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ABSTRACT:

The automated analysis of large areas with respect to land-cover and land-use is nowadays typically performed based on the use of
hyperspectral or multispectral data acquired from airborne or spaceborne platforms. While hyperspectral data offer a more detailed
description of the spectral properties of the Earth’s surface and thus a great potential for a variety of applications, multispectral data are
less expensive and available in shorter time intervals which allows for time series analyses. Particularly with the recent availability of
multispectral Sentinel-2 data, it seems desirable to have a comparative assessment of the potential of both types of data for land-cover
and land-use classification. In this paper, we focus on such a comparison and therefore involve both types of data. On the one hand, we
focus on the potential of hyperspectral data and the commonly applied techniques for data-driven dimensionality reduction or feature
selection based on these hyperspectral data. On the other hand, we aim to reason about the potential of Sentinel-2 data and therefore
transform the acquired hyperspectral data to Sentinel-2-like data. For performance evaluation, we provide classification results achieved
with the different types of data for two standard benchmark datasets representing an urban area and an agricultural area, respectively.

1. INTRODUCTION solve the given classification task and possibly even with irrele-
vant features. To address the Hughes phenomenon, a variety of

Hyperspectral imagery acquired from airborne or spaceborne dimensionality reduction or feature selection techniques are com-
sensor platforms is meanwhile commonly used for scene interpre- ~ Monly used (van der Maaten et al., 2009; Saeys et al., 2007).
tation in terms of land-cover and land-use classification (Plaza et
al., 2009; Camps-Valls et al., 2014). In this context, the main ob-
jective is a classification on a per-pixel basis, whereby the classes
of interest are typically defined with respect to a specific applica-
tion or usecase.

In this paper, we focus on the potential of both multispectral data
and hyperspectral data (and the commonly applied techniques for
data-driven dimensionality reduction or feature selection based
on these hyperspectral data) for land-cover and land-use classi-
fication. This is motivated by the fact that, with the launch of
the Sentinel-2 satellites, a systematic acquisition of observations
over land and coastal areas is pursued (Spoto et al., 2012), where
the observations consist of multispectral imagery that is well-
suited to derive thematic maps indicating land-cover and land-use
(Weinmann and Weidner, 2018). Introducing a transformation
of acquired hyperspectral data to Sentinel-2-like data thus allows
directly analyzing the potential of Sentinel-2 data for land-cover
and land-use classification in comparison to hyperspectral data
as e.g. expected to be acquired with the Environmental Mapping
and Analysis Program (EnMAP) mission (Kaufmann et al., 2006,
2008; Segl et al., 2010), a hyperspectral satellite mission which
is supposed to be launched into space in the near future. In sum-
mary, this paper has several contributions:

To achieve a pixel-wise classification of hyperspectral imagery,
different strategies can be followed. A rather intuitive strategy is
to consider the reflectance values of each pixel across all spec-
tral bands. These reflectance values are concatenated to a high-
dimensional feature vector which, in turn, is provided as input to a
classifier delivering a hypothesis about the respective class label.
Thereby, a supervised classification based on a standard classifier
such as a Support Vector Machine (Melgani and Bruzzone, 2004;
Chi et al., 2008) or a Random Forest (Ham et al., 2005; Joelsson
et al., 2005) is often applied, where the involved classifier needs
to be trained before on representative training data.

Regarding the classification of high-dimensional data, however,
the Hughes phenomenon (Hughes, 1968) has to be taken into
account, according to which an increase of the number of con-
sidered features over a certain threshold typically results in a
decrease in classification accuracy, given a constant number of
training examples (Melgani and Bruzzone, 2004; Keller et al.,
2016). For hyperspectral data, this curse of dimensionality
mainly arises from two sources. On the one hand, there is the

e We focus on the use of multispectral and hyperspectral data
for land-cover and land-use classification, and we thereby
also consider the effectiveness of standard dimensionality
reduction and feature selection techniques for comparison.

