D-76131 Karlsruhe, Germany,
� andreas.geyer-schulz@kit.edu

Archives of Data Science, Series A
(Online First) DOI 10.5445/KSP/1000085951/01
KIT Scientific Publishing ISSN 2363-9881
Vol. 4, No. 1, 2018

mailto:fabian.ball@kit.edu
mailto:andreas.geyer-schulz@kit.edu

2 Fabian Ball and Andreas Geyer-Schulz

1 Introduction

The symmetry in graphs is captured by its automorphism group and it is a
theoretically well understood and analyzed problem (e. g. Lauri and Scapellato,
2016). Graph symmetry can informally be seen analogously as in geometry:
When drawing a graph on a plane (e. g. practically a sheet of paper), there exist
several ways of drawing the same graph differently, but this is unnoticeable
unless some additional highlighting (e. g. colors) is used to make the differences
explicit. Of course, a more formal definition will follow in Section 2.

Mostly theorists from different mathematical sciences have worked and still
work (Babai, 2016a,b; Helfgott et al., 2017) on this topic. Their effort seems to
have brought down the problem’s time complexity from being exponentially in
the worst case to being quasi-polynomial (i. e. exp(O(ln n)c), c > 1 with n the
number of nodes). Besides these theoretical considerations, since the beginning
of the 1980s more and more practically usable algorithms were presented,
starting with nauty (McKay, 1981; McKay and Piperno, 2014), followed by
saucy (Darga et al., 2004, 2008), bliss (Junttila and Kaski, 2007), and lastly
Traces (Piperno, 2008; McKay and Piperno, 2014). All these algorithms
are capable of combinatorially determining a graph’s automorphism group.
Especially saucy performs very well on real-world networks (Newman, 2003),
which are generally very sparse (i. e. they contain only few edges in contrast to
the maximum possible number). Sparsity is one of the main assumptions of the
saucy algorithm.

However, causes of symmetry and its effects on the analysis of graphs (like
clustering) don’t seem to be a topic, yet. Ben-David et al. (2006) mention that
symmetry causes instability in spectral clustering. This is clear as symmetry
results in a possible reordering of the graph’s adjacency matrix without altering
the matrix itself. Spectral clustering uses information from eigenvalue analysis
to separate the data into classes, which is of course independent of the ordering
of rows and columns in the matrix. Other authors provide evidence for the
existence of symmetry in real-world graphs (Darga et al., 2008; Xiao et al., 2008;
MacArthur et al., 2008; Wang et al., 2009). Because these analyses are only on a
very small scale (less than 30 graphs maximal) we were motivated to conduct our
own empirical investigation of about 900 graphs. The result is that about 70% of
all analyzed graphs contain symmetries (Ball and Geyer-Schulz, 2018), which
shows the risk of not analyzing the effects of symmetry in graph-clustering.

Symmetry-based Graph Clustering Partition Stability 3

These findings and the ongoing discussion on stability of clustering solutions
inspired us to improve the connection of theory and practice by making the
concept of graph partition stability operational by a formal definition of stability
in the form of permutation invariance. First, we formally define graph symmetry
and basic concepts from the theory of permutation groups (Section 2). This
section is followed by the three equivalent definitions of stability (Section 3).
Each of them (i) represents a different point of view on the problem and (ii)
may be better practically applicable, depending on the setting of the analysis.
We use those definitions to present an algorithm which tests partition stability
(Section 4). Finally, we show by example that conflicts between partition quality
measures and stability exist. The resolution requires the solution of multi-criteria
optimization problems by clustering algorithms (Section 5). This article ends
with a short summary and outlook in Section 6.

2 Preliminaries

In our setting we want to restrict ourselves to simple graphs, i. e. graphs
G = (V, E) with the node set V = {1, 2, . . . , n} (n < ∞) and the edge set
E ⊆ {{u, v} | u, v ∈ V, u , v} (edges {u, v} are abbreviated uv). These graphs
are undirected, finite, have no loops, no weights, no multiple edges, and are
connected. All symmetry definitions that follow can easily be extended to
capture non-simple graphs as well. A graph partition is a set P = {C1, . . . ,Ck}

of non-overlapping subsets Ci ⊆ V that is complete (
⋃

i Ci = V) and all pairs
of subsets are disjoint (∀i , j : Ci ∩ Cj = ∅). Empty subsets are prohibited
(∀i : Ci , ∅).

Symmetry in graphs is described by permutations π : V → V , which are
bijective maps of nodes onto nodes. uπ : u 7→ uπ is the image of π applied on u.
A permutation π is an automorphism of G iff Gπ = G, i. e. (Vπ, Eπ) = (V, E)
with Eπ = {uπvπ | uv ∈ E}. Vπ = V always holds by definition of π. We
additionally define Cπ B {uπ | u ∈ C} and Pπ B

{
Cπ
i | Ci ∈ P

}
, which is the

application of a permutation on a set C and on a partition P, respectively. The
complete symmetry information of a graph G is captured by the automorphism
group Aut(G) containing all permutations V → V that are automorphisms of G.
This means the automorphism group of a graph is a permutation group with

4 Fabian Ball and Andreas Geyer-Schulz

the composition (catenation) of permutations as group operation and the usual
group properties:

• Identity: 1 ∈ Aut(G) : 1π = π1 = π ∀π ∈ Aut(G)

• Inverses: π ∈ Aut(G) ⇐⇒ π−1 ∈ Aut(G) with ππ−1 = π−1π = 1

• Closure: ∀π, τ ∈ Aut(G) : πτ ∈ Aut(G)

• Associativity: ∀π, τ, ρ ∈ Aut(G) : (πτ)ρ = π(τρ)

For two permutations π, τ ∈ Aut(G) their composition πτ is defined as the
successive application of the mappings. We define the order of the application of
mappings from left to right as it is the natural way of reading texts: uπτ = (uπ)τ .
The special permutation 1 is called identity as it fixes every node (∀u ∈ V :
u1 = u). The orbit of a node is defined as uAut(G) = {uπ | π ∈ Aut(G)} and is
just the set of all nodes which can be mapped onto each other by Aut(G). All
orbits of Aut(G) together form the orbit partition O =

{
uAut(G) | u ∈ V

}
.