e We present a method to transform acquired hyperspectral
data to Sentinel-2-like data.

high degree of redundancy which can be expected in hyperspec- e We demonstrate the potential of Sentinel-2-like data in com-
tral data due to the fact that reflectance values of adjacent spectral parison to hyperspectral data for land-cover and land-use
bands tend to be strongly correlated. On the other hand, the in- classification on two standard benchmark datasets represent-
volved classifier has to deal with more or less relevant features to ing an urban area and an agricultural area, respectively.
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After briefly summarizing related work in Section 2, we explain
the applied methodology in Section 3. To demonstrate the perfor-
mance of our methodology, we present results achieved on two
commonly used benchmark datasets in Section 4. These results
are discussed in detail in Section 5. Finally, in Section 6, we pro-
vide concluding remarks as well as suggestions for future work.

2. RELATED WORK

The classification of hyperspectral imagery can easily be
achieved in the form of a pixel-wise classification based on the
reflectance values across all spectral bands. Thereby, the re-
flectance values are used to define the entries of a respective
feature vector, while the classification itself may be based on
well-known standard classifiers such as kernel-based methods
(Camps-Valls and Bruzzone, 2005), Support Vector Machines
(Melgani and Bruzzone, 2004; Chi et al., 2008), or Random
Forests (Ham et al., 2005; Joelsson et al., 2005).

Despite the classifier, the data representation plays an important
role when classifying hyperspectral data. More specifically, the
use of reflectance values across all available spectral bands to de-
fine the entries of a feature vector leads to more or less relevant
features and possibly even irrelevant or redundant features with
respect to the considered classification task. Depending on the
defined classes, only considering the spectral bands within cer-
tain wavelength intervals might be sufficient to achieve appro-
priate classification results, i.e. not all spectral bands are rele-
vant with respect to the classification task. Furthermore, the re-
flectance values of adjacent spectral bands tend to be strongly
correlated which results in a high degree of redundancy. While
the use of all available data as input to a classifier seems appropri-
ate to compensate a lack of knowledge about the scene and/or the
data, it has been proven in practice that the predictive accuracy
of classifiers is negatively influenced for such high-dimensional
classification tasks. Typically, the Hughes phenomenon (Hughes,
1968) can be observed, i.e. above a certain value a further in-
crease of the number of involved features results in a (typically
significant) decrease in predictive accuracy.

The Hughes phenomenon is typically addressed by transferring
the given high-dimensional data into a new and more compact
data representation encoding almost the same information with
respect to the classification task. On the one hand, this can be
achieved via dimensionality reduction (van der Maaten et al.,
2009) focusing on the transformation of feature vectors from
the original feature space onto a specific subspace spanned by
meta-features. In the context of classifying hyperspectral data,
dimensionality reduction is typically addressed by applying vari-
ants of the Principal Component Analysis (PCA) (Licciardi et al.,
2012; Keller et al., 2016) or the Independent Component Analysis
(ICA) (Wang and Chang, 2006; Villa et al., 2011), or by taking
into account the Maximum Noise Fraction (MNF) transforma-
tion (Green et al., 1988). In contrast to the standard PCA which
focuses on the variance of linearly uncorrelated components de-
rived from the given data, the MNF transformation relies on the
signal-to-noise ratio (SNR) or the noise fraction of components
derived via a linear transformation. On the other hand, feature se-
lection techniques can be applied which allow gaining predictive
accuracy and improving computational efficiency with respect to
both time and memory consumption, while retaining meaningful
features (Guyon and Elisseeff, 2003; Saeys et al., 2007; Zhao et
al., 2010). In the context of classifying hyperspectral data, fea-
ture selection techniques resulting in only the consideration of

reflectance values across specific spectral bands have been used
in several investigations (Melgani and Bruzzone, 2004; Le Bris
et al., 2014; Chehata et al., 2014; Keller et al., 2016, 2017). Such
techniques may also allow assessing the importance of single
spectral bands for land-cover and land-use classification (Le Bris
et al., 2014; Keller et al., 2016).

Despite a pixel-wise consideration of hyperspectral data, there
are also approaches exploiting spatial-spectral features and thus
accounting for relations within a local image neighborhood in
addition to the spectral information per pixel. In this regard,
spectral information can for instance be sampled within the lo-
cal surrounding of a pixel, e.g. within adaptive pixel neighbor-
hoods (Fauvel et al., 2008) or within superpixels (Fang et al.,
2015). Furthermore, it has been proposed to use the results of a
pixel-wise classification in combination with watershed segments
(Tarabalka et al., 2008) which, in turn, allows a majority voting
within watershed segments to account for spatial information. A
probabilistic pixel-wise classification may also provide the basis
for a subsequent hierarchical optimization (Tarabalka and Tilton,
2011), a Markov Random Field (MRF) regularization (Tarabalka
et al., 2010) or a Conditional Random Field (CRF) regulariza-
tion (Roscher and Waske, 2014). In recent years, more and more
attention has been paid to the use of modern deep learning tech-
niques for spatial-spectral classification, e.g. in the form of a
Convolutional Neural Network (CNN) consisting of several con-
volutional layers and pooling layers which allow the extraction of
deep spatial-spectral features that are highly discriminant (Chen
et al., 2016).

In our work, we take into account that the more sophisticated
classifiers improve the classification results, but involve a huge
number of parameters that have to be optimized during the train-
ing process. Accordingly, a large amount of representative train-
ing data would be required including a dense labeling to learn
local context. In case of the standard labeled hyperspectral im-
agery, however, only a small amount of training data is typically
available and these training data often correspond to isolated seg-
ments within an image. Hence, we focus on standard supervised
classification techniques in combination with either dimensional-
ity reduction or feature selection techniques. Thereby, particular
focus is put on a transformation of hyperspectral data to Sentinel-
2-like data. Such a transformation has already been proposed
for simulating Sentinel-2 and other multispectral imagery in gen-
eral (Thonfeld et al., 2012), for assessing agricultural land-use
based on simulated Sentinel-2 data (Elbertzhagen et al., 2012)
and for simulating Sentinel-2 products that are relevant for ge-
ological and soil analyses (van der Meer et al., 2014). In con-
trast, we aim at reasoning about the potential of Sentinel-2 data
for land-cover and land-use classification in comparison to hy-
perspectral data as expected to be acquired with the future En-
vironmental Mapping and Analysis Program (EnMAP) mission
(Kaufmann et al., 2006, 2008; Segl et al., 2010). Among a diver-
sity of systems that can be used for the acquisition of multispec-
tral data, the Sentinel-2 satellites are nowadays used to systemat-
ically acquire observations over land and coastal areas (Spoto et
al., 2012). These satellites provide acquisitions of multispectral
imagery with high update rates, resulting in data which is well-
suited to derive accurate maps indicating land-cover and land-use
and to describe dynamic processes. The 13 spectral bands of the
Sentinel-2 MultiSpectral Instrument' (MSI) are described in Ta-
ble 1 and the spectral response functions corresponding to these
spectral bands are visualized in Figure 1.

Lhttps://sentinel.esa.int/documents/ (last access: 22 February 2018)
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Figure 1. Visualization of the Sentinel-2 Spectral Response Functions (S2-SRFs), i.e. the measured spectral responses for each band of

the Sentinel-2 MultiSpectral Instrument (MSI).

Spectral band Central wavelength [nm] Bandwidth [nm]
B1 443 20
B2 490 65
B3 560 35
B4 665 30
B5 705 15
B6 740 15
B7 783 20
B8 842 115
B8a 865 20
B9 945 20

B10 1375 20
B11 1610 90
B12 2190 180

Table 1. Definition of the spectral bands given for Sentinel-2 data.
3. METHODOLOGY

The proposed methodology involves four different approaches to
define feature vectors (Section 3.1) which serve as input to a stan-
dard supervised classification (Section 3.2).