3 Three Equivalent Partition Stability Definitions

Clustering partition stability is not a very tangible term and there are several
definitions (probably not exhaustive) that could be thought of. Given a partition
P . . .

. . . as the result of an algorithm (e. g. clustering), the algorithm’s result
on the same input should always be the same. I. e. the used method
shall be stable/deterministic.

. . . as the result of an algorithm (e. g. clustering), the algorithm’s result
on slightly perturbed input should not differ significantly (Ben-Hur
et al., 2001; Tibshirani and Walther, 2005; von Luxburg, 2010).

. . . being optimal concerning some graph partition (quality) criterion
(e. g. Newman and Girvan, 2004), the addition and/or removal of
a few edges should change the criterion’s value only marginally so
that the optimal partition stays the same (e. g. Karrer et al., 2008).

Symmetry-based Graph Clustering Partition Stability 5

This implies stability of the graph’s topology concerning the given
criterion against small changes.

. . . the class memberships should be unambiguous (Gfeller et al., 2005),
which means there should exist a unique clustering partition and no
nodes that cannot be assigned to exactly one cluster.

. . . (independent from its origin), no visible changes should occur due to
symmetries of the graph (captured by its automorphism group).

The last point is the idea of our approach. It is somewhat similar to the idea
of Gfeller et al. (2005) who identify nodes that cannot be uniquely assigned
to exactly one cluster of the partition. However, such ambiguities need not be
caused by automorphisms of the graph. Nonetheless, our stability definition
together with the one of Gfeller et al. (2005) – and probably even more – can be
combined as we argue in Section 5.

3.1 Splitting the Automorphism Group

The automorphism group Aut(G) is a finite set of permutation functions. In the
first approach this set is split into two subsets, one of which may be empty.

Definition 1 Let P be a partition of G. Aut(G) is split into two subsets Πintra

and Πinter with Πintra containing all permutations for which Pπ = P and
Πinter containing all permutations for which Pπ , P. The partition P is stable
iff Πinter = ∅.

Definition 1 implies that for a stable partition P every automorphism of G
must only act “locally” by mapping nodes onto each other that are within the
same cluster anyway or “globally” by mapping entire clusters onto each other.
Unfortunately, the automorphism group can easily become very large so that
testing stability for each of the permutations is very expensive to perform.
However, generating the whole group is not necessary!

Therefore we introduce another representation of the automorphism group
in terms of a set S of so called generators. Aut(G) is said to be generated by
S ⊂ Aut(G) if systematic composition of permutations in S yields Aut(G). We

6 Fabian Ball and Andreas Geyer-Schulz

define this generation as 〈S〉 = Aut(G). Normally, |S | � |Aut(G)|, which can
be seen in Table 1. Theorem 1 formalizes the idea to split S instead of Aut(G).

Table 1: Comparison of the number of generators |S | and the size of the completely enumerated
group |Aut(G) |. Information and references of the networks can be found in (Ovelgönne et al.,
2010, Table 1). The results were obtained with saucy. The computation time for the LiveJournal
graph took about one hour on an eight core Intel(R) Xeon(R) E5-2640 v3 2.60GHz CPU with over
60GB of memory. (*) Network is directed; (**) Network is weighted; (***) Network is disconnected;
For directed/weighted networks we omitted the directions/weights. saucy is capable of analyzing
disconnected networks, so no transformation (like extracting the largest connected component) was
done.

Network n m |S | |Aut(G)|

Karate 34 78 6 4.8000 × 102

Jazz 198 2742 7 1.2800 × 102

Email 1133 5451 27 1.5288 × 109

PGP 10 680 24 316 2586 4.4963 × 101251

Cond. Mat. 31 163 120 029 8327 1.0760 × 106175 **/***
WWW 325 729 1 090 108 189 865 3.9818 × 10246 936 *
Amazon 410 236 2 439 437 8907 8.0969 × 103295 *
LiveJournal 4 847 571 68 993 773 416 660 7.1830 × 10207 553 */***

Theorem 1 Given a partition P of G and a set of generators S (〈S〉 = Aut(G)),
which is split into Π̃intra = {π ∈ S | Pπ = P} and Π̃inter = {π ∈ S | Pπ , P}.
P is stable iff Π̃inter = ∅.