3.1 Feature Extraction

The input to our framework is represented by hyperspectral im-
agery in the form of an image stack with a high number of layers
Li,...,Lp, whereby each layer corresponds to a specific spec-
tral band and the spectral information of each spectral band is
represented by a reflectance value. Accordingly, each pixel is
represented by D reflectance values. On the basis of this data
representation, we focus on four options to derive feature vectors
that serve as input to the subsequent classification procedure.

3.1.1 Original Data Representation The straightforward ap-
proach to define feature vectors consists in using all given in-
formation by simply concatenating the reflectance values for all
spectral bands. This yields a D-dimensional feature vector.

3.1.2 Dimensionality Reduction To transform the data rep-
resentation given by the concatenation of all defined features
to a new data representation of lower dimensionality, we use a
standard Principal Component Analysis (PCA) which has for in-
stance been involved for the classification of simulated hyper-
spectral EnMAP data (Keller et al., 2016, 2017). The PCA uses
an orthogonal transformation to transform a set of feature vectors

from a high-dimensional feature space (which is spanned by pos-
sibly correlated features) to a new feature space which is spanned
by linearly uncorrelated meta-features, the principal components,
which account for the data variability along the respective dimen-
sion. The principal components are defined in a way that the first
principal component covers the highest variability of the data,
and that each subsequent principal component covers the highest
possible variability under the constraint that it is orthogonal to
all previous principal components. Thus, the most relevant infor-
mation of the considered data is covered by the first few princi-
pal components, while the last few principal components do not
significantly contribute to the variability of the given data and
can hence be considered as almost irrelevant. Consequently, the
PCA-based dimensionality reduction focuses on only consider-
ing the first few principal components, which cover a certain per-
centage of the variability of the given data. For our experiments,
we use the first few principal components which cover 99.9 % of
the variability of the given training data to define the new feature
vectors of reduced dimensionality, and we expect no significant
loss of relevant information with respect to the classification task
when discarding all other principal components.

3.1.3 Feature Selection To retain a suitable subset of the
original features, we conduct feature selection by applying
Correlation-based Feature Selection (CFS) (Hall, 1999) which
has for instance been used for the analysis of relevant spec-
tral bands in simulated hyperspectral EnNMAP data (Keller et al.,
2017) and for the analysis of relevant spectral bands in spectral
libraries with differently labeled materials and land-cover types
(Ilehag et al., 2017). In general, CFS takes into account (i) the
correlation between features and classes to identify relevant fea-
tures and (i) the correlation among features to identify and dis-
card redundant features. Denoting the average correlation be-
tween features and classes by ps. and the average correlation
between different features by pyy, the relevance R of a feature
subset comprising n features is defined according to

n+n(n—1)psy

whereby the involved correlation metric p is given by the sym-
metrical uncertainty (Hall, 1999). Maximizing the relevance R
over the set of all possible feature subsets finally yields a feature
subset of relevant features with low redundancy. This maximiza-
tion can be achieved by applying an iterative scheme where, for
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each iteration, either a feature is added to the feature subset (“for-
ward selection”) or a feature is removed from the feature subset
(“backward elimination”) until the relevance R converges to a
stable maximum. The new feature vectors defined on the basis of
the selected feature subset thus correspond to a selection of a few
dimensions of the original data representation.

3.1.4 Transformation to Sentinel-2-like Data To analyze
the potential of Sentinel-2 data for the classification task, we
transform the data representation given by the concatenation
of all defined features to multispectral data corresponding to
Sentinel-2-like data. For each of the 13 spectral bands corre-
sponding to Sentinel-2 data, we check which of the spectral bands
of the hyperspectral data are within. The reflectance values corre-
sponding to these spectral bands, in turn, are used to derive a re-
flectance value for the considered spectral band of the Sentinel-2
data. Thereby, we consider the weighted mean of the reflectance
values and the weights are determined via a linear interpolation
based on the total spectral response functions defined for the
Sentinel-2 data, whereby these functions are normalized to 1 (cf.
Figure 1).