Proof. Let G be a graph and S be a set of generators, i. e. 〈S〉 = Aut(G).
Furthermore, let P be a partition of G, and let Πintra and Πinter , ∅ (i. e. P
is unstable) be two subsets of Aut(G) for a given partition P as proposed in
Definition 1. Suppose Π̃intra = S and Π̃inter = ∅. Then for some π ∈ Πinter

(obviously π < Π̃intra), there must exist a sequence (τ1, . . . , τk) for which
τ1 · · · τk = π holds and τi ∈ Π̃intra, i = 1, . . . , k. But this is a contradiction as
each τi individually either fixes all nodes within all Ci ∈ P or maps all nodes
from one cluster to another cluster. For arbitrary compositions of multiple τi in
the sequence above this property is retained as composing permutations means
successively executing the mapping of each permutation in the given order.
Associativity assures that it does not matter which permutation is used first as
long as the order does not change. So for τ1 · · · τk = π ∈ Πinter , at least one
τi ∈ Π̃inter must exist, which contradicts Π̃inter = ∅. �

Symmetry-based Graph Clustering Partition Stability 7

Example 1 Let G be a graph that consists of the nodes V = {1, . . . , 8}
and its automorphism group is generated by S = {(1 2), (7 8)} so that 〈S〉 =
{1, (1 2), (7 8), (1 2)(7 8)} = Aut(G). The partition P = {{1, 2, 3} , {4, 5, 6} ,
{7, 8}} is stable because P(1 2) = P as well as P(7 8) = P. A second partition
Q = {{1, 3} , {2} , {4, 5, 6} , {7, 8}} is of course unstable asQ(1 2) = {{2, 3} , {1} ,
{4, 5, 6} , {7, 8}} , Q. S = Π̃intra ∪ Π̃inter = {(7 8)} ∪ {(1 2)} or Aut(G) =
Πintra ∪ Πinter = {1, (7 8)} ∪ {(1 2), (1 2)(7 8)}, respectively.

3.2 Partition of Blocks

For a given permutation group Aut(G) a block is defined as a subset C ⊆ V for
which either C ∩ Cπ = C or C ∩ Cπ = ∅ holds for all π ∈ Aut(G). Informally,
the permutations either map the block onto itself or all nodes to a different
subset C ′ ⊆ V , which of course must also be a block. More details can be found
in Wielandt (1964).

Definition 2 A partition P is stable

1. if every Ci ∈ P is a block of Aut(G) and
2. if every Cπ

i ∈ P for which Ci ∩ Cπ
i = ∅ holds.

Definition 2 is strongly coupled with the first approach in Section 3.1. It explicitly
uses a general property of permutation groups (1.) but additionally requires (2.)
to be true. The second condition is important as the example will show.

Example 2 Let again G be a graph that consists of the nodes V = {1, . . . , 8}
and S = {(1 4)(2 3), (1 5)(2 6)(3 7)(4 8)}, which generates the permutation group

Aut(G) = {1, (1 4)(2 3), (1 5)(2 6)(3 7)(4 8), (5 8)(6 7), (1 8 4 5)(2 7 3 6),
(1 4)(2 3)(5 8)(6 7), (1 5 4 8)(2 6 3 7), (1 8)(2 7)(3 6)(4 5)}.

The partition P = {{1, 2} , {3, 4} , {5, 6} , {7, 8}} is stable because both condi-
tions hold. Each π ∈ Aut(G) either fixesCi or maps it onto anotherCj = Cπ

i ∈ P.
Let Q = {{1, 2, 3, 4} , {5, 6} , {7, 8}}. E. g. {5, 6} is a block of Aut(G) but
{5, 6}(1 5)(2 6)(3 7)(4 8) = {1, 2} < Q. Therefore, Q is unstable because condition 2
of Definition 2 is not fulfilled and we see that condition 1 alone is not sufficient.

8 Fabian Ball and Andreas Geyer-Schulz

Finally, we give a counterexample that it is not possible to simply replace
“Aut(G)” by “S” in Definition 2 similarly to Definition 1. When analyzing R =
{{1, 2, 3, 4} , {5, 6, 7} , {8}} one can see that it is not sufficient to only consider
all π ∈ S. {5, 6, 7}(1 4)(2 3) = {5, 6, 7} fixes the cluster and {5, 6, 7}(1 5)(2 6)(3 7)(4 8)

∩ {5, 6, 7} = {1, 2, 3} ∩ {5, 6, 7} = ∅. But {5, 6, 7} is not a block as e. g.
{5, 6, 7}(5 8)(6 7) ∩ {5, 6, 7} = {8, 7, 6} ∩ {5, 6, 7} = {6, 7} < {∅, {5, 6, 7}} shows.

The second approach of defining the stability of a partition based on the graph’s
automorphism group shows the connection between a pure permutation group
property and its application to data analysis. Compared to Definition 1 this
comes at the cost of the necessity to completely enumerate the automorphism
group. However, MacArthur et al. (2008) provide a decomposition method of
the group based on its generators. This decomposition could be applied when
this approach is implemented.

3.3 Partition Refinement Lattice

The last approach involves the refinement lattice of all possible partitions of the
node set V . The set of all partitions is denoted by P(V). Its size increases rapidly
with the number of nodes n and is captured by the Bell number B(n) (Sloane,
2017a). One way to calculate B(n) is summing over the Stirling numbers of the
second kind S(n, k) = 1

k!
∑k

i=0(−1)k−i
(k
i

)
in (Sloane, 2017b). S(n, k) counts the

number of possible partitions of a set of size n into k subsets.
P(V) can be arranged as lattice given the partial ordering ≤. P ≤ Q is defined

as ∀C ∈ P ∃D ∈ Q : C ⊆ D. The lattice can be drawn in a hierarchical
manner where each level 0 ≤ l ≤ n − 1 contains the S(n, k) partitions that have
cardinality k = n − l (i. e. k subsets). If P ≤ Q, P is equal or finer than Q and Q
is equal or coarser than P. Any two partitions P ≤ Q are neighbors in the lattice
if Q = (P \ {C ′,C ′′}) ∪ {C ′ ∪ C ′′} for C ′,C ′′ ∈ P and C ′ , C ′′. The lattice is
itself a graph having the partitions as labeled nodes and edges for neighboring
partitions. This understanding of the refinement lattice also illustrates the search
space of a hierarchical clustering method. Each path through the lattice from
level 0 to level n − 1 corresponds to a dendrogram.