In the scope of our work, we particularly focus on systems that
have been proposed for the airborne acquisition of hyperspectral
data, because several labeled benchmark datasets including the
specification of the used spectral bands are available for this case.
On the one hand, we focus on data acquired with the Reflective
Optics System Imaging Spectrometer (ROSIS), where the central
wavelength Ay of the k-th spectral band is given according to

A =Xo+ (k—1)-AX k=1,...,115 (2
and the spectral sampling is specified with AX = 4.0 nm (Gege
et al., 2008). The value of the constant Ao is approximated with
Ao = 379.53nm following the aforementioned reference, so
that the spectral bands reach from Ay = 379.53nm to A115 =
835.53 nm in our experiments. On the other hand, we focus on
data acquired with the Airborne Visible / Infrared Imaging Spec-
trometer’ (AVIRIS) for which calibration files are provided which
include the central wavelength and bandwidth of each of the 224
spectral bands.

For a classification task focusing on the use of Sentinel-2 data
to derive thematic maps with respect to a variety of land-cover
and land-use classes, it should however be taken into account
that not all spectral bands contain valuable information (Wein-
mann and Weidner, 2018). Accordingly, for our classification
based on the Sentinel-2-like data, we only make use of those re-
flectance values corresponding to the spectral bands B2 (central
wavelength of 490 nm), B3 (560 nm), B4 (665 nm), B5 (705 nm),
B6 (740 nm), B7 (783 nm), B8a (865 nm), B11 (1610 nm) and
B12 (2190 nm). The spectral bands B1 (443 nm), B9 (945 nm)
and B10 (1375 nm) are not considered, because they correspond
to parts of the spectrum where the atmospheric transmission is
low, e.g. due to ozone (O3), oxygen (O2) or water vapor (H20)
which strongly affect the atmospheric transmissivity at certain
wavelengths. Furthermore, we discard the reflectance value cor-
responding to the spectral band B8 (842 nm), because it is over-
lapping with B8a but much wider and less characteristic.

3.2 Supervised Classification

For classification, we focus on a standard supervised classifica-
tion based on a Random Forest classifier (Breiman, 2001) as rep-
resentative of modern discriminative methods. Such a classifier is

2http://aviris.jpl.nasa.gov (last access: 22 November 2017)

B CO01: Water
B CO02: Trees
C03: Asphalt
B CO04: Self-Blocking Bricks
B CO05: Bitumen
W CO06: Tiles
C07: Shadows
C08: Meadows
B CO09: Bare Soil

1096 pixels

223 pixels

492 pixels

Figure 2. Reference labels for the Pavia Centre dataset: each
pixel is characterized by reflectance values on 102 spectral bands.
Unlabeled pixels are indicated in black.

composed of a number of decision trees, which are trained inde-
pendently on randomly selected subsets of the training data via
bootstrap aggregating (“bagging”) (Breiman, 1996). Once the
training is finished, a new feature vector can be classified by con-
sidering the majority vote across the individual votes of the in-
volved decision trees. Suitable values for the number of involved
decision trees and the maximum tree depth are selected by con-
ducting a grid search on a suitable subspace.

4. EXPERIMENTAL RESULTS

In the following, we first describe the used benchmark datasets
in Section 4.1 and implementation details in Section 4.2. Subse-
quently, we summarize the conducted experiments in Section 4.3.
Finally, we present the derived results in Section 4.4.

4.1 Datasets

For our experiments, we use the Pavia Centre dataset represent-
ing an urban area and the Salinas dataset representing an agricul-
tural area. Both datasets are available in a repository of hyper-
spectral remote sensing scenes.’

The Pavia Centre dataset was acquired with the Reflective Optics
System Imaging Spectrometer (ROSIS) in a low-altitude flight
campaign over the city of Pavia, Italy. The acquired data are rep-
resented in the form of two images of 1096 x 223 pixels and
1096 x 492 pixels, respectively, where each pixel corresponds to
an area of 1.3m X 1.3 m and comprises hyperspectral informa-
tion on 102 spectral bands. The complete Pavia Centre dataset
consists of about 784k pixels of which 7,456 have been labeled
with respect to 9 classes as shown in Figure 2, while no reference
labels are provided for the remaining pixels.

The Salinas dataset was acquired with the Airborne Visible / In-
frared Imaging Spectrometer (AVIRIS) in a low-altitude flight
campaign over Salinas Valley in California, USA. The acquired
data are represented in the form of an image of 512 x 217 pixels,
where each pixel corresponds to an area of 3.7m X 3.7m and,
after the removal of 20 water absorption bands, comprises hyper-
spectral information on 204 spectral bands. The complete Salinas
dataset consists of about 111k pixels of which 54,129 have been
labeled with respect to 16 classes as shown in Figure 3, while no
reference labels are provided for the remaining pixels.

Shttp://www.ehu.eus/ccwintco/index. php?title=Hyperspectral_Remote
_Sensing_Scenes (last access: 22 November 2017)
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C04: Fallow_rough_plow
C05: Fallow_smooth
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512 pixels
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|

B C14: Lettuce_romaine_7wk
B C15: Vinyard_untrained

B C16: Vinyard_vertical_trellis

217 pixels

Figure 3. Reference labels for the Salinas dataset: each pixel is
characterized by reflectance values on 204 spectral bands. Unla-
beled pixels are indicated in black.

4.2 Implementation

We implemented our framework in Matlab and used the CFS im-
plementation provided with (Zhao et al., 2010) as well as the
Random Forest implementation provided with (Liaw and Wiener,
2002).

4.3 Experiments

In our work, we consider the feature vectors x; for the original
hyperspectral data, PCA(x;) for the PCA-based encoding of hy-
perspectral data, CFS(x;) for the CFS-based selection of relevant
spectral bands, and S2(x;) for the Sentinel-2-like data. For each
type of feature vector, classification is performed by using a Ran-
dom Forest classifier. For performance evaluation, we use two
benchmark datasets representing an urban area and an agricul-
tural area, respectively. In total, this results in eight experiments.

For each experiment, the appropriate number of involved decision
trees used to define the Random Forest classifier is determined in-
dividually during the training process by performing a grid search
on a suitable subspace. Thereby, we also take into account that
an imbalanced distribution of training examples across all classes
might have a detrimental effect on the training process in terms of
both feature selection and classification (Chen et al., 2004; Crim-
inisi and Shotton, 2013; Weinmann, 2016), and we consequently
use an identical number of training examples for all classes. In
this regard, we randomly select 100 training examples per class
and all remaining data is used for the subsequent prediction based
on a trained Random Forest classifier.

For performance evaluation, we compare each derived labeling
with the reference labeling on a per-point basis. Thereby, we
consider the global evaluation metrics represented by the overall
accuracy OA € [0, 1], the kappa value x € [—1, 1] and the un-
weighted average mF; € [0, 1] of the F1-scores across all classes.
To also allow reasoning about the performance for single classes,
we additionally consider the classwise evaluation metrics repre-
sented by recall, precision and F;-score, each characterized by a
value in [0, 1].

4.4 Results

As mentioned before, we consider four different approaches to
define feature vectors which serve as input to a Random For-
est classifier. For each approach, the classification results de-
rived for the two benchmark datasets are summarized in Table 2,
while the corresponding visualizations of the labels predicted for
the complete scene are given in Figures 4 and 5, respectively.
The classification results achieved for the Pavia Centre dataset
are generally of rather high quality (OA = 95.46...96.72 %),
while the classification results achieved for the Salinas dataset
are worse (OA = 84.77...86.69 %). The corresponding values
for the classwise evaluation metrics of recall, precision and F-
score are shown in Figures 6 and 7 for the Pavia Centre dataset
and the Salinas dataset, respectively. These figures reveal that
particularly class C04 (“Self-Blocking Bricks”) of the Pavia Cen-
tre dataset and classes CO8 (“Grapes_untrained”) and C15 (“Vin-
yard_untrained”) of the Salinas dataset seem to be problematic
for the given classification task.