Definition 3 P ∈ P(V) is stable iff ∀π ∈ Aut(G) : Pπ ≤ P.

Symmetry-based Graph Clustering Partition Stability 9

The point of view of Definition 3 shows that there must always exist some finest
stable partition for a given automorphism group (see also Ball and Geyer-Schulz,
2017). Naturally, this is the partition of all orbits O (see Section 2).

Theorem 2 Given P ∈ P(V) and an orbit partition O concerning the auto-
morphism group Aut(G), P is stable if P ≥ O.

Proof. Clearly, O is stable by definition as each subset/cluster contains exactly
those nodes that can be mapped onto each other. This property is retained for
any C∪ = C ′ ∪C ′′, C ′,C ′′ ∈ O. The argument holds recursively for joins. Thus
any partition P that can be created by successively joining clusters of O must be
stable, too. However, this is exactly the refinement definition P ≥ O. �

It is worth noting that the conclusion of Theorem 2 is not that any stable partition
must be coarser than O! There can be numerous other stable partitions that are
not coarser or even finer than the finest stable partition. One trivial example is
the partition of singletons (each node forms one cluster), which is always stable.

{{1} , . . . , {8}}

.

O = {{1, 2} , {3} , {4} , {5} , {6} , {7, 8}}.

.

Q = {{1, 3} , {2} , {4, 5, 6} , {7, 8}} Q(1 2) = {{2, 3} , {1} , {4, 5, 6} , {7, 8}}. . .

P = {{1, 2, 3} , {4, 5, 6} , {7, 8}}.

.

{1, . . . , 8}
Level:

0

1

2

3

4

5

6

7

Figure 1: Extract of the partition refinement lattice for V = {1, . . . , 8}. Partitions become
coarser on higher levels. O is the orbit partition, which is the finest stable partition of Aut(G) =
{1, (1 2), (7 8), (1 2)(7 8)}.

10 Fabian Ball and Andreas Geyer-Schulz

Example 3 Let us again look at Aut(G) = {1, (1 2), (7 8), (1 2)(7 8)} and P =
{{1, 2, 3} , {4, 5, 6} , {7, 8}}. It is coarser than the finest stable partition O (see
Figure 1) and is of course coarser than every Pπ, π ∈ Aut(G). The partition
Q = {{1, 3} , {2} , {4, 5, 6} , {7, 8}} is unstable as e. g. Q(1 2) � Q. In Figure 1
can be seen that Q and Q(1 2) are of course on the same level in the lattice but
none of them is coarser than O = {{1, 2} , {3} , {4} , {5} , {6} , {7, 8}}.

3.4 Equivalence of the Definitions

The equivalence of Definitions 1–3 is quite obvious, however, we formally prove
it in this section.

Theorem 3 Definitions 1 and 2 are equivalent.

Proof. Given a partition P of G and the corresponding automorphism group
Aut(G), which is divided into Πintra and Πinter .

1. If Πinter = ∅ then P = Pπ, π ∈ Aut(G) holds. This can only be true if
∀C ∈ P, ∀π ∈ Aut(G) : Cπ ∈ P. Cπ ∈ P for some π and C means either
Cπ = C or Cπ = C ′ , C with C ∩ C ′ = ∅ and C ′ ∈ P. Therefore C is a
block of Aut(G) and Cπ ∈ P, ∀π ∈ Aut(G).

2. If conversely all C ∈ P are blocks of Aut(G) and ∀C ∈ P, ∀π ∈ Aut(G) :
Cπ ∈ P. This directly implies Pπ = P, ∀π ∈ Aut(G) and therefore
Πinter = ∅.

�

Theorem 4 Definitions 1 and 3 are equivalent.

Proof. Again, given a partition P of G and the corresponding automorphism
group Aut(G), which is divided into Πintra and Πinter .

1. From P = Pπ, π ∈ Aut(G) directly follows P ≥ Pπ, π ∈ Aut(G).

2. Given P ≥ Pπ for all π ∈ Aut(G). By definition, for each C ′ ∈ Pπ must
exist C ∈ P so that C ′ ⊆ C. As permutations π are bijective, |P | = |Pπ |.

Symmetry-based Graph Clustering Partition Stability 11

By definition of the refinement lattice, there cannot be any neighbors
on the same level. Therefore the only possibility for P ≥ Pπ to hold is
P = Pπ .

�

Lemma Definitions 2 and 3 are equivalent.

Proof. Follows from the transitivity of the equivalence relation together with
the equivalences of Definitions 1 and 2, and Definitions 1 and 3. �

Until nowwe did not use any special properties of graphs (besides how Aut(G) is
defined) but only required partitions of a finite set of length n and a permutation
group that acts on this set and hence also on the partitions. This is because our
definitions are completely generalizable for any partition of objects, provided
the symmetry group is known. In Section 4 we exploit Definitions 1 and 3 for
an implementation of a fast stability testing algorithm.

4 Fast Partition Stability Analysis

After the equivalence of the three provided characterizations of stability based
on symmetry is clear, the question about which one is the best arises. Before
arguing about practical uses of the definitions it is important to mention that all
our considerations only become relevant if the data contains symmetry at all.
For a trivial automorphism group (i. e. |Aut(G)| = | {1} | = 1) every partition
of nodes is stable.

From an analytic point of view, Definition 2 shows the connection to a
permutation group property (blocks). The practical applicability of it is limited
because it requires to actually enumerate the whole group to check if clusters of
a partition are blocks. However, from a didactic point of view it shows that the
transfer of results from the theory of permutation groups to data science often
requires some modifications.

12 Fabian Ball and Andreas Geyer-Schulz

Definition 1 is of greater practical use. An algorithm that computes the automor-
phism group of a graph (like nauty1 or saucy2) normally computes a set of
generators of the group and returns them to the caller. Theorem 1 shows that the
generators suffice to test stability by iterating over them and checking Pπ ≥ P.

Looking at Definition 3 also gives some insights what happens if symmetries
exist, especially concerning the search space. The stability test procedure is
similar to the one of Definition 1 as the proof of Theorem 4 shows the equality
of P = Pπ and P ≥ Pπ .

The additional idea of having a finest stable partition leads to Algorithm 1.
The orbit partition O can be computed from the generators and the test involves
only one comparison of partitions (instead of |S |). The computation of the
orbit partition O in Algorithm 1 should be memoized to give an advantage
for repeated stability tests for different partitions. Memoization is a technique
to cache the result of a function given the input so that no recomputation is
necessary if it is called again with the same input (Geyer-Schulz, 1989). The
actual implementation of this computation and the partition comparison test
(≥) strongly depend on the used data structures, which are used to represent
partitions and permutations. nauty and saucy represent permutations using
an explicit formwhere each permutation π is an array p of length n with p[i] = iπ

(i ∈ V = {0, . . . , n − 1} to allow array indexing starting from 0, which normally
is the standard way in programming languages). Partitions are represented as
arrays of length n where the entry at position i is some arbitrary cluster id.
All nodes in the same cluster have the same cluster id. Another representation,
which relates to the mathematical notation of a set of sets, is storing a partition
as array of arrays.

1 http://pallini.di.uniroma1.it/, accessed August 27, 2018
2 http://vlsicad.eecs.umich.edu/BK/SAUCY/; https://github.com/KIT-IISM-
EM/pysaucy (Python binding for saucy), both accessed August 27, 2018

http://pallini.di.uniroma1.it/
http://vlsicad.eecs.umich.edu/BK/SAUCY/
https://github.com/KIT-IISM-EM/pysaucy
https://github.com/KIT-IISM-EM/pysaucy

Symmetry-based Graph Clustering Partition Stability 13

Algorithm 1 Testing partition stability based on the automorphism group of
the graph
Require: S is a set of generators for Aut(G), i. e. 〈S〉 = Aut(G), P is a partition in array

representation

1: function testStability(P, S)
2: if S = ∅ then . The group is trivial, the graph is asymmetric
3: return True
4: end if
5: O ← computeOrbitPartition(S, |P |) . Pseudocode in Algorithm 2
6: if P ≥ O then . Pseudocode in Algorithm 4
7: return True . The partition is coarser than the orbit partition
8: end if
9: for π ∈ S do
10: if not P ≥ Pπ then . Pseudocode in Algorithm 4
11: return False . Instability detected; P ≥ Pπ is equivalent to P = Pπ

12: end if
13: end for
14: return True
15: end function

We present efficient algorithms to compute the orbit partition from the set of
generators S (Algorithms 2 and 3) and to check if one partition is coarser than
another partition (Algorithm 4) in the appendix. The complexity of Algorithm 1
mostly depends on the number of generators |S |. Finding upper bounds or the
exact value for the size of a minimal generating set is an old but still open
research problem except for special classes of groups (Lucchini et al., 2004).
However, Table 1 shows that the algorithmic output of saucy is very promising
in terms of the actual number of generators returned.

5 Goal Conflicts in Graph Clustering

Our stability definitions need not be seen as exclusive property a partition can
have. Instead it should be considered an additional analytic tool, which can
be used when determining the quality of a partition. Therefore, it is possible
to combine our definitions with other partition quality measures like e. g. the
modularity measure Q for partition quality (Newman and Girvan, 2004), which

14 Fabian Ball and Andreas Geyer-Schulz

quantifies the number of intra-cluster connections in contrast to the inter-cluster
connections. Also the ideas of Gfeller et al. (2005) to identify nodes that cannot
be assigned to exactly one cluster could be taken into account.

However, optimizing several partition quality measures leads to a multi-
criteria optimization problem with the typical conflicts as the following example
shows. The topic of actually integrating multiple objectives into graph clustering
algorithms is left for further research.

Example 4 For the given graph in Figure 2, a modularity maximal partition is
P = {{1, 2} , {3, 4, 5}} with modularity Q = 1

9 . Unfortunately e. g. π = (1 4)(2 5)
shows that Pπ = {{1, 2, 3} , {4, 5}} , P. There is a goal conflict between
maximizingmodularity and having a stable partition concerning graph symmetry
as Pπ has the same maximal modularity value as P. This means that the
modularity optimal partition is not unique, which is a consequence of an
instability caused by symmetry.

1

2

3

4

5

(a) P = {{1, 2} , {3, 4, 5}}.

4

5

1

2

3

(b) Pπ = {{1, 2, 3} , {4, 5}}.

Figure 2: A small graph which illustrates the problem of conflicting goals. The two clusters are
distinguished using different node shapes. π = (1 4)(2 5) “mirrors” the graph and therefore maps
partition P (a) onto partition Pπ (b) indicating instability.