Pavia Centre Salinas
Features OA K mFq OA K mF;
X; 95.61 93.81 89.40 | 86.55 85.05 91.98
PCA(x;) | 96.72 95.36 90.48 | 86.69 85.18 92.43
CFS(x;) 95.46 93.60 89.12 | 86.38 84.86 91.90
S2(x;) 95.52 93.68 89.14 | 84.77 83.06 90.73

Table 2. Classification results (in %) achieved for the Pavia Cen-
tre dataset and the Salinas dataset when using different data rep-
resentations as input to a Random Forest classifier.

5. DISCUSSION

At first sight, the derived classification results (cf. Table 2) in-
dicate that the classification of the Pavia Centre dataset (OA =
95.46...96.72 %) seems to be less challenging than the classi-
fication of the Salinas dataset (OA = 84.77...86.69 %). This
is rather intuitive, because the Pavia Centre dataset has only 9
classes of interest which are likely to be more distinctive, whereas
the Salinas dataset has 16 classes of interest with all of them rep-
resenting agricultural classes with a higher similarity. A closer
look at the classification results however reveals a higher mF;
which, in turn, means that instances of the different classes are
on average better identified for the Salinas dataset. Indeed, most
of the classes of the Salinas dataset are very well recognized
(cf. Figure 7) and only the classes CO8 (“Grapes_untrained”)
and C15 (“Vinyard_untrained”) are not as well recognized (with
F1 =~ 70% and F; ~ 60 % respectively). A look at the respec-
tive confusion matrices reveals that many misclassifications oc-
cur between these two classes. As many pixels corresponding to
these classes are given in the prediction stage, the values for OA
are worse. For the Pavia Centre dataset, most of the classes can
be well recognized (cf. Figure 6). The classes CO1 (“Water”)
and C09 (“Bare Soil”) are extremely well recognized with almost
no misclassifications (F1 ~ 100 %), while the class C04 (“Self-
Blocking Bricks™) poses problems (F1 ~ 70 %). This might be
due to the different materials which elements of this class are
composed of.

Among the different approaches to define the feature vectors
serving as input to a Random Forest classifier, the PCA-based
encoding of hyperspectral data PCA(x;) yields the best results
for both datasets. In case of the Pavia Centre dataset, the first 9
(of 102) principal components are selected to cover 99.9 % of
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Figure 4. Classified scene for the Pavia Centre dataset when us-
ing the original hyperspectral data (top left), the PCA-based en-
coding of hyperspectral data (top right), the CFS-based selection
of relevant spectral bands (bottom left) and the Sentinel-2-like
data (bottom right) as input to a Random Forest classifier: the
color encoding follows the definition in Figure 2.

Figure 5. Classified scene for the Salinas dataset when using the
original hyperspectral data (first column), the PCA-based encod-
ing of hyperspectral data (second column), the CFS-based selec-
tion of relevant spectral bands (third column) and the Sentinel-2-
like data (fourth column) as input to a Random Forest classifier:
the color encoding follows the definition in Figure 3.

the variability of the given training data, while the first 6 (of
204) principal components are selected for the Salinas dataset.
Thus, a significant reduction of dimensionality is achieved for
both datasets when using the PCA. The CFS-based selection of
relevant spectral bands CFS(x;) leads to classification results of

100.0
90.0
80.0
70.0
60.0
50.0

Recall

07 08 09

01 02 03
!