We want to point out that the stable partitions {{1, 2} , {3} , {4, 5}} and
{{1, 2, 3, 4, 5}} both have modularity zero.

6 Conclusion

We motivate the topic on stability of clustering partitions in our first section.
Symmetries in “real-world” graphs frequently exist but it seems that there is no
or only small awareness of possible side-effects on the results of data analysis
methods – graph clustering in our case. After a short introduction of the needed

Symmetry-based Graph Clustering Partition Stability 15

mathematical concepts, three different but equivalent methods for recognizing
partition stability based on the automorphism group of the analyzed graph are
presented. Each of them provides a different viewpoint on the topic and gives
insights into the problem’s structure. Equivalence of the three definitions is
proved thereafter and we sum up the main part of this work by comparing them
and giving advice on how to test stability of a partition.

The automorphism group of the analyzed graph has of course to be known, but
we showed that it is in general sufficient to have a set of generators from which
the partition of orbits can be computed. Algorithms that enumerate Aut(G)
normally provide a set of generators as the method’s output. Especially saucy
is worth to look at from a practical point of view as it performs very well on
large and sparse graphs – which real-world networks normally are. Although the
graph automorphism problem is considered relatively hard, existing algorithms
perform well. Algorithm 1 for testing partition stability makes it possible to use
our definitions in practice.
Exact symmetry is a very tight restriction and weaker symmetry definitions –
based on stochastic properties – do also exist (e. g. Garlaschelli et al., 2010).
However, our definitions are still applicable when the exact Aut(G) is replaced
by some other permutation group H that represents symmetry in a weaker
sense (most likely Aut(G) ≤ H). The overall stability would of course decrease
when there are more possibilities to map nodes onto nodes by a replacement
of Aut(G). A quantification of instability in terms of the Kolmogorov-Sinai
Entropy is presented by Ball and Geyer-Schulz (2017).

Appendix

Algorithms 2 and 3 show an efficient implementation of the computation of the
orbit partition from a set of generators. The idea is to color all nodes that are
on the same orbit by successively iterating over the cycles of each generator
starting from a given node. Nodes which are on the same orbit are used as
starting points in the next iteration. This procedure is similar to a mixture of
breadth- and depth-first search. Coloring simply means to set a cluster id for
each node, all nodes on the same orbit have the same color.

When a cycle of a permutation π is explored, for each node i on that cycle
the tuple (i, π) is added to the set U to prevent that the same cycle is repeatedly

16 Fabian Ball and Andreas Geyer-Schulz

explored. This allows us to give an upper bound for the time complexity of
Algorithm 2, which repeatedly calls Algorithm 3. The latter is a procedure that
modifies O (the orbit partition), N (candidates for search), and U (memory of
already explored cycles). Algorithm 2 relies on these modifications.

1. The outer loop is in O(n) (Algorithm 2, lines 5–13)

2. Initialization of O, colored, U, . . . are all in O(1) or O(n) (Algorithm 2,
lines 2–4, 7)

• If a node is already colored, no work is performed (Algorithm 2,
line 6)

• If a node is uncolored or was just colored (i. e. is in N), Algorithm 3
is called (Algorithm 2, lines 8 and 12)

3. Algorithm 3 iterates over all generators, is thus in O(|S |) (Algorithm 3,
lines 7–19)

• If a cycle of a permutation was already explored, it is skipped (set
insertion/lookup is normally in O(1)) (Algorithm 3, line 8)

• Otherwise, the cycle is explored, i. e. each uncolored node is colored
and added to the set N of new starting points. (Algorithm 3, lines
9–19)

4. A permutation can consist of at most n cycles and each is guaranteed to
be explored only once, independent of the starting node i

Combining all the facts results in an overall worst case complexity of O(|S | · n)
as over time each cycle is explored exactly once (at most, early exit is not
considered).

Symmetry-based Graph Clustering Partition Stability 17

Algorithm 2 Compute the orbit partition O from a set of generators
Require: S is a set of generators for Aut(G), i. e. 〈S〉 = Aut(G), n is the number of nodes

of G

1: function computeOrbitPartition(S, n)
2: O ← [⊥, . . . ,⊥] . Initialize “empty” orbit partition of length n
3: colored ← 0
4: U ← ∅ . Set to save which cycles were already explored
5: for i ← 0, . . . , n − 1 do
6: if O[i] , ⊥ then continue . Skip already colored nodes
7: end if
8: N ← ∅ . Set of start nodes for the search
9: colored ← colored + color(O, i, S, i, N, U) . Color node i and all

reachable nodes
10: if colored = n then return O . Early exit if all nodes are already colored
11: end if
12: while N , ∅ do . N contains all nodes that were reached by the last call of

color
13: j ← pop(N) . pop(N) removes and returns an arbitrary element from N
14: colored ← colored + color(O, j, S, i, N, U)
15: if colored = n then return O
16: end if
17: end while
18: end for
19: return O
20: end function

18 Fabian Ball and Andreas Geyer-Schulz

Algorithm 3 Color nodes which are reachable from i with color col
Require: O is the orbit partition, S is a set of generators, i is the node to use as starting

point for the coloring, col is the color to use, N is a set to save nodes for a later use as
start point, U is a set of tuples (i, π) to save and look up already searched cycles

1: procedure color(O, i, S, col, N , U)
2: if O[i] = ⊥ then
3: O[i] ← col
4: colored ← 1
5: else
6: colored ← 0
7: end if
8: for π ∈ S do
9: if (i, π) ∈ U then continue . Do not search a cycle more than once
10: end if
11: U ← U ∪ {(i, π)}
12: j ← π[i]
13: while j , i do . Color all nodes on the cycle
14: if O[j] = ⊥ then
15: O[j] ← col
16: N ← N ∪ { j}
17: colored ← colored + 1
18: U ← U ∪ {(j, π)}
19: else
20: assert O[j] = col .Must hold as we successively color all nodes on an

orbit
21: end if
22: j ← π[j]
23: end while
24: end for
25: return colored
26: end procedure

Symmetry-based Graph Clustering Partition Stability 19

Algorithm 4 Test P ≥ Q for two partitions P and Q
Require: Two partitions P and Q of the same length in array representation

1: function geq(P, Q)
2: maps← hashmap() . A hash map to save mappings of cluster ids
3: n← |P |
4: for i ← 0, . . . , n − 1 do
5: if Q[i] ∈ maps then . Tests if there exists a value for the given key
6: oid ← maps[Q[i]] . Get the already saved mapping
7: else
8: oid ← P[i]
9: maps[Q[i]] ← oid
10: end if
11: if P[i] , oid then return False
12: end if
13: end for
14: return True
15: end function

Algorithm 4 is an efficient implementation to check if a partition P is coarser
than or equal partition Q as defined in section 3.3. As the cluster ids are
arbitrary, a hash map is used to keep track of the mappings of cluster ids.
If the cluster ids also come from the domain {0, . . . , n − 1}, an array can be
used instead of a hash map. The time complexity of the comparison is O(n) as
inserting and reading from a hash map is O(1). We provide implementations of
all four algorithms online under https://github.com/KIT-IISM-EM/
partitionstability as Python and R code.

References

Babai L. (2016a): Graph isomorphism in quasipolynomial time. arXiv:1512.03547v2
[cs, math], URL: https://arxiv.org/abs/1512.03547v2

Babai L. (2016b): Graph isomorphism in quasipolynomial time [Extended abstract]. In:
Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing,
ACM, New York, NY, USA, STOC ’16, pp. 684–697, DOI: 10.1145/2897518.2897542

Ball F., Geyer-Schulz A. (2017): Weak invariants of actions of the automor-
phism group of a graph. Archives of Data Science Series A, 2(1):1–22,
DOI: 10.5445/KSP/1000058749/02

https://github.com/KIT-IISM-EM/partitionstability
https://github.com/KIT-IISM-EM/partitionstability
https://arxiv.org/abs/1512.03547v2
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.5445/KSP/1000058749/02

20 Fabian Ball and Andreas Geyer-Schulz

Ball F., Geyer-Schulz A. (2018): How symmetric are real-world graphs? A large-scale study.
Symmetry, 10(1):17, DOI: 10.3390/sym10010029

Ben-David S., von Luxburg U., Pál D. (2006): A sober look at clustering stability. In:
Learning Theory, Springer, Berlin, Heidelberg, pp. 5–19, DOI: 10.1007/11776420_4

Ben-Hur A., Elisseeff A., Guyon I. (2001): A stability based method for discover-
ing structure in clustered data. In: Biocomputing 2002, Altman R. B., Dunker
A. K., Hunter L., Lauderdale K., Klein T. E. (eds.), World Scientific, pp. 6–17,
DOI: 10.1142/9789812799623_0002

Darga P. T., LiffitonM. H., Sakallah K. A., Markov I. L. (2004): Exploiting structure in sym-
metry detection for cnf. In: Proceedings of the 41st Annual Design Automation Confer-
ence, ACM,NewYork, NY,USA,DAC ’04, pp. 530–534, DOI: 10.1145/996566.996712,
URL: http://doi.acm.org/10.1145/996566.996712

Darga P. T., Sakallah K. A., Markov I. L. (2008): Faster symmetry discovery using sparsity
of symmetries. In: Proceedings of the 45th Annual Design Automation Conference,
ACM, New York, NY, USA, DAC ’08, pp. 149–154, DOI: 10.1145/1391469.1391509,
URL: http://doi.acm.org/10.1145/1391469.1391509

Garlaschelli D., Ruzzenenti F., Basosi R. (2010): Complex networks and symmetry I: A
review. Symmetry, 2(3):1683–1709, DOI: 10.3390/sym2031683

Geyer-Schulz A. (1989): Memo. APL Quote Quad, 20(2):12–27,
DOI: 10.1145/379209.379211

Gfeller D., Chappelier J.-C., De Los Rios P. (2005): Finding instabilities in the community
structure of complex networks. Physical Review E, 72(5):056,135, DOI: 10.1103/Phys-
RevE.72.056135

Helfgott H. A., Bajpai J., Dona D. (2017): Graph isomorphisms in quasi-polynomial
time. arXiv:1710.04574 [math], URL: http://arxiv.org/abs/1710.04574,
1710.04574

Hennig C. (2015): What are the true clusters? Pattern Recognition Letters, 64:53–62,
DOI: 10.1016/j.patrec.2015.04.009

Junttila T., Kaski P. (2007): Engineering an efficient canonical labeling tool
for large and sparse graphs. In: Proceedings of the Ninth Workshop
on Algorithm Engineering and Experiments (ALENEX), SIAM, pp. 135–149,
DOI: 10.1137/1.9781611972870.13, URL: https://epubs.siam.org/doi/
abs/10.1137/1.9781611972870.13