04 05 06
\ \ \

100.0
90.0
80.0
70.0 |- —
60.0 |- —
50.0

Precision

01 02 03 04 05 06 07 08 09
100.0 | | | | | | |

90.0 |- —
80.0 |~ —
70.0 - —
60.0 |- —
50.0

F1-score

04 05 06 07 08 09
Class ID

01 02 03
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Figure 7. Recall (top), precision (center) and F;-score (bottom)
(in %) achieved for the Salinas dataset when using different data
representations as input to a Random Forest classifier.

almost the same quality as obtained for the original hyperspec-
tral data x;. Thereby, the reflectance values corresponding to 25
(of 102) spectral bands are selected for the Pavia Centre dataset,
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while the reflectance values corresponding to 43 (of 204) spec-
tral bands are selected for the Salinas dataset. In both cases, the
selected spectral bands are well-distributed across all available
spectral bands. Interestingly, the Sentinel-2-like data S2(x;) lead
to classification results of a similar quality compared to x; and
CFS(x;) for the Pavia Centre dataset, and to slightly worse clas-
sification results for the Salinas dataset. Yet, the difference in
OA is so small that the visualizations of the corresponding clas-
sification results look rather similar (cf. Figures 4 and 5). This
indicates that Sentinel-2 data already provide a good source of
information for land-cover and land-use classification, while the
use of hyperspectral data as can e.g. be expected to be provided
with the EnMAP mission seems to only improve the results by a
small margin. Such a conclusion is in accordance with other in-
vestigations where, based on the use of Landsat TM and AVIRIS
data, it was found that the effect of seasonality on the results is
more significant than the number of bands considered (Mannel
and Price, 2012).

In the scope of our work, the focus is put on the spectral behavior
of land-cover and land-use classes. For performance evaluation,
we use two benchmark datasets for which hyperspectral data and
a semantic labeling are available on a per-pixel basis. The data
representations derived via dimensionality reduction, feature se-
lection or the transfer to multispectral Sentinel-2-like data thus
also refer to this image raster. To address effects arising from the
spatial resolution of the data, a transfer of both the given hyper-
spectral data and the given labeling to a larger ground sampling
distance of 20 m as given for Sentinel-2 data would be required.
Such considerations are beyond the scope of this paper and re-
main subject of future work.

6. CONCLUSIONS

In this paper, we have focused on the task of land-cover and
land-use classification based on hyperspectral and multispectral
imagery. Thereby, we have demonstrated the potential of us-
ing the original hyperspectral data as well as the potential of ap-
plying well-established approaches for dimensionality reduction
and feature selection. In addition, we have included a transfer
of hyperspectral data to multispectral Sentinel-2-like data prod-
ucts that are relevant for the task of land-cover and land-use clas-
sification. As the basis for this transfer, we have used hyper-
spectral data acquired from airborne platforms with the ROSIS
and AVIRIS devices, and we have applied a spectral resampling
to Sentinel-2-like data products by using the spectral response
functions given for the Sentinel-2 MultiSpectral Instrument. For
each case, a Random Forest classifier has been used to assign se-
mantic labels with respect to a set of user-defined classes. The
achieved results clearly reveal that Sentinel-2-like data already
seem to provide a good source of information for land-cover and
land-use classification, while the use of hyperspectral data as e.g.
available with the future ENMAP mission seems to only provide
a slight improvement for such a task. This is quite important, be-
cause the use of Sentinel-2 data is particularly advantageous for
large-scale land-cover and land-use mapping applications due to
a significantly less expensive data acquisition and a much faster
repetition of data acquisition for the same area.

In future work, we aim at deeper investigating the potential of
multi-modal data for land-cover and land-use classification. This
includes the combined use of hyperspectral and shape informa-
tion, which has recently been proven to allow for a better analy-
sis of urban areas in comparison to the use of only hyperspectral

data (Weinmann and Weinmann, 2018). Furthermore, we plan
to investigate the potential of a time series analysis based on
multitemporal Sentinel-2 data. This allows taking into account
dynamic processes (e.g. caused by seasonal changes or growth
cycles) as well as detecting changes in land-cover and land-use.
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