Karrer B., Levina E., Newman M. E. J. (2008): Robustness of community
structure in networks. Physical Review E, arXiv:0709.2108 [physics.data-an],
77(4):46,119, DOI: 10.1103/PhysRevE.77.046119, URL: https://arxiv.org/
abs/0709.2108

Lauri J., Scapellato R. (2016): Topics in Graph Automorphisms and Reconstruction, 2nd
edn. No. 432 in London Mathematical Society Lecture Notes Series, Cambridge Univer-
sity Press, Cambridge

Lucchini A., Menegazzo F., Morigi M. (2004): Generating permutation groups. Communi-
cations in Algebra, 32(5):1729–1746, DOI: 10.1081/AGB-120029899

von Luxburg U. (2010): Clustering stability: An overview. Foundations and Trends in
Machine Learning, 2(3):235–274, DOI: 10.1561/2200000008

https://doi.org/10.3390/sym10010029
https://doi.org/10.1007/11776420_4
https://doi.org/10.1142/9789812799623_0002
https://doi.org/10.1145/996566.996712
http://doi.acm.org/10.1145/996566.996712
https://doi.org/10.1145/1391469.1391509
http://doi.acm.org/10.1145/1391469.1391509
https://doi.org/10.3390/sym2031683
https://doi.org/10.1145/379209.379211
https://doi.org/10.1103/PhysRevE.72.056135
https://doi.org/10.1103/PhysRevE.72.056135
http://arxiv.org/abs/1710.04574
1710.04574
https://doi.org/10.1016/j.patrec.2015.04.009
https://doi.org/10.1137/1.9781611972870.13
https://epubs.siam.org/doi/abs/10.1137/1.9781611972870.13
https://epubs.siam.org/doi/abs/10.1137/1.9781611972870.13
https://doi.org/10.1103/PhysRevE.77.046119
https://arxiv.org/abs/0709.2108
https://arxiv.org/abs/0709.2108
https://doi.org/10.1081/AGB-120029899
https://doi.org/10.1561/2200000008

Symmetry-based Graph Clustering Partition Stability 21

MacArthur B. D., Sánchez-García R. J., Anderson J. W. (2008): Symme-
try in complex networks. Discrete Applied Mathematics, 156(18):3525–3531,
DOI: 10.1016/j.dam.2008.04.008

McKay B. D. (1981): Practical graph isomorphism. Congressus Numerantium, 30:45–87,
URL: http://users.cecs.anu.edu.au/~bdm/papers/pgi.pdf

McKay B. D., Piperno A. (2014): Practical graph isomorphism, II. Journal of Symbolic
Computation, 60:94–112, DOI: 10.1016/j.jsc.2013.09.003

Newman M. E. J. (2003): The structure and function of complex networks. SIAM Review,
45(2):167–256, DOI: 10.1137/S003614450342480

Newman M. E. J., Girvan M. (2004): Finding and evaluating community structure in
networks. Physical Review E, 69(2):026,113, DOI: 10.1103/PhysRevE.69.026113

Ovelgönne M., Geyer-Schulz A., Stein M. (2010): Randomized greedy modularity op-
timization for group detection in huge social networks. In: SNA-KDD’10: Proceed-
ings of the 4th Workshop on Social Network Mining and Analysis, ACM, New
York, NY, USA, pp. 1–9, URL: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.452.614&rep=rep1&type=pdf

Piperno A. (2008): Search space contraction in canonical labeling of graphs.
arXiv:0804.4881 [cs], URL: http://arxiv.org/abs/0804.4881

Sloane N. J. A. (2017a): A000110 - Bell or exponential numbers: Number of ways to
partition a set of n labeled elements. URL: https://oeis.org/A000110

Sloane N. J. A. (2017b): A008277 - Triangle of Stirling numbers of the second kind.
URL: https://oeis.org/A008277

Tibshirani R., Walther G. (2005): Cluster validation by prediction strength. Journal of Com-
putational and Graphical Statistics, 14(3):511–528, DOI: 10.1198/106186005X59243

Wang H., Yan G., Xiao Y. (2009): Symmetry in world trade network. Journal of Systems
Science and Complexity, 22(2):280–290, DOI: 10.1007/s11424-009-9163-9

Wielandt H. (1964): Finite Permutation Groups. Academic Press, New York
Xiao Y., MacArthur B. D., Wang H., Xiong M., Wang W. (2008): Network quo-

tients: Structural skeletons of complex systems. Physical Review E, 78(4):046,102,
DOI: 10.1103/PhysRevE.78.046102

https://doi.org/10.1016/j.dam.2008.04.008
http://users.cecs.anu.edu.au/~bdm/papers/pgi.pdf
https://doi.org/10.1016/j.jsc.2013.09.003
https://doi.org/10.1137/S003614450342480
https://doi.org/10.1103/PhysRevE.69.026113
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.452.614&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.452.614&rep=rep1&type=pdf
http://arxiv.org/abs/0804.4881
https://oeis.org/A000110
https://oeis.org/A008277
https://doi.org/10.1198/106186005X59243
https://doi.org/10.1007/s11424-009-9163-9
https://doi.org/10.1103/PhysRevE.78.046102

	Symmetry-based Graph Clustering Partition Stability
	Introduction
	Preliminaries
	Three Equivalent Partition Stability Definitions
	Splitting the Automorphism Group
	Partition of Blocks
	Partition Refinement Lattice
	Equivalence of the Definitions

	Fast Partition Stability Analysis
	Goal Conflicts in Graph Clustering
	Conclusion
	Appendix

